qemu/target/arm/internals.h
Danny Canter d54ffa54fb hvf: arm: Implement and use hvf_get_physical_address_range
This patch's main focus is to use the previously added
hvf_get_physical_address_range to inform VM creation
about the IPA size we need for the VM, so we can extend
the default 36b IPA size and support VMs with 64+GB of
RAM. This is done by freezing the memory map, computing
the highest GPA and then (depending on if the platform
supports an IPA size that large) telling the kernel to
use a size >= for the VM. In pursuit of this a couple of
things related to how we handle the physical address range
we expose to guests were altered, but for an explanation of
what we were doing:

Today, to get the IPA size we were reading id_aa64mmfr0_el1's
PARange field from a newly made vcpu. Unfortunately, HVF just
returns the hosts PARange directly for the initial value and
not the IPA size that will actually back the VM, so we believe
we have much more address space than we actually do today it seems.

Starting in macOS 13.0 some APIs were introduced to be able to
query the maximum IPA size the kernel supports, and to set the IPA
size for a given VM. However, this still has a couple of issues
on < macOS 15. Up until macOS 15 (and if the hardware supported
it) the max IPA size was 39 bits which is not a valid PARange
value, so we can't clamp down what we advertise in the vcpu's
id_aa64mmfr0_el1 to our IPA size. Starting in macOS 15 however,
the maximum IPA size is 40 bits (if it's supported in the hardware
as well) which is also a valid PARange value so we can set our IPA
size to the maximum as well as clamp down the PARange we advertise
to the guest. This allows VMs with 64+ GB of RAM and should fix the
oddness of the PARange situation as well.

Signed-off-by: Danny Canter <danny_canter@apple.com>
Message-id: 20240828111552.93482-4-danny_canter@apple.com
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2024-09-13 15:31:47 +01:00

1829 lines
56 KiB
C

/*
* QEMU ARM CPU -- internal functions and types
*
* Copyright (c) 2014 Linaro Ltd
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see
* <http://www.gnu.org/licenses/gpl-2.0.html>
*
* This header defines functions, types, etc which need to be shared
* between different source files within target/arm/ but which are
* private to it and not required by the rest of QEMU.
*/
#ifndef TARGET_ARM_INTERNALS_H
#define TARGET_ARM_INTERNALS_H
#include "exec/breakpoint.h"
#include "hw/registerfields.h"
#include "tcg/tcg-gvec-desc.h"
#include "syndrome.h"
#include "cpu-features.h"
/* register banks for CPU modes */
#define BANK_USRSYS 0
#define BANK_SVC 1
#define BANK_ABT 2
#define BANK_UND 3
#define BANK_IRQ 4
#define BANK_FIQ 5
#define BANK_HYP 6
#define BANK_MON 7
static inline int arm_env_mmu_index(CPUARMState *env)
{
return EX_TBFLAG_ANY(env->hflags, MMUIDX);
}
static inline bool excp_is_internal(int excp)
{
/* Return true if this exception number represents a QEMU-internal
* exception that will not be passed to the guest.
*/
return excp == EXCP_INTERRUPT
|| excp == EXCP_HLT
|| excp == EXCP_DEBUG
|| excp == EXCP_HALTED
|| excp == EXCP_EXCEPTION_EXIT
|| excp == EXCP_KERNEL_TRAP
|| excp == EXCP_SEMIHOST;
}
/*
* Default frequency for the generic timer, in Hz.
* ARMv8.6 and later CPUs architecturally must use a 1GHz timer; before
* that it was an IMPDEF choice, and QEMU initially picked 62.5MHz,
* which gives a 16ns tick period.
*
* We will use the back-compat value:
* - for QEMU CPU types added before we standardized on 1GHz
* - for versioned machine types with a version of 9.0 or earlier
* In any case, the machine model may override via the cntfrq property.
*/
#define GTIMER_DEFAULT_HZ 1000000000
#define GTIMER_BACKCOMPAT_HZ 62500000
/* Bit definitions for the v7M CONTROL register */
FIELD(V7M_CONTROL, NPRIV, 0, 1)
FIELD(V7M_CONTROL, SPSEL, 1, 1)
FIELD(V7M_CONTROL, FPCA, 2, 1)
FIELD(V7M_CONTROL, SFPA, 3, 1)
/* Bit definitions for v7M exception return payload */
FIELD(V7M_EXCRET, ES, 0, 1)
FIELD(V7M_EXCRET, RES0, 1, 1)
FIELD(V7M_EXCRET, SPSEL, 2, 1)
FIELD(V7M_EXCRET, MODE, 3, 1)
FIELD(V7M_EXCRET, FTYPE, 4, 1)
FIELD(V7M_EXCRET, DCRS, 5, 1)
FIELD(V7M_EXCRET, S, 6, 1)
FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
/* Minimum value which is a magic number for exception return */
#define EXC_RETURN_MIN_MAGIC 0xff000000
/* Minimum number which is a magic number for function or exception return
* when using v8M security extension
*/
#define FNC_RETURN_MIN_MAGIC 0xfefffffe
/* Bit definitions for DBGWCRn and DBGWCRn_EL1 */
FIELD(DBGWCR, E, 0, 1)
FIELD(DBGWCR, PAC, 1, 2)
FIELD(DBGWCR, LSC, 3, 2)
FIELD(DBGWCR, BAS, 5, 8)
FIELD(DBGWCR, HMC, 13, 1)
FIELD(DBGWCR, SSC, 14, 2)
FIELD(DBGWCR, LBN, 16, 4)
FIELD(DBGWCR, WT, 20, 1)
FIELD(DBGWCR, MASK, 24, 5)
FIELD(DBGWCR, SSCE, 29, 1)
#define VTCR_NSW (1u << 29)
#define VTCR_NSA (1u << 30)
#define VSTCR_SW VTCR_NSW
#define VSTCR_SA VTCR_NSA
/* Bit definitions for CPACR (AArch32 only) */
FIELD(CPACR, CP10, 20, 2)
FIELD(CPACR, CP11, 22, 2)
FIELD(CPACR, TRCDIS, 28, 1) /* matches CPACR_EL1.TTA */
FIELD(CPACR, D32DIS, 30, 1) /* up to v7; RAZ in v8 */
FIELD(CPACR, ASEDIS, 31, 1)
/* Bit definitions for CPACR_EL1 (AArch64 only) */
FIELD(CPACR_EL1, ZEN, 16, 2)
FIELD(CPACR_EL1, FPEN, 20, 2)
FIELD(CPACR_EL1, SMEN, 24, 2)
FIELD(CPACR_EL1, TTA, 28, 1) /* matches CPACR.TRCDIS */
/* Bit definitions for HCPTR (AArch32 only) */
FIELD(HCPTR, TCP10, 10, 1)
FIELD(HCPTR, TCP11, 11, 1)
FIELD(HCPTR, TASE, 15, 1)
FIELD(HCPTR, TTA, 20, 1)
FIELD(HCPTR, TAM, 30, 1) /* matches CPTR_EL2.TAM */
FIELD(HCPTR, TCPAC, 31, 1) /* matches CPTR_EL2.TCPAC */
