352c98e502
muldiv64() is used to convert microseconds into CPU ticks. But it is not clear and not commented. This patch uses macro to clearly identify what is used: time, CPU frequency and ticks. For an elapsed time and a given frequency, we compute how many ticks we have. Signed-off-by: Laurent Vivier <lvivier@redhat.com> Reviewed-by: Peter Crosthwaite <crosthwaite.peter@gmail.com> Acked-by: Peter Maydell <peter.maydell@linaro.org>
8459 lines
297 KiB
C
8459 lines
297 KiB
C
#include "cpu.h"
|
|
#include "internals.h"
|
|
#include "exec/gdbstub.h"
|
|
#include "exec/helper-proto.h"
|
|
#include "qemu/host-utils.h"
|
|
#include "sysemu/arch_init.h"
|
|
#include "sysemu/sysemu.h"
|
|
#include "qemu/bitops.h"
|
|
#include "qemu/crc32c.h"
|
|
#include "exec/cpu_ldst.h"
|
|
#include "arm_ldst.h"
|
|
#include <zlib.h> /* For crc32 */
|
|
#include "exec/semihost.h"
|
|
|
|
#define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
static inline bool get_phys_addr(CPUARMState *env, target_ulong address,
|
|
int access_type, ARMMMUIdx mmu_idx,
|
|
hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
|
|
target_ulong *page_size, uint32_t *fsr);
|
|
|
|
/* Definitions for the PMCCNTR and PMCR registers */
|
|
#define PMCRD 0x8
|
|
#define PMCRC 0x4
|
|
#define PMCRE 0x1
|
|
#endif
|
|
|
|
static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
|
|
{
|
|
int nregs;
|
|
|
|
/* VFP data registers are always little-endian. */
|
|
nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
|
|
if (reg < nregs) {
|
|
stfq_le_p(buf, env->vfp.regs[reg]);
|
|
return 8;
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_NEON)) {
|
|
/* Aliases for Q regs. */
|
|
nregs += 16;
|
|
if (reg < nregs) {
|
|
stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
|
|
stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
|
|
return 16;
|
|
}
|
|
}
|
|
switch (reg - nregs) {
|
|
case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
|
|
case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
|
|
case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
|
|
{
|
|
int nregs;
|
|
|
|
nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
|
|
if (reg < nregs) {
|
|
env->vfp.regs[reg] = ldfq_le_p(buf);
|
|
return 8;
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_NEON)) {
|
|
nregs += 16;
|
|
if (reg < nregs) {
|
|
env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
|
|
env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
|
|
return 16;
|
|
}
|
|
}
|
|
switch (reg - nregs) {
|
|
case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
|
|
case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
|
|
case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
|
|
{
|
|
switch (reg) {
|
|
case 0 ... 31:
|
|
/* 128 bit FP register */
|
|
stfq_le_p(buf, env->vfp.regs[reg * 2]);
|
|
stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
|
|
return 16;
|
|
case 32:
|
|
/* FPSR */
|
|
stl_p(buf, vfp_get_fpsr(env));
|
|
return 4;
|
|
case 33:
|
|
/* FPCR */
|
|
stl_p(buf, vfp_get_fpcr(env));
|
|
return 4;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
|
|
{
|
|
switch (reg) {
|
|
case 0 ... 31:
|
|
/* 128 bit FP register */
|
|
env->vfp.regs[reg * 2] = ldfq_le_p(buf);
|
|
env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
|
|
return 16;
|
|
case 32:
|
|
/* FPSR */
|
|
vfp_set_fpsr(env, ldl_p(buf));
|
|
return 4;
|
|
case 33:
|
|
/* FPCR */
|
|
vfp_set_fpcr(env, ldl_p(buf));
|
|
return 4;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
assert(ri->fieldoffset);
|
|
if (cpreg_field_is_64bit(ri)) {
|
|
return CPREG_FIELD64(env, ri);
|
|
} else {
|
|
return CPREG_FIELD32(env, ri);
|
|
}
|
|
}
|
|
|
|
static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
assert(ri->fieldoffset);
|
|
if (cpreg_field_is_64bit(ri)) {
|
|
CPREG_FIELD64(env, ri) = value;
|
|
} else {
|
|
CPREG_FIELD32(env, ri) = value;
|
|
}
|
|
}
|
|
|
|
static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return (char *)env + ri->fieldoffset;
|
|
}
|
|
|
|
uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
/* Raw read of a coprocessor register (as needed for migration, etc). */
|
|
if (ri->type & ARM_CP_CONST) {
|
|
return ri->resetvalue;
|
|
} else if (ri->raw_readfn) {
|
|
return ri->raw_readfn(env, ri);
|
|
} else if (ri->readfn) {
|
|
return ri->readfn(env, ri);
|
|
} else {
|
|
return raw_read(env, ri);
|
|
}
|
|
}
|
|
|
|
static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t v)
|
|
{
|
|
/* Raw write of a coprocessor register (as needed for migration, etc).
|
|
* Note that constant registers are treated as write-ignored; the
|
|
* caller should check for success by whether a readback gives the
|
|
* value written.
|
|
*/
|
|
if (ri->type & ARM_CP_CONST) {
|
|
return;
|
|
} else if (ri->raw_writefn) {
|
|
ri->raw_writefn(env, ri, v);
|
|
} else if (ri->writefn) {
|
|
ri->writefn(env, ri, v);
|
|
} else {
|
|
raw_write(env, ri, v);
|
|
}
|
|
}
|
|
|
|
static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
|
|
{
|
|
/* Return true if the regdef would cause an assertion if you called
|
|
* read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
|
|
* program bug for it not to have the NO_RAW flag).
|
|
* NB that returning false here doesn't necessarily mean that calling
|
|
* read/write_raw_cp_reg() is safe, because we can't distinguish "has
|
|
* read/write access functions which are safe for raw use" from "has
|
|
* read/write access functions which have side effects but has forgotten
|
|
* to provide raw access functions".
|
|
* The tests here line up with the conditions in read/write_raw_cp_reg()
|
|
* and assertions in raw_read()/raw_write().
|
|
*/
|
|
if ((ri->type & ARM_CP_CONST) ||
|
|
ri->fieldoffset ||
|
|
((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool write_cpustate_to_list(ARMCPU *cpu)
|
|
{
|
|
/* Write the coprocessor state from cpu->env to the (index,value) list. */
|
|
int i;
|
|
bool ok = true;
|
|
|
|
for (i = 0; i < cpu->cpreg_array_len; i++) {
|
|
uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
|
|
const ARMCPRegInfo *ri;
|
|
|
|
ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
|
|
if (!ri) {
|
|
ok = false;
|
|
continue;
|
|
}
|
|
if (ri->type & ARM_CP_NO_RAW) {
|
|
continue;
|
|
}
|
|
cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
|
|
}
|
|
return ok;
|
|
}
|
|
|
|
bool write_list_to_cpustate(ARMCPU *cpu)
|
|
{
|
|
int i;
|
|
bool ok = true;
|
|
|
|
for (i = 0; i < cpu->cpreg_array_len; i++) {
|
|
uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
|
|
uint64_t v = cpu->cpreg_values[i];
|
|
const ARMCPRegInfo *ri;
|
|
|
|
ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
|
|
if (!ri) {
|
|
ok = false;
|
|
continue;
|
|
}
|
|
if (ri->type & ARM_CP_NO_RAW) {
|
|
continue;
|
|
}
|
|
/* Write value and confirm it reads back as written
|
|
* (to catch read-only registers and partially read-only
|
|
* registers where the incoming migration value doesn't match)
|
|
*/
|
|
write_raw_cp_reg(&cpu->env, ri, v);
|
|
if (read_raw_cp_reg(&cpu->env, ri) != v) {
|
|
ok = false;
|
|
}
|
|
}
|
|
return ok;
|
|
}
|
|
|
|
static void add_cpreg_to_list(gpointer key, gpointer opaque)
|
|
{
|
|
ARMCPU *cpu = opaque;
|
|
uint64_t regidx;
|
|
const ARMCPRegInfo *ri;
|
|
|
|
regidx = *(uint32_t *)key;
|
|
ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
|
|
|
|
if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
|
|
cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
|
|
/* The value array need not be initialized at this point */
|
|
cpu->cpreg_array_len++;
|
|
}
|
|
}
|
|
|
|
static void count_cpreg(gpointer key, gpointer opaque)
|
|
{
|
|
ARMCPU *cpu = opaque;
|
|
uint64_t regidx;
|
|
const ARMCPRegInfo *ri;
|
|
|
|
regidx = *(uint32_t *)key;
|
|
ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
|
|
|
|
if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
|
|
cpu->cpreg_array_len++;
|
|
}
|
|
}
|
|
|
|
static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
|
|
{
|
|
uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
|
|
uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
|
|
|
|
if (aidx > bidx) {
|
|
return 1;
|
|
}
|
|
if (aidx < bidx) {
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void init_cpreg_list(ARMCPU *cpu)
|
|
{
|
|
/* Initialise the cpreg_tuples[] array based on the cp_regs hash.
|
|
* Note that we require cpreg_tuples[] to be sorted by key ID.
|
|
*/
|
|
GList *keys;
|
|
int arraylen;
|
|
|
|
keys = g_hash_table_get_keys(cpu->cp_regs);
|
|
keys = g_list_sort(keys, cpreg_key_compare);
|
|
|
|
cpu->cpreg_array_len = 0;
|
|
|
|
g_list_foreach(keys, count_cpreg, cpu);
|
|
|
|
arraylen = cpu->cpreg_array_len;
|
|
cpu->cpreg_indexes = g_new(uint64_t, arraylen);
|
|
cpu->cpreg_values = g_new(uint64_t, arraylen);
|
|
cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
|
|
cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
|
|
cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
|
|
cpu->cpreg_array_len = 0;
|
|
|
|
g_list_foreach(keys, add_cpreg_to_list, cpu);
|
|
|
|
assert(cpu->cpreg_array_len == arraylen);
|
|
|
|
g_list_free(keys);
|
|
}
|
|
|
|
/*
|
|
* Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
|
|
* they are accessible when EL3 is using AArch64 regardless of EL3.NS.
|
|
*
|
|
* access_el3_aa32ns: Used to check AArch32 register views.
|
|
* access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
|
|
*/
|
|
static CPAccessResult access_el3_aa32ns(CPUARMState *env,
|
|
const ARMCPRegInfo *ri)
|
|
{
|
|
bool secure = arm_is_secure_below_el3(env);
|
|
|
|
assert(!arm_el_is_aa64(env, 3));
|
|
if (secure) {
|
|
return CP_ACCESS_TRAP_UNCATEGORIZED;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
|
|
const ARMCPRegInfo *ri)
|
|
{
|
|
if (!arm_el_is_aa64(env, 3)) {
|
|
return access_el3_aa32ns(env, ri);
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
|
|
{
|
|
ARMCPU *cpu = arm_env_get_cpu(env);
|
|
|
|
raw_write(env, ri, value);
|
|
tlb_flush(CPU(cpu), 1); /* Flush TLB as domain not tracked in TLB */
|
|
}
|
|
|
|
static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
|
|
{
|
|
ARMCPU *cpu = arm_env_get_cpu(env);
|
|
|
|
if (raw_read(env, ri) != value) {
|
|
/* Unlike real hardware the qemu TLB uses virtual addresses,
|
|
* not modified virtual addresses, so this causes a TLB flush.
|
|
*/
|
|
tlb_flush(CPU(cpu), 1);
|
|
raw_write(env, ri, value);
|
|
}
|
|
}
|
|
|
|
static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
ARMCPU *cpu = arm_env_get_cpu(env);
|
|
|
|
if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_MPU)
|
|
&& !extended_addresses_enabled(env)) {
|
|
/* For VMSA (when not using the LPAE long descriptor page table
|
|
* format) this register includes the ASID, so do a TLB flush.
|
|
* For PMSA it is purely a process ID and no action is needed.
|
|
*/
|
|
tlb_flush(CPU(cpu), 1);
|
|
}
|
|
raw_write(env, ri, value);
|
|
}
|
|
|
|
static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/* Invalidate all (TLBIALL) */
|
|
ARMCPU *cpu = arm_env_get_cpu(env);
|
|
|
|
tlb_flush(CPU(cpu), 1);
|
|
}
|
|
|
|
static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
|
|
ARMCPU *cpu = arm_env_get_cpu(env);
|
|
|
|
tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
|
|
}
|
|
|
|
static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/* Invalidate by ASID (TLBIASID) */
|
|
ARMCPU *cpu = arm_env_get_cpu(env);
|
|
|
|
tlb_flush(CPU(cpu), value == 0);
|
|
}
|
|
|
|
static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
|
|
ARMCPU *cpu = arm_env_get_cpu(env);
|
|
|
|
tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
|
|
}
|
|
|
|
/* IS variants of TLB operations must affect all cores */
|
|
static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *other_cs;
|
|
|
|
CPU_FOREACH(other_cs) {
|
|
tlb_flush(other_cs, 1);
|
|
}
|
|
}
|
|
|
|
static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *other_cs;
|
|
|
|
CPU_FOREACH(other_cs) {
|
|
tlb_flush(other_cs, value == 0);
|
|
}
|
|
}
|
|
|
|
static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *other_cs;
|
|
|
|
CPU_FOREACH(other_cs) {
|
|
tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
|
|
}
|
|
}
|
|
|
|
static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *other_cs;
|
|
|
|
CPU_FOREACH(other_cs) {
|
|
tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
|
|
}
|
|
}
|
|
|
|
static const ARMCPRegInfo cp_reginfo[] = {
|
|
/* Define the secure and non-secure FCSE identifier CP registers
|
|
* separately because there is no secure bank in V8 (no _EL3). This allows
|
|
* the secure register to be properly reset and migrated. There is also no
|
|
* v8 EL1 version of the register so the non-secure instance stands alone.
|
|
*/
|
|
{ .name = "FCSEIDR(NS)",
|
|
.cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
|
|
.access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
|
|
.resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
|
|
{ .name = "FCSEIDR(S)",
|
|
.cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
|
|
.access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
|
|
.resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
|
|
/* Define the secure and non-secure context identifier CP registers
|
|
* separately because there is no secure bank in V8 (no _EL3). This allows
|
|
* the secure register to be properly reset and migrated. In the
|
|
* non-secure case, the 32-bit register will have reset and migration
|
|
* disabled during registration as it is handled by the 64-bit instance.
|
|
*/
|
|
{ .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
|
|
.access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
|
|
.resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
|
|
{ .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
|
|
.cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
|
|
.access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
|
|
.resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
|
|
REGINFO_SENTINEL
|
|
};
|
|
|
|
static const ARMCPRegInfo not_v8_cp_reginfo[] = {
|
|
/* NB: Some of these registers exist in v8 but with more precise
|
|
* definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
|
|
*/
|
|
/* MMU Domain access control / MPU write buffer control */
|
|
{ .name = "DACR",
|
|
.cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
|
|
.access = PL1_RW, .resetvalue = 0,
|
|
.writefn = dacr_write, .raw_writefn = raw_write,
|
|
.bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
|
|
offsetoflow32(CPUARMState, cp15.dacr_ns) } },
|
|
/* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
|
|
* For v6 and v5, these mappings are overly broad.
|
|
*/
|
|
{ .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
|
|
.opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
|
|
{ .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
|
|
.opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
|
|
{ .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
|
|
.opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
|
|
{ .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
|
|
.opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
|
|
/* Cache maintenance ops; some of this space may be overridden later. */
|
|
{ .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
|
|
.opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
|
|
.type = ARM_CP_NOP | ARM_CP_OVERRIDE },
|
|
REGINFO_SENTINEL
|
|
};
|
|
|
|
static const ARMCPRegInfo not_v6_cp_reginfo[] = {
|
|
/* Not all pre-v6 cores implemented this WFI, so this is slightly
|
|
* over-broad.
|
|
*/
|
|
{ .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
|
|
.access = PL1_W, .type = ARM_CP_WFI },
|
|
REGINFO_SENTINEL
|
|
};
|
|
|
|
static const ARMCPRegInfo not_v7_cp_reginfo[] = {
|
|
/* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
|
|
* is UNPREDICTABLE; we choose to NOP as most implementations do).
|
|
*/
|
|
{ .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
|
|
.access = PL1_W, .type = ARM_CP_WFI },
|
|
/* L1 cache lockdown. Not architectural in v6 and earlier but in practice
|
|
* implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
|
|
* OMAPCP will override this space.
|
|
*/
|
|
{ .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
|
|
.access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
|
|
.resetvalue = 0 },
|
|
{ .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
|
|
.access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
|
|
.resetvalue = 0 },
|
|
/* v6 doesn't have the cache ID registers but Linux reads them anyway */
|
|
{ .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
|
|
.access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
|
|
.resetvalue = 0 },
|
|
/* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
|
|
* implementing it as RAZ means the "debug architecture version" bits
|
|
* will read as a reserved value, which should cause Linux to not try
|
|
* to use the debug hardware.
|
|
*/
|
|
{ .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
|
|
.access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
|
|
/* MMU TLB control. Note that the wildcarding means we cover not just
|
|
* the unified TLB ops but also the dside/iside/inner-shareable variants.
|
|
*/
|
|
{ .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
|
|
.opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
|
|
.type = ARM_CP_NO_RAW },
|
|
{ .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
|
|
.opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
|
|
.type = ARM_CP_NO_RAW },
|
|
{ .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
|
|
.opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
|
|
.type = ARM_CP_NO_RAW },
|
|
{ .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
|
|
.opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
|
|
.type = ARM_CP_NO_RAW },
|
|
{ .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
|
|
.opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
|
|
{ .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
|
|
.opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
|
|
REGINFO_SENTINEL
|
|
};
|
|
|
|
static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
uint32_t mask = 0;
|
|
|
|
/* In ARMv8 most bits of CPACR_EL1 are RES0. */
|
|
if (!arm_feature(env, ARM_FEATURE_V8)) {
|
|
/* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
|
|
* ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
|
|
* TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
|
|
*/
|
|
if (arm_feature(env, ARM_FEATURE_VFP)) {
|
|
/* VFP coprocessor: cp10 & cp11 [23:20] */
|
|
mask |= (1 << 31) | (1 << 30) | (0xf << 20);
|
|
|
|
if (!arm_feature(env, ARM_FEATURE_NEON)) {
|
|
/* ASEDIS [31] bit is RAO/WI */
|
|
value |= (1 << 31);
|
|
}
|
|
|
|
/* VFPv3 and upwards with NEON implement 32 double precision
|
|
* registers (D0-D31).
|
|
*/
|
|
if (!arm_feature(env, ARM_FEATURE_NEON) ||
|
|
!arm_feature(env, ARM_FEATURE_VFP3)) {
|
|
/* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
|
|
value |= (1 << 30);
|
|
}
|
|
}
|
|
value &= mask;
|
|
}
|
|
env->cp15.cpacr_el1 = value;
|
|
}
|
|
|
|
static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
if (arm_feature(env, ARM_FEATURE_V8)) {
|
|
/* Check if CPACR accesses are to be trapped to EL2 */
|
|
if (arm_current_el(env) == 1 &&
|
|
(env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
/* Check if CPACR accesses are to be trapped to EL3 */
|
|
} else if (arm_current_el(env) < 3 &&
|
|
(env->cp15.cptr_el[3] & CPTR_TCPAC)) {
|
|
return CP_ACCESS_TRAP_EL3;
|
|
}
|
|
}
|
|
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
/* Check if CPTR accesses are set to trap to EL3 */
|
|
if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
|
|
return CP_ACCESS_TRAP_EL3;
|
|
}
|
|
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static const ARMCPRegInfo v6_cp_reginfo[] = {
|
|
/* prefetch by MVA in v6, NOP in v7 */
|
|
{ .name = "MVA_prefetch",
|
|
.cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
|
|
.access = PL1_W, .type = ARM_CP_NOP },
|
|
{ .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
|
|
.access = PL0_W, .type = ARM_CP_NOP },
|
|
{ .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
|
|
.access = PL0_W, .type = ARM_CP_NOP },
|
|
{ .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
|
|
.access = PL0_W, .type = ARM_CP_NOP },
|
|
{ .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
|
|
.access = PL1_RW,
|
|
.bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
|
|
offsetof(CPUARMState, cp15.ifar_ns) },
|
|
.resetvalue = 0, },
|
|
/* Watchpoint Fault Address Register : should actually only be present
|
|
* for 1136, 1176, 11MPCore.
