qemu/hw/i386/intel_iommu.c
Le Tan 1da12ec4c8 intel-iommu: introduce Intel IOMMU (VT-d) emulation
Add support for emulating Intel IOMMU according to the VT-d specification for
the q35 chipset machine. Implement the logics for DMAR (DMA remapping) without
PASID support. The emulation supports register-based invalidation and primary
fault logging.

Signed-off-by: Le Tan <tamlokveer@gmail.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2014-08-28 23:10:22 +02:00

1258 lines
41 KiB
C

/*
* QEMU emulation of an Intel IOMMU (VT-d)
* (DMA Remapping device)
*
* Copyright (C) 2013 Knut Omang, Oracle <knut.omang@oracle.com>
* Copyright (C) 2014 Le Tan, <tamlokveer@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "hw/sysbus.h"
#include "exec/address-spaces.h"
#include "intel_iommu_internal.h"
/*#define DEBUG_INTEL_IOMMU*/
#ifdef DEBUG_INTEL_IOMMU
enum {
DEBUG_GENERAL, DEBUG_CSR, DEBUG_INV, DEBUG_MMU, DEBUG_FLOG,
};
#define VTD_DBGBIT(x) (1 << DEBUG_##x)
static int vtd_dbgflags = VTD_DBGBIT(GENERAL) | VTD_DBGBIT(CSR);
#define VTD_DPRINTF(what, fmt, ...) do { \
if (vtd_dbgflags & VTD_DBGBIT(what)) { \
fprintf(stderr, "(vtd)%s: " fmt "\n", __func__, \
## __VA_ARGS__); } \
} while (0)
#else
#define VTD_DPRINTF(what, fmt, ...) do {} while (0)
#endif
static void vtd_define_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val,
uint64_t wmask, uint64_t w1cmask)
{
stq_le_p(&s->csr[addr], val);
stq_le_p(&s->wmask[addr], wmask);
stq_le_p(&s->w1cmask[addr], w1cmask);
}
static void vtd_define_quad_wo(IntelIOMMUState *s, hwaddr addr, uint64_t mask)
{
stq_le_p(&s->womask[addr], mask);
}
static void vtd_define_long(IntelIOMMUState *s, hwaddr addr, uint32_t val,
uint32_t wmask, uint32_t w1cmask)
{
stl_le_p(&s->csr[addr], val);
stl_le_p(&s->wmask[addr], wmask);
stl_le_p(&s->w1cmask[addr], w1cmask);
}
static void vtd_define_long_wo(IntelIOMMUState *s, hwaddr addr, uint32_t mask)
{
stl_le_p(&s->womask[addr], mask);
}
/* "External" get/set operations */
static void vtd_set_quad(IntelIOMMUState *s, hwaddr addr, uint64_t val)
{
uint64_t oldval = ldq_le_p(&s->csr[addr]);
uint64_t wmask = ldq_le_p(&s->wmask[addr]);
uint64_t w1cmask = ldq_le_p(&s->w1cmask[addr]);
stq_le_p(&s->csr[addr],
((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
}
static void vtd_set_long(IntelIOMMUState *s, hwaddr addr, uint32_t val)
{
uint32_t oldval = ldl_le_p(&s->csr[addr]);
uint32_t wmask = ldl_le_p(&s->wmask[addr]);
uint32_t w1cmask = ldl_le_p(&s->w1cmask[addr]);
stl_le_p(&s->csr[addr],
((oldval & ~wmask) | (val & wmask)) & ~(w1cmask & val));
}
static uint64_t vtd_get_quad(IntelIOMMUState *s, hwaddr addr)
{
uint64_t val = ldq_le_p(&s->csr[addr]);
uint64_t womask = ldq_le_p(&s->womask[addr]);
return val & ~womask;
}
static uint32_t vtd_get_long(IntelIOMMUState *s, hwaddr addr)
{
uint32_t val = ldl_le_p(&s->csr[addr]);
uint32_t womask = ldl_le_p(&s->womask[addr]);
return val & ~womask;
}
/* "Internal" get/set operations */
static uint64_t vtd_get_quad_raw(IntelIOMMUState *s, hwaddr addr)
{
return ldq_le_p(&s->csr[addr]);
}
static uint32_t vtd_get_long_raw(IntelIOMMUState *s, hwaddr addr)
{
return ldl_le_p(&s->csr[addr]);
}
static void vtd_set_quad_raw(IntelIOMMUState *s, hwaddr addr, uint64_t val)
{
stq_le_p(&s->csr[addr], val);
}
static uint32_t vtd_set_clear_mask_long(IntelIOMMUState *s, hwaddr addr,
uint32_t clear, uint32_t mask)
{
uint32_t new_val = (ldl_le_p(&s->csr[addr]) & ~clear) | mask;
stl_le_p(&s->csr[addr], new_val);
return new_val;
}
static uint64_t vtd_set_clear_mask_quad(IntelIOMMUState *s, hwaddr addr,
uint64_t clear, uint64_t mask)
{
uint64_t new_val = (ldq_le_p(&s->csr[addr]) & ~clear) | mask;
stq_le_p(&s->csr[addr], new_val);
return new_val;
}
/* Given the reg addr of both the message data and address, generate an
* interrupt via MSI.
*/
static void vtd_generate_interrupt(IntelIOMMUState *s, hwaddr mesg_addr_reg,
hwaddr mesg_data_reg)
{
hwaddr addr;
uint32_t data;
assert(mesg_data_reg < DMAR_REG_SIZE);
assert(mesg_addr_reg < DMAR_REG_SIZE);
addr = vtd_get_long_raw(s, mesg_addr_reg);
data = vtd_get_long_raw(s, mesg_data_reg);
VTD_DPRINTF(FLOG, "msi: addr 0x%"PRIx64 " data 0x%"PRIx32, addr, data);
stl_le_phys(&address_space_memory, addr, data);
}
/* Generate a fault event to software via MSI if conditions are met.
* Notice that the value of FSTS_REG being passed to it should be the one
* before any update.