/* Bit definitions for CPTR_EL2 (AArch64 only) */
FIELD(CPTR_EL2, TZ, 8, 1) /* !E2H */
FIELD(CPTR_EL2, TFP, 10, 1) /* !E2H, matches HCPTR.TCP10 */
FIELD(CPTR_EL2, TSM, 12, 1) /* !E2H */
FIELD(CPTR_EL2, ZEN, 16, 2) /* E2H */
FIELD(CPTR_EL2, FPEN, 20, 2) /* E2H */
FIELD(CPTR_EL2, SMEN, 24, 2) /* E2H */
FIELD(CPTR_EL2, TTA, 28, 1)
FIELD(CPTR_EL2, TAM, 30, 1) /* matches HCPTR.TAM */
FIELD(CPTR_EL2, TCPAC, 31, 1) /* matches HCPTR.TCPAC */
/* Bit definitions for CPTR_EL3 (AArch64 only) */
FIELD(CPTR_EL3, EZ, 8, 1)
FIELD(CPTR_EL3, TFP, 10, 1)
FIELD(CPTR_EL3, ESM, 12, 1)
FIELD(CPTR_EL3, TTA, 20, 1)
FIELD(CPTR_EL3, TAM, 30, 1)
FIELD(CPTR_EL3, TCPAC, 31, 1)
#define MDCR_MTPME (1U << 28)
#define MDCR_TDCC (1U << 27)
#define MDCR_HLP (1U << 26) /* MDCR_EL2 */
#define MDCR_SCCD (1U << 23) /* MDCR_EL3 */
#define MDCR_HCCD (1U << 23) /* MDCR_EL2 */
#define MDCR_EPMAD (1U << 21)
#define MDCR_EDAD (1U << 20)
#define MDCR_TTRF (1U << 19)
#define MDCR_STE (1U << 18) /* MDCR_EL3 */
#define MDCR_SPME (1U << 17) /* MDCR_EL3 */
#define MDCR_HPMD (1U << 17) /* MDCR_EL2 */
#define MDCR_SDD (1U << 16)
#define MDCR_SPD (3U << 14)
#define MDCR_TDRA (1U << 11)
#define MDCR_TDOSA (1U << 10)
#define MDCR_TDA (1U << 9)
#define MDCR_TDE (1U << 8)
#define MDCR_HPME (1U << 7)
#define MDCR_TPM (1U << 6)
#define MDCR_TPMCR (1U << 5)
#define MDCR_HPMN (0x1fU)
/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
#define SDCR_VALID_MASK (MDCR_MTPME | MDCR_TDCC | MDCR_SCCD | \
MDCR_EPMAD | MDCR_EDAD | MDCR_TTRF | \
MDCR_STE | MDCR_SPME | MDCR_SPD)
#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
#define TTBCR_PD0 (1U << 4)
#define TTBCR_PD1 (1U << 5)
#define TTBCR_EPD0 (1U << 7)
#define TTBCR_IRGN0 (3U << 8)
#define TTBCR_ORGN0 (3U << 10)
#define TTBCR_SH0 (3U << 12)
#define TTBCR_T1SZ (3U << 16)
#define TTBCR_A1 (1U << 22)
#define TTBCR_EPD1 (1U << 23)
#define TTBCR_IRGN1 (3U << 24)
#define TTBCR_ORGN1 (3U << 26)
#define TTBCR_SH1 (1U << 28)
#define TTBCR_EAE (1U << 31)
FIELD(VTCR, T0SZ, 0, 6)
FIELD(VTCR, SL0, 6, 2)
FIELD(VTCR, IRGN0, 8, 2)
FIELD(VTCR, ORGN0, 10, 2)
FIELD(VTCR, SH0, 12, 2)
FIELD(VTCR, TG0, 14, 2)
FIELD(VTCR, PS, 16, 3)
FIELD(VTCR, VS, 19, 1)
FIELD(VTCR, HA, 21, 1)
FIELD(VTCR, HD, 22, 1)
FIELD(VTCR, HWU59, 25, 1)
FIELD(VTCR, HWU60, 26, 1)
FIELD(VTCR, HWU61, 27, 1)
FIELD(VTCR, HWU62, 28, 1)
FIELD(VTCR, NSW, 29, 1)
FIELD(VTCR, NSA, 30, 1)
FIELD(VTCR, DS, 32, 1)
FIELD(VTCR, SL2, 33, 1)
#define HCRX_ENAS0 (1ULL << 0)
#define HCRX_ENALS (1ULL << 1)
#define HCRX_ENASR (1ULL << 2)
#define HCRX_FNXS (1ULL << 3)
#define HCRX_FGTNXS (1ULL << 4)
#define HCRX_SMPME (1ULL << 5)
#define HCRX_TALLINT (1ULL << 6)
#define HCRX_VINMI (1ULL << 7)
#define HCRX_VFNMI (1ULL << 8)
#define HCRX_CMOW (1ULL << 9)
#define HCRX_MCE2 (1ULL << 10)
#define HCRX_MSCEN (1ULL << 11)
#define HPFAR_NS (1ULL << 63)
#define HSTR_TTEE (1 << 16)
#define HSTR_TJDBX (1 << 17)
/*
* Depending on the value of HCR_EL2.E2H, bits 0 and 1
* have different bit definitions, and EL1PCTEN might be
* bit 0 or bit 10. We use _E2H1 and _E2H0 suffixes to
* disambiguate if necessary.
*/
FIELD(CNTHCTL, EL0PCTEN_E2H1, 0, 1)
FIELD(CNTHCTL, EL0VCTEN_E2H1, 1, 1)
FIELD(CNTHCTL, EL1PCTEN_E2H0, 0, 1)
FIELD(CNTHCTL, EL1PCEN_E2H0, 1, 1)
FIELD(CNTHCTL, EVNTEN, 2, 1)
FIELD(CNTHCTL, EVNTDIR, 3, 1)
FIELD(CNTHCTL, EVNTI, 4, 4)
FIELD(CNTHCTL, EL0VTEN, 8, 1)
FIELD(CNTHCTL, EL0PTEN, 9, 1)
FIELD(CNTHCTL, EL1PCTEN_E2H1, 10, 1)
FIELD(CNTHCTL, EL1PTEN, 11, 1)
FIELD(CNTHCTL, ECV, 12, 1)
FIELD(CNTHCTL, EL1TVT, 13, 1)
FIELD(CNTHCTL, EL1TVCT, 14, 1)
FIELD(CNTHCTL, EL1NVPCT, 15, 1)
FIELD(CNTHCTL, EL1NVVCT, 16, 1)
FIELD(CNTHCTL, EVNTIS, 17, 1)
FIELD(CNTHCTL, CNTVMASK, 18, 1)
FIELD(CNTHCTL, CNTPMASK, 19, 1)
/* We use a few fake FSR values for internal purposes in M profile.
* M profile cores don't have A/R format FSRs, but currently our
* get_phys_addr() code assumes A/R profile and reports failures via
* an A/R format FSR value. We then translate that into the proper
* M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
* Mostly the FSR values we use for this are those defined for v7PMSA,
* since we share some of that codepath. A few kinds of fault are
* only for M profile and have no A/R equivalent, though, so we have
* to pick a value from the reserved range (which we never otherwise
* generate) to use for these.
* These values will never be visible to the guest.
*/
#define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
#define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
/**
* arm_aa32_secure_pl1_0(): Return true if in Secure PL1&0 regime
*
* Return true if the CPU is in the Secure PL1&0 translation regime.
* This requires that EL3 exists and is AArch32 and we are currently
* Secure. If this is the case then the ARMMMUIdx_E10* apply and
* mean we are in EL3, not EL1.
*/
static inline bool arm_aa32_secure_pl1_0(CPUARMState *env)
{
return arm_feature(env, ARM_FEATURE_EL3) &&
!arm_el_is_aa64(env, 3) && arm_is_secure(env);
}
/**
* raise_exception: Raise the specified exception.
* Raise a guest exception with the specified value, syndrome register
* and target exception level. This should be called from helper functions,
* and never returns because we will longjump back up to the CPU main loop.
*/
G_NORETURN void raise_exception(CPUARMState *env, uint32_t excp,
uint32_t syndrome, uint32_t target_el);
/*
* Similarly, but also use unwinding to restore cpu state.
*/
G_NORETURN void raise_exception_ra(CPUARMState *env, uint32_t excp,
uint32_t syndrome, uint32_t target_el,
uintptr_t ra);
/*
* For AArch64, map a given EL to an index in the banked_spsr array.