|
|
*/
|
|
{ .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
|
|
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
|
|
{ .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
|
|
.crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
|
|
.access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
|
|
.resetvalue = 0, .writefn = cpacr_write },
|
|
REGINFO_SENTINEL
|
|
};
|
|
|
|
static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
/* Performance monitor registers user accessibility is controlled
|
|
* by PMUSERENR.
|
|
*/
|
|
if (arm_current_el(env) == 0 && !env->cp15.c9_pmuserenr) {
|
|
return CP_ACCESS_TRAP;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
|
|
static inline bool arm_ccnt_enabled(CPUARMState *env)
|
|
{
|
|
/* This does not support checking PMCCFILTR_EL0 register */
|
|
|
|
if (!(env->cp15.c9_pmcr & PMCRE)) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void pmccntr_sync(CPUARMState *env)
|
|
{
|
|
uint64_t temp_ticks;
|
|
|
|
temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
|
|
ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
|
|
|
|
if (env->cp15.c9_pmcr & PMCRD) {
|
|
/* Increment once every 64 processor clock cycles */
|
|
temp_ticks /= 64;
|
|
}
|
|
|
|
if (arm_ccnt_enabled(env)) {
|
|
env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
|
|
}
|
|
}
|
|
|
|
static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
pmccntr_sync(env);
|
|
|
|
if (value & PMCRC) {
|
|
/* The counter has been reset */
|
|
env->cp15.c15_ccnt = 0;
|
|
}
|
|
|
|
/* only the DP, X, D and E bits are writable */
|
|
env->cp15.c9_pmcr &= ~0x39;
|
|
env->cp15.c9_pmcr |= (value & 0x39);
|
|
|
|
pmccntr_sync(env);
|
|
}
|
|
|
|
static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
uint64_t total_ticks;
|
|
|
|
if (!arm_ccnt_enabled(env)) {
|
|
/* Counter is disabled, do not change value */
|
|
return env->cp15.c15_ccnt;
|
|
}
|
|
|
|
total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
|
|
ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
|
|
|
|
if (env->cp15.c9_pmcr & PMCRD) {
|
|
/* Increment once every 64 processor clock cycles */
|
|
total_ticks /= 64;
|
|
}
|
|
return total_ticks - env->cp15.c15_ccnt;
|
|
}
|
|
|
|
static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
uint64_t total_ticks;
|
|
|
|
if (!arm_ccnt_enabled(env)) {
|
|
/* Counter is disabled, set the absolute value */
|
|
env->cp15.c15_ccnt = value;
|
|
return;
|
|
}
|
|
|
|
total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
|
|
ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
|
|
|
|
if (env->cp15.c9_pmcr & PMCRD) {
|
|
/* Increment once every 64 processor clock cycles */
|
|
total_ticks /= 64;
|
|
}
|
|
env->cp15.c15_ccnt = total_ticks - value;
|
|
}
|
|
|
|
static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
uint64_t cur_val = pmccntr_read(env, NULL);
|
|
|
|
pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
|
|
}
|
|
|
|
#else /* CONFIG_USER_ONLY */
|
|
|
|
void pmccntr_sync(CPUARMState *env)
|
|
{
|
|
}
|
|
|
|
#endif
|
|
|
|
static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
pmccntr_sync(env);
|
|
env->cp15.pmccfiltr_el0 = value & 0x7E000000;
|
|
pmccntr_sync(env);
|
|
}
|
|
|
|
static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
value &= (1 << 31);
|
|
env->cp15.c9_pmcnten |= value;
|
|
}
|
|
|
|
static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
value &= (1 << 31);
|
|
env->cp15.c9_pmcnten &= ~value;
|
|
}
|
|
|
|
static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
env->cp15.c9_pmovsr &= ~value;
|
|
}
|
|
|
|
static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
env->cp15.c9_pmxevtyper = value & 0xff;
|
|
}
|
|
|
|
static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
env->cp15.c9_pmuserenr = value & 1;
|
|
}
|
|
|
|
static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/* We have no event counters so only the C bit can be changed */
|
|
value &= (1 << 31);
|
|
env->cp15.c9_pminten |= value;
|
|
}
|
|
|
|
static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
value &= (1 << 31);
|
|
env->cp15.c9_pminten &= ~value;
|
|
}
|
|
|
|
static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/* Note that even though the AArch64 view of this register has bits
|
|
* [10:0] all RES0 we can only mask the bottom 5, to comply with the
|
|
* architectural requirements for bits which are RES0 only in some
|
|
* contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
|
|
* requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
|
|
*/
|
|
raw_write(env, ri, value & ~0x1FULL);
|
|
}
|
|
|
|
static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
|
|
{
|
|
/* We only mask off bits that are RES0 both for AArch64 and AArch32.
|
|
* For bits that vary between AArch32/64, code needs to check the
|
|
* current execution mode before directly using the feature bit.
|
|
*/
|
|
uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
|
|
|
|
if (!arm_feature(env, ARM_FEATURE_EL2)) {
|
|
valid_mask &= ~SCR_HCE;
|
|
|
|
/* On ARMv7, SMD (or SCD as it is called in v7) is only
|
|
* supported if EL2 exists. The bit is UNK/SBZP when
|
|
* EL2 is unavailable. In QEMU ARMv7, we force it to always zero
|
|
* when EL2 is unavailable.
|
|
* On ARMv8, this bit is always available.
|
|
*/
|
|
if (arm_feature(env, ARM_FEATURE_V7) &&
|
|
!arm_feature(env, ARM_FEATURE_V8)) {
|
|
valid_mask &= ~SCR_SMD;
|
|
}
|
|
}
|
|
|
|
/* Clear all-context RES0 bits. */
|
|
value &= valid_mask;
|
|
raw_write(env, ri, value);
|
|
}
|
|
|
|
static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
ARMCPU *cpu = arm_env_get_cpu(env);
|
|
|
|
/* Acquire the CSSELR index from the bank corresponding to the CCSIDR
|
|
* bank
|
|
*/
|
|
uint32_t index = A32_BANKED_REG_GET(env, csselr,
|
|
ri->secure & ARM_CP_SECSTATE_S);
|
|
|
|
return cpu->ccsidr[index];
|
|
}
|
|
|
|
static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
raw_write(env, ri, value & 0xf);
|
|
}
|
|
|
|
static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
CPUState *cs = ENV_GET_CPU(env);
|
|
uint64_t ret = 0;
|
|
|
|
if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
|
|
ret |= CPSR_I;
|
|
}
|
|
if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
|
|
ret |= CPSR_F;
|
|
}
|
|
/* External aborts are not possible in QEMU so A bit is always clear */
|
|
return ret;
|
|
}
|
|
|
|
static const ARMCPRegInfo v7_cp_reginfo[] = {
|
|
/* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
|
|
{ .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
|
|
.access = PL1_W, .type = ARM_CP_NOP },
|
|
/* Performance monitors are implementation defined in v7,
|
|
* but with an ARM recommended set of registers, which we
|
|
* follow (although we don't actually implement any counters)
|
|
*
|
|
* Performance registers fall into three categories:
|
|
* (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
|
|
* (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
|
|
* (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
|
|
* For the cases controlled by PMUSERENR we must set .access to PL0_RW
|
|
* or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
|
|
*/
|
|
{ .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
|
|
.access = PL0_RW, .type = ARM_CP_ALIAS,
|
|
.fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
|
|
.writefn = pmcntenset_write,
|
|
.accessfn = pmreg_access,
|
|
.raw_writefn = raw_write },
|
|
{ .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
|
|
.access = PL0_RW, .accessfn = pmreg_access,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
|
|
.writefn = pmcntenset_write, .raw_writefn = raw_write },
|
|
{ .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
|
|
.access = PL0_RW,
|
|
.fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
|
|
.accessfn = pmreg_access,
|
|
.writefn = pmcntenclr_write,
|
|
.type = ARM_CP_ALIAS },
|
|
{ .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
|
|
.access = PL0_RW, .accessfn = pmreg_access,
|
|
.type = ARM_CP_ALIAS,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
|
|
.writefn = pmcntenclr_write },
|
|
{ .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
|
|
.access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
|
|
.accessfn = pmreg_access,
|
|
.writefn = pmovsr_write,
|
|
.raw_writefn = raw_write },
|
|
/* Unimplemented so WI. */
|
|
{ .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
|
|
.access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP },
|
|
/* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
|
|
* We choose to RAZ/WI.
|
|
*/
|
|
{ .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
|
|
.access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
|
|
.accessfn = pmreg_access },
|
|
#ifndef CONFIG_USER_ONLY
|
|
{ .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
|
|
.access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
|
|
.readfn = pmccntr_read, .writefn = pmccntr_write32,
|
|
.accessfn = pmreg_access },
|
|
{ .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
|
|
.access = PL0_RW, .accessfn = pmreg_access,
|
|
.type = ARM_CP_IO,
|
|
.readfn = pmccntr_read, .writefn = pmccntr_write, },
|
|
#endif
|
|
{ .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
|
|
.writefn = pmccfiltr_write,
|
|
.access = PL0_RW, .accessfn = pmreg_access,
|
|
.type = ARM_CP_IO,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
|
|
.resetvalue = 0, },
|
|
{ .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
|
|
.access = PL0_RW,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
|
|
.accessfn = pmreg_access, .writefn = pmxevtyper_write,
|
|
.raw_writefn = raw_write },
|
|
/* Unimplemented, RAZ/WI. */
|
|
{ .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
|
|
.access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
|
|
.accessfn = pmreg_access },
|
|
{ .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
|
|
.access = PL0_R | PL1_RW,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
|
|
.resetvalue = 0,
|
|
.writefn = pmuserenr_write, .raw_writefn = raw_write },
|
|
{ .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
|
|
.access = PL1_RW,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
|
|
.resetvalue = 0,
|
|
.writefn = pmintenset_write, .raw_writefn = raw_write },
|
|
{ .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
|
|
.access = PL1_RW, .type = ARM_CP_ALIAS,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
|
|
.writefn = pmintenclr_write, },
|
|
{ .name = "VBAR", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
|
|
.access = PL1_RW, .writefn = vbar_write,
|
|
.bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
|
|
offsetof(CPUARMState, cp15.vbar_ns) },
|
|
.resetvalue = 0 },
|
|
{ .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
|
|
.access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
|
|
{ .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
|
|
.access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
|
|
.bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
|
|
offsetof(CPUARMState, cp15.csselr_ns) } },
|
|
/* Auxiliary ID register: this actually has an IMPDEF value but for now
|
|
* just RAZ for all cores:
|
|
*/
|
|
{ .name = "AIDR", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
|
|
.access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
|
|
/* Auxiliary fault status registers: these also are IMPDEF, and we
|
|
* choose to RAZ/WI for all cores.
|
|
*/
|
|
{ .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
|
|
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
|
|
{ .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
|
|
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
|
|
/* MAIR can just read-as-written because we don't implement caches
|
|
* and so don't need to care about memory attributes.
|
|
*/
|
|
{ .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
|
|
.access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
|
|
.resetvalue = 0 },
|
|
{ .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
|
|
.access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
|
|
.resetvalue = 0 },
|
|
/* For non-long-descriptor page tables these are PRRR and NMRR;
|
|
* regardless they still act as reads-as-written for QEMU.
|
|
*/
|
|
/* MAIR0/1 are defined separately from their 64-bit counterpart which
|
|
* allows them to assign the correct fieldoffset based on the endianness
|
|
* handled in the field definitions.
|
|
*/
|
|
{ .name = "MAIR0", .state = ARM_CP_STATE_AA32,
|
|
.cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
|
|
.bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
|
|
offsetof(CPUARMState, cp15.mair0_ns) },
|
|
.resetfn = arm_cp_reset_ignore },
|
|
{ .name = "MAIR1", .state = ARM_CP_STATE_AA32,
|
|
.cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
|
|
.bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
|
|
offsetof(CPUARMState, cp15.mair1_ns) },
|
|
.resetfn = arm_cp_reset_ignore },
|
|
{ .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
|
|
/* 32 bit ITLB invalidates */
|
|
{ .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
|
|
{ .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
|
|
{ .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
|
|
/* 32 bit DTLB invalidates */
|
|
{ .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
|
|
{ .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
|
|
{ .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
|
|
/* 32 bit TLB invalidates */
|
|
{ .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
|
|
{ .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
|
|
{ .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
|
|
{ .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
|
|
REGINFO_SENTINEL
|
|
};
|
|
|
|
static const ARMCPRegInfo v7mp_cp_reginfo[] = {
|
|
/* 32 bit TLB invalidates, Inner Shareable */
|
|
{ .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
|
|
{ .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
|
|
{ .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_W,
|
|
.writefn = tlbiasid_is_write },
|
|
{ .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_W,
|
|
.writefn = tlbimvaa_is_write },
|
|
REGINFO_SENTINEL
|
|
};
|
|
|
|
static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
value &= 1;
|
|
env->teecr = value;
|
|
}
|
|
|
|
static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
if (arm_current_el(env) == 0 && (env->teecr & 1)) {
|
|
return CP_ACCESS_TRAP;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static const ARMCPRegInfo t2ee_cp_reginfo[] = {
|
|
{ .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
|
|
.access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
|
|
.resetvalue = 0,
|
|
.writefn = teecr_write },
|
|
{ .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
|
|
.access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
|
|
.accessfn = teehbr_access, .resetvalue = 0 },
|
|
REGINFO_SENTINEL
|
|
};
|
|
|
|
static const ARMCPRegInfo v6k_cp_reginfo[] = {
|
|
{ .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
|
|
.access = PL0_RW,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
|
|
{ .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
|
|
.access = PL0_RW,
|
|
.bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
|
|
offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
|
|
.resetfn = arm_cp_reset_ignore },
|
|
{ .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
|
|
.access = PL0_R|PL1_W,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
|
|
.resetvalue = 0},
|
|
{ .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
|
|
.access = PL0_R|PL1_W,
|
|
.bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
|
|
offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
|
|
.resetfn = arm_cp_reset_ignore },
|
|
{ .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
|
|
.access = PL1_RW,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
|
|
{ .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
|
|
.access = PL1_RW,
|
|
.bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
|
|
offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
|
|
.resetvalue = 0 },
|
|
REGINFO_SENTINEL
|
|
};
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
|
|
static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
/* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
|
|
if (arm_current_el(env) == 0 && !extract32(env->cp15.c14_cntkctl, 0, 2)) {
|
|
return CP_ACCESS_TRAP;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx)
|
|
{
|
|
unsigned int cur_el = arm_current_el(env);
|
|
bool secure = arm_is_secure(env);
|
|
|
|
/* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
|
|
if (cur_el == 0 &&
|
|
!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
|
|
return CP_ACCESS_TRAP;
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_EL2) &&
|
|
timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
|
|
!extract32(env->cp15.cnthctl_el2, 0, 1)) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx)
|
|
{
|
|
unsigned int cur_el = arm_current_el(env);
|
|
bool secure = arm_is_secure(env);
|
|
|
|
/* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
|
|
* EL0[PV]TEN is zero.
|
|
*/
|
|
if (cur_el == 0 &&
|
|
!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
|
|
return CP_ACCESS_TRAP;
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_EL2) &&
|
|
timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
|
|
!extract32(env->cp15.cnthctl_el2, 1, 1)) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static CPAccessResult gt_pct_access(CPUARMState *env,
|
|
const ARMCPRegInfo *ri)
|
|
{
|
|
return gt_counter_access(env, GTIMER_PHYS);
|
|
}
|
|
|
|
static CPAccessResult gt_vct_access(CPUARMState *env,
|
|
const ARMCPRegInfo *ri)
|
|
{
|
|
return gt_counter_access(env, GTIMER_VIRT);
|
|
}
|
|
|
|
static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return gt_timer_access(env, GTIMER_PHYS);
|
|
}
|
|
|
|
static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return gt_timer_access(env, GTIMER_VIRT);
|
|
}
|
|
|
|
static CPAccessResult gt_stimer_access(CPUARMState *env,
|
|
const ARMCPRegInfo *ri)
|
|
{
|
|
/* The AArch64 register view of the secure physical timer is
|
|
* always accessible from EL3, and configurably accessible from
|
|
* Secure EL1.
|
|
*/
|
|
switch (arm_current_el(env)) {
|
|
case 1:
|
|
if (!arm_is_secure(env)) {
|
|
return CP_ACCESS_TRAP;
|
|
}
|
|
if (!(env->cp15.scr_el3 & SCR_ST)) {
|
|
return CP_ACCESS_TRAP_EL3;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
case 0:
|
|
case 2:
|
|
return CP_ACCESS_TRAP;
|
|
case 3:
|
|
return CP_ACCESS_OK;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
static uint64_t gt_get_countervalue(CPUARMState *env)
|
|
{
|
|
return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
|
|
}
|
|
|
|
static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
|
|
{
|
|
ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
|
|
|
|
if (gt->ctl & 1) {
|
|
/* Timer enabled: calculate and set current ISTATUS, irq, and
|
|
* reset timer to when ISTATUS next has to change
|
|
*/
|
|
uint64_t offset = timeridx == GTIMER_VIRT ?
|
|
cpu->env.cp15.cntvoff_el2 : 0;
|
|
uint64_t count = gt_get_countervalue(&cpu->env);
|
|
/* Note that this must be unsigned 64 bit arithmetic: */
|
|
int istatus = count - offset >= gt->cval;
|
|
uint64_t nexttick;
|
|
|
|
gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
|
|
qemu_set_irq(cpu->gt_timer_outputs[timeridx],
|
|
(istatus && !(gt->ctl & 2)));
|
|
if (istatus) {
|
|
/* Next transition is when count rolls back over to zero */
|
|
nexttick = UINT64_MAX;
|
|
} else {
|
|
/* Next transition is when we hit cval */
|
|
nexttick = gt->cval + offset;
|
|
}
|
|
/* Note that the desired next expiry time might be beyond the
|
|
* signed-64-bit range of a QEMUTimer -- in this case we just
|
|
* set the timer for as far in the future as possible. When the
|
|
* timer expires we will reset the timer for any remaining period.
