qemu/target/arm/tcg/translate-sme.c
Richard Henderson 96fcc9982b target/arm: Split out make_svemte_desc
Share code that creates mtedesc and embeds within simd_desc.

Cc: qemu-stable@nongnu.org
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
Tested-by: Gustavo Romero <gustavo.romero@linaro.org>
Message-id: 20240207025210.8837-5-richard.henderson@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2024-02-15 11:30:45 +00:00

344 lines
10 KiB
C

/*
* AArch64 SME translation
*
* Copyright (c) 2022 Linaro, Ltd
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "translate.h"
#include "translate-a64.h"
/*
* Include the generated decoder.
*/
#include "decode-sme.c.inc"
/*
* Resolve tile.size[index] to a host pointer, where tile and index
* are always decoded together, dependent on the element size.
*/
static TCGv_ptr get_tile_rowcol(DisasContext *s, int esz, int rs,
int tile_index, bool vertical)
{
int tile = tile_index >> (4 - esz);
int index = esz == MO_128 ? 0 : extract32(tile_index, 0, 4 - esz);
int pos, len, offset;
TCGv_i32 tmp;
TCGv_ptr addr;
/* Compute the final index, which is Rs+imm. */
tmp = tcg_temp_new_i32();
tcg_gen_trunc_tl_i32(tmp, cpu_reg(s, rs));
tcg_gen_addi_i32(tmp, tmp, index);
/* Prepare a power-of-two modulo via extraction of @len bits. */
len = ctz32(streaming_vec_reg_size(s)) - esz;
if (vertical) {
/*
* Compute the byte offset of the index within the tile:
* (index % (svl / size)) * size
* = (index % (svl >> esz)) << esz
* Perform the power-of-two modulo via extraction of the low @len bits.
* Perform the multiply by shifting left by @pos bits.
* Perform these operations simultaneously via deposit into zero.
*/
pos = esz;
tcg_gen_deposit_z_i32(tmp, tmp, pos, len);
/*
* For big-endian, adjust the indexed column byte offset within
* the uint64_t host words that make up env->zarray[].
*/
if (HOST_BIG_ENDIAN && esz < MO_64) {
tcg_gen_xori_i32(tmp, tmp, 8 - (1 << esz));
}
} else {
/*
* Compute the byte offset of the index within the tile:
* (index % (svl / size)) * (size * sizeof(row))
* = (index % (svl >> esz)) << (esz + log2(sizeof(row)))
*/
pos = esz + ctz32(sizeof(ARMVectorReg));
tcg_gen_deposit_z_i32(tmp, tmp, pos, len);
/* Row slices are always aligned and need no endian adjustment. */
}
/* The tile byte offset within env->zarray is the row. */
offset = tile * sizeof(ARMVectorReg);
/* Include the byte offset of zarray to make this relative to env. */
offset += offsetof(CPUARMState, zarray);
tcg_gen_addi_i32(tmp, tmp, offset);
/* Add the byte offset to env to produce the final pointer. */
addr = tcg_temp_new_ptr();
tcg_gen_ext_i32_ptr(addr, tmp);
tcg_gen_add_ptr(addr, addr, tcg_env);
return addr;
}
/*
* Resolve tile.size[0] to a host pointer.
* Used by e.g. outer product insns where we require the entire tile.