* Note that this mapping and the AArch32 mapping defined in bank_number()
* must agree such that the AArch64<->AArch32 SPSRs have the architecturally
* mandated mapping between each other.
*/
static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
{
static const unsigned int map[4] = {
[1] = BANK_SVC, /* EL1. */
[2] = BANK_HYP, /* EL2. */
[3] = BANK_MON, /* EL3. */
};
assert(el >= 1 && el <= 3);
return map[el];
}
/* Map CPU modes onto saved register banks. */
static inline int bank_number(int mode)
{
switch (mode) {
case ARM_CPU_MODE_USR:
case ARM_CPU_MODE_SYS:
return BANK_USRSYS;
case ARM_CPU_MODE_SVC:
return BANK_SVC;
case ARM_CPU_MODE_ABT:
return BANK_ABT;
case ARM_CPU_MODE_UND:
return BANK_UND;
case ARM_CPU_MODE_IRQ:
return BANK_IRQ;
case ARM_CPU_MODE_FIQ:
return BANK_FIQ;
case ARM_CPU_MODE_HYP:
return BANK_HYP;
case ARM_CPU_MODE_MON:
return BANK_MON;
}
g_assert_not_reached();
}
/**
* r14_bank_number: Map CPU mode onto register bank for r14
*
* Given an AArch32 CPU mode, return the index into the saved register
* banks to use for the R14 (LR) in that mode. This is the same as
* bank_number(), except for the special case of Hyp mode, where
* R14 is shared with USR and SYS, unlike its R13 and SPSR.
* This should be used as the index into env->banked_r14[], and
* bank_number() used for the index into env->banked_r13[] and
* env->banked_spsr[].
*/
static inline int r14_bank_number(int mode)
{
return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
}
void arm_cpu_register(const ARMCPUInfo *info);
void aarch64_cpu_register(const ARMCPUInfo *info);
void register_cp_regs_for_features(ARMCPU *cpu);
void init_cpreg_list(ARMCPU *cpu);
void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
void arm_translate_init(void);
void arm_cpu_register_gdb_commands(ARMCPU *cpu);
void aarch64_cpu_register_gdb_commands(ARMCPU *cpu, GString *,
GPtrArray *, GPtrArray *);
void arm_restore_state_to_opc(CPUState *cs,
const TranslationBlock *tb,
const uint64_t *data);
#ifdef CONFIG_TCG
void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb);
/* Our implementation of TCGCPUOps::cpu_exec_halt */
bool arm_cpu_exec_halt(CPUState *cs);
#endif /* CONFIG_TCG */
typedef enum ARMFPRounding {
FPROUNDING_TIEEVEN,
FPROUNDING_POSINF,
FPROUNDING_NEGINF,
FPROUNDING_ZERO,
FPROUNDING_TIEAWAY,
FPROUNDING_ODD
} ARMFPRounding;
extern const FloatRoundMode arm_rmode_to_sf_map[6];
static inline FloatRoundMode arm_rmode_to_sf(ARMFPRounding rmode)
{
assert((unsigned)rmode < ARRAY_SIZE(arm_rmode_to_sf_map));
return arm_rmode_to_sf_map[rmode];
}
static inline void aarch64_save_sp(CPUARMState *env, int el)
{
if (env->pstate & PSTATE_SP) {
env->sp_el[el] = env->xregs[31];
} else {
env->sp_el[0] = env->xregs[31];
}
}
static inline void aarch64_restore_sp(CPUARMState *env, int el)
{
if (env->pstate & PSTATE_SP) {
env->xregs[31] = env->sp_el[el];
} else {
env->xregs[31] = env->sp_el[0];
}
}
static inline void update_spsel(CPUARMState *env, uint32_t imm)
{
unsigned int cur_el = arm_current_el(env);
/* Update PSTATE SPSel bit; this requires us to update the
* working stack pointer in xregs[31].
*/
if (!((imm ^ env->pstate) & PSTATE_SP)) {
return;
}
aarch64_save_sp(env, cur_el);
env->pstate = deposit32(env->pstate, 0, 1, imm);
/* We rely on illegal updates to SPsel from EL0 to get trapped
* at translation time.
*/
assert(cur_el >= 1 && cur_el <= 3);
aarch64_restore_sp(env, cur_el);
}
/*
* arm_pamax
* @cpu: ARMCPU
*
* Returns the implementation defined bit-width of physical addresses.
* The ARMv8 reference manuals refer to this as PAMax().
*/
unsigned int arm_pamax(ARMCPU *cpu);
/*
* round_down_to_parange_index
* @bit_size: uint8_t
*
* Rounds down the bit_size supplied to the first supported ARM physical
* address range and returns the index for this. The index is intended to
* be used to set ID_AA64MMFR0_EL1's PARANGE bits.
*/
uint8_t round_down_to_parange_index(uint8_t bit_size);
/*
* round_down_to_parange_bit_size
* @bit_size: uint8_t
*
* Rounds down the bit_size supplied to the first supported ARM physical
* address range bit size and returns this.
*/
uint8_t round_down_to_parange_bit_size(uint8_t bit_size);
/* Return true if extended addresses are enabled.
* This is always the case if our translation regime is 64 bit,
* but depends on TTBCR.EAE for 32 bit.
*/
static inline bool extended_addresses_enabled(CPUARMState *env)
{
uint64_t tcr = env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
if (arm_feature(env, ARM_FEATURE_PMSA) &&
arm_feature(env, ARM_FEATURE_V8)) {
return true;
}
return arm_el_is_aa64(env, 1) ||
(arm_feature(env, ARM_FEATURE_LPAE) && (tcr & TTBCR_EAE));
}
/* Update a QEMU watchpoint based on the information the guest has set in the
* DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
*/
void hw_watchpoint_update(ARMCPU *cpu, int n);
/* Update the QEMU watchpoints for every guest watchpoint. This does a
* complete delete-and-reinstate of the QEMU watchpoint list and so is
* suitable for use after migration or on reset.
*/
void hw_watchpoint_update_all(ARMCPU *cpu);
/* Update a QEMU breakpoint based on the information the guest has set in the
* DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
*/
void hw_breakpoint_update(ARMCPU *cpu, int n);
/* Update the QEMU breakpoints for every guest breakpoint. This does a
* complete delete-and-reinstate of the QEMU breakpoint list and so is
* suitable for use after migration or on reset.
*/
void hw_breakpoint_update_all(ARMCPU *cpu);
/* Callback function for checking if a breakpoint should trigger. */
bool arm_debug_check_breakpoint(CPUState *cs);
/* Callback function for checking if a watchpoint should trigger. */
bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
/* Adjust addresses (in BE32 mode) before testing against watchpoint
* addresses.
*/
vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
/* Callback function for when a watchpoint or breakpoint triggers. */
void arm_debug_excp_handler(CPUState *cs);
#if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG)
static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
{
return false;
}
static inline void arm_handle_psci_call(ARMCPU *cpu)
{
g_assert_not_reached();
}
#else
/* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
/* Actually handle a PSCI call */
void arm_handle_psci_call(ARMCPU *cpu);
#endif
/**
* arm_clear_exclusive: clear the exclusive monitor
* @env: CPU env
* Clear the CPU's exclusive monitor, like the guest CLREX instruction.
*/
static inline void arm_clear_exclusive(CPUARMState *env)
{
env->exclusive_addr = -1;
}
/**
* ARMFaultType: type of an ARM MMU fault
* This corresponds to the v8A pseudocode's Fault enumeration,
* with extensions for QEMU internal conditions.