*/
static void vtd_generate_fault_event(IntelIOMMUState *s, uint32_t pre_fsts)
{
if (pre_fsts & VTD_FSTS_PPF || pre_fsts & VTD_FSTS_PFO ||
pre_fsts & VTD_FSTS_IQE) {
VTD_DPRINTF(FLOG, "there are previous interrupt conditions "
"to be serviced by software, fault event is not generated "
"(FSTS_REG 0x%"PRIx32 ")", pre_fsts);
return;
}
vtd_set_clear_mask_long(s, DMAR_FECTL_REG, 0, VTD_FECTL_IP);
if (vtd_get_long_raw(s, DMAR_FECTL_REG) & VTD_FECTL_IM) {
VTD_DPRINTF(FLOG, "Interrupt Mask set, fault event is not generated");
} else {
vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
}
}
/* Check if the Fault (F) field of the Fault Recording Register referenced by
* @index is Set.
*/
static bool vtd_is_frcd_set(IntelIOMMUState *s, uint16_t index)
{
/* Each reg is 128-bit */
hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
addr += 8; /* Access the high 64-bit half */
assert(index < DMAR_FRCD_REG_NR);
return vtd_get_quad_raw(s, addr) & VTD_FRCD_F;
}
/* Update the PPF field of Fault Status Register.
* Should be called whenever change the F field of any fault recording
* registers.
*/
static void vtd_update_fsts_ppf(IntelIOMMUState *s)
{
uint32_t i;
uint32_t ppf_mask = 0;
for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
if (vtd_is_frcd_set(s, i)) {
ppf_mask = VTD_FSTS_PPF;
break;
}
}
vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_PPF, ppf_mask);
VTD_DPRINTF(FLOG, "set PPF of FSTS_REG to %d", ppf_mask ? 1 : 0);
}
static void vtd_set_frcd_and_update_ppf(IntelIOMMUState *s, uint16_t index)
{
/* Each reg is 128-bit */
hwaddr addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
addr += 8; /* Access the high 64-bit half */
assert(index < DMAR_FRCD_REG_NR);
vtd_set_clear_mask_quad(s, addr, 0, VTD_FRCD_F);
vtd_update_fsts_ppf(s);
}
/* Must not update F field now, should be done later */
static void vtd_record_frcd(IntelIOMMUState *s, uint16_t index,
uint16_t source_id, hwaddr addr,
VTDFaultReason fault, bool is_write)
{
uint64_t hi = 0, lo;
hwaddr frcd_reg_addr = DMAR_FRCD_REG_OFFSET + (((uint64_t)index) << 4);
assert(index < DMAR_FRCD_REG_NR);
lo = VTD_FRCD_FI(addr);
hi = VTD_FRCD_SID(source_id) | VTD_FRCD_FR(fault);
if (!is_write) {
hi |= VTD_FRCD_T;
}
vtd_set_quad_raw(s, frcd_reg_addr, lo);
vtd_set_quad_raw(s, frcd_reg_addr + 8, hi);
VTD_DPRINTF(FLOG, "record to FRCD_REG #%"PRIu16 ": hi 0x%"PRIx64
", lo 0x%"PRIx64, index, hi, lo);
}
/* Try to collapse multiple pending faults from the same requester */
static bool vtd_try_collapse_fault(IntelIOMMUState *s, uint16_t source_id)
{
uint32_t i;
uint64_t frcd_reg;
hwaddr addr = DMAR_FRCD_REG_OFFSET + 8; /* The high 64-bit half */
for (i = 0; i < DMAR_FRCD_REG_NR; i++) {
frcd_reg = vtd_get_quad_raw(s, addr);
VTD_DPRINTF(FLOG, "frcd_reg #%d 0x%"PRIx64, i, frcd_reg);
if ((frcd_reg & VTD_FRCD_F) &&
((frcd_reg & VTD_FRCD_SID_MASK) == source_id)) {
return true;
}
addr += 16; /* 128-bit for each */
}
return false;
}
/* Log and report an DMAR (address translation) fault to software */
static void vtd_report_dmar_fault(IntelIOMMUState *s, uint16_t source_id,
hwaddr addr, VTDFaultReason fault,
bool is_write)
{
uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
assert(fault < VTD_FR_MAX);
if (fault == VTD_FR_RESERVED_ERR) {
/* This is not a normal fault reason case. Drop it. */
return;
}
VTD_DPRINTF(FLOG, "sid 0x%"PRIx16 ", fault %d, addr 0x%"PRIx64
", is_write %d", source_id, fault, addr, is_write);
if (fsts_reg & VTD_FSTS_PFO) {
VTD_DPRINTF(FLOG, "new fault is not recorded due to "
"Primary Fault Overflow");
return;
}
if (vtd_try_collapse_fault(s, source_id)) {
VTD_DPRINTF(FLOG, "new fault is not recorded due to "
"compression of faults");
return;
}
if (vtd_is_frcd_set(s, s->next_frcd_reg)) {
VTD_DPRINTF(FLOG, "Primary Fault Overflow and "
"new fault is not recorded, set PFO field");
vtd_set_clear_mask_long(s, DMAR_FSTS_REG, 0, VTD_FSTS_PFO);
return;
}
vtd_record_frcd(s, s->next_frcd_reg, source_id, addr, fault, is_write);
if (fsts_reg & VTD_FSTS_PPF) {
VTD_DPRINTF(FLOG, "there are pending faults already, "
"fault event is not generated");
vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg);
s->next_frcd_reg++;
if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
s->next_frcd_reg = 0;
}
} else {
vtd_set_clear_mask_long(s, DMAR_FSTS_REG, VTD_FSTS_FRI_MASK,
VTD_FSTS_FRI(s->next_frcd_reg));
vtd_set_frcd_and_update_ppf(s, s->next_frcd_reg); /* Will set PPF */
s->next_frcd_reg++;
if (s->next_frcd_reg == DMAR_FRCD_REG_NR) {
s->next_frcd_reg = 0;
}
/* This case actually cause the PPF to be Set.
* So generate fault event (interrupt).