*/
static TCGv_ptr get_tile(DisasContext *s, int esz, int tile)
{
TCGv_ptr addr = tcg_temp_new_ptr();
int offset;
offset = tile * sizeof(ARMVectorReg) + offsetof(CPUARMState, zarray);
tcg_gen_addi_ptr(addr, tcg_env, offset);
return addr;
}
static bool trans_ZERO(DisasContext *s, arg_ZERO *a)
{
if (!dc_isar_feature(aa64_sme, s)) {
return false;
}
if (sme_za_enabled_check(s)) {
gen_helper_sme_zero(tcg_env, tcg_constant_i32(a->imm),
tcg_constant_i32(streaming_vec_reg_size(s)));
}
return true;
}
static bool trans_MOVA(DisasContext *s, arg_MOVA *a)
{
static gen_helper_gvec_4 * const h_fns[5] = {
gen_helper_sve_sel_zpzz_b, gen_helper_sve_sel_zpzz_h,
gen_helper_sve_sel_zpzz_s, gen_helper_sve_sel_zpzz_d,
gen_helper_sve_sel_zpzz_q
};
static gen_helper_gvec_3 * const cz_fns[5] = {
gen_helper_sme_mova_cz_b, gen_helper_sme_mova_cz_h,
gen_helper_sme_mova_cz_s, gen_helper_sme_mova_cz_d,
gen_helper_sme_mova_cz_q,
};
static gen_helper_gvec_3 * const zc_fns[5] = {
gen_helper_sme_mova_zc_b, gen_helper_sme_mova_zc_h,
gen_helper_sme_mova_zc_s, gen_helper_sme_mova_zc_d,
gen_helper_sme_mova_zc_q,
};
TCGv_ptr t_za, t_zr, t_pg;
TCGv_i32 t_desc;
int svl;
if (!dc_isar_feature(aa64_sme, s)) {
return false;
}
if (!sme_smza_enabled_check(s)) {
return true;
}
t_za = get_tile_rowcol(s, a->esz, a->rs, a->za_imm, a->v);
t_zr = vec_full_reg_ptr(s, a->zr);
t_pg = pred_full_reg_ptr(s, a->pg);
svl = streaming_vec_reg_size(s);
t_desc = tcg_constant_i32(simd_desc(svl, svl, 0));
if (a->v) {
/* Vertical slice -- use sme mova helpers. */
if (a->to_vec) {
zc_fns[a->esz](t_zr, t_za, t_pg, t_desc);
} else {
cz_fns[a->esz](t_za, t_zr, t_pg, t_desc);
}
} else {
/* Horizontal slice -- reuse sve sel helpers. */
if (a->to_vec) {
h_fns[a->esz](t_zr, t_za, t_zr, t_pg, t_desc);
} else {
h_fns[a->esz](t_za, t_zr, t_za, t_pg, t_desc);
}
}
return true;
}
static bool trans_LDST1(DisasContext *s, arg_LDST1 *a)
{
typedef void GenLdSt1(TCGv_env, TCGv_ptr, TCGv_ptr, TCGv, TCGv_i32);
/*
* Indexed by [esz][be][v][mte][st], which is (except for load/store)
* also the order in which the elements appear in the function names,
* and so how we must concatenate the pieces.
*/
#define FN_LS(F) { gen_helper_sme_ld1##F, gen_helper_sme_st1##F }
#define FN_MTE(F) { FN_LS(F), FN_LS(F##_mte) }
#define FN_HV(F) { FN_MTE(F##_h), FN_MTE(F##_v) }
#define FN_END(L, B) { FN_HV(L), FN_HV(B) }
static GenLdSt1 * const fns[5][2][2][2][2] = {
FN_END(b, b),
FN_END(h_le, h_be),
FN_END(s_le, s_be),
FN_END(d_le, d_be),
FN_END(q_le, q_be),
};
#undef FN_LS
#undef FN_MTE
#undef FN_HV
#undef FN_END
TCGv_ptr t_za, t_pg;
TCGv_i64 addr;
uint32_t desc;
bool be = s->be_data == MO_BE;
bool mte = s->mte_active[0];
if (!dc_isar_feature(aa64_sme, s)) {
return false;
}
if (!sme_smza_enabled_check(s)) {
return true;
}
t_za = get_tile_rowcol(s, a->esz, a->rs, a->za_imm, a->v);
t_pg = pred_full_reg_ptr(s, a->pg);
addr = tcg_temp_new_i64();
tcg_gen_shli_i64(addr, cpu_reg(s, a->rm), a->esz);
tcg_gen_add_i64(addr, addr, cpu_reg_sp(s, a->rn));
if (!mte) {
addr = clean_data_tbi(s, addr);
}
desc = make_svemte_desc(s, streaming_vec_reg_size(s), 1, a->esz, a->st, 0);
fns[a->esz][be][a->v][mte][a->st](tcg_env, t_za, t_pg, addr,
tcg_constant_i32(desc));
return true;
}