*/
typedef enum ARMFaultType {
ARMFault_None,
ARMFault_AccessFlag,
ARMFault_Alignment,
ARMFault_Background,
ARMFault_Domain,
ARMFault_Permission,
ARMFault_Translation,
ARMFault_AddressSize,
ARMFault_SyncExternal,
ARMFault_SyncExternalOnWalk,
ARMFault_SyncParity,
ARMFault_SyncParityOnWalk,
ARMFault_AsyncParity,
ARMFault_AsyncExternal,
ARMFault_Debug,
ARMFault_TLBConflict,
ARMFault_UnsuppAtomicUpdate,
ARMFault_Lockdown,
ARMFault_Exclusive,
ARMFault_ICacheMaint,
ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
ARMFault_GPCFOnWalk,
ARMFault_GPCFOnOutput,
} ARMFaultType;
typedef enum ARMGPCF {
GPCF_None,
GPCF_AddressSize,
GPCF_Walk,
GPCF_EABT,
GPCF_Fail,
} ARMGPCF;
/**
* ARMMMUFaultInfo: Information describing an ARM MMU Fault
* @type: Type of fault
* @gpcf: Subtype of ARMFault_GPCFOn{Walk,Output}.
* @level: Table walk level (for translation, access flag and permission faults)
* @domain: Domain of the fault address (for non-LPAE CPUs only)
* @s2addr: Address that caused a fault at stage 2
* @paddr: physical address that caused a fault for gpc
* @paddr_space: physical address space that caused a fault for gpc
* @stage2: True if we faulted at stage 2
* @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
* @s1ns: True if we faulted on a non-secure IPA while in secure state
* @ea: True if we should set the EA (external abort type) bit in syndrome
*/
typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
struct ARMMMUFaultInfo {
ARMFaultType type;
ARMGPCF gpcf;
target_ulong s2addr;
target_ulong paddr;
ARMSecuritySpace paddr_space;
int level;
int domain;
bool stage2;
bool s1ptw;
bool s1ns;
bool ea;
};
/**
* arm_fi_to_sfsc: Convert fault info struct to short-format FSC
* Compare pseudocode EncodeSDFSC(), though unlike that function
* we set up a whole FSR-format code including domain field and
* putting the high bit of the FSC into bit 10.
*/
static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
{
uint32_t fsc;
switch (fi->type) {
case ARMFault_None:
return 0;
case ARMFault_AccessFlag:
fsc = fi->level == 1 ? 0x3 : 0x6;
break;
case ARMFault_Alignment:
fsc = 0x1;
break;
case ARMFault_Permission:
fsc = fi->level == 1 ? 0xd : 0xf;
break;
case ARMFault_Domain:
fsc = fi->level == 1 ? 0x9 : 0xb;
break;
case ARMFault_Translation:
fsc = fi->level == 1 ? 0x5 : 0x7;
break;
case ARMFault_SyncExternal:
fsc = 0x8 | (fi->ea << 12);
break;
case ARMFault_SyncExternalOnWalk:
fsc = fi->level == 1 ? 0xc : 0xe;
fsc |= (fi->ea << 12);
break;
case ARMFault_SyncParity:
fsc = 0x409;
break;
case ARMFault_SyncParityOnWalk:
fsc = fi->level == 1 ? 0x40c : 0x40e;
break;
case ARMFault_AsyncParity:
fsc = 0x408;
break;
case ARMFault_AsyncExternal:
fsc = 0x406 | (fi->ea << 12);
break;
case ARMFault_Debug:
fsc = 0x2;
break;
case ARMFault_TLBConflict:
fsc = 0x400;
break;
case ARMFault_Lockdown:
fsc = 0x404;
break;
case ARMFault_Exclusive:
fsc = 0x405;
break;
case ARMFault_ICacheMaint:
fsc = 0x4;
break;
case ARMFault_Background:
fsc = 0x0;
break;
case ARMFault_QEMU_NSCExec:
fsc = M_FAKE_FSR_NSC_EXEC;
break;
case ARMFault_QEMU_SFault:
fsc = M_FAKE_FSR_SFAULT;
break;
default:
/* Other faults can't occur in a context that requires a
* short-format status code.
*/
g_assert_not_reached();
}
fsc |= (fi->domain << 4);
return fsc;
}
/**
* arm_fi_to_lfsc: Convert fault info struct to long-format FSC
* Compare pseudocode EncodeLDFSC(), though unlike that function
* we fill in also the LPAE bit 9 of a DFSR format.
*/
static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
{
uint32_t fsc;
switch (fi->type) {
case ARMFault_None:
return 0;
case ARMFault_AddressSize:
assert(fi->level >= -1 && fi->level <= 3);
if (fi->level < 0) {
fsc = 0b101001;
} else {
fsc = fi->level;
}
break;
case ARMFault_AccessFlag:
assert(fi->level >= 0 && fi->level <= 3);
fsc = 0b001000 | fi->level;
break;
case ARMFault_Permission:
assert(fi->level >= 0 && fi->level <= 3);
fsc = 0b001100 | fi->level;
break;
case ARMFault_Translation:
assert(fi->level >= -1 && fi->level <= 3);
if (fi->level < 0) {
fsc = 0b101011;
} else {
fsc = 0b000100 | fi->level;
}
break;
case ARMFault_SyncExternal:
fsc = 0x10 | (fi->ea << 12);
break;
case ARMFault_SyncExternalOnWalk:
assert(fi->level >= -1 && fi->level <= 3);
if (fi->level < 0) {
fsc = 0b010011;
} else {
fsc = 0b010100 | fi->level;
}
fsc |= fi->ea << 12;
break;
case ARMFault_SyncParity:
fsc = 0x18;
break;
case ARMFault_SyncParityOnWalk:
assert(fi->level >= -1 && fi->level <= 3);
if (fi->level < 0) {
fsc = 0b011011;
} else {
fsc = 0b011100 | fi->level;
}
break;
case ARMFault_AsyncParity:
fsc = 0x19;
break;
case ARMFault_AsyncExternal:
fsc = 0x11 | (fi->ea << 12);
break;
case ARMFault_Alignment:
fsc = 0x21;
break;
case ARMFault_Debug:
fsc = 0x22;
break;
case ARMFault_TLBConflict:
fsc = 0x30;
break;
case ARMFault_UnsuppAtomicUpdate:
fsc = 0x31;
break;
case ARMFault_Lockdown:
fsc = 0x34;
break;
case ARMFault_Exclusive:
fsc = 0x35;
break;
case ARMFault_GPCFOnWalk:
assert(fi->level >= -1 && fi->level <= 3);
if (fi->level < 0) {
fsc = 0b100011;
} else {
fsc = 0b100100 | fi->level;
}
break;
case ARMFault_GPCFOnOutput:
fsc = 0b101000;
break;
default:
/* Other faults can't occur in a context that requires a
* long-format status code.
*/
g_assert_not_reached();
}
fsc |= 1 << 9;
return fsc;
}
static inline bool arm_extabort_type(MemTxResult result)
{
/* The EA bit in syndromes and fault status registers is an
* IMPDEF classification of external aborts. ARM implementations
* usually use this to indicate AXI bus Decode error (0) or
* Slave error (1); in QEMU we follow that.
*/
return result != MEMTX_DECODE_ERROR;
}
#ifdef CONFIG_USER_ONLY
void arm_cpu_record_sigsegv(CPUState *cpu, vaddr addr,
MMUAccessType access_type,
bool maperr, uintptr_t ra);
void arm_cpu_record_sigbus(CPUState *cpu, vaddr addr,
MMUAccessType access_type, uintptr_t ra);
#else
bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
MMUAccessType access_type, int mmu_idx,
bool probe, uintptr_t retaddr);
#endif
static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
{
return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
}
static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
{
if (arm_feature(env, ARM_FEATURE_M)) {
return mmu_idx | ARM_MMU_IDX_M;
} else {
return mmu_idx | ARM_MMU_IDX_A;
}
}
static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx)
{
/* AArch64 is always a-profile. */
return mmu_idx | ARM_MMU_IDX_A;
}
/**
* Return the exception level we're running at if our current MMU index
* is @mmu_idx. @s_pl1_0 should be true if this is the AArch32
* Secure PL1&0 translation regime.