|
|
*/
|
|
if (nexttick > INT64_MAX / GTIMER_SCALE) {
|
|
nexttick = INT64_MAX / GTIMER_SCALE;
|
|
}
|
|
timer_mod(cpu->gt_timer[timeridx], nexttick);
|
|
} else {
|
|
/* Timer disabled: ISTATUS and timer output always clear */
|
|
gt->ctl &= ~4;
|
|
qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
|
|
timer_del(cpu->gt_timer[timeridx]);
|
|
}
|
|
}
|
|
|
|
static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
int timeridx)
|
|
{
|
|
ARMCPU *cpu = arm_env_get_cpu(env);
|
|
|
|
timer_del(cpu->gt_timer[timeridx]);
|
|
}
|
|
|
|
static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return gt_get_countervalue(env);
|
|
}
|
|
|
|
static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
|
|
}
|
|
|
|
static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
int timeridx,
|
|
uint64_t value)
|
|
{
|
|
env->cp15.c14_timer[timeridx].cval = value;
|
|
gt_recalc_timer(arm_env_get_cpu(env), timeridx);
|
|
}
|
|
|
|
static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
int timeridx)
|
|
{
|
|
uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
|
|
|
|
return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
|
|
(gt_get_countervalue(env) - offset));
|
|
}
|
|
|
|
static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
int timeridx,
|
|
uint64_t value)
|
|
{
|
|
uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
|
|
|
|
env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
|
|
sextract64(value, 0, 32);
|
|
gt_recalc_timer(arm_env_get_cpu(env), timeridx);
|
|
}
|
|
|
|
static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
int timeridx,
|
|
uint64_t value)
|
|
{
|
|
ARMCPU *cpu = arm_env_get_cpu(env);
|
|
uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
|
|
|
|
env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
|
|
if ((oldval ^ value) & 1) {
|
|
/* Enable toggled */
|
|
gt_recalc_timer(cpu, timeridx);
|
|
} else if ((oldval ^ value) & 2) {
|
|
/* IMASK toggled: don't need to recalculate,
|
|
* just set the interrupt line based on ISTATUS
|
|
*/
|
|
qemu_set_irq(cpu->gt_timer_outputs[timeridx],
|
|
(oldval & 4) && !(value & 2));
|
|
}
|
|
}
|
|
|
|
static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
gt_timer_reset(env, ri, GTIMER_PHYS);
|
|
}
|
|
|
|
static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
gt_cval_write(env, ri, GTIMER_PHYS, value);
|
|
}
|
|
|
|
static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return gt_tval_read(env, ri, GTIMER_PHYS);
|
|
}
|
|
|
|
static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
gt_tval_write(env, ri, GTIMER_PHYS, value);
|
|
}
|
|
|
|
static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
gt_ctl_write(env, ri, GTIMER_PHYS, value);
|
|
}
|
|
|
|
static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
gt_timer_reset(env, ri, GTIMER_VIRT);
|
|
}
|
|
|
|
static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
gt_cval_write(env, ri, GTIMER_VIRT, value);
|
|
}
|
|
|
|
static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return gt_tval_read(env, ri, GTIMER_VIRT);
|
|
}
|
|
|
|
static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
gt_tval_write(env, ri, GTIMER_VIRT, value);
|
|
}
|
|
|
|
static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
gt_ctl_write(env, ri, GTIMER_VIRT, value);
|
|
}
|
|
|
|
static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
ARMCPU *cpu = arm_env_get_cpu(env);
|
|
|
|
raw_write(env, ri, value);
|
|
gt_recalc_timer(cpu, GTIMER_VIRT);
|
|
}
|
|
|
|
static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
gt_timer_reset(env, ri, GTIMER_HYP);
|
|
}
|
|
|
|
static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
gt_cval_write(env, ri, GTIMER_HYP, value);
|
|
}
|
|
|
|
static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return gt_tval_read(env, ri, GTIMER_HYP);
|
|
}
|
|
|
|
static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
gt_tval_write(env, ri, GTIMER_HYP, value);
|
|
}
|
|
|
|
static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
gt_ctl_write(env, ri, GTIMER_HYP, value);
|
|
}
|
|
|
|
static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
gt_timer_reset(env, ri, GTIMER_SEC);
|
|
}
|
|
|
|
static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
gt_cval_write(env, ri, GTIMER_SEC, value);
|
|
}
|
|
|
|
static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return gt_tval_read(env, ri, GTIMER_SEC);
|
|
}
|
|
|
|
static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
gt_tval_write(env, ri, GTIMER_SEC, value);
|
|
}
|
|
|
|
static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
gt_ctl_write(env, ri, GTIMER_SEC, value);
|
|
}
|
|
|
|
void arm_gt_ptimer_cb(void *opaque)
|
|
{
|
|
ARMCPU *cpu = opaque;
|
|
|
|
gt_recalc_timer(cpu, GTIMER_PHYS);
|
|
}
|
|
|
|
void arm_gt_vtimer_cb(void *opaque)
|
|
{
|
|
ARMCPU *cpu = opaque;
|
|
|
|
gt_recalc_timer(cpu, GTIMER_VIRT);
|
|
}
|
|
|
|
void arm_gt_htimer_cb(void *opaque)
|
|
{
|
|
ARMCPU *cpu = opaque;
|
|
|
|
gt_recalc_timer(cpu, GTIMER_HYP);
|
|
}
|
|
|
|
void arm_gt_stimer_cb(void *opaque)
|
|
{
|
|
ARMCPU *cpu = opaque;
|
|
|
|
gt_recalc_timer(cpu, GTIMER_SEC);
|
|
}
|
|
|
|
static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
|
|
/* Note that CNTFRQ is purely reads-as-written for the benefit
|
|
* of software; writing it doesn't actually change the timer frequency.
|
|
* Our reset value matches the fixed frequency we implement the timer at.
|
|
*/
|
|
{ .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
|
|
.type = ARM_CP_ALIAS,
|
|
.access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
|
|
.fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
|
|
},
|
|
{ .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
|
|
.access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
|
|
.resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
|
|
},
|
|
/* overall control: mostly access permissions */
|
|
{ .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
|
|
.access = PL1_RW,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
|
|
.resetvalue = 0,
|
|
},
|
|
/* per-timer control */
|
|
{ .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
|
|
.secure = ARM_CP_SECSTATE_NS,
|
|
.type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
|
|
.accessfn = gt_ptimer_access,
|
|
.fieldoffset = offsetoflow32(CPUARMState,
|
|
cp15.c14_timer[GTIMER_PHYS].ctl),
|
|
.writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
|
|
},
|
|
{ .name = "CNTP_CTL(S)",
|
|
.cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
|
|
.secure = ARM_CP_SECSTATE_S,
|
|
.type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
|
|
.accessfn = gt_ptimer_access,
|
|
.fieldoffset = offsetoflow32(CPUARMState,
|
|
cp15.c14_timer[GTIMER_SEC].ctl),
|
|
.writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
|
|
},
|
|
{ .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
|
|
.type = ARM_CP_IO, .access = PL1_RW | PL0_R,
|
|
.accessfn = gt_ptimer_access,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
|
|
.resetvalue = 0,
|
|
.writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
|
|
},
|
|
{ .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
|
|
.type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
|
|
.accessfn = gt_vtimer_access,
|
|
.fieldoffset = offsetoflow32(CPUARMState,
|
|
cp15.c14_timer[GTIMER_VIRT].ctl),
|
|
.writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
|
|
},
|
|
{ .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
|
|
.type = ARM_CP_IO, .access = PL1_RW | PL0_R,
|
|
.accessfn = gt_vtimer_access,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
|
|
.resetvalue = 0,
|
|
.writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
|
|
},
|
|
/* TimerValue views: a 32 bit downcounting view of the underlying state */
|
|
{ .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
|
|
.secure = ARM_CP_SECSTATE_NS,
|
|
.type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
|
|
.accessfn = gt_ptimer_access,
|
|
.readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
|
|
},
|
|
{ .name = "CNTP_TVAL(S)",
|
|
.cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
|
|
.secure = ARM_CP_SECSTATE_S,
|
|
.type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
|
|
.accessfn = gt_ptimer_access,
|
|
.readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
|
|
},
|
|
{ .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
|
|
.type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
|
|
.accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
|
|
.readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
|
|
},
|
|
{ .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
|
|
.type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
|
|
.accessfn = gt_vtimer_access,
|
|
.readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
|
|
},
|
|
{ .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
|
|
.type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
|
|
.accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
|
|
.readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
|
|
},
|
|
/* The counter itself */
|
|
{ .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
|
|
.access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
|
|
.accessfn = gt_pct_access,
|
|
.readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
|
|
},
|
|
{ .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
|
|
.access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
|
|
.accessfn = gt_pct_access, .readfn = gt_cnt_read,
|
|
},
|
|
{ .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
|
|
.access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
|
|
.accessfn = gt_vct_access,
|
|
.readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
|
|
},
|
|
{ .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
|
|
.access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
|
|
.accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
|
|
},
|
|
/* Comparison value, indicating when the timer goes off */
|
|
{ .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
|
|
.secure = ARM_CP_SECSTATE_NS,
|
|
.access = PL1_RW | PL0_R,
|
|
.type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
|
|
.accessfn = gt_ptimer_access,
|
|
.writefn = gt_phys_cval_write, .raw_writefn = raw_write,
|
|
},
|
|
{ .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2,
|
|
.secure = ARM_CP_SECSTATE_S,
|
|
.access = PL1_RW | PL0_R,
|
|
.type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
|
|
.accessfn = gt_ptimer_access,
|
|
.writefn = gt_sec_cval_write, .raw_writefn = raw_write,
|
|
},
|
|
{ .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
|
|
.access = PL1_RW | PL0_R,
|
|
.type = ARM_CP_IO,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
|
|
.resetvalue = 0, .accessfn = gt_ptimer_access,
|
|
.writefn = gt_phys_cval_write, .raw_writefn = raw_write,
|
|
},
|
|
{ .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
|
|
.access = PL1_RW | PL0_R,
|
|
.type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
|
|
.accessfn = gt_vtimer_access,
|
|
.writefn = gt_virt_cval_write, .raw_writefn = raw_write,
|
|
},
|
|
{ .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
|
|
.access = PL1_RW | PL0_R,
|
|
.type = ARM_CP_IO,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
|
|
.resetvalue = 0, .accessfn = gt_vtimer_access,
|
|
.writefn = gt_virt_cval_write, .raw_writefn = raw_write,
|
|
},
|
|
/* Secure timer -- this is actually restricted to only EL3
|
|
* and configurably Secure-EL1 via the accessfn.
|
|
*/
|
|
{ .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
|
|
.type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
|
|
.accessfn = gt_stimer_access,
|
|
.readfn = gt_sec_tval_read,
|
|
.writefn = gt_sec_tval_write,
|
|
.resetfn = gt_sec_timer_reset,
|
|
},
|
|
{ .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
|
|
.type = ARM_CP_IO, .access = PL1_RW,
|
|
.accessfn = gt_stimer_access,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
|
|
.resetvalue = 0,
|
|
.writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
|
|
},
|
|
{ .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
|
|
.type = ARM_CP_IO, .access = PL1_RW,
|
|
.accessfn = gt_stimer_access,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
|
|
.writefn = gt_sec_cval_write, .raw_writefn = raw_write,
|
|
},
|
|
REGINFO_SENTINEL
|
|
};
|
|
|
|
#else
|
|
/* In user-mode none of the generic timer registers are accessible,
|
|
* and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
|
|
* so instead just don't register any of them.
|
|
*/
|
|
static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
|
|
REGINFO_SENTINEL
|
|
};
|
|
|
|
#endif
|
|
|
|
static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
|
|
{
|
|
if (arm_feature(env, ARM_FEATURE_LPAE)) {
|
|
raw_write(env, ri, value);
|
|
} else if (arm_feature(env, ARM_FEATURE_V7)) {
|
|
raw_write(env, ri, value & 0xfffff6ff);
|
|
} else {
|
|
raw_write(env, ri, value & 0xfffff1ff);
|
|
}
|
|
}
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
/* get_phys_addr() isn't present for user-mode-only targets */
|
|
|
|
static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
if (ri->opc2 & 4) {
|
|
/* The ATS12NSO* operations must trap to EL3 if executed in
|
|
* Secure EL1 (which can only happen if EL3 is AArch64).
|
|
* They are simply UNDEF if executed from NS EL1.
|
|
* They function normally from EL2 or EL3.
|
|
*/
|
|
if (arm_current_el(env) == 1) {
|
|
if (arm_is_secure_below_el3(env)) {
|
|
return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
|
|
}
|
|
return CP_ACCESS_TRAP_UNCATEGORIZED;
|
|
}
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
|
|
int access_type, ARMMMUIdx mmu_idx)
|
|
{
|
|
hwaddr phys_addr;
|
|
target_ulong page_size;
|
|
int prot;
|
|
uint32_t fsr;
|
|
bool ret;
|
|
uint64_t par64;
|
|
MemTxAttrs attrs = {};
|
|
|
|
ret = get_phys_addr(env, value, access_type, mmu_idx,
|
|
&phys_addr, &attrs, &prot, &page_size, &fsr);
|
|
if (extended_addresses_enabled(env)) {
|
|
/* fsr is a DFSR/IFSR value for the long descriptor
|
|
* translation table format, but with WnR always clear.
|
|
* Convert it to a 64-bit PAR.
|
|
*/
|
|
par64 = (1 << 11); /* LPAE bit always set */
|
|
if (!ret) {
|
|
par64 |= phys_addr & ~0xfffULL;
|
|
if (!attrs.secure) {
|
|
par64 |= (1 << 9); /* NS */
|
|
}
|
|
/* We don't set the ATTR or SH fields in the PAR. */
|
|
} else {
|
|
par64 |= 1; /* F */
|
|
par64 |= (fsr & 0x3f) << 1; /* FS */
|
|
/* Note that S2WLK and FSTAGE are always zero, because we don't
|
|
* implement virtualization and therefore there can't be a stage 2
|
|
* fault.
|
|
*/
|
|
}
|
|
} else {
|
|
/* fsr is a DFSR/IFSR value for the short descriptor
|
|
* translation table format (with WnR always clear).
|
|
* Convert it to a 32-bit PAR.
|
|
*/
|
|
if (!ret) {
|
|
/* We do not set any attribute bits in the PAR */
|
|
if (page_size == (1 << 24)
|
|
&& arm_feature(env, ARM_FEATURE_V7)) {
|
|
par64 = (phys_addr & 0xff000000) | (1 << 1);
|
|
} else {
|
|
par64 = phys_addr & 0xfffff000;
|
|
}
|
|
if (!attrs.secure) {
|
|
par64 |= (1 << 9); /* NS */
|
|
}
|
|
} else {
|
|
par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
|
|
((fsr & 0xf) << 1) | 1;
|
|
}
|
|
}
|
|
return par64;
|
|
}
|
|
|
|
static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
|
|
{
|
|
int access_type = ri->opc2 & 1;
|
|
uint64_t par64;
|
|
ARMMMUIdx mmu_idx;
|
|
int el = arm_current_el(env);
|
|
bool secure = arm_is_secure_below_el3(env);
|
|
|
|
switch (ri->opc2 & 6) {
|
|
case 0:
|
|
/* stage 1 current state PL1: ATS1CPR, ATS1CPW */
|
|
switch (el) {
|
|
case 3:
|
|
mmu_idx = ARMMMUIdx_S1E3;
|
|
break;
|
|
case 2:
|
|
mmu_idx = ARMMMUIdx_S1NSE1;
|
|
break;
|
|
case 1:
|
|
mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
break;
|
|
case 2:
|
|
/* stage 1 current state PL0: ATS1CUR, ATS1CUW */
|
|
switch (el) {
|
|
case 3:
|
|
mmu_idx = ARMMMUIdx_S1SE0;
|
|
break;
|
|
case 2:
|
|
mmu_idx = ARMMMUIdx_S1NSE0;
|
|
break;
|
|
case 1:
|
|
mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
break;
|
|
case 4:
|
|
/* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
|
|
mmu_idx = ARMMMUIdx_S12NSE1;
|
|
break;
|
|
case 6:
|
|
/* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
|
|
mmu_idx = ARMMMUIdx_S12NSE0;
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
par64 = do_ats_write(env, value, access_type, mmu_idx);
|
|
|
|
A32_BANKED_CURRENT_REG_SET(env, par, par64);
|
|
}
|
|
|
|
static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
int access_type = ri->opc2 & 1;
|
|
uint64_t par64;
|
|
|
|
par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);
|
|
|
|
A32_BANKED_CURRENT_REG_SET(env, par, par64);
|
|
}
|
|
|
|
static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
|
|
return CP_ACCESS_TRAP;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
int access_type = ri->opc2 & 1;
|
|
ARMMMUIdx mmu_idx;
|
|
int secure = arm_is_secure_below_el3(env);
|
|
|
|
switch (ri->opc2 & 6) {
|
|
case 0:
|
|
switch (ri->opc1) {
|
|
case 0: /* AT S1E1R, AT S1E1W */
|
|
mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
|
|
break;
|
|
case 4: /* AT S1E2R, AT S1E2W */
|
|
mmu_idx = ARMMMUIdx_S1E2;
|
|
break;
|
|
case 6: /* AT S1E3R, AT S1E3W */
|
|
mmu_idx = ARMMMUIdx_S1E3;
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
break;
|
|
case 2: /* AT S1E0R, AT S1E0W */
|
|
mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
|
|
break;
|
|
case 4: /* AT S12E1R, AT S12E1W */
|
|
mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
|
|
break;
|
|
case 6: /* AT S12E0R, AT S12E0W */
|
|
mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
|
|
}
|
|
#endif
|
|
|
|
static const ARMCPRegInfo vapa_cp_reginfo[] = {
|
|
{ .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
|
|
.access = PL1_RW, .resetvalue = 0,
|
|
.bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
|
|
offsetoflow32(CPUARMState, cp15.par_ns) },
|
|
.writefn = par_write },
|
|
#ifndef CONFIG_USER_ONLY
|
|
/* This underdecoding is safe because the reginfo is NO_RAW. */
|
|
{ .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
|
|
.access = PL1_W, .accessfn = ats_access,
|
|
.writefn = ats_write, .type = ARM_CP_NO_RAW },
|
|
#endif
|
|
REGINFO_SENTINEL
|
|
};
|
|
|
|
/* Return basic MPU access permission bits. */
|
|
static uint32_t simple_mpu_ap_bits(uint32_t val)
|
|
{
|
|
uint32_t ret;
|
|
uint32_t mask;
|
|
int i;
|
|
ret = 0;
|
|
mask = 3;
|
|
for (i = 0; i < 16; i += 2) {
|
|
ret |= (val >> i) & mask;
|
|
mask <<= 2;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* Pad basic MPU access permission bits to extended format. */
|
|
static uint32_t extended_mpu_ap_bits(uint32_t val)
|
|
{
|
|
uint32_t ret;
|
|
uint32_t mask;
|
|
int i;
|
|
ret = 0;
|
|
mask = 3;
|
|
for (i = 0; i < 16; i += 2) {
|
|
ret |= (val & mask) << i;
|
|
mask <<= 2;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
|
|
}
|
|
|
|
static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
|
|
}
|
|
|
|
static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
|
|
}
|
|
|
|
static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
|
|
}
|
|
|
|
static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
|
|
|
|
if (!u32p) {
|
|
return 0;
|
|
}
|
|
|
|
u32p += env->cp15.c6_rgnr;
|
|
return *u32p;
|
|
}
|
|
|
|
static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
ARMCPU *cpu = arm_env_get_cpu(env);
|
|
uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
|
|
|
|
if (!u32p) {
|
|
return;
|
|
}
|
|
|
|
u32p += env->cp15.c6_rgnr;
|
|
tlb_flush(CPU(cpu), 1); /* Mappings may have changed - purge! */
|
|
*u32p = value;
|
|
}
|
|
|
|
static void pmsav7_reset(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
ARMCPU *cpu = arm_env_get_cpu(env);
|
|
uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
|
|
|
|
if (!u32p) {
|
|
return;
|
|
}
|
|
|
|
memset(u32p, 0, sizeof(*u32p) * cpu->pmsav7_dregion);
|
|
}
|
|
|
|
static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
ARMCPU *cpu = arm_env_get_cpu(env);
|
|
uint32_t nrgs = cpu->pmsav7_dregion;
|
|
|
|
if (value >= nrgs) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"PMSAv7 RGNR write >= # supported regions, %" PRIu32
|
|
" > %" PRIu32 "\n", (uint32_t)value, nrgs);
|
|
return;
|
|
}
|
|
|
|
raw_write(env, ri, value);
|
|
}
|
|
|
|
static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
|
|
{ .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
|
|
.access = PL1_RW, .type = ARM_CP_NO_RAW,
|
|
.fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
|
|
.readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
|
|
{ .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
|
|
.access = PL1_RW, .type = ARM_CP_NO_RAW,
|
|
.fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
|
|
.readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
|
|
{ .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
|
|
.access = PL1_RW, .type = ARM_CP_NO_RAW,
|
|
.fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
|
|
.readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
|
|
{ .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
|
|
.access = PL1_RW,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c6_rgnr),
|
|
.writefn = pmsav7_rgnr_write },
|
|
REGINFO_SENTINEL
|
|
};
|
|
|
|
static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
|
|
{ .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
|
|
.access = PL1_RW, .type = ARM_CP_ALIAS,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
|
|
.readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
|
|
{ .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
|
|
.access = PL1_RW, .type = ARM_CP_ALIAS,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
|
|
.readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
|
|
{ .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
|
|
.access = PL1_RW,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
|
|
.resetvalue = 0, },
|
|
{ .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
|
|
.access = PL1_RW,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
|
|
.resetvalue = 0, },
|
|
{ .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
|
|
.access = PL1_RW,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
|
|
{ .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
|
|
.access = PL1_RW,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
|
|
/* Protection region base and size registers */
|
|
{ .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
|
|
.opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
|
|
{ .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
|
|
.opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
|
|
{ .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
|
|
.opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
|
|
{ .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
|
|
.opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
|
|
{ .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
|
|
.opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
|
|
{ .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
|
|
.opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
|
|
{ .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
|
|
.opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
|
|
{ .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
|
|
.opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
|
|
REGINFO_SENTINEL
|
|
};
|
|
|
|
static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
TCR *tcr = raw_ptr(env, ri);
|
|
int maskshift = extract32(value, 0, 3);
|
|
|
|
if (!arm_feature(env, ARM_FEATURE_V8)) {
|
|
if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
|
|
/* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
|
|
* using Long-desciptor translation table format */
|
|
value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
|
|
} else if (arm_feature(env, ARM_FEATURE_EL3)) {
|
|
/* In an implementation that includes the Security Extensions
|
|
* TTBCR has additional fields PD0 [4] and PD1 [5] for
|
|
* Short-descriptor translation table format.
