qemu/target-sparc/fop_helper.c
Richard Henderson 02c79d7885 target-sparc: Use cpu_loop_exit_restore from helper_check_ieee_exceptions
This avoids needing to save state before every FP operation.

Tested-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk>
Signed-off-by: Richard Henderson <rth@twiddle.net>
2016-07-12 11:02:58 -07:00

401 lines
13 KiB
C

/*
* FPU op helpers
*
* Copyright (c) 2003-2005 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/exec-all.h"
#include "exec/helper-proto.h"
#define QT0 (env->qt0)
#define QT1 (env->qt1)
static target_ulong do_check_ieee_exceptions(CPUSPARCState *env, uintptr_t ra)
{
target_ulong status = get_float_exception_flags(&env->fp_status);
target_ulong fsr = env->fsr;
if (unlikely(status)) {
/* Keep exception flags clear for next time. */
set_float_exception_flags(0, &env->fp_status);
/* Copy IEEE 754 flags into FSR */
if (status & float_flag_invalid) {
fsr |= FSR_NVC;
}
if (status & float_flag_overflow) {
fsr |= FSR_OFC;
}
if (status & float_flag_underflow) {
fsr |= FSR_UFC;
}
if (status & float_flag_divbyzero) {
fsr |= FSR_DZC;
}
if (status & float_flag_inexact) {
fsr |= FSR_NXC;
}
if ((fsr & FSR_CEXC_MASK) & ((fsr & FSR_TEM_MASK) >> 23)) {
CPUState *cs = CPU(sparc_env_get_cpu(env));
/* Unmasked exception, generate a trap. Note that while
the helper is marked as NO_WG, we can get away with
writing to cpu state along the exception path, since
TCG generated code will never see the write. */
env->fsr = fsr | FSR_FTT_IEEE_EXCP;
cs->exception_index = TT_FP_EXCP;
cpu_loop_exit_restore(cs, ra);
} else {
/* Accumulate exceptions */
fsr |= (fsr & FSR_CEXC_MASK) << 5;
}
}
return fsr;
}
target_ulong helper_check_ieee_exceptions(CPUSPARCState *env)
{
return do_check_ieee_exceptions(env, GETPC());
}
#define F_HELPER(name, p) void helper_f##name##p(CPUSPARCState *env)
#define F_BINOP(name) \
float32 helper_f ## name ## s (CPUSPARCState *env, float32 src1, \
float32 src2) \
{ \
return float32_ ## name (src1, src2, &env->fp_status); \
} \
float64 helper_f ## name ## d (CPUSPARCState * env, float64 src1,\
float64 src2) \
{ \
return float64_ ## name (src1, src2, &env->fp_status); \
} \
F_HELPER(name, q) \
{ \
QT0 = float128_ ## name (QT0, QT1, &env->fp_status); \
}
F_BINOP(add);
F_BINOP(sub);
F_BINOP(mul);
F_BINOP(div);
#undef F_BINOP
float64 helper_fsmuld(CPUSPARCState *env, float32 src1, float32 src2)
{
return float64_mul(float32_to_float64(src1, &env->fp_status),
float32_to_float64(src2, &env->fp_status),
&env->fp_status);
}
void helper_fdmulq(CPUSPARCState *env, float64 src1, float64 src2)
{
QT0 = float128_mul(float64_to_float128(src1, &env->fp_status),
float64_to_float128(src2, &env->fp_status),
&env->fp_status);
}
float32 helper_fnegs(float32 src)
{
return float32_chs(src);
}
#ifdef TARGET_SPARC64
float64 helper_fnegd(float64 src)
{
return float64_chs(src);
}
F_HELPER(neg, q)
{
QT0 = float128_chs(QT1);
}
#endif
/* Integer to float conversion. */