*/
vtd_generate_fault_event(s, fsts_reg);
}
}
static inline bool vtd_root_entry_present(VTDRootEntry *root)
{
return root->val & VTD_ROOT_ENTRY_P;
}
static int vtd_get_root_entry(IntelIOMMUState *s, uint8_t index,
VTDRootEntry *re)
{
dma_addr_t addr;
addr = s->root + index * sizeof(*re);
if (dma_memory_read(&address_space_memory, addr, re, sizeof(*re))) {
VTD_DPRINTF(GENERAL, "error: fail to access root-entry at 0x%"PRIx64
" + %"PRIu8, s->root, index);
re->val = 0;
return -VTD_FR_ROOT_TABLE_INV;
}
re->val = le64_to_cpu(re->val);
return 0;
}
static inline bool vtd_context_entry_present(VTDContextEntry *context)
{
return context->lo & VTD_CONTEXT_ENTRY_P;
}
static int vtd_get_context_entry_from_root(VTDRootEntry *root, uint8_t index,
VTDContextEntry *ce)
{
dma_addr_t addr;
if (!vtd_root_entry_present(root)) {
VTD_DPRINTF(GENERAL, "error: root-entry is not present");
return -VTD_FR_ROOT_ENTRY_P;
}
addr = (root->val & VTD_ROOT_ENTRY_CTP) + index * sizeof(*ce);
if (dma_memory_read(&address_space_memory, addr, ce, sizeof(*ce))) {
VTD_DPRINTF(GENERAL, "error: fail to access context-entry at 0x%"PRIx64
" + %"PRIu8,
(uint64_t)(root->val & VTD_ROOT_ENTRY_CTP), index);
return -VTD_FR_CONTEXT_TABLE_INV;
}
ce->lo = le64_to_cpu(ce->lo);
ce->hi = le64_to_cpu(ce->hi);
return 0;
}
static inline dma_addr_t vtd_get_slpt_base_from_context(VTDContextEntry *ce)
{
return ce->lo & VTD_CONTEXT_ENTRY_SLPTPTR;
}
/* The shift of an addr for a certain level of paging structure */
static inline uint32_t vtd_slpt_level_shift(uint32_t level)
{
return VTD_PAGE_SHIFT_4K + (level - 1) * VTD_SL_LEVEL_BITS;
}
static inline uint64_t vtd_get_slpte_addr(uint64_t slpte)
{
return slpte & VTD_SL_PT_BASE_ADDR_MASK;
}
/* Whether the pte indicates the address of the page frame */
static inline bool vtd_is_last_slpte(uint64_t slpte, uint32_t level)
{
return level == VTD_SL_PT_LEVEL || (slpte & VTD_SL_PT_PAGE_SIZE_MASK);
}
/* Get the content of a spte located in @base_addr[@index] */
static uint64_t vtd_get_slpte(dma_addr_t base_addr, uint32_t index)
{
uint64_t slpte;
assert(index < VTD_SL_PT_ENTRY_NR);
if (dma_memory_read(&address_space_memory,
base_addr + index * sizeof(slpte), &slpte,
sizeof(slpte))) {
slpte = (uint64_t)-1;
return slpte;
}
slpte = le64_to_cpu(slpte);
return slpte;
}
/* Given a gpa and the level of paging structure, return the offset of current
* level.
*/
static inline uint32_t vtd_gpa_level_offset(uint64_t gpa, uint32_t level)
{
return (gpa >> vtd_slpt_level_shift(level)) &
((1ULL << VTD_SL_LEVEL_BITS) - 1);
}
/* Check Capability Register to see if the @level of page-table is supported */
static inline bool vtd_is_level_supported(IntelIOMMUState *s, uint32_t level)
{
return VTD_CAP_SAGAW_MASK & s->cap &
(1ULL << (level - 2 + VTD_CAP_SAGAW_SHIFT));
}
/* Get the page-table level that hardware should use for the second-level
* page-table walk from the Address Width field of context-entry.
*/
static inline uint32_t vtd_get_level_from_context_entry(VTDContextEntry *ce)
{
return 2 + (ce->hi & VTD_CONTEXT_ENTRY_AW);
}
static inline uint32_t vtd_get_agaw_from_context_entry(VTDContextEntry *ce)
{
return 30 + (ce->hi & VTD_CONTEXT_ENTRY_AW) * 9;
}
static const uint64_t vtd_paging_entry_rsvd_field[] = {
[0] = ~0ULL,
/* For not large page */
[1] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
[2] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
[3] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
[4] = 0x880ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
/* For large page */
[5] = 0x800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
[6] = 0x1ff800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
[7] = 0x3ffff800ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
[8] = 0x880ULL | ~(VTD_HAW_MASK | VTD_SL_IGN_COM),
};
static bool vtd_slpte_nonzero_rsvd(uint64_t slpte, uint32_t level)
{
if (slpte & VTD_SL_PT_PAGE_SIZE_MASK) {
/* Maybe large page */
return slpte & vtd_paging_entry_rsvd_field[level + 4];
} else {
return slpte & vtd_paging_entry_rsvd_field[level];
}
}
/* Given the @gpa, get relevant @slptep. @slpte_level will be the last level
* of the translation, can be used for deciding the size of large page.
*/
static int vtd_gpa_to_slpte(VTDContextEntry *ce, uint64_t gpa, bool is_write,
uint64_t *slptep, uint32_t *slpte_level,
bool *reads, bool *writes)
{
dma_addr_t addr = vtd_get_slpt_base_from_context(ce);
uint32_t level = vtd_get_level_from_context_entry(ce);
uint32_t offset;
uint64_t slpte;
uint32_t ce_agaw = vtd_get_agaw_from_context_entry(ce);
uint64_t access_right_check;
/* Check if @gpa is above 2^X-1, where X is the minimum of MGAW in CAP_REG
* and AW in context-entry.