|
|
*/
|
|
value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
|
|
} else {
|
|
value &= TTBCR_N;
|
|
}
|
|
}
|
|
|
|
/* Update the masks corresponding to the TCR bank being written
|
|
* Note that we always calculate mask and base_mask, but
|
|
* they are only used for short-descriptor tables (ie if EAE is 0);
|
|
* for long-descriptor tables the TCR fields are used differently
|
|
* and the mask and base_mask values are meaningless.
|
|
*/
|
|
tcr->raw_tcr = value;
|
|
tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
|
|
tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
|
|
}
|
|
|
|
static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
ARMCPU *cpu = arm_env_get_cpu(env);
|
|
|
|
if (arm_feature(env, ARM_FEATURE_LPAE)) {
|
|
/* With LPAE the TTBCR could result in a change of ASID
|
|
* via the TTBCR.A1 bit, so do a TLB flush.
|
|
*/
|
|
tlb_flush(CPU(cpu), 1);
|
|
}
|
|
vmsa_ttbcr_raw_write(env, ri, value);
|
|
}
|
|
|
|
static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
TCR *tcr = raw_ptr(env, ri);
|
|
|
|
/* Reset both the TCR as well as the masks corresponding to the bank of
|
|
* the TCR being reset.
|
|
*/
|
|
tcr->raw_tcr = 0;
|
|
tcr->mask = 0;
|
|
tcr->base_mask = 0xffffc000u;
|
|
}
|
|
|
|
static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
ARMCPU *cpu = arm_env_get_cpu(env);
|
|
TCR *tcr = raw_ptr(env, ri);
|
|
|
|
/* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
|
|
tlb_flush(CPU(cpu), 1);
|
|
tcr->raw_tcr = value;
|
|
}
|
|
|
|
static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/* 64 bit accesses to the TTBRs can change the ASID and so we
|
|
* must flush the TLB.
|
|
*/
|
|
if (cpreg_field_is_64bit(ri)) {
|
|
ARMCPU *cpu = arm_env_get_cpu(env);
|
|
|
|
tlb_flush(CPU(cpu), 1);
|
|
}
|
|
raw_write(env, ri, value);
|
|
}
|
|
|
|
static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
ARMCPU *cpu = arm_env_get_cpu(env);
|
|
CPUState *cs = CPU(cpu);
|
|
|
|
/* Accesses to VTTBR may change the VMID so we must flush the TLB. */
|
|
if (raw_read(env, ri) != value) {
|
|
tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0,
|
|
ARMMMUIdx_S2NS, -1);
|
|
raw_write(env, ri, value);
|
|
}
|
|
}
|
|
|
|
static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
|
|
{ .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
|
|
.access = PL1_RW, .type = ARM_CP_ALIAS,
|
|
.bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
|
|
offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
|
|
{ .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
|
|
.access = PL1_RW, .resetvalue = 0,
|
|
.bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
|
|
offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
|
|
{ .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
|
|
.access = PL1_RW, .resetvalue = 0,
|
|
.bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
|
|
offsetof(CPUARMState, cp15.dfar_ns) } },
|
|
{ .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
|
|
.access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
|
|
.resetvalue = 0, },
|
|
REGINFO_SENTINEL
|
|
};
|
|
|
|
static const ARMCPRegInfo vmsa_cp_reginfo[] = {
|
|
{ .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
|
|
.access = PL1_RW,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
|
|
{ .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
|
|
.access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
|
|
.bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
|
|
offsetof(CPUARMState, cp15.ttbr0_ns) } },
|
|
{ .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
|
|
.access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
|
|
.bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
|
|
offsetof(CPUARMState, cp15.ttbr1_ns) } },
|
|
{ .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
|
|
.access = PL1_RW, .writefn = vmsa_tcr_el1_write,
|
|
.resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
|
|
{ .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
|
|
.access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
|
|
.raw_writefn = vmsa_ttbcr_raw_write,
|
|
.bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
|
|
offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
|
|
REGINFO_SENTINEL
|
|
};
|
|
|
|
static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
env->cp15.c15_ticonfig = value & 0xe7;
|
|
/* The OS_TYPE bit in this register changes the reported CPUID! */
|
|
env->cp15.c0_cpuid = (value & (1 << 5)) ?
|
|
ARM_CPUID_TI915T : ARM_CPUID_TI925T;
|
|
}
|
|
|
|
static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
env->cp15.c15_threadid = value & 0xffff;
|
|
}
|
|
|
|
static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/* Wait-for-interrupt (deprecated) */
|
|
cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
|
|
}
|
|
|
|
static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/* On OMAP there are registers indicating the max/min index of dcache lines
|
|
* containing a dirty line; cache flush operations have to reset these.
|
|
*/
|
|
env->cp15.c15_i_max = 0x000;
|
|
env->cp15.c15_i_min = 0xff0;
|
|
}
|
|
|
|
static const ARMCPRegInfo omap_cp_reginfo[] = {
|
|
{ .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
|
|
.opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
|
|
.fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
|
|
.resetvalue = 0, },
|
|
{ .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
|
|
.access = PL1_RW, .type = ARM_CP_NOP },
|
|
{ .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
|
|
.access = PL1_RW,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
|
|
.writefn = omap_ticonfig_write },
|
|
{ .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
|
|
.access = PL1_RW,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
|
|
{ .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
|
|
.access = PL1_RW, .resetvalue = 0xff0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
|
|
{ .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
|
|
.access = PL1_RW,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
|
|
.writefn = omap_threadid_write },
|
|
{ .name = "TI925T_STATUS", .cp = 15, .crn = 15,
|
|
.crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
|
|
.type = ARM_CP_NO_RAW,
|
|
.readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
|
|
/* TODO: Peripheral port remap register:
|
|
* On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
|
|
* base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
|
|
* when MMU is off.
|
|
*/
|
|
{ .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
|
|
.opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
|
|
.type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
|
|
.writefn = omap_cachemaint_write },
|
|
{ .name = "C9", .cp = 15, .crn = 9,
|
|
.crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
|
|
.type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
|
|
REGINFO_SENTINEL
|
|
};
|
|
|
|
static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
env->cp15.c15_cpar = value & 0x3fff;
|
|
}
|
|
|
|
static const ARMCPRegInfo xscale_cp_reginfo[] = {
|
|
{ .name = "XSCALE_CPAR",
|
|
.cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
|
|
.writefn = xscale_cpar_write, },
|
|
{ .name = "XSCALE_AUXCR",
|
|
.cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
|
|
.resetvalue = 0, },
|
|
/* XScale specific cache-lockdown: since we have no cache we NOP these
|
|
* and hope the guest does not really rely on cache behaviour.
|
|
*/
|
|
{ .name = "XSCALE_LOCK_ICACHE_LINE",
|
|
.cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
|
|
.access = PL1_W, .type = ARM_CP_NOP },
|
|
{ .name = "XSCALE_UNLOCK_ICACHE",
|
|
.cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
|
|
.access = PL1_W, .type = ARM_CP_NOP },
|
|
{ .name = "XSCALE_DCACHE_LOCK",
|
|
.cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
|
|
.access = PL1_RW, .type = ARM_CP_NOP },
|
|
{ .name = "XSCALE_UNLOCK_DCACHE",
|
|
.cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
|
|
.access = PL1_W, .type = ARM_CP_NOP },
|
|
REGINFO_SENTINEL
|
|
};
|
|
|
|
static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
|
|
/* RAZ/WI the whole crn=15 space, when we don't have a more specific
|
|
* implementation of this implementation-defined space.
|
|
* Ideally this should eventually disappear in favour of actually
|
|
* implementing the correct behaviour for all cores.
|
|
*/
|
|
{ .name = "C15_IMPDEF", .cp = 15, .crn = 15,
|
|
.crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
|
|
.access = PL1_RW,
|
|
.type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
|
|
.resetvalue = 0 },
|
|
REGINFO_SENTINEL
|
|
};
|
|
|
|
static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
|
|
/* Cache status: RAZ because we have no cache so it's always clean */
|
|
{ .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
|
|
.access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
|
|
.resetvalue = 0 },
|
|
REGINFO_SENTINEL
|
|
};
|
|
|
|
static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
|
|
/* We never have a a block transfer operation in progress */
|
|
{ .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
|
|
.access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
|
|
.resetvalue = 0 },
|
|
/* The cache ops themselves: these all NOP for QEMU */
|
|
{ .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
|
|
.access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
|
|
{ .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
|
|
.access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
|
|
{ .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
|
|
.access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
|
|
{ .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
|
|
.access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
|
|
{ .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
|
|
.access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
|
|
{ .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
|
|
.access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
|
|
REGINFO_SENTINEL
|
|
};
|
|
|
|
static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
|
|
/* The cache test-and-clean instructions always return (1 << 30)
|
|
* to indicate that there are no dirty cache lines.
|
|
*/
|
|
{ .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
|
|
.access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
|
|
.resetvalue = (1 << 30) },
|
|
{ .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
|
|
.access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
|
|
.resetvalue = (1 << 30) },
|
|
REGINFO_SENTINEL
|
|
};
|
|
|
|
static const ARMCPRegInfo strongarm_cp_reginfo[] = {
|
|
/* Ignore ReadBuffer accesses */
|
|
{ .name = "C9_READBUFFER", .cp = 15, .crn = 9,
|
|
.crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
|
|
.access = PL1_RW, .resetvalue = 0,
|
|
.type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
|
|
REGINFO_SENTINEL
|
|
};
|
|
|
|
static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
ARMCPU *cpu = arm_env_get_cpu(env);
|
|
unsigned int cur_el = arm_current_el(env);
|
|
bool secure = arm_is_secure(env);
|
|
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
|
|
return env->cp15.vpidr_el2;
|
|
}
|
|
return raw_read(env, ri);
|
|
}
|
|
|
|
static uint64_t mpidr_read_val(CPUARMState *env)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
|
|
uint64_t mpidr = cpu->mp_affinity;
|
|
|
|
if (arm_feature(env, ARM_FEATURE_V7MP)) {
|
|
mpidr |= (1U << 31);
|
|
/* Cores which are uniprocessor (non-coherent)
|
|
* but still implement the MP extensions set
|
|
* bit 30. (For instance, Cortex-R5).
|
|
*/
|
|
if (cpu->mp_is_up) {
|
|
mpidr |= (1u << 30);
|
|
}
|
|
}
|
|
return mpidr;
|
|
}
|
|
|
|
static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
unsigned int cur_el = arm_current_el(env);
|
|
bool secure = arm_is_secure(env);
|
|
|
|
if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
|
|
return env->cp15.vmpidr_el2;
|
|
}
|
|
return mpidr_read_val(env);
|
|
}
|
|
|
|
static const ARMCPRegInfo mpidr_cp_reginfo[] = {
|
|
{ .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
|
|
.access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
|
|
REGINFO_SENTINEL
|
|
};
|
|
|
|
static const ARMCPRegInfo lpae_cp_reginfo[] = {
|
|
/* NOP AMAIR0/1 */
|
|
{ .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
|
|
.access = PL1_RW, .type = ARM_CP_CONST,
|
|
.resetvalue = 0 },
|
|
/* AMAIR1 is mapped to AMAIR_EL1[63:32] */
|
|
{ .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
|
|
.access = PL1_RW, .type = ARM_CP_CONST,
|
|
.resetvalue = 0 },
|
|
{ .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
|
|
.access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
|
|
.bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
|
|
offsetof(CPUARMState, cp15.par_ns)} },
|
|
{ .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
|
|
.access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
|
|
.bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
|
|
offsetof(CPUARMState, cp15.ttbr0_ns) },
|
|
.writefn = vmsa_ttbr_write, },
|
|
{ .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
|
|
.access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
|
|
.bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
|
|
offsetof(CPUARMState, cp15.ttbr1_ns) },
|
|
.writefn = vmsa_ttbr_write, },
|
|
REGINFO_SENTINEL
|
|
};
|
|
|
|
static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return vfp_get_fpcr(env);
|
|
}
|
|
|
|
static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
vfp_set_fpcr(env, value);
|
|
}
|
|
|
|
static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return vfp_get_fpsr(env);
|
|
}
|
|
|
|
static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
vfp_set_fpsr(env, value);
|
|
}
|
|
|
|
static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
|
|
return CP_ACCESS_TRAP;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
env->daif = value & PSTATE_DAIF;
|
|
}
|
|
|
|
static CPAccessResult aa64_cacheop_access(CPUARMState *env,
|
|
const ARMCPRegInfo *ri)
|
|
{
|
|
/* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
|
|
* SCTLR_EL1.UCI is set.
|
|
*/
|
|
if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
|
|
return CP_ACCESS_TRAP;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
/* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
|
|
* Page D4-1736 (DDI0487A.b)
|
|
*/
|
|
|
|
static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
ARMCPU *cpu = arm_env_get_cpu(env);
|
|
CPUState *cs = CPU(cpu);
|
|
|
|
if (arm_is_secure_below_el3(env)) {
|
|
tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
|
|
} else {
|
|
tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1);
|
|
}
|
|
}
|
|
|
|
static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
bool sec = arm_is_secure_below_el3(env);
|
|
CPUState *other_cs;
|
|
|
|
CPU_FOREACH(other_cs) {
|
|
if (sec) {
|
|
tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
|
|
} else {
|
|
tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
|
|
ARMMMUIdx_S12NSE0, -1);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/* Note that the 'ALL' scope must invalidate both stage 1 and
|
|
* stage 2 translations, whereas most other scopes only invalidate
|
|
* stage 1 translations.
|
|
*/
|
|
ARMCPU *cpu = arm_env_get_cpu(env);
|
|
CPUState *cs = CPU(cpu);
|
|
|
|
if (arm_is_secure_below_el3(env)) {
|
|
tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
|
|
} else {
|
|
if (arm_feature(env, ARM_FEATURE_EL2)) {
|
|
tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0,
|
|
ARMMMUIdx_S2NS, -1);
|
|
} else {
|
|
tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
ARMCPU *cpu = arm_env_get_cpu(env);
|
|
CPUState *cs = CPU(cpu);
|
|
|
|
tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E2, -1);
|
|
}
|
|
|
|
static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
ARMCPU *cpu = arm_env_get_cpu(env);
|
|
CPUState *cs = CPU(cpu);
|
|
|
|
tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E3, -1);
|
|
}
|
|
|
|
static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/* Note that the 'ALL' scope must invalidate both stage 1 and
|
|
* stage 2 translations, whereas most other scopes only invalidate
|
|
* stage 1 translations.
|
|
*/
|
|
bool sec = arm_is_secure_below_el3(env);
|
|
bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
|
|
CPUState *other_cs;
|
|
|
|
CPU_FOREACH(other_cs) {
|
|
if (sec) {
|
|
tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
|
|
} else if (has_el2) {
|
|
tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
|
|
ARMMMUIdx_S12NSE0, ARMMMUIdx_S2NS, -1);
|
|
} else {
|
|
tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
|
|
ARMMMUIdx_S12NSE0, -1);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *other_cs;
|
|
|
|
CPU_FOREACH(other_cs) {
|
|
tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E2, -1);
|
|
}
|
|
}
|
|
|
|
static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *other_cs;
|
|
|
|
CPU_FOREACH(other_cs) {
|
|
tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E3, -1);
|
|
}
|
|
}
|
|
|
|
static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/* Invalidate by VA, EL1&0 (AArch64 version).
|
|
* Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
|
|
* since we don't support flush-for-specific-ASID-only or
|
|
* flush-last-level-only.
|
|
*/
|
|
ARMCPU *cpu = arm_env_get_cpu(env);
|
|
CPUState *cs = CPU(cpu);
|
|
uint64_t pageaddr = sextract64(value << 12, 0, 56);
|
|
|
|
if (arm_is_secure_below_el3(env)) {
|
|
tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1SE1,
|
|
ARMMMUIdx_S1SE0, -1);
|
|
} else {
|
|
tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S12NSE1,
|
|
ARMMMUIdx_S12NSE0, -1);
|
|
}
|
|
}
|
|
|
|
static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/* Invalidate by VA, EL2
|
|
* Currently handles both VAE2 and VALE2, since we don't support
|
|
* flush-last-level-only.
|
|
*/
|
|
ARMCPU *cpu = arm_env_get_cpu(env);
|
|
CPUState *cs = CPU(cpu);
|
|
uint64_t pageaddr = sextract64(value << 12, 0, 56);
|
|
|
|
tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E2, -1);
|
|
}
|
|
|
|
static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/* Invalidate by VA, EL3
|
|
* Currently handles both VAE3 and VALE3, since we don't support
|
|
* flush-last-level-only.
|
|
*/
|
|
ARMCPU *cpu = arm_env_get_cpu(env);
|
|
CPUState *cs = CPU(cpu);
|
|
uint64_t pageaddr = sextract64(value << 12, 0, 56);
|
|
|
|
tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E3, -1);
|
|
}
|
|
|
|
static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
bool sec = arm_is_secure_below_el3(env);
|
|
CPUState *other_cs;
|
|
uint64_t pageaddr = sextract64(value << 12, 0, 56);
|
|
|
|
CPU_FOREACH(other_cs) {
|
|
if (sec) {
|
|
tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1SE1,
|
|
ARMMMUIdx_S1SE0, -1);
|
|
} else {
|
|
tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S12NSE1,
|
|
ARMMMUIdx_S12NSE0, -1);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *other_cs;
|
|
uint64_t pageaddr = sextract64(value << 12, 0, 56);
|
|
|
|
CPU_FOREACH(other_cs) {
|
|
tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E2, -1);
|
|
}
|
|
}
|
|
|
|
static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *other_cs;
|
|
uint64_t pageaddr = sextract64(value << 12, 0, 56);
|
|
|
|
CPU_FOREACH(other_cs) {
|
|
tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E3, -1);
|
|
}
|
|
}
|
|
|
|
static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/* Invalidate by IPA. This has to invalidate any structures that
|
|
* contain only stage 2 translation information, but does not need
|
|
* to apply to structures that contain combined stage 1 and stage 2
|
|
* translation information.
|
|
* This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
|
|
*/
|
|
ARMCPU *cpu = arm_env_get_cpu(env);
|
|
CPUState *cs = CPU(cpu);
|
|
uint64_t pageaddr;
|
|
|
|
if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
|
|
return;
|
|
}
|
|
|
|
pageaddr = sextract64(value << 12, 0, 48);
|
|
|
|
tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S2NS, -1);
|
|
}
|
|
|
|
static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *other_cs;
|
|
uint64_t pageaddr;
|
|
|
|
if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
|
|
return;
|
|
}
|
|
|
|
pageaddr = sextract64(value << 12, 0, 48);
|
|
|
|
CPU_FOREACH(other_cs) {
|
|
tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S2NS, -1);
|
|
}
|
|
}
|
|
|
|
static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
/* We don't implement EL2, so the only control on DC ZVA is the
|
|
* bit in the SCTLR which can prohibit access for EL0.