*/
int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx, bool s_pl1_0);
/* Return the MMU index for a v7M CPU in the specified security state */
ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
/*
* Return true if the stage 1 translation regime is using LPAE
* format page tables
*/
bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
/* Raise a data fault alignment exception for the specified virtual address */
G_NORETURN void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
MMUAccessType access_type,
int mmu_idx, uintptr_t retaddr);
#ifndef CONFIG_USER_ONLY
/* arm_cpu_do_transaction_failed: handle a memory system error response
* (eg "no device/memory present at address") by raising an external abort
* exception
*/
void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
vaddr addr, unsigned size,
MMUAccessType access_type,
int mmu_idx, MemTxAttrs attrs,
MemTxResult response, uintptr_t retaddr);
#endif
/* Call any registered EL change hooks */
static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
{
ARMELChangeHook *hook, *next;
QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
hook->hook(cpu, hook->opaque);
}
}
static inline void arm_call_el_change_hook(ARMCPU *cpu)
{
ARMELChangeHook *hook, *next;
QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
hook->hook(cpu, hook->opaque);
}
}
/* Return true if this address translation regime has two ranges. */
static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx)
{
switch (mmu_idx) {
case ARMMMUIdx_Stage1_E0:
case ARMMMUIdx_Stage1_E1:
case ARMMMUIdx_Stage1_E1_PAN:
case ARMMMUIdx_E10_0:
case ARMMMUIdx_E10_1:
case ARMMMUIdx_E10_1_PAN:
case ARMMMUIdx_E20_0:
case ARMMMUIdx_E20_2:
case ARMMMUIdx_E20_2_PAN:
return true;
default:
return false;
}
}
static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx)
{
switch (mmu_idx) {
case ARMMMUIdx_Stage1_E1_PAN:
case ARMMMUIdx_E10_1_PAN:
case ARMMMUIdx_E20_2_PAN:
return true;
default:
return false;
}
}
static inline bool regime_is_stage2(ARMMMUIdx mmu_idx)
{
return mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S;
}
/* Return the exception level which controls this address translation regime */
static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
{
switch (mmu_idx) {
case ARMMMUIdx_E20_0:
case ARMMMUIdx_E20_2:
case ARMMMUIdx_E20_2_PAN:
case ARMMMUIdx_Stage2:
case ARMMMUIdx_Stage2_S:
case ARMMMUIdx_E2:
return 2;
case ARMMMUIdx_E3:
return 3;
case ARMMMUIdx_E10_0:
case ARMMMUIdx_Stage1_E0:
case ARMMMUIdx_E10_1:
case ARMMMUIdx_E10_1_PAN:
case ARMMMUIdx_Stage1_E1:
case ARMMMUIdx_Stage1_E1_PAN:
return arm_el_is_aa64(env, 3) || !arm_is_secure_below_el3(env) ? 1 : 3;
case ARMMMUIdx_MPrivNegPri:
case ARMMMUIdx_MUserNegPri:
case ARMMMUIdx_MPriv:
case ARMMMUIdx_MUser:
case ARMMMUIdx_MSPrivNegPri:
case ARMMMUIdx_MSUserNegPri:
case ARMMMUIdx_MSPriv:
case ARMMMUIdx_MSUser:
return 1;
default:
g_assert_not_reached();
}
}
static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
{
switch (mmu_idx) {
case ARMMMUIdx_E20_0:
case ARMMMUIdx_Stage1_E0:
case ARMMMUIdx_MUser:
case ARMMMUIdx_MSUser:
case ARMMMUIdx_MUserNegPri:
case ARMMMUIdx_MSUserNegPri:
return true;
default:
return false;
case ARMMMUIdx_E10_0:
case ARMMMUIdx_E10_1:
case ARMMMUIdx_E10_1_PAN:
g_assert_not_reached();
}
}
/* Return the SCTLR value which controls this address translation regime */
static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
{
return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
}
/*
* These are the fields in VTCR_EL2 which affect both the Secure stage 2
* and the Non-Secure stage 2 translation regimes (and hence which are
* not present in VSTCR_EL2).
*/
#define VTCR_SHARED_FIELD_MASK \
(R_VTCR_IRGN0_MASK | R_VTCR_ORGN0_MASK | R_VTCR_SH0_MASK | \
R_VTCR_PS_MASK | R_VTCR_VS_MASK | R_VTCR_HA_MASK | R_VTCR_HD_MASK | \
R_VTCR_DS_MASK)
/* Return the value of the TCR controlling this translation regime */
static inline uint64_t regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
{
if (mmu_idx == ARMMMUIdx_Stage2) {
return env->cp15.vtcr_el2;
}
if (mmu_idx == ARMMMUIdx_Stage2_S) {
/*
* Secure stage 2 shares fields from VTCR_EL2. We merge those
* in with the VSTCR_EL2 value to synthesize a single VTCR_EL2 format
* value so the callers don't need to special case this.
*
* If a future architecture change defines bits in VSTCR_EL2 that
* overlap with these VTCR_EL2 fields we may need to revisit this.
*/
uint64_t v = env->cp15.vstcr_el2 & ~VTCR_SHARED_FIELD_MASK;
v |= env->cp15.vtcr_el2 & VTCR_SHARED_FIELD_MASK;
return v;
}
return env->cp15.tcr_el[regime_el(env, mmu_idx)];
}
/* Return true if the translation regime is using LPAE format page tables */
static inline bool regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
{
int el = regime_el(env, mmu_idx);
if (el == 2 || arm_el_is_aa64(env, el)) {
return true;
}
if (arm_feature(env, ARM_FEATURE_PMSA) &&
arm_feature(env, ARM_FEATURE_V8)) {
return true;
}
if (arm_feature(env, ARM_FEATURE_LPAE)
&& (regime_tcr(env, mmu_idx) & TTBCR_EAE)) {
return true;
}
return false;
}
/**
* arm_num_brps: Return number of implemented breakpoints.
* Note that the ID register BRPS field is "number of bps - 1",
* and we return the actual number of breakpoints.
*/
static inline int arm_num_brps(ARMCPU *cpu)
{
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1;
} else {
return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1;
}
}
/**
* arm_num_wrps: Return number of implemented watchpoints.
* Note that the ID register WRPS field is "number of wps - 1",
* and we return the actual number of watchpoints.
*/
static inline int arm_num_wrps(ARMCPU *cpu)
{
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1;
} else {
return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1;
}
}
/**
* arm_num_ctx_cmps: Return number of implemented context comparators.
* Note that the ID register CTX_CMPS field is "number of cmps - 1",
* and we return the actual number of comparators.
*/
static inline int arm_num_ctx_cmps(ARMCPU *cpu)
{
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1;
} else {
return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1;
}
}
/**
* v7m_using_psp: Return true if using process stack pointer
* Return true if the CPU is currently using the process stack
* pointer, or false if it is using the main stack pointer.
*/
static inline bool v7m_using_psp(CPUARMState *env)
{
/* Handler mode always uses the main stack; for thread mode
* the CONTROL.SPSEL bit determines the answer.
* Note that in v7M it is not possible to be in Handler mode with
* CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
*/
return !arm_v7m_is_handler_mode(env) &&
env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
}
/**
* v7m_sp_limit: Return SP limit for current CPU state
* Return the SP limit value for the current CPU security state
* and stack pointer.
*/
static inline uint32_t v7m_sp_limit(CPUARMState *env)
{
if (v7m_using_psp(env)) {
return env->v7m.psplim[env->v7m.secure];
} else {
return env->v7m.msplim[env->v7m.secure];
}
}
/**
* v7m_cpacr_pass:
* Return true if the v7M CPACR permits access to the FPU for the specified
* security state and privilege level.