*/
if (gpa & ~((1ULL << MIN(ce_agaw, VTD_MGAW)) - 1)) {
VTD_DPRINTF(GENERAL, "error: gpa 0x%"PRIx64 " exceeds limits", gpa);
return -VTD_FR_ADDR_BEYOND_MGAW;
}
/* FIXME: what is the Atomics request here? */
access_right_check = is_write ? VTD_SL_W : VTD_SL_R;
while (true) {
offset = vtd_gpa_level_offset(gpa, level);
slpte = vtd_get_slpte(addr, offset);
if (slpte == (uint64_t)-1) {
VTD_DPRINTF(GENERAL, "error: fail to access second-level paging "
"entry at level %"PRIu32 " for gpa 0x%"PRIx64,
level, gpa);
if (level == vtd_get_level_from_context_entry(ce)) {
/* Invalid programming of context-entry */
return -VTD_FR_CONTEXT_ENTRY_INV;
} else {
return -VTD_FR_PAGING_ENTRY_INV;
}
}
*reads = (*reads) && (slpte & VTD_SL_R);
*writes = (*writes) && (slpte & VTD_SL_W);
if (!(slpte & access_right_check)) {
VTD_DPRINTF(GENERAL, "error: lack of %s permission for "
"gpa 0x%"PRIx64 " slpte 0x%"PRIx64,
(is_write ? "write" : "read"), gpa, slpte);
return is_write ? -VTD_FR_WRITE : -VTD_FR_READ;
}
if (vtd_slpte_nonzero_rsvd(slpte, level)) {
VTD_DPRINTF(GENERAL, "error: non-zero reserved field in second "
"level paging entry level %"PRIu32 " slpte 0x%"PRIx64,
level, slpte);
return -VTD_FR_PAGING_ENTRY_RSVD;
}
if (vtd_is_last_slpte(slpte, level)) {
*slptep = slpte;
*slpte_level = level;
return 0;
}
addr = vtd_get_slpte_addr(slpte);
level--;
}
}
/* Map a device to its corresponding domain (context-entry) */
static int vtd_dev_to_context_entry(IntelIOMMUState *s, uint8_t bus_num,
uint8_t devfn, VTDContextEntry *ce)
{
VTDRootEntry re;
int ret_fr;
ret_fr = vtd_get_root_entry(s, bus_num, &re);
if (ret_fr) {
return ret_fr;
}
if (!vtd_root_entry_present(&re)) {
VTD_DPRINTF(GENERAL, "error: root-entry #%"PRIu8 " is not present",
bus_num);
return -VTD_FR_ROOT_ENTRY_P;
} else if (re.rsvd || (re.val & VTD_ROOT_ENTRY_RSVD)) {
VTD_DPRINTF(GENERAL, "error: non-zero reserved field in root-entry "
"hi 0x%"PRIx64 " lo 0x%"PRIx64, re.rsvd, re.val);
return -VTD_FR_ROOT_ENTRY_RSVD;
}
ret_fr = vtd_get_context_entry_from_root(&re, devfn, ce);
if (ret_fr) {
return ret_fr;
}
if (!vtd_context_entry_present(ce)) {
VTD_DPRINTF(GENERAL,
"error: context-entry #%"PRIu8 "(bus #%"PRIu8 ") "
"is not present", devfn, bus_num);
return -VTD_FR_CONTEXT_ENTRY_P;
} else if ((ce->hi & VTD_CONTEXT_ENTRY_RSVD_HI) ||
(ce->lo & VTD_CONTEXT_ENTRY_RSVD_LO)) {
VTD_DPRINTF(GENERAL,
"error: non-zero reserved field in context-entry "
"hi 0x%"PRIx64 " lo 0x%"PRIx64, ce->hi, ce->lo);
return -VTD_FR_CONTEXT_ENTRY_RSVD;
}
/* Check if the programming of context-entry is valid */
if (!vtd_is_level_supported(s, vtd_get_level_from_context_entry(ce))) {
VTD_DPRINTF(GENERAL, "error: unsupported Address Width value in "
"context-entry hi 0x%"PRIx64 " lo 0x%"PRIx64,
ce->hi, ce->lo);
return -VTD_FR_CONTEXT_ENTRY_INV;
} else if (ce->lo & VTD_CONTEXT_ENTRY_TT) {
VTD_DPRINTF(GENERAL, "error: unsupported Translation Type in "
"context-entry hi 0x%"PRIx64 " lo 0x%"PRIx64,
ce->hi, ce->lo);
return -VTD_FR_CONTEXT_ENTRY_INV;
}
return 0;
}
static inline uint16_t vtd_make_source_id(uint8_t bus_num, uint8_t devfn)
{
return ((bus_num & 0xffUL) << 8) | (devfn & 0xffUL);
}
static const bool vtd_qualified_faults[] = {
[VTD_FR_RESERVED] = false,
[VTD_FR_ROOT_ENTRY_P] = false,
[VTD_FR_CONTEXT_ENTRY_P] = true,
[VTD_FR_CONTEXT_ENTRY_INV] = true,
[VTD_FR_ADDR_BEYOND_MGAW] = true,
[VTD_FR_WRITE] = true,
[VTD_FR_READ] = true,
[VTD_FR_PAGING_ENTRY_INV] = true,
[VTD_FR_ROOT_TABLE_INV] = false,
[VTD_FR_CONTEXT_TABLE_INV] = false,
[VTD_FR_ROOT_ENTRY_RSVD] = false,
[VTD_FR_PAGING_ENTRY_RSVD] = true,
[VTD_FR_CONTEXT_ENTRY_TT] = true,
[VTD_FR_RESERVED_ERR] = false,
[VTD_FR_MAX] = false,
};
/* To see if a fault condition is "qualified", which is reported to software
* only if the FPD field in the context-entry used to process the faulting
* request is 0.
*/
static inline bool vtd_is_qualified_fault(VTDFaultReason fault)
{
return vtd_qualified_faults[fault];
}
static inline bool vtd_is_interrupt_addr(hwaddr addr)
{
return VTD_INTERRUPT_ADDR_FIRST <= addr && addr <= VTD_INTERRUPT_ADDR_LAST;
}
/* Map dev to context-entry then do a paging-structures walk to do a iommu
* translation.