|
|
*/
|
|
if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
|
|
return CP_ACCESS_TRAP;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
ARMCPU *cpu = arm_env_get_cpu(env);
|
|
int dzp_bit = 1 << 4;
|
|
|
|
/* DZP indicates whether DC ZVA access is allowed */
|
|
if (aa64_zva_access(env, NULL) == CP_ACCESS_OK) {
|
|
dzp_bit = 0;
|
|
}
|
|
return cpu->dcz_blocksize | dzp_bit;
|
|
}
|
|
|
|
static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
if (!(env->pstate & PSTATE_SP)) {
|
|
/* Access to SP_EL0 is undefined if it's being used as
|
|
* the stack pointer.
|
|
*/
|
|
return CP_ACCESS_TRAP_UNCATEGORIZED;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return env->pstate & PSTATE_SP;
|
|
}
|
|
|
|
static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
|
|
{
|
|
update_spsel(env, val);
|
|
}
|
|
|
|
static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
ARMCPU *cpu = arm_env_get_cpu(env);
|
|
|
|
if (raw_read(env, ri) == value) {
|
|
/* Skip the TLB flush if nothing actually changed; Linux likes
|
|
* to do a lot of pointless SCTLR writes.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
raw_write(env, ri, value);
|
|
/* ??? Lots of these bits are not implemented. */
|
|
/* This may enable/disable the MMU, so do a TLB flush. */
|
|
tlb_flush(CPU(cpu), 1);
|
|
}
|
|
|
|
static const ARMCPRegInfo v8_cp_reginfo[] = {
|
|
/* Minimal set of EL0-visible registers. This will need to be expanded
|
|
* significantly for system emulation of AArch64 CPUs.
|
|
*/
|
|
{ .name = "NZCV", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
|
|
.access = PL0_RW, .type = ARM_CP_NZCV },
|
|
{ .name = "DAIF", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
|
|
.type = ARM_CP_NO_RAW,
|
|
.access = PL0_RW, .accessfn = aa64_daif_access,
|
|
.fieldoffset = offsetof(CPUARMState, daif),
|
|
.writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
|
|
{ .name = "FPCR", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
|
|
.access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
|
|
{ .name = "FPSR", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
|
|
.access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
|
|
{ .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
|
|
.access = PL0_R, .type = ARM_CP_NO_RAW,
|
|
.readfn = aa64_dczid_read },
|
|
{ .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
|
|
.access = PL0_W, .type = ARM_CP_DC_ZVA,
|
|
#ifndef CONFIG_USER_ONLY
|
|
/* Avoid overhead of an access check that always passes in user-mode */
|
|
.accessfn = aa64_zva_access,
|
|
#endif
|
|
},
|
|
{ .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
|
|
.access = PL1_R, .type = ARM_CP_CURRENTEL },
|
|
/* Cache ops: all NOPs since we don't emulate caches */
|
|
{ .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
|
|
.access = PL1_W, .type = ARM_CP_NOP },
|
|
{ .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
|
|
.access = PL1_W, .type = ARM_CP_NOP },
|
|
{ .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
|
|
.access = PL0_W, .type = ARM_CP_NOP,
|
|
.accessfn = aa64_cacheop_access },
|
|
{ .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
|
|
.access = PL1_W, .type = ARM_CP_NOP },
|
|
{ .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
|
|
.access = PL1_W, .type = ARM_CP_NOP },
|
|
{ .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
|
|
.access = PL0_W, .type = ARM_CP_NOP,
|
|
.accessfn = aa64_cacheop_access },
|
|
{ .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
|
|
.access = PL1_W, .type = ARM_CP_NOP },
|
|
{ .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
|
|
.access = PL0_W, .type = ARM_CP_NOP,
|
|
.accessfn = aa64_cacheop_access },
|
|
{ .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
|
|
.access = PL0_W, .type = ARM_CP_NOP,
|
|
.accessfn = aa64_cacheop_access },
|
|
{ .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
|
|
.access = PL1_W, .type = ARM_CP_NOP },
|
|
/* TLBI operations */
|
|
{ .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
|
|
.access = PL1_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_vmalle1is_write },
|
|
{ .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
|
|
.access = PL1_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_vae1is_write },
|
|
{ .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
|
|
.access = PL1_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_vmalle1is_write },
|
|
{ .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
|
|
.access = PL1_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_vae1is_write },
|
|
{ .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
|
|
.access = PL1_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_vae1is_write },
|
|
{ .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
|
|
.access = PL1_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_vae1is_write },
|
|
{ .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
|
|
.access = PL1_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_vmalle1_write },
|
|
{ .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
|
|
.access = PL1_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_vae1_write },
|
|
{ .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
|
|
.access = PL1_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_vmalle1_write },
|
|
{ .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
|
|
.access = PL1_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_vae1_write },
|
|
{ .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
|
|
.access = PL1_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_vae1_write },
|
|
{ .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
|
|
.access = PL1_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_vae1_write },
|
|
{ .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_ipas2e1is_write },
|
|
{ .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_ipas2e1is_write },
|
|
{ .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_alle1is_write },
|
|
{ .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_alle1is_write },
|
|
{ .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_ipas2e1_write },
|
|
{ .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_ipas2e1_write },
|
|
{ .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_alle1_write },
|
|
{ .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_alle1is_write },
|
|
#ifndef CONFIG_USER_ONLY
|
|
/* 64 bit address translation operations */
|
|
{ .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
|
|
.access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
|
|
{ .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
|
|
.access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
|
|
{ .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
|
|
.access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
|
|
{ .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
|
|
.access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
|
|
{ .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
|
|
{ .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
|
|
{ .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
|
|
{ .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
|
|
/* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
|
|
{ .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
|
|
.access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
|
|
{ .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
|
|
.access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
|
|
{ .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
|
|
.type = ARM_CP_ALIAS,
|
|
.opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
|
|
.access = PL1_RW, .resetvalue = 0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
|
|
.writefn = par_write },
|
|
#endif
|
|
/* TLB invalidate last level of translation table walk */
|
|
{ .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
|
|
{ .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_W,
|
|
.writefn = tlbimvaa_is_write },
|
|
{ .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
|
|
{ .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
|
|
/* 32 bit cache operations */
|
|
{ .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
|
|
.type = ARM_CP_NOP, .access = PL1_W },
|
|
{ .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
|
|
.type = ARM_CP_NOP, .access = PL1_W },
|
|
{ .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
|
|
.type = ARM_CP_NOP, .access = PL1_W },
|
|
{ .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
|
|
.type = ARM_CP_NOP, .access = PL1_W },
|
|
{ .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
|
|
.type = ARM_CP_NOP, .access = PL1_W },
|
|
{ .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
|
|
.type = ARM_CP_NOP, .access = PL1_W },
|
|
{ .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
|
|
.type = ARM_CP_NOP, .access = PL1_W },
|
|
{ .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
|
|
.type = ARM_CP_NOP, .access = PL1_W },
|
|
{ .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
|
|
.type = ARM_CP_NOP, .access = PL1_W },
|
|
{ .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
|
|
.type = ARM_CP_NOP, .access = PL1_W },
|
|
{ .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
|
|
.type = ARM_CP_NOP, .access = PL1_W },
|
|
{ .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
|
|
.type = ARM_CP_NOP, .access = PL1_W },
|
|
{ .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
|
|
.type = ARM_CP_NOP, .access = PL1_W },
|
|
/* MMU Domain access control / MPU write buffer control */
|
|
{ .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
|
|
.access = PL1_RW, .resetvalue = 0,
|
|
.writefn = dacr_write, .raw_writefn = raw_write,
|
|
.bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
|
|
offsetoflow32(CPUARMState, cp15.dacr_ns) } },
|
|
{ .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
|
|
.type = ARM_CP_ALIAS,
|
|
.opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
|
|
.access = PL1_RW,
|
|
.fieldoffset = offsetof(CPUARMState, elr_el[1]) },
|
|
{ .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
|
|
.type = ARM_CP_ALIAS,
|
|
.opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
|
|
.access = PL1_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[1]) },
|
|
/* We rely on the access checks not allowing the guest to write to the
|
|
* state field when SPSel indicates that it's being used as the stack
|
|
* pointer.
|
|
*/
|
|
{ .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
|
|
.access = PL1_RW, .accessfn = sp_el0_access,
|
|
.type = ARM_CP_ALIAS,
|
|
.fieldoffset = offsetof(CPUARMState, sp_el[0]) },
|
|
{ .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
|
|
.access = PL2_RW, .type = ARM_CP_ALIAS,
|
|
.fieldoffset = offsetof(CPUARMState, sp_el[1]) },
|
|
{ .name = "SPSel", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
|
|
.type = ARM_CP_NO_RAW,
|
|
.access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
|
|
REGINFO_SENTINEL
|
|
};
|
|
|
|
/* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
|
|
static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
|
|
{ .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
|
|
.access = PL2_RW,
|
|
.readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
|
|
{ .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
|
|
.type = ARM_CP_NO_RAW,
|
|
.opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
|
|
.access = PL2_RW,
|
|
.readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
|
|
{ .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
|
|
.access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
|
|
{ .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
|
|
.access = PL2_RW, .type = ARM_CP_CONST,
|
|
.resetvalue = 0 },
|
|
{ .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
|
|
.opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
|
|
.access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
|
|
{ .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
|
|
.access = PL2_RW, .type = ARM_CP_CONST,
|
|
.resetvalue = 0 },
|
|
{ .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
|
|
.opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
|
|
.access = PL2_RW, .type = ARM_CP_CONST,
|
|
.resetvalue = 0 },
|
|
{ .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
|
|
.access = PL2_RW, .type = ARM_CP_CONST,
|
|
.resetvalue = 0 },
|
|
{ .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
|
|
.access = PL2_RW, .type = ARM_CP_CONST,
|
|
.resetvalue = 0 },
|
|
{ .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
|
|
.access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
|
|
{ .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
|
|
.access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
|
|
.type = ARM_CP_CONST, .resetvalue = 0 },
|
|
{ .name = "VTTBR", .state = ARM_CP_STATE_AA32,
|
|
.cp = 15, .opc1 = 6, .crm = 2,
|
|
.access = PL2_RW, .accessfn = access_el3_aa32ns,
|
|
.type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
|
|
{ .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
|
|
.access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
|
|
{ .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
|
|
.access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
|
|
{ .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
|
|
.access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
|
|
{ .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
|
|
.access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
|
|
{ .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
|
|
.access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
|
|
.resetvalue = 0 },
|
|
{ .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
|
|
.access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
|
|
{ .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
|
|
.access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
|
|
{ .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
|
|
.access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
|
|
.resetvalue = 0 },
|
|
{ .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
|
|
.access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
|
|
{ .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
|
|
.access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
|
|
.resetvalue = 0 },
|
|
{ .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
|
|
.access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
|
|
{ .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
|
|
.access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
|
|
REGINFO_SENTINEL
|
|
};
|
|
|
|
static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
|
|
{
|
|
ARMCPU *cpu = arm_env_get_cpu(env);
|
|
uint64_t valid_mask = HCR_MASK;
|
|
|
|
if (arm_feature(env, ARM_FEATURE_EL3)) {
|
|
valid_mask &= ~HCR_HCD;
|
|
} else {
|
|
valid_mask &= ~HCR_TSC;
|
|
}
|
|
|
|
/* Clear RES0 bits. */
|
|
value &= valid_mask;
|
|
|
|
/* These bits change the MMU setup:
|
|
* HCR_VM enables stage 2 translation
|
|
* HCR_PTW forbids certain page-table setups
|
|
* HCR_DC Disables stage1 and enables stage2 translation
|
|
*/
|
|
if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
|
|
tlb_flush(CPU(cpu), 1);
|
|
}
|
|
raw_write(env, ri, value);
|
|
}
|
|
|
|
static const ARMCPRegInfo el2_cp_reginfo[] = {
|
|
{ .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
|
|
.access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
|
|
.writefn = hcr_write },
|
|
{ .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
|
|
.access = PL2_RW, .resetvalue = 0,
|
|
.writefn = dacr_write, .raw_writefn = raw_write,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
|
|
{ .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
|
|
.type = ARM_CP_ALIAS,
|
|
.opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
|
|
.access = PL2_RW,
|
|
.fieldoffset = offsetof(CPUARMState, elr_el[2]) },
|
|
{ .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
|
|
.type = ARM_CP_ALIAS,
|
|
.opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
|
|
.access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
|
|
{ .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
|
|
.access = PL2_RW, .resetvalue = 0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
|
|
{ .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
|
|
.access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
|
|
{ .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
|
|
.type = ARM_CP_ALIAS,
|
|
.opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
|
|
.access = PL2_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[6]) },
|
|
{ .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
|
|
.access = PL2_RW, .writefn = vbar_write,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
|
|
.resetvalue = 0 },
|
|
{ .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
|
|
.access = PL3_RW, .type = ARM_CP_ALIAS,
|
|
.fieldoffset = offsetof(CPUARMState, sp_el[2]) },
|
|
{ .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
|
|
.access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
|
|
{ .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
|
|
.access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
|
|
.resetvalue = 0 },
|
|
{ .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
|
|
.opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
|
|
.access = PL2_RW, .type = ARM_CP_ALIAS,
|
|
.fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
|
|
{ .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
|
|
.access = PL2_RW, .type = ARM_CP_CONST,
|
|
.resetvalue = 0 },
|
|
/* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
|
|
{ .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
|
|
.opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
|
|
.access = PL2_RW, .type = ARM_CP_CONST,
|
|
.resetvalue = 0 },
|
|
{ .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
|
|
.access = PL2_RW, .type = ARM_CP_CONST,
|
|
.resetvalue = 0 },
|
|
{ .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
|
|
.access = PL2_RW, .type = ARM_CP_CONST,
|
|
.resetvalue = 0 },
|
|
{ .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
|
|
.access = PL2_RW, .writefn = vmsa_tcr_el1_write,
|
|
.resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
|
|
{ .name = "VTCR", .state = ARM_CP_STATE_AA32,
|
|
.cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
|
|
.access = PL2_RW, .accessfn = access_el3_aa32ns,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
|
|
{ .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
|
|
.access = PL2_RW, .type = ARM_CP_ALIAS,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
|
|
{ .name = "VTTBR", .state = ARM_CP_STATE_AA32,
|
|
.cp = 15, .opc1 = 6, .crm = 2,
|
|
.type = ARM_CP_64BIT | ARM_CP_ALIAS,
|
|
.access = PL2_RW, .accessfn = access_el3_aa32ns,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
|
|
.writefn = vttbr_write },
|
|
{ .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
|
|
.access = PL2_RW, .writefn = vttbr_write,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
|
|
{ .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
|
|
.access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
|
|
{ .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
|
|
.access = PL2_RW, .resetvalue = 0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
|
|
{ .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
|
|
.access = PL2_RW, .resetvalue = 0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
|
|
{ .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
|
|
.access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
|
|
{ .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
|
|
.type = ARM_CP_NO_RAW, .access = PL2_W,
|
|
.writefn = tlbi_aa64_alle2_write },
|
|
{ .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
|
|
.type = ARM_CP_NO_RAW, .access = PL2_W,
|
|
.writefn = tlbi_aa64_vae2_write },
|
|
{ .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_vae2_write },
|
|
{ .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_alle2is_write },
|
|
{ .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
|
|
.type = ARM_CP_NO_RAW, .access = PL2_W,
|
|
.writefn = tlbi_aa64_vae2is_write },
|
|
{ .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_vae2is_write },
|
|
#ifndef CONFIG_USER_ONLY
|
|
/* Unlike the other EL2-related AT operations, these must
|
|
* UNDEF from EL3 if EL2 is not implemented, which is why we
|
|
* define them here rather than with the rest of the AT ops.
|
|
*/
|
|
{ .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
|
|
.access = PL2_W, .accessfn = at_s1e2_access,
|
|
.type = ARM_CP_NO_RAW, .writefn = ats_write64 },
|
|
{ .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
|
|
.access = PL2_W, .accessfn = at_s1e2_access,
|
|
.type = ARM_CP_NO_RAW, .writefn = ats_write64 },
|
|
/* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
|
|
* if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
|
|
* with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
|
|
* to behave as if SCR.NS was 1.
|
|
*/
|
|
{ .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
|
|
.access = PL2_W,
|
|
.writefn = ats1h_write, .type = ARM_CP_NO_RAW },
|
|
{ .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
|
|
.access = PL2_W,
|
|
.writefn = ats1h_write, .type = ARM_CP_NO_RAW },
|
|
{ .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
|
|
/* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
|
|
* reset values as IMPDEF. We choose to reset to 3 to comply with
|
|
* both ARMv7 and ARMv8.
|
|
*/
|
|
.access = PL2_RW, .resetvalue = 3,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
|
|
{ .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
|
|
.access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
|
|
.writefn = gt_cntvoff_write,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
|
|
{ .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
|
|
.access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
|
|
.writefn = gt_cntvoff_write,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
|
|
{ .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
|
|
.type = ARM_CP_IO, .access = PL2_RW,
|
|
.writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
|
|
{ .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
|
|
.access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
|
|
.writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
|
|
{ .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
|
|
.type = ARM_CP_IO, .access = PL2_RW,
|
|
.resetfn = gt_hyp_timer_reset,
|
|
.readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
|
|
{ .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.type = ARM_CP_IO,
|
|
.opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
|
|
.access = PL2_RW,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
|
|
.resetvalue = 0,
|
|
.writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
|
|
#endif
|
|
REGINFO_SENTINEL
|
|
};
|
|
|
|
static const ARMCPRegInfo el3_cp_reginfo[] = {
|
|
{ .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
|
|
.access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
|
|
.resetvalue = 0, .writefn = scr_write },
|
|
{ .name = "SCR", .type = ARM_CP_ALIAS,
|
|
.cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
|
|
.access = PL3_RW, .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
|
|
.writefn = scr_write },
|
|
{ .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
|
|
.access = PL3_RW, .resetvalue = 0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.sder) },
|
|
{ .name = "SDER",
|
|
.cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
|
|
.access = PL3_RW, .resetvalue = 0,
|
|
.fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
|
|
/* TODO: Implement NSACR trapping of secure EL1 accesses to EL3 */
|
|
{ .name = "NSACR", .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
|
|
.access = PL3_W | PL1_R, .resetvalue = 0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.nsacr) },
|
|
{ .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
|
|
.access = PL3_RW, .writefn = vbar_write, .resetvalue = 0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
|
|
{ .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
|
|
.type = ARM_CP_ALIAS, /* reset handled by AArch32 view */
|
|
.opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
|
|
.access = PL3_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]) },
|
|
{ .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
|
|
.access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
|
|
{ .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
|
|
.access = PL3_RW, .writefn = vmsa_tcr_el1_write,
|
|
.resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
|
|
{ .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
|
|
.type = ARM_CP_ALIAS,
|
|
.opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
|
|
.access = PL3_RW,
|
|
.fieldoffset = offsetof(CPUARMState, elr_el[3]) },
|
|
{ .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
|
|
.type = ARM_CP_ALIAS,
|
|
.opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
|
|
.access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
|
|
{ .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
|
|
.access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
|
|
{ .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
|
|
.type = ARM_CP_ALIAS,
|
|
.opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
|
|
.access = PL3_RW, .fieldoffset = offsetof(CPUARMState, banked_spsr[7]) },
|
|
{ .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
|
|
.access = PL3_RW, .writefn = vbar_write,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
|
|
.resetvalue = 0 },
|
|
{ .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
|
|
.access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
|
|
{ .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
|
|
.access = PL3_RW, .resetvalue = 0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
|
|
{ .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
|
|
.access = PL3_RW, .type = ARM_CP_CONST,
|
|
.resetvalue = 0 },
|
|
{ .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
|
|
.access = PL3_RW, .type = ARM_CP_CONST,
|
|
.resetvalue = 0 },
|
|
{ .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
|
|
.access = PL3_RW, .type = ARM_CP_CONST,
|
|
.resetvalue = 0 },
|
|
{ .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
|
|
.access = PL3_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_alle3is_write },
|
|
{ .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
|
|
.access = PL3_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_vae3is_write },
|
|
{ .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
|
|
.access = PL3_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_vae3is_write },
|
|
{ .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
|
|
.access = PL3_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_alle3_write },
|
|
{ .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
|
|
.access = PL3_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_vae3_write },
|
|
{ .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
|
|
.access = PL3_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_vae3_write },
|
|
REGINFO_SENTINEL
|
|
};
|
|
|
|
static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
/* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
|
|
* but the AArch32 CTR has its own reginfo struct)
|
|
*/
|
|
if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
|
|
return CP_ACCESS_TRAP;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static const ARMCPRegInfo debug_cp_reginfo[] = {
|
|
/* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
|
|
* debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
|
|
* unlike DBGDRAR it is never accessible from EL0.