*/
static inline bool v7m_cpacr_pass(CPUARMState *env,
bool is_secure, bool is_priv)
{
switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) {
case 0:
case 2: /* UNPREDICTABLE: we treat like 0 */
return false;
case 1:
return is_priv;
case 3:
return true;
default:
g_assert_not_reached();
}
}
/**
* aarch32_mode_name(): Return name of the AArch32 CPU mode
* @psr: Program Status Register indicating CPU mode
*
* Returns, for debug logging purposes, a printable representation
* of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
* the low bits of the specified PSR.
*/
static inline const char *aarch32_mode_name(uint32_t psr)
{
static const char cpu_mode_names[16][4] = {
"usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
"???", "???", "hyp", "und", "???", "???", "???", "sys"
};
return cpu_mode_names[psr & 0xf];
}
/**
* arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
*
* Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
* a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
* Must be called with the BQL held.
*/
void arm_cpu_update_virq(ARMCPU *cpu);
/**
* arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
*
* Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
* a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
* Must be called with the BQL held.
*/
void arm_cpu_update_vfiq(ARMCPU *cpu);
/**
* arm_cpu_update_vinmi: Update CPU_INTERRUPT_VINMI bit in cs->interrupt_request
*
* Update the CPU_INTERRUPT_VINMI bit in cs->interrupt_request, following
* a change to either the input VNMI line from the GIC or the HCRX_EL2.VINMI.
* Must be called with the BQL held.
*/
void arm_cpu_update_vinmi(ARMCPU *cpu);
/**
* arm_cpu_update_vfnmi: Update CPU_INTERRUPT_VFNMI bit in cs->interrupt_request
*
* Update the CPU_INTERRUPT_VFNMI bit in cs->interrupt_request, following
* a change to the HCRX_EL2.VFNMI.
* Must be called with the BQL held.
*/
void arm_cpu_update_vfnmi(ARMCPU *cpu);
/**
* arm_cpu_update_vserr: Update CPU_INTERRUPT_VSERR bit
*
* Update the CPU_INTERRUPT_VSERR bit in cs->interrupt_request,
* following a change to the HCR_EL2.VSE bit.
*/
void arm_cpu_update_vserr(ARMCPU *cpu);
/**
* arm_mmu_idx_el:
* @env: The cpu environment
* @el: The EL to use.
*
* Return the full ARMMMUIdx for the translation regime for EL.
*/
ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el);
/**
* arm_mmu_idx:
* @env: The cpu environment
*
* Return the full ARMMMUIdx for the current translation regime.
*/
ARMMMUIdx arm_mmu_idx(CPUARMState *env);
/**
* arm_stage1_mmu_idx:
* @env: The cpu environment
*
* Return the ARMMMUIdx for the stage1 traversal for the current regime.
*/
#ifdef CONFIG_USER_ONLY
static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
{
return ARMMMUIdx_Stage1_E0;
}
static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
{
return ARMMMUIdx_Stage1_E0;
}
#else
ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx);
ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env);
#endif
/**
* arm_mmu_idx_is_stage1_of_2:
* @mmu_idx: The ARMMMUIdx to test
*
* Return true if @mmu_idx is a NOTLB mmu_idx that is the
* first stage of a two stage regime.
*/
static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx)
{
switch (mmu_idx) {
case ARMMMUIdx_Stage1_E0:
case ARMMMUIdx_Stage1_E1:
case ARMMMUIdx_Stage1_E1_PAN:
return true;
default:
return false;
}
}
static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features,
const ARMISARegisters *id)
{
uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV;
if ((features >> ARM_FEATURE_V4T) & 1) {
valid |= CPSR_T;
}
if ((features >> ARM_FEATURE_V5) & 1) {
valid |= CPSR_Q; /* V5TE in reality*/
}
if ((features >> ARM_FEATURE_V6) & 1) {
valid |= CPSR_E | CPSR_GE;
}
if ((features >> ARM_FEATURE_THUMB2) & 1) {
valid |= CPSR_IT;
}
if (isar_feature_aa32_jazelle(id)) {
valid |= CPSR_J;
}
if (isar_feature_aa32_pan(id)) {
valid |= CPSR_PAN;
}
if (isar_feature_aa32_dit(id)) {
valid |= CPSR_DIT;
}
if (isar_feature_aa32_ssbs(id)) {
valid |= CPSR_SSBS;
}
return valid;
}
static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id)
{
uint32_t valid;
valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV;
if (isar_feature_aa64_bti(id)) {
valid |= PSTATE_BTYPE;
}
if (isar_feature_aa64_pan(id)) {
valid |= PSTATE_PAN;
}
if (isar_feature_aa64_uao(id)) {
valid |= PSTATE_UAO;
}
if (isar_feature_aa64_dit(id)) {
valid |= PSTATE_DIT;
}
if (isar_feature_aa64_ssbs(id)) {
valid |= PSTATE_SSBS;
}
if (isar_feature_aa64_mte(id)) {
valid |= PSTATE_TCO;
}
if (isar_feature_aa64_nmi(id)) {
valid |= PSTATE_ALLINT;
}
return valid;
}
/* Granule size (i.e. page size) */
typedef enum ARMGranuleSize {
/* Same order as TG0 encoding */
Gran4K,
Gran64K,
Gran16K,
GranInvalid,
} ARMGranuleSize;
/**
* arm_granule_bits: Return address size of the granule in bits
*
* Return the address size of the granule in bits. This corresponds
* to the pseudocode TGxGranuleBits().
*/
static inline int arm_granule_bits(ARMGranuleSize gran)
{
switch (gran) {
case Gran64K:
return 16;
case Gran16K:
return 14;
case Gran4K:
return 12;
default:
g_assert_not_reached();
}
}
/*
* Parameters of a given virtual address, as extracted from the
* translation control register (TCR) for a given regime.
*/
typedef struct ARMVAParameters {
unsigned tsz : 8;
unsigned ps : 3;
unsigned sh : 2;
unsigned select : 1;
bool tbi : 1;
bool epd : 1;
bool hpd : 1;
bool tsz_oob : 1; /* tsz has been clamped to legal range */
bool ds : 1;
bool ha : 1;
bool hd : 1;
ARMGranuleSize gran : 2;
} ARMVAParameters;
/**
* aa64_va_parameters: Return parameters for an AArch64 virtual address
* @env: CPU
* @va: virtual address to look up
* @mmu_idx: determines translation regime to use
* @data: true if this is a data access
* @el1_is_aa32: true if we are asking about stage 2 when EL1 is AArch32
* (ignored if @mmu_idx is for a stage 1 regime; only affects tsz/tsz_oob)
*/
ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
ARMMMUIdx mmu_idx, bool data,
bool el1_is_aa32);
int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx);
int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx);
/* Determine if allocation tags are available. */
static inline bool allocation_tag_access_enabled(CPUARMState *env, int el,
uint64_t sctlr)
{
if (el < 3
&& arm_feature(env, ARM_FEATURE_EL3)
&& !(env->cp15.scr_el3 & SCR_ATA)) {
return false;
}
if (el < 2 && arm_is_el2_enabled(env)) {
uint64_t hcr = arm_hcr_el2_eff(env);
if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
return false;
}
}
sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA);
return sctlr != 0;
}
#ifndef CONFIG_USER_ONLY
/* Security attributes for an address, as returned by v8m_security_lookup. */
typedef struct V8M_SAttributes {
bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
bool ns;
bool nsc;
uint8_t sregion;
bool srvalid;
uint8_t iregion;
bool irvalid;
} V8M_SAttributes;
void v8m_security_lookup(CPUARMState *env, uint32_t address,
MMUAccessType access_type, ARMMMUIdx mmu_idx,
bool secure, V8M_SAttributes *sattrs);
/* Cacheability and shareability attributes for a memory access */
typedef struct ARMCacheAttrs {
/*
* If is_s2_format is true, attrs is the S2 descriptor bits [5:2]
* Otherwise, attrs is the same as the MAIR_EL1 8-bit format
*/
unsigned int attrs:8;
unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
bool is_s2_format:1;
} ARMCacheAttrs;
/* Fields that are valid upon success. */
typedef struct GetPhysAddrResult {
CPUTLBEntryFull f;
ARMCacheAttrs cacheattrs;
} GetPhysAddrResult;
/**
* get_phys_addr: get the physical address for a virtual address
* @env: CPUARMState
* @address: virtual address to get physical address for
* @access_type: 0 for read, 1 for write, 2 for execute
* @mmu_idx: MMU index indicating required translation regime
* @result: set on translation success.