typedef void GenLdStR(DisasContext *, TCGv_ptr, int, int, int, int);
static bool do_ldst_r(DisasContext *s, arg_ldstr *a, GenLdStR *fn)
{
int svl = streaming_vec_reg_size(s);
int imm = a->imm;
TCGv_ptr base;
if (!sme_za_enabled_check(s)) {
return true;
}
/* ZA[n] equates to ZA0H.B[n]. */
base = get_tile_rowcol(s, MO_8, a->rv, imm, false);
fn(s, base, 0, svl, a->rn, imm * svl);
return true;
}
TRANS_FEAT(LDR, aa64_sme, do_ldst_r, a, gen_sve_ldr)
TRANS_FEAT(STR, aa64_sme, do_ldst_r, a, gen_sve_str)
static bool do_adda(DisasContext *s, arg_adda *a, MemOp esz,
gen_helper_gvec_4 *fn)
{
int svl = streaming_vec_reg_size(s);
uint32_t desc = simd_desc(svl, svl, 0);
TCGv_ptr za, zn, pn, pm;
if (!sme_smza_enabled_check(s)) {
return true;
}
za = get_tile(s, esz, a->zad);
zn = vec_full_reg_ptr(s, a->zn);
pn = pred_full_reg_ptr(s, a->pn);
pm = pred_full_reg_ptr(s, a->pm);
fn(za, zn, pn, pm, tcg_constant_i32(desc));
return true;
}
TRANS_FEAT(ADDHA_s, aa64_sme, do_adda, a, MO_32, gen_helper_sme_addha_s)
TRANS_FEAT(ADDVA_s, aa64_sme, do_adda, a, MO_32, gen_helper_sme_addva_s)
TRANS_FEAT(ADDHA_d, aa64_sme_i16i64, do_adda, a, MO_64, gen_helper_sme_addha_d)
TRANS_FEAT(ADDVA_d, aa64_sme_i16i64, do_adda, a, MO_64, gen_helper_sme_addva_d)
static bool do_outprod(DisasContext *s, arg_op *a, MemOp esz,
gen_helper_gvec_5 *fn)
{
int svl = streaming_vec_reg_size(s);
uint32_t desc = simd_desc(svl, svl, a->sub);
TCGv_ptr za, zn, zm, pn, pm;
if (!sme_smza_enabled_check(s)) {
return true;
}
za = get_tile(s, esz, a->zad);
zn = vec_full_reg_ptr(s, a->zn);
zm = vec_full_reg_ptr(s, a->zm);
pn = pred_full_reg_ptr(s, a->pn);
pm = pred_full_reg_ptr(s, a->pm);
fn(za, zn, zm, pn, pm, tcg_constant_i32(desc));
return true;
}
static bool do_outprod_fpst(DisasContext *s, arg_op *a, MemOp esz,
gen_helper_gvec_5_ptr *fn)
{
int svl = streaming_vec_reg_size(s);
uint32_t desc = simd_desc(svl, svl, a->sub);
TCGv_ptr za, zn, zm, pn, pm, fpst;
if (!sme_smza_enabled_check(s)) {
return true;
}
za = get_tile(s, esz, a->zad);
zn = vec_full_reg_ptr(s, a->zn);
zm = vec_full_reg_ptr(s, a->zm);
pn = pred_full_reg_ptr(s, a->pn);
pm = pred_full_reg_ptr(s, a->pm);
fpst = fpstatus_ptr(FPST_FPCR);
fn(za, zn, zm, pn, pm, fpst, tcg_constant_i32(desc));
return true;
}
TRANS_FEAT(FMOPA_h, aa64_sme, do_outprod_fpst, a, MO_32, gen_helper_sme_fmopa_h)
TRANS_FEAT(FMOPA_s, aa64_sme, do_outprod_fpst, a, MO_32, gen_helper_sme_fmopa_s)
TRANS_FEAT(FMOPA_d, aa64_sme_f64f64, do_outprod_fpst, a, MO_64, gen_helper_sme_fmopa_d)
/* TODO: FEAT_EBF16 */
TRANS_FEAT(BFMOPA, aa64_sme, do_outprod, a, MO_32, gen_helper_sme_bfmopa)
TRANS_FEAT(SMOPA_s, aa64_sme, do_outprod, a, MO_32, gen_helper_sme_smopa_s)
TRANS_FEAT(UMOPA_s, aa64_sme, do_outprod, a, MO_32, gen_helper_sme_umopa_s)
TRANS_FEAT(SUMOPA_s, aa64_sme, do_outprod, a, MO_32, gen_helper_sme_sumopa_s)
TRANS_FEAT(USMOPA_s, aa64_sme, do_outprod, a, MO_32, gen_helper_sme_usmopa_s)
TRANS_FEAT(SMOPA_d, aa64_sme_i16i64, do_outprod, a, MO_64, gen_helper_sme_smopa_d)
TRANS_FEAT(UMOPA_d, aa64_sme_i16i64, do_outprod, a, MO_64, gen_helper_sme_umopa_d)
TRANS_FEAT(SUMOPA_d, aa64_sme_i16i64, do_outprod, a, MO_64, gen_helper_sme_sumopa_d)
TRANS_FEAT(USMOPA_d, aa64_sme_i16i64, do_outprod, a, MO_64, gen_helper_sme_usmopa_d)