* @bus_num: The bus number
* @devfn: The devfn, which is the combined of device and function number
* @is_write: The access is a write operation
* @entry: IOMMUTLBEntry that contain the addr to be translated and result
*/
static void vtd_do_iommu_translate(IntelIOMMUState *s, uint8_t bus_num,
uint8_t devfn, hwaddr addr, bool is_write,
IOMMUTLBEntry *entry)
{
VTDContextEntry ce;
uint64_t slpte;
uint32_t level;
uint16_t source_id = vtd_make_source_id(bus_num, devfn);
int ret_fr;
bool is_fpd_set = false;
bool reads = true;
bool writes = true;
/* Check if the request is in interrupt address range */
if (vtd_is_interrupt_addr(addr)) {
if (is_write) {
/* FIXME: since we don't know the length of the access here, we
* treat Non-DWORD length write requests without PASID as
* interrupt requests, too. Withoud interrupt remapping support,
* we just use 1:1 mapping.
*/
VTD_DPRINTF(MMU, "write request to interrupt address "
"gpa 0x%"PRIx64, addr);
entry->iova = addr & VTD_PAGE_MASK_4K;
entry->translated_addr = addr & VTD_PAGE_MASK_4K;
entry->addr_mask = ~VTD_PAGE_MASK_4K;
entry->perm = IOMMU_WO;
return;
} else {
VTD_DPRINTF(GENERAL, "error: read request from interrupt address "
"gpa 0x%"PRIx64, addr);
vtd_report_dmar_fault(s, source_id, addr, VTD_FR_READ, is_write);
return;
}
}
ret_fr = vtd_dev_to_context_entry(s, bus_num, devfn, &ce);
is_fpd_set = ce.lo & VTD_CONTEXT_ENTRY_FPD;
if (ret_fr) {
ret_fr = -ret_fr;
if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
VTD_DPRINTF(FLOG, "fault processing is disabled for DMA requests "
"through this context-entry (with FPD Set)");
} else {
vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
}
return;
}
ret_fr = vtd_gpa_to_slpte(&ce, addr, is_write, &slpte, &level,
&reads, &writes);
if (ret_fr) {
ret_fr = -ret_fr;
if (is_fpd_set && vtd_is_qualified_fault(ret_fr)) {
VTD_DPRINTF(FLOG, "fault processing is disabled for DMA requests "
"through this context-entry (with FPD Set)");
} else {
vtd_report_dmar_fault(s, source_id, addr, ret_fr, is_write);
}
return;
}
entry->iova = addr & VTD_PAGE_MASK_4K;
entry->translated_addr = vtd_get_slpte_addr(slpte) & VTD_PAGE_MASK_4K;
entry->addr_mask = ~VTD_PAGE_MASK_4K;
entry->perm = (writes ? 2 : 0) + (reads ? 1 : 0);
}
static void vtd_root_table_setup(IntelIOMMUState *s)
{
s->root = vtd_get_quad_raw(s, DMAR_RTADDR_REG);
s->root_extended = s->root & VTD_RTADDR_RTT;
s->root &= VTD_RTADDR_ADDR_MASK;
VTD_DPRINTF(CSR, "root_table addr 0x%"PRIx64 " %s", s->root,
(s->root_extended ? "(extended)" : ""));
}
/* Context-cache invalidation
* Returns the Context Actual Invalidation Granularity.
* @val: the content of the CCMD_REG
*/
static uint64_t vtd_context_cache_invalidate(IntelIOMMUState *s, uint64_t val)
{
uint64_t caig;
uint64_t type = val & VTD_CCMD_CIRG_MASK;
switch (type) {
case VTD_CCMD_GLOBAL_INVL:
VTD_DPRINTF(INV, "Global invalidation request");
caig = VTD_CCMD_GLOBAL_INVL_A;
break;
case VTD_CCMD_DOMAIN_INVL:
VTD_DPRINTF(INV, "Domain-selective invalidation request");
caig = VTD_CCMD_DOMAIN_INVL_A;
break;
case VTD_CCMD_DEVICE_INVL:
VTD_DPRINTF(INV, "Domain-selective invalidation request");
caig = VTD_CCMD_DEVICE_INVL_A;
break;
default:
VTD_DPRINTF(GENERAL,
"error: wrong context-cache invalidation granularity");
caig = 0;
}
return caig;
}
/* Flush IOTLB
* Returns the IOTLB Actual Invalidation Granularity.