* @fi: set to fault info if the translation fails
*
* Find the physical address corresponding to the given virtual address,
* by doing a translation table walk on MMU based systems or using the
* MPU state on MPU based systems.
*
* Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
* prot and page_size may not be filled in, and the populated fsr value provides
* information on why the translation aborted, in the format of a
* DFSR/IFSR fault register, with the following caveats:
* * we honour the short vs long DFSR format differences.
* * the WnR bit is never set (the caller must do this).
* * for PSMAv5 based systems we don't bother to return a full FSR format
* value.
*/
bool get_phys_addr(CPUARMState *env, target_ulong address,
MMUAccessType access_type, ARMMMUIdx mmu_idx,
GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
__attribute__((nonnull));
/**
* get_phys_addr_with_space_nogpc: get the physical address for a virtual
* address
* @env: CPUARMState
* @address: virtual address to get physical address for
* @access_type: 0 for read, 1 for write, 2 for execute
* @mmu_idx: MMU index indicating required translation regime
* @space: security space for the access
* @result: set on translation success.
* @fi: set to fault info if the translation fails
*
* Similar to get_phys_addr, but use the given security space and don't perform
* a Granule Protection Check on the resulting address.
*/
bool get_phys_addr_with_space_nogpc(CPUARMState *env, target_ulong address,
MMUAccessType access_type,
ARMMMUIdx mmu_idx, ARMSecuritySpace space,
GetPhysAddrResult *result,
ARMMMUFaultInfo *fi)
__attribute__((nonnull));
bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
MMUAccessType access_type, ARMMMUIdx mmu_idx,
bool is_secure, GetPhysAddrResult *result,
ARMMMUFaultInfo *fi, uint32_t *mregion);
void arm_log_exception(CPUState *cs);
#endif /* !CONFIG_USER_ONLY */
/*
* SVE predicates are 1/8 the size of SVE vectors, and cannot use
* the same simd_desc() encoding due to restrictions on size.
* Use these instead.
*/
FIELD(PREDDESC, OPRSZ, 0, 6)
FIELD(PREDDESC, ESZ, 6, 2)
FIELD(PREDDESC, DATA, 8, 24)
/*
* The SVE simd_data field, for memory ops, contains either
* rd (5 bits) or a shift count (2 bits).
*/
#define SVE_MTEDESC_SHIFT 5
/* Bits within a descriptor passed to the helper_mte_check* functions. */
FIELD(MTEDESC, MIDX, 0, 4)
FIELD(MTEDESC, TBI, 4, 2)
FIELD(MTEDESC, TCMA, 6, 2)
FIELD(MTEDESC, WRITE, 8, 1)
FIELD(MTEDESC, ALIGN, 9, 3)
FIELD(MTEDESC, SIZEM1, 12, SIMD_DATA_BITS - SVE_MTEDESC_SHIFT - 12) /* size - 1 */
bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr);
uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra);
/**
* mte_mops_probe: Check where the next MTE failure is for a FEAT_MOPS operation
* @env: CPU env
* @ptr: start address of memory region (dirty pointer)
* @size: length of region (guaranteed not to cross a page boundary)
* @desc: MTEDESC descriptor word (0 means no MTE checks)
* Returns: the size of the region that can be copied without hitting
* an MTE tag failure
*
* Note that we assume that the caller has already checked the TBI
* and TCMA bits with mte_checks_needed() and an MTE check is definitely
* required.
*/
uint64_t mte_mops_probe(CPUARMState *env, uint64_t ptr, uint64_t size,
uint32_t desc);
/**
* mte_mops_probe_rev: Check where the next MTE failure is for a FEAT_MOPS
* operation going in the reverse direction
* @env: CPU env
* @ptr: *end* address of memory region (dirty pointer)
* @size: length of region (guaranteed not to cross a page boundary)
* @desc: MTEDESC descriptor word (0 means no MTE checks)
* Returns: the size of the region that can be copied without hitting
* an MTE tag failure
*
* Note that we assume that the caller has already checked the TBI
* and TCMA bits with mte_checks_needed() and an MTE check is definitely
* required.
*/
uint64_t mte_mops_probe_rev(CPUARMState *env, uint64_t ptr, uint64_t size,
uint32_t desc);
/**
* mte_check_fail: Record an MTE tag check failure
* @env: CPU env
* @desc: MTEDESC descriptor word
* @dirty_ptr: Failing dirty address
* @ra: TCG retaddr
*
* This may never return (if the MTE tag checks are configured to fault).
*/
void mte_check_fail(CPUARMState *env, uint32_t desc,
uint64_t dirty_ptr, uintptr_t ra);
/**
* mte_mops_set_tags: Set MTE tags for a portion of a FEAT_MOPS operation
* @env: CPU env
* @dirty_ptr: Start address of memory region (dirty pointer)
* @size: length of region (guaranteed not to cross page boundary)
* @desc: MTEDESC descriptor word
*/
void mte_mops_set_tags(CPUARMState *env, uint64_t dirty_ptr, uint64_t size,
uint32_t desc);
static inline int allocation_tag_from_addr(uint64_t ptr)
{
return extract64(ptr, 56, 4);
}
static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag)
{
return deposit64(ptr, 56, 4, rtag);
}
/* Return true if tbi bits mean that the access is checked. */
static inline bool tbi_check(uint32_t desc, int bit55)
{
return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1;
}
/* Return true if tcma bits mean that the access is unchecked. */
static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag)
{
/*
* We had extracted bit55 and ptr_tag for other reasons, so fold
* (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test.
*/
bool match = ((ptr_tag + bit55) & 0xf) == 0;
bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1;
return tcma && match;
}
/*
* For TBI, ideally, we would do nothing. Proper behaviour on fault is
* for the tag to be present in the FAR_ELx register. But for user-only
* mode, we do not have a TLB with which to implement this, so we must
* remove the top byte.
*/
static inline uint64_t useronly_clean_ptr(uint64_t ptr)
{
#ifdef CONFIG_USER_ONLY
/* TBI0 is known to be enabled, while TBI1 is disabled. */
ptr &= sextract64(ptr, 0, 56);
#endif
return ptr;
}
static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr)
{
#ifdef CONFIG_USER_ONLY
int64_t clean_ptr = sextract64(ptr, 0, 56);
if (tbi_check(desc, clean_ptr < 0)) {
ptr = clean_ptr;
}
#endif
return ptr;
}
/* Values for M-profile PSR.ECI for MVE insns */
enum MVEECIState {
ECI_NONE = 0, /* No completed beats */
ECI_A0 = 1, /* Completed: A0 */
ECI_A0A1 = 2, /* Completed: A0, A1 */
/* 3 is reserved */
ECI_A0A1A2 = 4, /* Completed: A0, A1, A2 */
ECI_A0A1A2B0 = 5, /* Completed: A0, A1, A2, B0 */
/* All other values reserved */
};
/* Definitions for the PMU registers */
#define PMCRN_MASK 0xf800
#define PMCRN_SHIFT 11
#define PMCRLP 0x80
#define PMCRLC 0x40
#define PMCRDP 0x20
#define PMCRX 0x10
#define PMCRD 0x8
#define PMCRC 0x4
#define PMCRP 0x2
#define PMCRE 0x1
/*
* Mask of PMCR bits writable by guest (not including WO bits like C, P,
* which can be written as 1 to trigger behaviour but which stay RAZ).