|
|
* DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
|
|
* accessor.
|
|
*/
|
|
{ .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
|
|
.access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
|
|
{ .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
|
|
.access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
|
|
{ .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
|
|
.access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
|
|
/* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
|
|
{ .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
|
|
.cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
|
|
.access = PL1_RW,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
|
|
.resetvalue = 0 },
|
|
/* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
|
|
* We don't implement the configurable EL0 access.
|
|
*/
|
|
{ .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
|
|
.cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
|
|
.type = ARM_CP_ALIAS,
|
|
.access = PL1_R,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
|
|
/* We define a dummy WI OSLAR_EL1, because Linux writes to it. */
|
|
{ .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
|
|
.cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
|
|
.access = PL1_W, .type = ARM_CP_NOP },
|
|
/* Dummy OSDLR_EL1: 32-bit Linux will read this */
|
|
{ .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
|
|
.cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
|
|
.access = PL1_RW, .type = ARM_CP_NOP },
|
|
/* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
|
|
* implement vector catch debug events yet.
|
|
*/
|
|
{ .name = "DBGVCR",
|
|
.cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
|
|
.access = PL1_RW, .type = ARM_CP_NOP },
|
|
REGINFO_SENTINEL
|
|
};
|
|
|
|
static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
|
|
/* 64 bit access versions of the (dummy) debug registers */
|
|
{ .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
|
|
.access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
|
|
{ .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
|
|
.access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
|
|
REGINFO_SENTINEL
|
|
};
|
|
|
|
void hw_watchpoint_update(ARMCPU *cpu, int n)
|
|
{
|
|
CPUARMState *env = &cpu->env;
|
|
vaddr len = 0;
|
|
vaddr wvr = env->cp15.dbgwvr[n];
|
|
uint64_t wcr = env->cp15.dbgwcr[n];
|
|
int mask;
|
|
int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
|
|
|
|
if (env->cpu_watchpoint[n]) {
|
|
cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
|
|
env->cpu_watchpoint[n] = NULL;
|
|
}
|
|
|
|
if (!extract64(wcr, 0, 1)) {
|
|
/* E bit clear : watchpoint disabled */
|
|
return;
|
|
}
|
|
|
|
switch (extract64(wcr, 3, 2)) {
|
|
case 0:
|
|
/* LSC 00 is reserved and must behave as if the wp is disabled */
|
|
return;
|
|
case 1:
|
|
flags |= BP_MEM_READ;
|
|
break;
|
|
case 2:
|
|
flags |= BP_MEM_WRITE;
|
|
break;
|
|
case 3:
|
|
flags |= BP_MEM_ACCESS;
|
|
break;
|
|
}
|
|
|
|
/* Attempts to use both MASK and BAS fields simultaneously are
|
|
* CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
|
|
* thus generating a watchpoint for every byte in the masked region.
|
|
*/
|
|
mask = extract64(wcr, 24, 4);
|
|
if (mask == 1 || mask == 2) {
|
|
/* Reserved values of MASK; we must act as if the mask value was
|
|
* some non-reserved value, or as if the watchpoint were disabled.
|
|
* We choose the latter.
|
|
*/
|
|
return;
|
|
} else if (mask) {
|
|
/* Watchpoint covers an aligned area up to 2GB in size */
|
|
len = 1ULL << mask;
|
|
/* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
|
|
* whether the watchpoint fires when the unmasked bits match; we opt
|
|
* to generate the exceptions.
|
|
*/
|
|
wvr &= ~(len - 1);
|
|
} else {
|
|
/* Watchpoint covers bytes defined by the byte address select bits */
|
|
int bas = extract64(wcr, 5, 8);
|
|
int basstart;
|
|
|
|
if (bas == 0) {
|
|
/* This must act as if the watchpoint is disabled */
|
|
return;
|
|
}
|
|
|
|
if (extract64(wvr, 2, 1)) {
|
|
/* Deprecated case of an only 4-aligned address. BAS[7:4] are
|
|
* ignored, and BAS[3:0] define which bytes to watch.
|
|
*/
|
|
bas &= 0xf;
|
|
}
|
|
/* The BAS bits are supposed to be programmed to indicate a contiguous
|
|
* range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
|
|
* we fire for each byte in the word/doubleword addressed by the WVR.
|
|
* We choose to ignore any non-zero bits after the first range of 1s.
|
|
*/
|
|
basstart = ctz32(bas);
|
|
len = cto32(bas >> basstart);
|
|
wvr += basstart;
|
|
}
|
|
|
|
cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
|
|
&env->cpu_watchpoint[n]);
|
|
}
|
|
|
|
void hw_watchpoint_update_all(ARMCPU *cpu)
|
|
{
|
|
int i;
|
|
CPUARMState *env = &cpu->env;
|
|
|
|
/* Completely clear out existing QEMU watchpoints and our array, to
|
|
* avoid possible stale entries following migration load.
|
|
*/
|
|
cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
|
|
memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
|
|
|
|
for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
|
|
hw_watchpoint_update(cpu, i);
|
|
}
|
|
}
|
|
|
|
static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
ARMCPU *cpu = arm_env_get_cpu(env);
|
|
int i = ri->crm;
|
|
|
|
/* Bits [63:49] are hardwired to the value of bit [48]; that is, the
|
|
* register reads and behaves as if values written are sign extended.
|
|
* Bits [1:0] are RES0.
|
|
*/
|
|
value = sextract64(value, 0, 49) & ~3ULL;
|
|
|
|
raw_write(env, ri, value);
|
|
hw_watchpoint_update(cpu, i);
|
|
}
|
|
|
|
static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
ARMCPU *cpu = arm_env_get_cpu(env);
|
|
int i = ri->crm;
|
|
|
|
raw_write(env, ri, value);
|
|
hw_watchpoint_update(cpu, i);
|
|
}
|
|
|
|
void hw_breakpoint_update(ARMCPU *cpu, int n)
|
|
{
|
|
CPUARMState *env = &cpu->env;
|
|
uint64_t bvr = env->cp15.dbgbvr[n];
|
|
uint64_t bcr = env->cp15.dbgbcr[n];
|
|
vaddr addr;
|
|
int bt;
|
|
int flags = BP_CPU;
|
|
|
|
if (env->cpu_breakpoint[n]) {
|
|
cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
|
|
env->cpu_breakpoint[n] = NULL;
|
|
}
|
|
|
|
if (!extract64(bcr, 0, 1)) {
|
|
/* E bit clear : watchpoint disabled */
|
|
return;
|
|
}
|
|
|
|
bt = extract64(bcr, 20, 4);
|
|
|
|
switch (bt) {
|
|
case 4: /* unlinked address mismatch (reserved if AArch64) */
|
|
case 5: /* linked address mismatch (reserved if AArch64) */
|
|
qemu_log_mask(LOG_UNIMP,
|
|
"arm: address mismatch breakpoint types not implemented");
|
|
return;
|
|
case 0: /* unlinked address match */
|
|
case 1: /* linked address match */
|
|
{
|
|
/* Bits [63:49] are hardwired to the value of bit [48]; that is,
|
|
* we behave as if the register was sign extended. Bits [1:0] are
|
|
* RES0. The BAS field is used to allow setting breakpoints on 16
|
|
* bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
|
|
* a bp will fire if the addresses covered by the bp and the addresses
|
|
* covered by the insn overlap but the insn doesn't start at the
|
|
* start of the bp address range. We choose to require the insn and
|
|
* the bp to have the same address. The constraints on writing to
|
|
* BAS enforced in dbgbcr_write mean we have only four cases:
|
|
* 0b0000 => no breakpoint
|
|
* 0b0011 => breakpoint on addr
|
|
* 0b1100 => breakpoint on addr + 2
|
|
* 0b1111 => breakpoint on addr
|
|
* See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
|
|
*/
|
|
int bas = extract64(bcr, 5, 4);
|
|
addr = sextract64(bvr, 0, 49) & ~3ULL;
|
|
if (bas == 0) {
|
|
return;
|
|
}
|
|
if (bas == 0xc) {
|
|
addr += 2;
|
|
}
|
|
break;
|
|
}
|
|
case 2: /* unlinked context ID match */
|
|
case 8: /* unlinked VMID match (reserved if no EL2) */
|
|
case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
|
|
qemu_log_mask(LOG_UNIMP,
|
|
"arm: unlinked context breakpoint types not implemented");
|
|
return;
|
|
case 9: /* linked VMID match (reserved if no EL2) */
|
|
case 11: /* linked context ID and VMID match (reserved if no EL2) */
|
|
case 3: /* linked context ID match */
|
|
default:
|
|
/* We must generate no events for Linked context matches (unless
|
|
* they are linked to by some other bp/wp, which is handled in
|
|
* updates for the linking bp/wp). We choose to also generate no events
|
|
* for reserved values.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
|
|
}
|
|
|
|
void hw_breakpoint_update_all(ARMCPU *cpu)
|
|
{
|
|
int i;
|
|
CPUARMState *env = &cpu->env;
|
|
|
|
/* Completely clear out existing QEMU breakpoints and our array, to
|
|
* avoid possible stale entries following migration load.
|
|
*/
|
|
cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
|
|
memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
|
|
|
|
for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
|
|
hw_breakpoint_update(cpu, i);
|
|
}
|
|
}
|
|
|
|
static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
ARMCPU *cpu = arm_env_get_cpu(env);
|
|
int i = ri->crm;
|
|
|
|
raw_write(env, ri, value);
|
|
hw_breakpoint_update(cpu, i);
|
|
}
|
|
|
|
static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
ARMCPU *cpu = arm_env_get_cpu(env);
|
|
int i = ri->crm;
|
|
|
|
/* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
|
|
* copy of BAS[0].
|
|
*/
|
|
value = deposit64(value, 6, 1, extract64(value, 5, 1));
|
|
value = deposit64(value, 8, 1, extract64(value, 7, 1));
|
|
|
|
raw_write(env, ri, value);
|
|
hw_breakpoint_update(cpu, i);
|
|
}
|
|
|
|
static void define_debug_regs(ARMCPU *cpu)
|
|
{
|
|
/* Define v7 and v8 architectural debug registers.
|
|
* These are just dummy implementations for now.
|
|
*/
|
|
int i;
|
|
int wrps, brps, ctx_cmps;
|
|
ARMCPRegInfo dbgdidr = {
|
|
.name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
|
|
.access = PL0_R, .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
|
|
};
|
|
|
|
/* Note that all these register fields hold "number of Xs minus 1". */
|
|
brps = extract32(cpu->dbgdidr, 24, 4);
|
|
wrps = extract32(cpu->dbgdidr, 28, 4);
|
|
ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
|
|
|
|
assert(ctx_cmps <= brps);
|
|
|
|
/* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
|
|
* of the debug registers such as number of breakpoints;
|
|
* check that if they both exist then they agree.
|
|
*/
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
|
|
assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
|
|
assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
|
|
assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
|
|
}
|
|
|
|
define_one_arm_cp_reg(cpu, &dbgdidr);
|
|
define_arm_cp_regs(cpu, debug_cp_reginfo);
|
|
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
|
|
define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
|
|
}
|
|
|
|
for (i = 0; i < brps + 1; i++) {
|
|
ARMCPRegInfo dbgregs[] = {
|
|
{ .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
|
|
.cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
|
|
.access = PL1_RW,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
|
|
.writefn = dbgbvr_write, .raw_writefn = raw_write
|
|
},
|
|
{ .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
|
|
.cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
|
|
.access = PL1_RW,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
|
|
.writefn = dbgbcr_write, .raw_writefn = raw_write
|
|
},
|
|
REGINFO_SENTINEL
|
|
};
|
|
define_arm_cp_regs(cpu, dbgregs);
|
|
}
|
|
|
|
for (i = 0; i < wrps + 1; i++) {
|
|
ARMCPRegInfo dbgregs[] = {
|
|
{ .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
|
|
.cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
|
|
.access = PL1_RW,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
|
|
.writefn = dbgwvr_write, .raw_writefn = raw_write
|
|
},
|
|
{ .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
|
|
.cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
|
|
.access = PL1_RW,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
|
|
.writefn = dbgwcr_write, .raw_writefn = raw_write
|
|
},
|
|
REGINFO_SENTINEL
|
|
};
|
|
define_arm_cp_regs(cpu, dbgregs);
|
|
}
|
|
}
|
|
|
|
void register_cp_regs_for_features(ARMCPU *cpu)
|
|
{
|
|
/* Register all the coprocessor registers based on feature bits */
|
|
CPUARMState *env = &cpu->env;
|
|
if (arm_feature(env, ARM_FEATURE_M)) {
|
|
/* M profile has no coprocessor registers */
|
|
return;
|
|
}
|
|
|
|
define_arm_cp_regs(cpu, cp_reginfo);
|
|
if (!arm_feature(env, ARM_FEATURE_V8)) {
|
|
/* Must go early as it is full of wildcards that may be
|
|
* overridden by later definitions.
|
|
*/
|
|
define_arm_cp_regs(cpu, not_v8_cp_reginfo);
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_V6)) {
|
|
/* The ID registers all have impdef reset values */
|
|
ARMCPRegInfo v6_idregs[] = {
|
|
{ .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.resetvalue = cpu->id_pfr0 },
|
|
{ .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.resetvalue = cpu->id_pfr1 },
|
|
{ .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.resetvalue = cpu->id_dfr0 },
|
|
{ .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.resetvalue = cpu->id_afr0 },
|
|
{ .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.resetvalue = cpu->id_mmfr0 },
|
|
{ .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.resetvalue = cpu->id_mmfr1 },
|
|
{ .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.resetvalue = cpu->id_mmfr2 },
|
|
{ .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.resetvalue = cpu->id_mmfr3 },
|
|
{ .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.resetvalue = cpu->id_isar0 },
|
|
{ .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.resetvalue = cpu->id_isar1 },
|
|
{ .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.resetvalue = cpu->id_isar2 },
|
|
{ .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.resetvalue = cpu->id_isar3 },
|
|
{ .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.resetvalue = cpu->id_isar4 },
|
|
{ .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.resetvalue = cpu->id_isar5 },
|
|
/* 6..7 are as yet unallocated and must RAZ */
|
|
{ .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
|
|
.opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
|
|
.resetvalue = 0 },
|
|
{ .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
|
|
.opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
|
|
.resetvalue = 0 },
|
|
REGINFO_SENTINEL
|
|
};
|
|
define_arm_cp_regs(cpu, v6_idregs);
|
|
define_arm_cp_regs(cpu, v6_cp_reginfo);
|
|
} else {
|
|
define_arm_cp_regs(cpu, not_v6_cp_reginfo);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_V6K)) {
|
|
define_arm_cp_regs(cpu, v6k_cp_reginfo);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_V7MP) &&
|
|
!arm_feature(env, ARM_FEATURE_MPU)) {
|
|
define_arm_cp_regs(cpu, v7mp_cp_reginfo);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_V7)) {
|
|
/* v7 performance monitor control register: same implementor
|
|
* field as main ID register, and we implement only the cycle
|
|
* count register.
|
|
*/
|
|
#ifndef CONFIG_USER_ONLY
|
|
ARMCPRegInfo pmcr = {
|
|
.name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
|
|
.access = PL0_RW,
|
|
.type = ARM_CP_IO | ARM_CP_ALIAS,
|
|
.fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
|
|
.accessfn = pmreg_access, .writefn = pmcr_write,
|
|
.raw_writefn = raw_write,
|
|
};
|
|
ARMCPRegInfo pmcr64 = {
|
|
.name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
|
|
.access = PL0_RW, .accessfn = pmreg_access,
|
|
.type = ARM_CP_IO,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
|
|
.resetvalue = cpu->midr & 0xff000000,
|
|
.writefn = pmcr_write, .raw_writefn = raw_write,
|
|
};
|
|
define_one_arm_cp_reg(cpu, &pmcr);
|
|
define_one_arm_cp_reg(cpu, &pmcr64);
|
|
#endif
|
|
ARMCPRegInfo clidr = {
|
|
.name = "CLIDR", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
|
|
.access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
|
|
};
|
|
define_one_arm_cp_reg(cpu, &clidr);
|
|
define_arm_cp_regs(cpu, v7_cp_reginfo);
|
|
define_debug_regs(cpu);
|
|
} else {
|
|
define_arm_cp_regs(cpu, not_v7_cp_reginfo);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_V8)) {
|
|
/* AArch64 ID registers, which all have impdef reset values */
|
|
ARMCPRegInfo v8_idregs[] = {
|
|
{ .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.resetvalue = cpu->id_aa64pfr0 },
|
|
{ .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.resetvalue = cpu->id_aa64pfr1},
|
|
{ .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
/* We mask out the PMUVer field, because we don't currently
|
|
* implement the PMU. Not advertising it prevents the guest
|
|
* from trying to use it and getting UNDEFs on registers we
|
|
* don't implement.
|
|
*/
|
|
.resetvalue = cpu->id_aa64dfr0 & ~0xf00 },
|
|
{ .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.resetvalue = cpu->id_aa64dfr1 },
|
|
{ .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.resetvalue = cpu->id_aa64afr0 },
|
|
{ .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.resetvalue = cpu->id_aa64afr1 },
|
|
{ .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.resetvalue = cpu->id_aa64isar0 },
|
|
{ .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.resetvalue = cpu->id_aa64isar1 },
|
|
{ .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.resetvalue = cpu->id_aa64mmfr0 },
|
|
{ .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.resetvalue = cpu->id_aa64mmfr1 },
|
|
{ .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.resetvalue = cpu->mvfr0 },
|
|
{ .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.resetvalue = cpu->mvfr1 },
|
|
{ .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.resetvalue = cpu->mvfr2 },
|
|
REGINFO_SENTINEL
|
|
};
|
|
/* RVBAR_EL1 is only implemented if EL1 is the highest EL */
|
|
if (!arm_feature(env, ARM_FEATURE_EL3) &&
|
|
!arm_feature(env, ARM_FEATURE_EL2)) {
|
|
ARMCPRegInfo rvbar = {
|
|
.name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
|
|
.type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
|
|
};
|
|
define_one_arm_cp_reg(cpu, &rvbar);
|
|
}
|
|
define_arm_cp_regs(cpu, v8_idregs);
|
|
define_arm_cp_regs(cpu, v8_cp_reginfo);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_EL2)) {
|
|
uint64_t vmpidr_def = mpidr_read_val(env);
|
|
ARMCPRegInfo vpidr_regs[] = {
|
|
{ .name = "VPIDR", .state = ARM_CP_STATE_AA32,
|
|
.cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
|
|
.access = PL2_RW, .accessfn = access_el3_aa32ns,
|
|
.resetvalue = cpu->midr,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
|
|
{ .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
|
|
.access = PL2_RW, .resetvalue = cpu->midr,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
|
|
{ .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
|
|
.cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
|
|
.access = PL2_RW, .accessfn = access_el3_aa32ns,
|
|
.resetvalue = vmpidr_def,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
|
|
{ .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
|
|
.access = PL2_RW,
|
|
.resetvalue = vmpidr_def,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
|
|
REGINFO_SENTINEL
|
|
};
|
|
define_arm_cp_regs(cpu, vpidr_regs);
|
|
define_arm_cp_regs(cpu, el2_cp_reginfo);
|
|
/* RVBAR_EL2 is only implemented if EL2 is the highest EL */
|
|
if (!arm_feature(env, ARM_FEATURE_EL3)) {
|
|
ARMCPRegInfo rvbar = {
|
|
.name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
|
|
.type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
|
|
};
|
|
define_one_arm_cp_reg(cpu, &rvbar);
|
|
}
|
|
} else {
|
|
/* If EL2 is missing but higher ELs are enabled, we need to
|
|
* register the no_el2 reginfos.