* @val: the content of the IOTLB_REG
*/
static uint64_t vtd_iotlb_flush(IntelIOMMUState *s, uint64_t val)
{
uint64_t iaig;
uint64_t type = val & VTD_TLB_FLUSH_GRANU_MASK;
switch (type) {
case VTD_TLB_GLOBAL_FLUSH:
VTD_DPRINTF(INV, "Global IOTLB flush");
iaig = VTD_TLB_GLOBAL_FLUSH_A;
break;
case VTD_TLB_DSI_FLUSH:
VTD_DPRINTF(INV, "Domain-selective IOTLB flush");
iaig = VTD_TLB_DSI_FLUSH_A;
break;
case VTD_TLB_PSI_FLUSH:
VTD_DPRINTF(INV, "Page-selective-within-domain IOTLB flush");
iaig = VTD_TLB_PSI_FLUSH_A;
break;
default:
VTD_DPRINTF(GENERAL, "error: wrong iotlb flush granularity");
iaig = 0;
}
return iaig;
}
/* Set Root Table Pointer */
static void vtd_handle_gcmd_srtp(IntelIOMMUState *s)
{
VTD_DPRINTF(CSR, "set Root Table Pointer");
vtd_root_table_setup(s);
/* Ok - report back to driver */
vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_RTPS);
}
/* Handle Translation Enable/Disable */
static void vtd_handle_gcmd_te(IntelIOMMUState *s, bool en)
{
VTD_DPRINTF(CSR, "Translation Enable %s", (en ? "on" : "off"));
if (en) {
s->dmar_enabled = true;
/* Ok - report back to driver */
vtd_set_clear_mask_long(s, DMAR_GSTS_REG, 0, VTD_GSTS_TES);
} else {
s->dmar_enabled = false;
/* Clear the index of Fault Recording Register */
s->next_frcd_reg = 0;
/* Ok - report back to driver */
vtd_set_clear_mask_long(s, DMAR_GSTS_REG, VTD_GSTS_TES, 0);
}
}
/* Handle write to Global Command Register */
static void vtd_handle_gcmd_write(IntelIOMMUState *s)
{
uint32_t status = vtd_get_long_raw(s, DMAR_GSTS_REG);
uint32_t val = vtd_get_long_raw(s, DMAR_GCMD_REG);
uint32_t changed = status ^ val;
VTD_DPRINTF(CSR, "value 0x%"PRIx32 " status 0x%"PRIx32, val, status);
if (changed & VTD_GCMD_TE) {
/* Translation enable/disable */
vtd_handle_gcmd_te(s, val & VTD_GCMD_TE);
}
if (val & VTD_GCMD_SRTP) {
/* Set/update the root-table pointer */
vtd_handle_gcmd_srtp(s);
}
}
/* Handle write to Context Command Register */
static void vtd_handle_ccmd_write(IntelIOMMUState *s)
{
uint64_t ret;
uint64_t val = vtd_get_quad_raw(s, DMAR_CCMD_REG);
/* Context-cache invalidation request */
if (val & VTD_CCMD_ICC) {
ret = vtd_context_cache_invalidate(s, val);
/* Invalidation completed. Change something to show */
vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_ICC, 0ULL);
ret = vtd_set_clear_mask_quad(s, DMAR_CCMD_REG, VTD_CCMD_CAIG_MASK,
ret);
VTD_DPRINTF(INV, "CCMD_REG write-back val: 0x%"PRIx64, ret);
}
}
/* Handle write to IOTLB Invalidation Register */
static void vtd_handle_iotlb_write(IntelIOMMUState *s)
{
uint64_t ret;
uint64_t val = vtd_get_quad_raw(s, DMAR_IOTLB_REG);
/* IOTLB invalidation request */
if (val & VTD_TLB_IVT) {
ret = vtd_iotlb_flush(s, val);
/* Invalidation completed. Change something to show */
vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG, VTD_TLB_IVT, 0ULL);
ret = vtd_set_clear_mask_quad(s, DMAR_IOTLB_REG,
VTD_TLB_FLUSH_GRANU_MASK_A, ret);
VTD_DPRINTF(INV, "IOTLB_REG write-back val: 0x%"PRIx64, ret);
}
}
static void vtd_handle_fsts_write(IntelIOMMUState *s)
{
uint32_t fsts_reg = vtd_get_long_raw(s, DMAR_FSTS_REG);
uint32_t fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
uint32_t status_fields = VTD_FSTS_PFO | VTD_FSTS_PPF | VTD_FSTS_IQE;
if ((fectl_reg & VTD_FECTL_IP) && !(fsts_reg & status_fields)) {
vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
VTD_DPRINTF(FLOG, "all pending interrupt conditions serviced, clear "
"IP field of FECTL_REG");
}
}
static void vtd_handle_fectl_write(IntelIOMMUState *s)
{
uint32_t fectl_reg;
/* FIXME: when software clears the IM field, check the IP field. But do we
* need to compare the old value and the new value to conclude that
* software clears the IM field? Or just check if the IM field is zero?
*/
fectl_reg = vtd_get_long_raw(s, DMAR_FECTL_REG);
if ((fectl_reg & VTD_FECTL_IP) && !(fectl_reg & VTD_FECTL_IM)) {
vtd_generate_interrupt(s, DMAR_FEADDR_REG, DMAR_FEDATA_REG);
vtd_set_clear_mask_long(s, DMAR_FECTL_REG, VTD_FECTL_IP, 0);
VTD_DPRINTF(FLOG, "IM field is cleared, generate "
"fault event interrupt");
}
}
static uint64_t vtd_mem_read(void *opaque, hwaddr addr, unsigned size)
{
IntelIOMMUState *s = opaque;
uint64_t val;
if (addr + size > DMAR_REG_SIZE) {
VTD_DPRINTF(GENERAL, "error: addr outside region: max 0x%"PRIx64
", got 0x%"PRIx64 " %d",
(uint64_t)DMAR_REG_SIZE, addr, size);
return (uint64_t)-1;
}
switch (addr) {
/* Root Table Address Register, 64-bit */
case DMAR_RTADDR_REG:
if (size == 4) {
val = s->root & ((1ULL << 32) - 1);
} else {
val = s->root;
}
break;
case DMAR_RTADDR_REG_HI:
assert(size == 4);
val = s->root >> 32;
break;
default:
if (size == 4) {
val = vtd_get_long(s, addr);
} else {
val = vtd_get_quad(s, addr);
}
}
VTD_DPRINTF(CSR, "addr 0x%"PRIx64 " size %d val 0x%"PRIx64,
addr, size, val);
return val;
}
static void vtd_mem_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
IntelIOMMUState *s = opaque;
if (addr + size > DMAR_REG_SIZE) {
VTD_DPRINTF(GENERAL, "error: addr outside region: max 0x%"PRIx64
", got 0x%"PRIx64 " %d",
(uint64_t)DMAR_REG_SIZE, addr, size);
return;
}
switch (addr) {
/* Global Command Register, 32-bit */
case DMAR_GCMD_REG:
VTD_DPRINTF(CSR, "DMAR_GCMD_REG write addr 0x%"PRIx64
", size %d, val 0x%"PRIx64, addr, size, val);
vtd_set_long(s, addr, val);
vtd_handle_gcmd_write(s);
break;
/* Context Command Register, 64-bit */
case DMAR_CCMD_REG:
VTD_DPRINTF(CSR, "DMAR_CCMD_REG write addr 0x%"PRIx64