float32 helper_fitos(CPUSPARCState *env, int32_t src)
{
return int32_to_float32(src, &env->fp_status);
}
float64 helper_fitod(CPUSPARCState *env, int32_t src)
{
return int32_to_float64(src, &env->fp_status);
}
void helper_fitoq(CPUSPARCState *env, int32_t src)
{
QT0 = int32_to_float128(src, &env->fp_status);
}
#ifdef TARGET_SPARC64
float32 helper_fxtos(CPUSPARCState *env, int64_t src)
{
return int64_to_float32(src, &env->fp_status);
}
float64 helper_fxtod(CPUSPARCState *env, int64_t src)
{
return int64_to_float64(src, &env->fp_status);
}
void helper_fxtoq(CPUSPARCState *env, int64_t src)
{
QT0 = int64_to_float128(src, &env->fp_status);
}
#endif
#undef F_HELPER
/* floating point conversion */
float32 helper_fdtos(CPUSPARCState *env, float64 src)
{
return float64_to_float32(src, &env->fp_status);
}
float64 helper_fstod(CPUSPARCState *env, float32 src)
{
return float32_to_float64(src, &env->fp_status);
}
float32 helper_fqtos(CPUSPARCState *env)
{
return float128_to_float32(QT1, &env->fp_status);
}
void helper_fstoq(CPUSPARCState *env, float32 src)
{
QT0 = float32_to_float128(src, &env->fp_status);
}
float64 helper_fqtod(CPUSPARCState *env)
{
return float128_to_float64(QT1, &env->fp_status);
}
void helper_fdtoq(CPUSPARCState *env, float64 src)
{
QT0 = float64_to_float128(src, &env->fp_status);
}
/* Float to integer conversion. */
int32_t helper_fstoi(CPUSPARCState *env, float32 src)
{
return float32_to_int32_round_to_zero(src, &env->fp_status);
}
int32_t helper_fdtoi(CPUSPARCState *env, float64 src)
{
return float64_to_int32_round_to_zero(src, &env->fp_status);
}
int32_t helper_fqtoi(CPUSPARCState *env)
{
return float128_to_int32_round_to_zero(QT1, &env->fp_status);
}
#ifdef TARGET_SPARC64
int64_t helper_fstox(CPUSPARCState *env, float32 src)
{
return float32_to_int64_round_to_zero(src, &env->fp_status);
}
int64_t helper_fdtox(CPUSPARCState *env, float64 src)
{
return float64_to_int64_round_to_zero(src, &env->fp_status);
}
int64_t helper_fqtox(CPUSPARCState *env)
{
return float128_to_int64_round_to_zero(QT1, &env->fp_status);
}
#endif
float32 helper_fabss(float32 src)
{
return float32_abs(src);
}
#ifdef TARGET_SPARC64
float64 helper_fabsd(float64 src)
{
return float64_abs(src);
}
void helper_fabsq(CPUSPARCState *env)
{
QT0 = float128_abs(QT1);
}
#endif
float32 helper_fsqrts(CPUSPARCState *env, float32 src)
{
return float32_sqrt(src, &env->fp_status);
}
float64 helper_fsqrtd(CPUSPARCState *env, float64 src)
{
return float64_sqrt(src, &env->fp_status);
}
void helper_fsqrtq(CPUSPARCState *env)
{
QT0 = float128_sqrt(QT1, &env->fp_status);
}
#define GEN_FCMP(name, size, reg1, reg2, FS, E) \
target_ulong glue(helper_, name) (CPUSPARCState *env) \
{ \
int ret; \
target_ulong fsr; \
if (E) { \
ret = glue(size, _compare)(reg1, reg2, &env->fp_status); \
} else { \
ret = glue(size, _compare_quiet)(reg1, reg2, \
&env->fp_status); \
} \
fsr = do_check_ieee_exceptions(env, GETPC()); \
switch (ret) { \
case float_relation_unordered: \