|
|
*/
|
|
if (arm_feature(env, ARM_FEATURE_EL3)) {
|
|
/* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
|
|
* of MIDR_EL1 and MPIDR_EL1.
|
|
*/
|
|
ARMCPRegInfo vpidr_regs[] = {
|
|
{ .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
|
|
.access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
|
|
.type = ARM_CP_CONST, .resetvalue = cpu->midr,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
|
|
{ .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
|
|
.access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
|
|
.type = ARM_CP_NO_RAW,
|
|
.writefn = arm_cp_write_ignore, .readfn = mpidr_read },
|
|
REGINFO_SENTINEL
|
|
};
|
|
define_arm_cp_regs(cpu, vpidr_regs);
|
|
define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
|
|
}
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_EL3)) {
|
|
define_arm_cp_regs(cpu, el3_cp_reginfo);
|
|
ARMCPRegInfo rvbar = {
|
|
.name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
|
|
.type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar
|
|
};
|
|
define_one_arm_cp_reg(cpu, &rvbar);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_MPU)) {
|
|
if (arm_feature(env, ARM_FEATURE_V6)) {
|
|
/* PMSAv6 not implemented */
|
|
assert(arm_feature(env, ARM_FEATURE_V7));
|
|
define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
|
|
define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
|
|
} else {
|
|
define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
|
|
}
|
|
} else {
|
|
define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
|
|
define_arm_cp_regs(cpu, vmsa_cp_reginfo);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
|
|
define_arm_cp_regs(cpu, t2ee_cp_reginfo);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
|
|
define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_VAPA)) {
|
|
define_arm_cp_regs(cpu, vapa_cp_reginfo);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
|
|
define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
|
|
define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
|
|
define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
|
|
define_arm_cp_regs(cpu, omap_cp_reginfo);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
|
|
define_arm_cp_regs(cpu, strongarm_cp_reginfo);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_XSCALE)) {
|
|
define_arm_cp_regs(cpu, xscale_cp_reginfo);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
|
|
define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_LPAE)) {
|
|
define_arm_cp_regs(cpu, lpae_cp_reginfo);
|
|
}
|
|
/* Slightly awkwardly, the OMAP and StrongARM cores need all of
|
|
* cp15 crn=0 to be writes-ignored, whereas for other cores they should
|
|
* be read-only (ie write causes UNDEF exception).
|
|
*/
|
|
{
|
|
ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
|
|
/* Pre-v8 MIDR space.
|
|
* Note that the MIDR isn't a simple constant register because
|
|
* of the TI925 behaviour where writes to another register can
|
|
* cause the MIDR value to change.
|
|
*
|
|
* Unimplemented registers in the c15 0 0 0 space default to
|
|
* MIDR. Define MIDR first as this entire space, then CTR, TCMTR
|
|
* and friends override accordingly.
|
|
*/
|
|
{ .name = "MIDR",
|
|
.cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
|
|
.access = PL1_R, .resetvalue = cpu->midr,
|
|
.writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
|
|
.readfn = midr_read,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
|
|
.type = ARM_CP_OVERRIDE },
|
|
/* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
|
|
{ .name = "DUMMY",
|
|
.cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
|
|
.access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
|
|
{ .name = "DUMMY",
|
|
.cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
|
|
.access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
|
|
{ .name = "DUMMY",
|
|
.cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
|
|
.access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
|
|
{ .name = "DUMMY",
|
|
.cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
|
|
.access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
|
|
{ .name = "DUMMY",
|
|
.cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
|
|
.access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
|
|
REGINFO_SENTINEL
|
|
};
|
|
ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
|
|
{ .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
|
|
.access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
|
|
.readfn = midr_read },
|
|
/* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
|
|
{ .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
|
|
.cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
|
|
.access = PL1_R, .resetvalue = cpu->midr },
|
|
{ .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
|
|
.cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
|
|
.access = PL1_R, .resetvalue = cpu->midr },
|
|
{ .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
|
|
.access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
|
|
REGINFO_SENTINEL
|
|
};
|
|
ARMCPRegInfo id_cp_reginfo[] = {
|
|
/* These are common to v8 and pre-v8 */
|
|
{ .name = "CTR",
|
|
.cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
|
|
.access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
|
|
{ .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
|
|
.access = PL0_R, .accessfn = ctr_el0_access,
|
|
.type = ARM_CP_CONST, .resetvalue = cpu->ctr },
|
|
/* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
|
|
{ .name = "TCMTR",
|
|
.cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
|
|
.access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
|
|
REGINFO_SENTINEL
|
|
};
|
|
/* TLBTR is specific to VMSA */
|
|
ARMCPRegInfo id_tlbtr_reginfo = {
|
|
.name = "TLBTR",
|
|
.cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
|
|
.access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
|
|
};
|
|
/* MPUIR is specific to PMSA V6+ */
|
|
ARMCPRegInfo id_mpuir_reginfo = {
|
|
.name = "MPUIR",
|
|
.cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.resetvalue = cpu->pmsav7_dregion << 8
|
|
};
|
|
ARMCPRegInfo crn0_wi_reginfo = {
|
|
.name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
|
|
.opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
|
|
.type = ARM_CP_NOP | ARM_CP_OVERRIDE
|
|
};
|
|
if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
|
|
arm_feature(env, ARM_FEATURE_STRONGARM)) {
|
|
ARMCPRegInfo *r;
|
|
/* Register the blanket "writes ignored" value first to cover the
|
|
* whole space. Then update the specific ID registers to allow write
|
|
* access, so that they ignore writes rather than causing them to
|
|
* UNDEF.
|
|
*/
|
|
define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
|
|
for (r = id_pre_v8_midr_cp_reginfo;
|
|
r->type != ARM_CP_SENTINEL; r++) {
|
|
r->access = PL1_RW;
|
|
}
|
|
for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
|
|
r->access = PL1_RW;
|
|
}
|
|
id_tlbtr_reginfo.access = PL1_RW;
|
|
id_tlbtr_reginfo.access = PL1_RW;
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_V8)) {
|
|
define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
|
|
} else {
|
|
define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
|
|
}
|
|
define_arm_cp_regs(cpu, id_cp_reginfo);
|
|
if (!arm_feature(env, ARM_FEATURE_MPU)) {
|
|
define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
|
|
} else if (arm_feature(env, ARM_FEATURE_V7)) {
|
|
define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
|
|
}
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_MPIDR)) {
|
|
define_arm_cp_regs(cpu, mpidr_cp_reginfo);
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_AUXCR)) {
|
|
ARMCPRegInfo auxcr_reginfo[] = {
|
|
{ .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
|
|
.access = PL1_RW, .type = ARM_CP_CONST,
|
|
.resetvalue = cpu->reset_auxcr },
|
|
{ .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
|
|
.access = PL2_RW, .type = ARM_CP_CONST,
|
|
.resetvalue = 0 },
|
|
{ .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
|
|
.access = PL3_RW, .type = ARM_CP_CONST,
|
|
.resetvalue = 0 },
|
|
REGINFO_SENTINEL
|
|
};
|
|
define_arm_cp_regs(cpu, auxcr_reginfo);
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_CBAR)) {
|
|
if (arm_feature(env, ARM_FEATURE_AARCH64)) {
|
|
/* 32 bit view is [31:18] 0...0 [43:32]. */
|
|
uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
|
|
| extract64(cpu->reset_cbar, 32, 12);
|
|
ARMCPRegInfo cbar_reginfo[] = {
|
|
{ .name = "CBAR",
|
|
.type = ARM_CP_CONST,
|
|
.cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
|
|
.access = PL1_R, .resetvalue = cpu->reset_cbar },
|
|
{ .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
|
|
.type = ARM_CP_CONST,
|
|
.opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
|
|
.access = PL1_R, .resetvalue = cbar32 },
|
|
REGINFO_SENTINEL
|
|
};
|
|
/* We don't implement a r/w 64 bit CBAR currently */
|
|
assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
|
|
define_arm_cp_regs(cpu, cbar_reginfo);
|
|
} else {
|
|
ARMCPRegInfo cbar = {
|
|
.name = "CBAR",
|
|
.cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
|
|
.access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
|
|
.fieldoffset = offsetof(CPUARMState,
|
|
cp15.c15_config_base_address)
|
|
};
|
|
if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
|
|
cbar.access = PL1_R;
|
|
cbar.fieldoffset = 0;
|
|
cbar.type = ARM_CP_CONST;
|
|
}
|
|
define_one_arm_cp_reg(cpu, &cbar);
|
|
}
|
|
}
|
|
|
|
/* Generic registers whose values depend on the implementation */
|
|
{
|
|
ARMCPRegInfo sctlr = {
|
|
.name = "SCTLR", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
|
|
.access = PL1_RW,
|
|
.bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
|
|
offsetof(CPUARMState, cp15.sctlr_ns) },
|
|
.writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
|
|
.raw_writefn = raw_write,
|
|
};
|
|
if (arm_feature(env, ARM_FEATURE_XSCALE)) {
|
|
/* Normally we would always end the TB on an SCTLR write, but Linux
|
|
* arch/arm/mach-pxa/sleep.S expects two instructions following
|
|
* an MMU enable to execute from cache. Imitate this behaviour.
|
|
*/
|
|
sctlr.type |= ARM_CP_SUPPRESS_TB_END;
|
|
}
|
|
define_one_arm_cp_reg(cpu, &sctlr);
|
|
}
|
|
}
|
|
|
|
ARMCPU *cpu_arm_init(const char *cpu_model)
|
|
{
|
|
return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model));
|
|
}
|
|
|
|
void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
|
|
{
|
|
CPUState *cs = CPU(cpu);
|
|
CPUARMState *env = &cpu->env;
|
|
|
|
if (arm_feature(env, ARM_FEATURE_AARCH64)) {
|
|
gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
|
|
aarch64_fpu_gdb_set_reg,
|
|
34, "aarch64-fpu.xml", 0);
|
|
} else if (arm_feature(env, ARM_FEATURE_NEON)) {
|
|
gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
|
|
51, "arm-neon.xml", 0);
|
|
} else if (arm_feature(env, ARM_FEATURE_VFP3)) {
|
|
gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
|
|
35, "arm-vfp3.xml", 0);
|
|
} else if (arm_feature(env, ARM_FEATURE_VFP)) {
|
|
gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
|
|
19, "arm-vfp.xml", 0);
|
|
}
|
|
}
|
|
|
|
/* Sort alphabetically by type name, except for "any". */
|
|
static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
|
|
{
|
|
ObjectClass *class_a = (ObjectClass *)a;
|
|
ObjectClass *class_b = (ObjectClass *)b;
|
|
const char *name_a, *name_b;
|
|
|
|
name_a = object_class_get_name(class_a);
|
|
name_b = object_class_get_name(class_b);
|
|
if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
|
|
return 1;
|
|
} else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
|
|
return -1;
|
|
} else {
|
|
return strcmp(name_a, name_b);
|
|
}
|
|
}
|
|
|
|
static void arm_cpu_list_entry(gpointer data, gpointer user_data)
|
|
{
|
|
ObjectClass *oc = data;
|
|
CPUListState *s = user_data;
|
|
const char *typename;
|
|
char *name;
|
|
|
|
typename = object_class_get_name(oc);
|
|
name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
|
|
(*s->cpu_fprintf)(s->file, " %s\n",
|
|
name);
|
|
g_free(name);
|
|
}
|
|
|
|
void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
|
|
{
|
|
CPUListState s = {
|
|
.file = f,
|
|
.cpu_fprintf = cpu_fprintf,
|
|
};
|
|
GSList *list;
|
|
|
|
list = object_class_get_list(TYPE_ARM_CPU, false);
|
|
list = g_slist_sort(list, arm_cpu_list_compare);
|
|
(*cpu_fprintf)(f, "Available CPUs:\n");
|
|
g_slist_foreach(list, arm_cpu_list_entry, &s);
|
|
g_slist_free(list);
|
|
#ifdef CONFIG_KVM
|
|
/* The 'host' CPU type is dynamically registered only if KVM is
|
|
* enabled, so we have to special-case it here:
|
|
*/
|
|
(*cpu_fprintf)(f, " host (only available in KVM mode)\n");
|
|
#endif
|
|
}
|
|
|
|
static void arm_cpu_add_definition(gpointer data, gpointer user_data)
|
|
{
|
|
ObjectClass *oc = data;
|
|
CpuDefinitionInfoList **cpu_list = user_data;
|
|
CpuDefinitionInfoList *entry;
|
|
CpuDefinitionInfo *info;
|
|
const char *typename;
|
|
|
|
typename = object_class_get_name(oc);
|
|
info = g_malloc0(sizeof(*info));
|
|
info->name = g_strndup(typename,
|
|
strlen(typename) - strlen("-" TYPE_ARM_CPU));
|
|
|
|
entry = g_malloc0(sizeof(*entry));
|
|
entry->value = info;
|
|
entry->next = *cpu_list;
|
|
*cpu_list = entry;
|
|
}
|
|
|
|
CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
|
|
{
|
|
CpuDefinitionInfoList *cpu_list = NULL;
|
|
GSList *list;
|
|
|
|
list = object_class_get_list(TYPE_ARM_CPU, false);
|
|
g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
|
|
g_slist_free(list);
|
|
|
|
return cpu_list;
|
|
}
|
|
|
|
static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
|
|
void *opaque, int state, int secstate,
|
|
int crm, int opc1, int opc2)
|
|
{
|
|
/* Private utility function for define_one_arm_cp_reg_with_opaque():
|
|
* add a single reginfo struct to the hash table.
|
|
*/
|
|
uint32_t *key = g_new(uint32_t, 1);
|
|
ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
|
|
int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
|
|
int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
|
|
|
|
/* Reset the secure state to the specific incoming state. This is
|
|
* necessary as the register may have been defined with both states.
|
|
*/
|
|
r2->secure = secstate;
|
|
|
|
if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
|
|
/* Register is banked (using both entries in array).
|
|
* Overwriting fieldoffset as the array is only used to define
|
|
* banked registers but later only fieldoffset is used.
|
|
*/
|
|
r2->fieldoffset = r->bank_fieldoffsets[ns];
|
|
}
|
|
|
|
if (state == ARM_CP_STATE_AA32) {
|
|
if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
|
|
/* If the register is banked then we don't need to migrate or
|
|
* reset the 32-bit instance in certain cases:
|
|
*
|
|
* 1) If the register has both 32-bit and 64-bit instances then we
|
|
* can count on the 64-bit instance taking care of the
|
|
* non-secure bank.
|
|
* 2) If ARMv8 is enabled then we can count on a 64-bit version
|
|
* taking care of the secure bank. This requires that separate
|
|
* 32 and 64-bit definitions are provided.
|
|
*/
|
|
if ((r->state == ARM_CP_STATE_BOTH && ns) ||
|
|
(arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
|
|
r2->type |= ARM_CP_ALIAS;
|
|
}
|
|
} else if ((secstate != r->secure) && !ns) {
|
|
/* The register is not banked so we only want to allow migration of
|
|
* the non-secure instance.
|
|
*/
|
|
r2->type |= ARM_CP_ALIAS;
|
|
}
|
|
|
|
if (r->state == ARM_CP_STATE_BOTH) {
|
|
/* We assume it is a cp15 register if the .cp field is left unset.
|
|
*/
|
|
if (r2->cp == 0) {
|
|
r2->cp = 15;
|
|
}
|
|
|
|
#ifdef HOST_WORDS_BIGENDIAN
|
|
if (r2->fieldoffset) {
|
|
r2->fieldoffset += sizeof(uint32_t);
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
if (state == ARM_CP_STATE_AA64) {
|
|
/* To allow abbreviation of ARMCPRegInfo
|
|
* definitions, we treat cp == 0 as equivalent to
|
|
* the value for "standard guest-visible sysreg".
|
|
* STATE_BOTH definitions are also always "standard
|
|
* sysreg" in their AArch64 view (the .cp value may
|
|
* be non-zero for the benefit of the AArch32 view).
|
|
*/
|
|
if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
|
|
r2->cp = CP_REG_ARM64_SYSREG_CP;
|
|
}
|
|
*key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
|
|
r2->opc0, opc1, opc2);
|
|
} else {
|
|
*key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
|
|
}
|
|
if (opaque) {
|
|
r2->opaque = opaque;
|
|
}
|
|
/* reginfo passed to helpers is correct for the actual access,
|
|
* and is never ARM_CP_STATE_BOTH:
|
|
*/
|
|
r2->state = state;
|
|
/* Make sure reginfo passed to helpers for wildcarded regs
|
|
* has the correct crm/opc1/opc2 for this reg, not CP_ANY:
|
|
*/
|
|
r2->crm = crm;
|
|
r2->opc1 = opc1;
|
|
r2->opc2 = opc2;
|
|
/* By convention, for wildcarded registers only the first
|
|
* entry is used for migration; the others are marked as
|
|
* ALIAS so we don't try to transfer the register
|
|
* multiple times. Special registers (ie NOP/WFI) are
|
|
* never migratable and not even raw-accessible.
|
|
*/
|
|
if ((r->type & ARM_CP_SPECIAL)) {
|
|
r2->type |= ARM_CP_NO_RAW;
|
|
}
|
|
if (((r->crm == CP_ANY) && crm != 0) ||
|
|
((r->opc1 == CP_ANY) && opc1 != 0) ||
|
|
((r->opc2 == CP_ANY) && opc2 != 0)) {
|
|
r2->type |= ARM_CP_ALIAS;
|
|
}
|
|
|
|
/* Check that raw accesses are either forbidden or handled. Note that
|
|
* we can't assert this earlier because the setup of fieldoffset for
|
|
* banked registers has to be done first.
|
|
*/
|
|
if (!(r2->type & ARM_CP_NO_RAW)) {
|
|
assert(!raw_accessors_invalid(r2));
|
|
}
|
|
|
|
/* Overriding of an existing definition must be explicitly
|
|
* requested.
|
|
*/
|
|
if (!(r->type & ARM_CP_OVERRIDE)) {
|
|
ARMCPRegInfo *oldreg;
|
|
oldreg = g_hash_table_lookup(cpu->cp_regs, key);
|
|
if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
|
|
fprintf(stderr, "Register redefined: cp=%d %d bit "
|
|
"crn=%d crm=%d opc1=%d opc2=%d, "
|
|
"was %s, now %s\n", r2->cp, 32 + 32 * is64,
|
|
r2->crn, r2->crm, r2->opc1, r2->opc2,
|
|
oldreg->name, r2->name);
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
g_hash_table_insert(cpu->cp_regs, key, r2);
|
|
}
|
|
|
|
|
|
void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
|
|
const ARMCPRegInfo *r, void *opaque)
|
|
{
|
|
/* Define implementations of coprocessor registers.
|
|
* We store these in a hashtable because typically
|
|
* there are less than 150 registers in a space which
|
|
* is 16*16*16*8*8 = 262144 in size.
|
|
* Wildcarding is supported for the crm, opc1 and opc2 fields.
|
|
* If a register is defined twice then the second definition is
|
|
* used, so this can be used to define some generic registers and
|
|
* then override them with implementation specific variations.
|
|
* At least one of the original and the second definition should
|
|
* include ARM_CP_OVERRIDE in its type bits -- this is just a guard
|
|
* against accidental use.
|
|
*
|
|
* The state field defines whether the register is to be
|
|
* visible in the AArch32 or AArch64 execution state. If the
|
|
* state is set to ARM_CP_STATE_BOTH then we synthesise a
|
|
* reginfo structure for the AArch32 view, which sees the lower
|
|
* 32 bits of the 64 bit register.