", size %d, val 0x%"PRIx64, addr, size, val);
if (size == 4) {
vtd_set_long(s, addr, val);
} else {
vtd_set_quad(s, addr, val);
vtd_handle_ccmd_write(s);
}
break;
case DMAR_CCMD_REG_HI:
VTD_DPRINTF(CSR, "DMAR_CCMD_REG_HI write addr 0x%"PRIx64
", size %d, val 0x%"PRIx64, addr, size, val);
assert(size == 4);
vtd_set_long(s, addr, val);
vtd_handle_ccmd_write(s);
break;
/* IOTLB Invalidation Register, 64-bit */
case DMAR_IOTLB_REG:
VTD_DPRINTF(INV, "DMAR_IOTLB_REG write addr 0x%"PRIx64
", size %d, val 0x%"PRIx64, addr, size, val);
if (size == 4) {
vtd_set_long(s, addr, val);
} else {
vtd_set_quad(s, addr, val);
vtd_handle_iotlb_write(s);
}
break;
case DMAR_IOTLB_REG_HI:
VTD_DPRINTF(INV, "DMAR_IOTLB_REG_HI write addr 0x%"PRIx64
", size %d, val 0x%"PRIx64, addr, size, val);
assert(size == 4);
vtd_set_long(s, addr, val);
vtd_handle_iotlb_write(s);
break;
/* Fault Status Register, 32-bit */
case DMAR_FSTS_REG:
VTD_DPRINTF(FLOG, "DMAR_FSTS_REG write addr 0x%"PRIx64
", size %d, val 0x%"PRIx64, addr, size, val);
assert(size == 4);
vtd_set_long(s, addr, val);
vtd_handle_fsts_write(s);
break;
/* Fault Event Control Register, 32-bit */
case DMAR_FECTL_REG:
VTD_DPRINTF(FLOG, "DMAR_FECTL_REG write addr 0x%"PRIx64
", size %d, val 0x%"PRIx64, addr, size, val);
assert(size == 4);
vtd_set_long(s, addr, val);
vtd_handle_fectl_write(s);
break;
/* Fault Event Data Register, 32-bit */
case DMAR_FEDATA_REG:
VTD_DPRINTF(FLOG, "DMAR_FEDATA_REG write addr 0x%"PRIx64
", size %d, val 0x%"PRIx64, addr, size, val);
assert(size == 4);
vtd_set_long(s, addr, val);
break;
/* Fault Event Address Register, 32-bit */
case DMAR_FEADDR_REG:
VTD_DPRINTF(FLOG, "DMAR_FEADDR_REG write addr 0x%"PRIx64
", size %d, val 0x%"PRIx64, addr, size, val);
assert(size == 4);
vtd_set_long(s, addr, val);
break;
/* Fault Event Upper Address Register, 32-bit */
case DMAR_FEUADDR_REG:
VTD_DPRINTF(FLOG, "DMAR_FEUADDR_REG write addr 0x%"PRIx64
", size %d, val 0x%"PRIx64, addr, size, val);
assert(size == 4);
vtd_set_long(s, addr, val);
break;
/* Protected Memory Enable Register, 32-bit */
case DMAR_PMEN_REG:
VTD_DPRINTF(CSR, "DMAR_PMEN_REG write addr 0x%"PRIx64
", size %d, val 0x%"PRIx64, addr, size, val);
assert(size == 4);
vtd_set_long(s, addr, val);
break;
/* Root Table Address Register, 64-bit */
case DMAR_RTADDR_REG:
VTD_DPRINTF(CSR, "DMAR_RTADDR_REG write addr 0x%"PRIx64
", size %d, val 0x%"PRIx64, addr, size, val);
if (size == 4) {
vtd_set_long(s, addr, val);
} else {
vtd_set_quad(s, addr, val);
}
break;
case DMAR_RTADDR_REG_HI:
VTD_DPRINTF(CSR, "DMAR_RTADDR_REG_HI write addr 0x%"PRIx64
", size %d, val 0x%"PRIx64, addr, size, val);
assert(size == 4);
vtd_set_long(s, addr, val);
break;
/* Fault Recording Registers, 128-bit */
case DMAR_FRCD_REG_0_0:
VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_0 write addr 0x%"PRIx64
", size %d, val 0x%"PRIx64, addr, size, val);
if (size == 4) {
vtd_set_long(s, addr, val);
} else {
vtd_set_quad(s, addr, val);
}
break;
case DMAR_FRCD_REG_0_1:
VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_1 write addr 0x%"PRIx64
", size %d, val 0x%"PRIx64, addr, size, val);
assert(size == 4);
vtd_set_long(s, addr, val);
break;
case DMAR_FRCD_REG_0_2:
VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_2 write addr 0x%"PRIx64
", size %d, val 0x%"PRIx64, addr, size, val);
if (size == 4) {
vtd_set_long(s, addr, val);
} else {
vtd_set_quad(s, addr, val);
/* May clear bit 127 (Fault), update PPF */
vtd_update_fsts_ppf(s);
}
break;
case DMAR_FRCD_REG_0_3:
VTD_DPRINTF(FLOG, "DMAR_FRCD_REG_0_3 write addr 0x%"PRIx64
", size %d, val 0x%"PRIx64, addr, size, val);
assert(size == 4);
vtd_set_long(s, addr, val);
/* May clear bit 127 (Fault), update PPF */
vtd_update_fsts_ppf(s);
break;
default:
VTD_DPRINTF(GENERAL, "error: unhandled reg write addr 0x%"PRIx64
", size %d, val 0x%"PRIx64, addr, size, val);
if (size == 4) {
vtd_set_long(s, addr, val);
} else {
vtd_set_quad(s, addr, val);
}
}
}
static IOMMUTLBEntry vtd_iommu_translate(MemoryRegion *iommu, hwaddr addr,
bool is_write)
{
VTDAddressSpace *vtd_as = container_of(iommu, VTDAddressSpace, iommu);
IntelIOMMUState *s = vtd_as->iommu_state;
uint8_t bus_num = vtd_as->bus_num;
uint8_t devfn = vtd_as->devfn;
IOMMUTLBEntry ret = {
.target_as = &address_space_memory,
.iova = addr,
.translated_addr = 0,
.addr_mask = ~(hwaddr)0,
.perm = IOMMU_NONE,
};
if (!s->dmar_enabled) {
/* DMAR disabled, passthrough, use 4k-page*/
ret.iova = addr & VTD_PAGE_MASK_4K;
ret.translated_addr = addr & VTD_PAGE_MASK_4K;
ret.addr_mask = ~VTD_PAGE_MASK_4K;
ret.perm = IOMMU_RW;
return ret;
}
vtd_do_iommu_translate(s, bus_num, devfn, addr, is_write, &ret);
VTD_DPRINTF(MMU,
"bus %"PRIu8 " slot %"PRIu8 " func %"PRIu8 " devfn %"PRIu8
" gpa 0x%"PRIx64 " hpa 0x%"PRIx64, bus_num,
VTD_PCI_SLOT(devfn), VTD_PCI_FUNC(devfn), devfn, addr,
ret.translated_addr);
return ret;
}
static const VMStateDescription vtd_vmstate = {
.name = "iommu-intel",
.unmigratable = 1,
};
static const MemoryRegionOps vtd_mem_ops = {
.read = vtd_mem_read,
.write = vtd_mem_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.impl = {
.min_access_size = 4,
.max_access_size = 8,
},
.valid = {
.min_access_size = 4,
.max_access_size = 8,
},
};
static Property vtd_properties[] = {
DEFINE_PROP_UINT32("version", IntelIOMMUState, version, 0),
DEFINE_PROP_END_OF_LIST(),
};
/* Do the initialization. It will also be called when reset, so pay
* attention when adding new initialization stuff.