fsr |= (FSR_FCC1 | FSR_FCC0) << FS; \
fsr |= FSR_NVA; \
break; \
case float_relation_less: \
fsr &= ~(FSR_FCC1) << FS; \
fsr |= FSR_FCC0 << FS; \
break; \
case float_relation_greater: \
fsr &= ~(FSR_FCC0) << FS; \
fsr |= FSR_FCC1 << FS; \
break; \
default: \
fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
break; \
} \
return fsr; \
}
#define GEN_FCMP_T(name, size, FS, E) \
target_ulong glue(helper_, name)(CPUSPARCState *env, size src1, size src2)\
{ \
int ret; \
target_ulong fsr; \
if (E) { \
ret = glue(size, _compare)(src1, src2, &env->fp_status); \
} else { \
ret = glue(size, _compare_quiet)(src1, src2, \
&env->fp_status); \
} \
fsr = do_check_ieee_exceptions(env, GETPC()); \
switch (ret) { \
case float_relation_unordered: \
fsr |= (FSR_FCC1 | FSR_FCC0) << FS; \
break; \
case float_relation_less: \
fsr &= ~(FSR_FCC1 << FS); \
fsr |= FSR_FCC0 << FS; \
break; \
case float_relation_greater: \
fsr &= ~(FSR_FCC0 << FS); \
fsr |= FSR_FCC1 << FS; \
break; \
default: \
fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
break; \
} \
return fsr; \
}
GEN_FCMP_T(fcmps, float32, 0, 0);
GEN_FCMP_T(fcmpd, float64, 0, 0);
GEN_FCMP_T(fcmpes, float32, 0, 1);
GEN_FCMP_T(fcmped, float64, 0, 1);
GEN_FCMP(fcmpq, float128, QT0, QT1, 0, 0);
GEN_FCMP(fcmpeq, float128, QT0, QT1, 0, 1);
#ifdef TARGET_SPARC64
GEN_FCMP_T(fcmps_fcc1, float32, 22, 0);
GEN_FCMP_T(fcmpd_fcc1, float64, 22, 0);
GEN_FCMP(fcmpq_fcc1, float128, QT0, QT1, 22, 0);
GEN_FCMP_T(fcmps_fcc2, float32, 24, 0);
GEN_FCMP_T(fcmpd_fcc2, float64, 24, 0);
GEN_FCMP(fcmpq_fcc2, float128, QT0, QT1, 24, 0);
GEN_FCMP_T(fcmps_fcc3, float32, 26, 0);
GEN_FCMP_T(fcmpd_fcc3, float64, 26, 0);
GEN_FCMP(fcmpq_fcc3, float128, QT0, QT1, 26, 0);
GEN_FCMP_T(fcmpes_fcc1, float32, 22, 1);
GEN_FCMP_T(fcmped_fcc1, float64, 22, 1);
GEN_FCMP(fcmpeq_fcc1, float128, QT0, QT1, 22, 1);
GEN_FCMP_T(fcmpes_fcc2, float32, 24, 1);
GEN_FCMP_T(fcmped_fcc2, float64, 24, 1);
GEN_FCMP(fcmpeq_fcc2, float128, QT0, QT1, 24, 1);
GEN_FCMP_T(fcmpes_fcc3, float32, 26, 1);
GEN_FCMP_T(fcmped_fcc3, float64, 26, 1);
GEN_FCMP(fcmpeq_fcc3, float128, QT0, QT1, 26, 1);
#endif
#undef GEN_FCMP_T
#undef GEN_FCMP
static void set_fsr(CPUSPARCState *env, target_ulong fsr)
{
int rnd_mode;
switch (fsr & FSR_RD_MASK) {
case FSR_RD_NEAREST:
rnd_mode = float_round_nearest_even;
break;
default:
case FSR_RD_ZERO:
rnd_mode = float_round_to_zero;
break;
case FSR_RD_POS:
rnd_mode = float_round_up;
break;
case FSR_RD_NEG:
rnd_mode = float_round_down;
break;
}
set_float_rounding_mode(rnd_mode, &env->fp_status);
}
target_ulong helper_ldfsr(CPUSPARCState *env, target_ulong old_fsr,
uint32_t new_fsr)
{
old_fsr = (new_fsr & FSR_LDFSR_MASK) | (old_fsr & FSR_LDFSR_OLDMASK);
set_fsr(env, old_fsr);
return old_fsr;
}
#ifdef TARGET_SPARC64
target_ulong helper_ldxfsr(CPUSPARCState *env, target_ulong old_fsr,
uint64_t new_fsr)
{
old_fsr = (new_fsr & FSR_LDXFSR_MASK) | (old_fsr & FSR_LDXFSR_OLDMASK);
set_fsr(env, old_fsr);
return old_fsr;
}
#endif