*/
#define PMCR_WRITABLE_MASK (PMCRLP | PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
#define PMXEVTYPER_P 0x80000000
#define PMXEVTYPER_U 0x40000000
#define PMXEVTYPER_NSK 0x20000000
#define PMXEVTYPER_NSU 0x10000000
#define PMXEVTYPER_NSH 0x08000000
#define PMXEVTYPER_M 0x04000000
#define PMXEVTYPER_MT 0x02000000
#define PMXEVTYPER_EVTCOUNT 0x0000ffff
#define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
PMXEVTYPER_M | PMXEVTYPER_MT | \
PMXEVTYPER_EVTCOUNT)
#define PMCCFILTR 0xf8000000
#define PMCCFILTR_M PMXEVTYPER_M
#define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M)
static inline uint32_t pmu_num_counters(CPUARMState *env)
{
ARMCPU *cpu = env_archcpu(env);
return (cpu->isar.reset_pmcr_el0 & PMCRN_MASK) >> PMCRN_SHIFT;
}
/* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
static inline uint64_t pmu_counter_mask(CPUARMState *env)
{
return (1ULL << 31) | ((1ULL << pmu_num_counters(env)) - 1);
}
#ifdef TARGET_AARCH64
GDBFeature *arm_gen_dynamic_svereg_feature(CPUState *cpu, int base_reg);
int aarch64_gdb_get_sve_reg(CPUState *cs, GByteArray *buf, int reg);
int aarch64_gdb_set_sve_reg(CPUState *cs, uint8_t *buf, int reg);
int aarch64_gdb_get_fpu_reg(CPUState *cs, GByteArray *buf, int reg);
int aarch64_gdb_set_fpu_reg(CPUState *cs, uint8_t *buf, int reg);
int aarch64_gdb_get_pauth_reg(CPUState *cs, GByteArray *buf, int reg);
int aarch64_gdb_set_pauth_reg(CPUState *cs, uint8_t *buf, int reg);
int aarch64_gdb_get_tag_ctl_reg(CPUState *cs, GByteArray *buf, int reg);
int aarch64_gdb_set_tag_ctl_reg(CPUState *cs, uint8_t *buf, int reg);
void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
void arm_cpu_sme_finalize(ARMCPU *cpu, Error **errp);
void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp);
void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp);
void aarch64_max_tcg_initfn(Object *obj);
void aarch64_add_pauth_properties(Object *obj);
void aarch64_add_sve_properties(Object *obj);
void aarch64_add_sme_properties(Object *obj);
#endif
/* Read the CONTROL register as the MRS instruction would. */
uint32_t arm_v7m_mrs_control(CPUARMState *env, uint32_t secure);
/*
* Return a pointer to the location where we currently store the
* stack pointer for the requested security state and thread mode.
* This pointer will become invalid if the CPU state is updated
* such that the stack pointers are switched around (eg changing
* the SPSEL control bit).
*/
uint32_t *arm_v7m_get_sp_ptr(CPUARMState *env, bool secure,
bool threadmode, bool spsel);
bool el_is_in_host(CPUARMState *env, int el);
void aa32_max_features(ARMCPU *cpu);
int exception_target_el(CPUARMState *env);
bool arm_singlestep_active(CPUARMState *env);
bool arm_generate_debug_exceptions(CPUARMState *env);
/**
* pauth_ptr_mask:
* @param: parameters defining the MMU setup
*
* Return a mask of the address bits that contain the authentication code,
* given the MMU config defined by @param.
*/
static inline uint64_t pauth_ptr_mask(ARMVAParameters param)
{
int bot_pac_bit = 64 - param.tsz;
int top_pac_bit = 64 - 8 * param.tbi;
return MAKE_64BIT_MASK(bot_pac_bit, top_pac_bit - bot_pac_bit);
}
/* Add the cpreg definitions for debug related system registers */
void define_debug_regs(ARMCPU *cpu);
/* Effective value of MDCR_EL2 */
static inline uint64_t arm_mdcr_el2_eff(CPUARMState *env)
{
return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0;
}
/* Powers of 2 for sve_vq_map et al. */
#define SVE_VQ_POW2_MAP \
((1 << (1 - 1)) | (1 << (2 - 1)) | \
(1 << (4 - 1)) | (1 << (8 - 1)) | (1 << (16 - 1)))
/*
* Return true if it is possible to take a fine-grained-trap to EL2.
*/
static inline bool arm_fgt_active(CPUARMState *env, int el)
{
/*
* The Arm ARM only requires the "{E2H,TGE} != {1,1}" test for traps
* that can affect EL0, but it is harmless to do the test also for
* traps on registers that are only accessible at EL1 because if the test
* returns true then we can't be executing at EL1 anyway.
* FGT traps only happen when EL2 is enabled and EL1 is AArch64;
* traps from AArch32 only happen for the EL0 is AArch32 case.
*/
return cpu_isar_feature(aa64_fgt, env_archcpu(env)) &&
el < 2 && arm_is_el2_enabled(env) &&
arm_el_is_aa64(env, 1) &&
(arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE) &&
(!arm_feature(env, ARM_FEATURE_EL3) || (env->cp15.scr_el3 & SCR_FGTEN));
}
void assert_hflags_rebuild_correctly(CPUARMState *env);
/*
* Although the ARM implementation of hardware assisted debugging
* allows for different breakpoints per-core, the current GDB
* interface treats them as a global pool of registers (which seems to
* be the case for x86, ppc and s390). As a result we store one copy
* of registers which is used for all active cores.
*
* Write access is serialised by virtue of the GDB protocol which
* updates things. Read access (i.e. when the values are copied to the
* vCPU) is also gated by GDB's run control.
*
* This is not unreasonable as most of the time debugging kernels you
* never know which core will eventually execute your function.
*/
typedef struct {
uint64_t bcr;
uint64_t bvr;
} HWBreakpoint;
/*
* The watchpoint registers can cover more area than the requested
* watchpoint so we need to store the additional information
* somewhere. We also need to supply a CPUWatchpoint to the GDB stub
* when the watchpoint is hit.
*/
typedef struct {
uint64_t wcr;
uint64_t wvr;
CPUWatchpoint details;
} HWWatchpoint;
/* Maximum and current break/watch point counts */
extern int max_hw_bps, max_hw_wps;
extern GArray *hw_breakpoints, *hw_watchpoints;
#define cur_hw_wps (hw_watchpoints->len)
#define cur_hw_bps (hw_breakpoints->len)
#define get_hw_bp(i) (&g_array_index(hw_breakpoints, HWBreakpoint, i))
#define get_hw_wp(i) (&g_array_index(hw_watchpoints, HWWatchpoint, i))
bool find_hw_breakpoint(CPUState *cpu, target_ulong pc);
int insert_hw_breakpoint(target_ulong pc);
int delete_hw_breakpoint(target_ulong pc);
bool check_watchpoint_in_range(int i, target_ulong addr);
CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr);
int insert_hw_watchpoint(target_ulong addr, target_ulong len, int type);
int delete_hw_watchpoint(target_ulong addr, target_ulong len, int type);
/* Return the current value of the system counter in ticks */
uint64_t gt_get_countervalue(CPUARMState *env);
/*
* Return the currently applicable offset between the system counter
* and CNTVCT_EL0 (this will be either 0 or the value of CNTVOFF_EL2).
*/
uint64_t gt_virt_cnt_offset(CPUARMState *env);
#endif