*/
static void vtd_init(IntelIOMMUState *s)
{
memset(s->csr, 0, DMAR_REG_SIZE);
memset(s->wmask, 0, DMAR_REG_SIZE);
memset(s->w1cmask, 0, DMAR_REG_SIZE);
memset(s->womask, 0, DMAR_REG_SIZE);
s->iommu_ops.translate = vtd_iommu_translate;
s->root = 0;
s->root_extended = false;
s->dmar_enabled = false;
s->iq_head = 0;
s->iq_tail = 0;
s->iq = 0;
s->iq_size = 0;
s->qi_enabled = false;
s->iq_last_desc_type = VTD_INV_DESC_NONE;
s->next_frcd_reg = 0;
s->cap = VTD_CAP_FRO | VTD_CAP_NFR | VTD_CAP_ND | VTD_CAP_MGAW |
VTD_CAP_SAGAW;
s->ecap = VTD_ECAP_IRO;
/* Define registers with default values and bit semantics */
vtd_define_long(s, DMAR_VER_REG, 0x10UL, 0, 0);
vtd_define_quad(s, DMAR_CAP_REG, s->cap, 0, 0);
vtd_define_quad(s, DMAR_ECAP_REG, s->ecap, 0, 0);
vtd_define_long(s, DMAR_GCMD_REG, 0, 0xff800000UL, 0);
vtd_define_long_wo(s, DMAR_GCMD_REG, 0xff800000UL);
vtd_define_long(s, DMAR_GSTS_REG, 0, 0, 0);
vtd_define_quad(s, DMAR_RTADDR_REG, 0, 0xfffffffffffff000ULL, 0);
vtd_define_quad(s, DMAR_CCMD_REG, 0, 0xe0000003ffffffffULL, 0);
vtd_define_quad_wo(s, DMAR_CCMD_REG, 0x3ffff0000ULL);
/* Advanced Fault Logging not supported */
vtd_define_long(s, DMAR_FSTS_REG, 0, 0, 0x11UL);
vtd_define_long(s, DMAR_FECTL_REG, 0x80000000UL, 0x80000000UL, 0);
vtd_define_long(s, DMAR_FEDATA_REG, 0, 0x0000ffffUL, 0);
vtd_define_long(s, DMAR_FEADDR_REG, 0, 0xfffffffcUL, 0);
/* Treated as RsvdZ when EIM in ECAP_REG is not supported
* vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0xffffffffUL, 0);
*/
vtd_define_long(s, DMAR_FEUADDR_REG, 0, 0, 0);
/* Treated as RO for implementations that PLMR and PHMR fields reported
* as Clear in the CAP_REG.
* vtd_define_long(s, DMAR_PMEN_REG, 0, 0x80000000UL, 0);
*/
vtd_define_long(s, DMAR_PMEN_REG, 0, 0, 0);
/* IOTLB registers */
vtd_define_quad(s, DMAR_IOTLB_REG, 0, 0Xb003ffff00000000ULL, 0);
vtd_define_quad(s, DMAR_IVA_REG, 0, 0xfffffffffffff07fULL, 0);
vtd_define_quad_wo(s, DMAR_IVA_REG, 0xfffffffffffff07fULL);
/* Fault Recording Registers, 128-bit */
vtd_define_quad(s, DMAR_FRCD_REG_0_0, 0, 0, 0);
vtd_define_quad(s, DMAR_FRCD_REG_0_2, 0, 0, 0x8000000000000000ULL);
}
/* Should not reset address_spaces when reset because devices will still use
* the address space they got at first (won't ask the bus again).
*/
static void vtd_reset(DeviceState *dev)
{
IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
VTD_DPRINTF(GENERAL, "");
vtd_init(s);
}
static void vtd_realize(DeviceState *dev, Error **errp)
{
IntelIOMMUState *s = INTEL_IOMMU_DEVICE(dev);
VTD_DPRINTF(GENERAL, "");
memset(s->address_spaces, 0, sizeof(s->address_spaces));
memory_region_init_io(&s->csrmem, OBJECT(s), &vtd_mem_ops, s,
"intel_iommu", DMAR_REG_SIZE);
sysbus_init_mmio(SYS_BUS_DEVICE(s), &s->csrmem);
vtd_init(s);
}
static void vtd_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->reset = vtd_reset;
dc->realize = vtd_realize;
dc->vmsd = &vtd_vmstate;
dc->props = vtd_properties;
}
static const TypeInfo vtd_info = {
.name = TYPE_INTEL_IOMMU_DEVICE,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(IntelIOMMUState),
.class_init = vtd_class_init,
};
static void vtd_register_types(void)
{
VTD_DPRINTF(GENERAL, "");
type_register_static(&vtd_info);
}
type_init(vtd_register_types)