|
|
*
|
|
* Only registers visible in AArch64 may set r->opc0; opc0 cannot
|
|
* be wildcarded. AArch64 registers are always considered to be 64
|
|
* bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
|
|
* the register, if any.
|
|
*/
|
|
int crm, opc1, opc2, state;
|
|
int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
|
|
int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
|
|
int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
|
|
int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
|
|
int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
|
|
int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
|
|
/* 64 bit registers have only CRm and Opc1 fields */
|
|
assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
|
|
/* op0 only exists in the AArch64 encodings */
|
|
assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
|
|
/* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
|
|
assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
|
|
/* The AArch64 pseudocode CheckSystemAccess() specifies that op1
|
|
* encodes a minimum access level for the register. We roll this
|
|
* runtime check into our general permission check code, so check
|
|
* here that the reginfo's specified permissions are strict enough
|
|
* to encompass the generic architectural permission check.
|
|
*/
|
|
if (r->state != ARM_CP_STATE_AA32) {
|
|
int mask = 0;
|
|
switch (r->opc1) {
|
|
case 0: case 1: case 2:
|
|
/* min_EL EL1 */
|
|
mask = PL1_RW;
|
|
break;
|
|
case 3:
|
|
/* min_EL EL0 */
|
|
mask = PL0_RW;
|
|
break;
|
|
case 4:
|
|
/* min_EL EL2 */
|
|
mask = PL2_RW;
|
|
break;
|
|
case 5:
|
|
/* unallocated encoding, so not possible */
|
|
assert(false);
|
|
break;
|
|
case 6:
|
|
/* min_EL EL3 */
|
|
mask = PL3_RW;
|
|
break;
|
|
case 7:
|
|
/* min_EL EL1, secure mode only (we don't check the latter) */
|
|
mask = PL1_RW;
|
|
break;
|
|
default:
|
|
/* broken reginfo with out-of-range opc1 */
|
|
assert(false);
|
|
break;
|
|
}
|
|
/* assert our permissions are not too lax (stricter is fine) */
|
|
assert((r->access & ~mask) == 0);
|
|
}
|
|
|
|
/* Check that the register definition has enough info to handle
|
|
* reads and writes if they are permitted.
|
|
*/
|
|
if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
|
|
if (r->access & PL3_R) {
|
|
assert((r->fieldoffset ||
|
|
(r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
|
|
r->readfn);
|
|
}
|
|
if (r->access & PL3_W) {
|
|
assert((r->fieldoffset ||
|
|
(r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
|
|
r->writefn);
|
|
}
|
|
}
|
|
/* Bad type field probably means missing sentinel at end of reg list */
|
|
assert(cptype_valid(r->type));
|
|
for (crm = crmmin; crm <= crmmax; crm++) {
|
|
for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
|
|
for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
|
|
for (state = ARM_CP_STATE_AA32;
|
|
state <= ARM_CP_STATE_AA64; state++) {
|
|
if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
|
|
continue;
|
|
}
|
|
if (state == ARM_CP_STATE_AA32) {
|
|
/* Under AArch32 CP registers can be common
|
|
* (same for secure and non-secure world) or banked.
|
|
*/
|
|
switch (r->secure) {
|
|
case ARM_CP_SECSTATE_S:
|
|
case ARM_CP_SECSTATE_NS:
|
|
add_cpreg_to_hashtable(cpu, r, opaque, state,
|
|
r->secure, crm, opc1, opc2);
|
|
break;
|
|
default:
|
|
add_cpreg_to_hashtable(cpu, r, opaque, state,
|
|
ARM_CP_SECSTATE_S,
|
|
crm, opc1, opc2);
|
|
add_cpreg_to_hashtable(cpu, r, opaque, state,
|
|
ARM_CP_SECSTATE_NS,
|
|
crm, opc1, opc2);
|
|
break;
|
|
}
|
|
} else {
|
|
/* AArch64 registers get mapped to non-secure instance
|
|
* of AArch32 */
|
|
add_cpreg_to_hashtable(cpu, r, opaque, state,
|
|
ARM_CP_SECSTATE_NS,
|
|
crm, opc1, opc2);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
|
|
const ARMCPRegInfo *regs, void *opaque)
|
|
{
|
|
/* Define a whole list of registers */
|
|
const ARMCPRegInfo *r;
|
|
for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
|
|
define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
|
|
}
|
|
}
|
|
|
|
const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
|
|
{
|
|
return g_hash_table_lookup(cpregs, &encoded_cp);
|
|
}
|
|
|
|
void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/* Helper coprocessor write function for write-ignore registers */
|
|
}
|
|
|
|
uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
/* Helper coprocessor write function for read-as-zero registers */
|
|
return 0;
|
|
}
|
|
|
|
void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
|
|
{
|
|
/* Helper coprocessor reset function for do-nothing-on-reset registers */
|
|
}
|
|
|
|
static int bad_mode_switch(CPUARMState *env, int mode)
|
|
{
|
|
/* Return true if it is not valid for us to switch to
|
|
* this CPU mode (ie all the UNPREDICTABLE cases in
|
|
* the ARM ARM CPSRWriteByInstr pseudocode).
|
|
*/
|
|
switch (mode) {
|
|
case ARM_CPU_MODE_USR:
|
|
case ARM_CPU_MODE_SYS:
|
|
case ARM_CPU_MODE_SVC:
|
|
case ARM_CPU_MODE_ABT:
|
|
case ARM_CPU_MODE_UND:
|
|
case ARM_CPU_MODE_IRQ:
|
|
case ARM_CPU_MODE_FIQ:
|
|
return 0;
|
|
case ARM_CPU_MODE_MON:
|
|
return !arm_is_secure(env);
|
|
default:
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
uint32_t cpsr_read(CPUARMState *env)
|
|
{
|
|
int ZF;
|
|
ZF = (env->ZF == 0);
|
|
return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
|
|
(env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
|
|
| (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
|
|
| ((env->condexec_bits & 0xfc) << 8)
|
|
| (env->GE << 16) | (env->daif & CPSR_AIF);
|
|
}
|
|
|
|
void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
|
|
{
|
|
uint32_t changed_daif;
|
|
|
|
if (mask & CPSR_NZCV) {
|
|
env->ZF = (~val) & CPSR_Z;
|
|
env->NF = val;
|
|
env->CF = (val >> 29) & 1;
|
|
env->VF = (val << 3) & 0x80000000;
|
|
}
|
|
if (mask & CPSR_Q)
|
|
env->QF = ((val & CPSR_Q) != 0);
|
|
if (mask & CPSR_T)
|
|
env->thumb = ((val & CPSR_T) != 0);
|
|
if (mask & CPSR_IT_0_1) {
|
|
env->condexec_bits &= ~3;
|
|
env->condexec_bits |= (val >> 25) & 3;
|
|
}
|
|
if (mask & CPSR_IT_2_7) {
|
|
env->condexec_bits &= 3;
|
|
env->condexec_bits |= (val >> 8) & 0xfc;
|
|
}
|
|
if (mask & CPSR_GE) {
|
|
env->GE = (val >> 16) & 0xf;
|
|
}
|
|
|
|
/* In a V7 implementation that includes the security extensions but does
|
|
* not include Virtualization Extensions the SCR.FW and SCR.AW bits control
|
|
* whether non-secure software is allowed to change the CPSR_F and CPSR_A
|
|
* bits respectively.
|
|
*
|
|
* In a V8 implementation, it is permitted for privileged software to
|
|
* change the CPSR A/F bits regardless of the SCR.AW/FW bits.
|
|
*/
|
|
if (!arm_feature(env, ARM_FEATURE_V8) &&
|
|
arm_feature(env, ARM_FEATURE_EL3) &&
|
|
!arm_feature(env, ARM_FEATURE_EL2) &&
|
|
!arm_is_secure(env)) {
|
|
|
|
changed_daif = (env->daif ^ val) & mask;
|
|
|
|
if (changed_daif & CPSR_A) {
|
|
/* Check to see if we are allowed to change the masking of async
|
|
* abort exceptions from a non-secure state.
|
|
*/
|
|
if (!(env->cp15.scr_el3 & SCR_AW)) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"Ignoring attempt to switch CPSR_A flag from "
|
|
"non-secure world with SCR.AW bit clear\n");
|
|
mask &= ~CPSR_A;
|
|
}
|
|
}
|
|
|
|
if (changed_daif & CPSR_F) {
|
|
/* Check to see if we are allowed to change the masking of FIQ
|
|
* exceptions from a non-secure state.
|
|
*/
|
|
if (!(env->cp15.scr_el3 & SCR_FW)) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"Ignoring attempt to switch CPSR_F flag from "
|
|
"non-secure world with SCR.FW bit clear\n");
|
|
mask &= ~CPSR_F;
|
|
}
|
|
|
|
/* Check whether non-maskable FIQ (NMFI) support is enabled.
|
|
* If this bit is set software is not allowed to mask
|
|
* FIQs, but is allowed to set CPSR_F to 0.
|
|
*/
|
|
if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
|
|
(val & CPSR_F)) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"Ignoring attempt to enable CPSR_F flag "
|
|
"(non-maskable FIQ [NMFI] support enabled)\n");
|
|
mask &= ~CPSR_F;
|
|
}
|
|
}
|
|
}
|
|
|
|
env->daif &= ~(CPSR_AIF & mask);
|
|
env->daif |= val & CPSR_AIF & mask;
|
|
|
|
if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
|
|
if (bad_mode_switch(env, val & CPSR_M)) {
|
|
/* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
|
|
* We choose to ignore the attempt and leave the CPSR M field
|
|
* untouched.
|
|
*/
|
|
mask &= ~CPSR_M;
|
|
} else {
|
|
switch_mode(env, val & CPSR_M);
|
|
}
|
|
}
|
|
mask &= ~CACHED_CPSR_BITS;
|
|
env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
|
|
}
|
|
|
|
/* Sign/zero extend */
|
|
uint32_t HELPER(sxtb16)(uint32_t x)
|
|
{
|
|
uint32_t res;
|
|
res = (uint16_t)(int8_t)x;
|
|
res |= (uint32_t)(int8_t)(x >> 16) << 16;
|
|
return res;
|
|
}
|
|
|
|
uint32_t HELPER(uxtb16)(uint32_t x)
|
|
{
|
|
uint32_t res;
|
|
res = (uint16_t)(uint8_t)x;
|
|
res |= (uint32_t)(uint8_t)(x >> 16) << 16;
|
|
return res;
|
|
}
|
|
|
|
uint32_t HELPER(clz)(uint32_t x)
|
|
{
|
|
return clz32(x);
|
|
}
|
|
|
|
int32_t HELPER(sdiv)(int32_t num, int32_t den)
|
|
{
|
|
if (den == 0)
|
|
return 0;
|
|
if (num == INT_MIN && den == -1)
|
|
return INT_MIN;
|
|
return num / den;
|
|
}
|
|
|
|
uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
|
|
{
|
|
if (den == 0)
|
|
return 0;
|
|
return num / den;
|
|
}
|
|
|
|
uint32_t HELPER(rbit)(uint32_t x)
|
|
{
|
|
return revbit32(x);
|
|
}
|
|
|
|
#if defined(CONFIG_USER_ONLY)
|
|
|
|
/* These should probably raise undefined insn exceptions. */
|
|
void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
|
|
{
|
|
ARMCPU *cpu = arm_env_get_cpu(env);
|
|
|
|
cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
|
|
}
|
|
|
|
uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
|
|
{
|
|
ARMCPU *cpu = arm_env_get_cpu(env);
|
|
|
|
cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
|
|
return 0;
|
|
}
|
|
|
|
void switch_mode(CPUARMState *env, int mode)
|
|
{
|
|
ARMCPU *cpu = arm_env_get_cpu(env);
|
|
|
|
if (mode != ARM_CPU_MODE_USR) {
|
|
cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
|
|
}
|
|
}
|
|
|
|
void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
|
|
{
|
|
ARMCPU *cpu = arm_env_get_cpu(env);
|
|
|
|
cpu_abort(CPU(cpu), "banked r13 write\n");
|
|
}
|
|
|
|
uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
|
|
{
|
|
ARMCPU *cpu = arm_env_get_cpu(env);
|
|
|
|
cpu_abort(CPU(cpu), "banked r13 read\n");
|
|
return 0;
|
|
}
|
|
|
|
uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
|
|
uint32_t cur_el, bool secure)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
void aarch64_sync_64_to_32(CPUARMState *env)
|
|
{
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
#else
|
|
|
|
/* Map CPU modes onto saved register banks. */
|
|
int bank_number(int mode)
|
|
{
|
|
switch (mode) {
|
|
case ARM_CPU_MODE_USR:
|
|
case ARM_CPU_MODE_SYS:
|
|
return 0;
|
|
case ARM_CPU_MODE_SVC:
|
|
return 1;
|
|
case ARM_CPU_MODE_ABT:
|
|
return 2;
|
|
case ARM_CPU_MODE_UND:
|
|
return 3;
|
|
case ARM_CPU_MODE_IRQ:
|
|
return 4;
|
|
case ARM_CPU_MODE_FIQ:
|
|
return 5;
|
|
case ARM_CPU_MODE_HYP:
|
|
return 6;
|
|
case ARM_CPU_MODE_MON:
|
|
return 7;
|
|
}
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
void switch_mode(CPUARMState *env, int mode)
|
|
{
|
|
int old_mode;
|
|
int i;
|
|
|
|
old_mode = env->uncached_cpsr & CPSR_M;
|
|
if (mode == old_mode)
|
|
return;
|
|
|
|
if (old_mode == ARM_CPU_MODE_FIQ) {
|
|
memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
|
|
memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
|
|
} else if (mode == ARM_CPU_MODE_FIQ) {
|
|
memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
|
|
memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
|
|
}
|
|
|
|
i = bank_number(old_mode);
|
|
env->banked_r13[i] = env->regs[13];
|
|
env->banked_r14[i] = env->regs[14];
|
|
env->banked_spsr[i] = env->spsr;
|
|
|
|
i = bank_number(mode);
|
|
env->regs[13] = env->banked_r13[i];
|
|
env->regs[14] = env->banked_r14[i];
|
|
env->spsr = env->banked_spsr[i];
|
|
}
|
|
|
|
/* Physical Interrupt Target EL Lookup Table
|
|
*
|
|
* [ From ARM ARM section G1.13.4 (Table G1-15) ]
|
|
*
|
|
* The below multi-dimensional table is used for looking up the target
|
|
* exception level given numerous condition criteria. Specifically, the
|
|
* target EL is based on SCR and HCR routing controls as well as the
|
|
* currently executing EL and secure state.
|
|
*
|
|
* Dimensions:
|
|
* target_el_table[2][2][2][2][2][4]
|
|
* | | | | | +--- Current EL
|
|
* | | | | +------ Non-secure(0)/Secure(1)
|
|
* | | | +--------- HCR mask override
|
|
* | | +------------ SCR exec state control
|
|
* | +--------------- SCR mask override
|
|
* +------------------ 32-bit(0)/64-bit(1) EL3
|
|
*
|
|
* The table values are as such:
|
|
* 0-3 = EL0-EL3
|
|
* -1 = Cannot occur
|
|
*
|
|
* The ARM ARM target EL table includes entries indicating that an "exception
|
|
* is not taken". The two cases where this is applicable are:
|
|
* 1) An exception is taken from EL3 but the SCR does not have the exception
|
|
* routed to EL3.
|
|
* 2) An exception is taken from EL2 but the HCR does not have the exception
|
|
* routed to EL2.
|
|
* In these two cases, the below table contain a target of EL1. This value is
|
|
* returned as it is expected that the consumer of the table data will check
|
|
* for "target EL >= current EL" to ensure the exception is not taken.
|
|
*
|
|
* SCR HCR
|
|
* 64 EA AMO From
|
|
* BIT IRQ IMO Non-secure Secure
|
|
* EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
|
|
*/
|
|
const int8_t target_el_table[2][2][2][2][2][4] = {
|
|
{{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
|
|
{/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
|
|
{{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
|
|
{/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
|
|
{{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
|
|
{/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
|
|
{{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
|
|
{/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
|
|
{{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
|
|
{/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
|
|
{{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
|
|
{/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
|
|
{{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
|
|
{/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
|
|
{{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
|
|
{/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
|
|
};
|
|
|
|
/*
|
|
* Determine the target EL for physical exceptions
|
|
*/
|
|
uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
|
|
uint32_t cur_el, bool secure)
|
|
{
|
|
CPUARMState *env = cs->env_ptr;
|
|
int rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
|
|
int scr;
|
|
int hcr;
|
|
int target_el;
|
|
int is64 = arm_el_is_aa64(env, 3);
|
|
|
|
switch (excp_idx) {
|
|
case EXCP_IRQ:
|
|
scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
|
|
hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
|
|
break;
|
|
case EXCP_FIQ:
|
|
scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
|
|
hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
|
|
break;
|
|
default:
|
|
scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
|
|
hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
|
|
break;
|
|
};
|
|
|
|
/* If HCR.TGE is set then HCR is treated as being 1 */
|
|
hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
|
|
|
|
/* Perform a table-lookup for the target EL given the current state */
|
|
target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
|
|
|
|
assert(target_el > 0);
|
|
|
|
return target_el;
|
|
}
|
|
|
|
static void v7m_push(CPUARMState *env, uint32_t val)
|
|
{
|
|
CPUState *cs = CPU(arm_env_get_cpu(env));
|
|
|
|
env->regs[13] -= 4;
|
|
stl_phys(cs->as, env->regs[13], val);
|
|
}
|
|
|
|
static uint32_t v7m_pop(CPUARMState *env)
|
|
{
|
|
CPUState *cs = CPU(arm_env_get_cpu(env));
|
|
uint32_t val;
|
|
|
|
val = ldl_phys(cs->as, env->regs[13]);
|
|
env->regs[13] += 4;
|
|
return val;
|
|
}
|
|
|
|
/* Switch to V7M main or process stack pointer. */
|
|
static void switch_v7m_sp(CPUARMState *env, int process)
|
|
{
|
|
uint32_t tmp;
|
|
if (env->v7m.current_sp != process) {
|
|
tmp = env->v7m.other_sp;
|
|
env->v7m.other_sp = env->regs[13];
|
|
env->regs[13] = tmp;
|
|
env->v7m.current_sp = process;
|
|
}
|
|
}
|
|
|
|
static void do_v7m_exception_exit(CPUARMState *env)
|
|
{
|
|
uint32_t type;
|
|
uint32_t xpsr;
|
|
|
|
type = env->regs[15];
|
|
if (env->v7m.exception != 0)
|
|
armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
|
|
|
|
/* Switch to the target stack. */
|
|
switch_v7m_sp(env, (type & 4) != 0);
|
|
/* Pop registers. */
|
|
env->regs[0] = v7m_pop(env);
|
|
env->regs[1] = v7m_pop(env);
|
|
env->regs[2] = v7m_pop(env);
|
|
env->regs[3] = v7m_pop(env);
|
|
env->regs[12] = v7m_pop(env);
|
|
env->regs[14] = v7m_pop(env);
|
|
env->regs[15] = v7m_pop(env);
|
|
if (env->regs[15] & 1) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"M profile return from interrupt with misaligned "
|
|
"PC is UNPREDICTABLE\n");
|
|
/* Actual hardware seems to ignore the lsbit, and there are several
|
|
* RTOSes out there which incorrectly assume the r15 in the stack
|
|
* frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
|
|
*/
|
|
env->regs[15] &= ~1U;
|
|
}
|
|
xpsr = v7m_pop(env);
|
|
xpsr_write(env, xpsr, 0xfffffdff);
|
|
/* Undo stack alignment. */
|
|
if (xpsr & 0x200)
|
|
env->regs[13] |= 4;
|
|
/* ??? The exception return type specifies Thread/Handler mode. However
|
|
this is also implied by the xPSR value. Not sure what to do
|
|
if there is a mismatch. */
|
|
/* ??? Likewise for mismatches between the CONTROL register and the stack
|
|
pointer. */
|
|
}
|
|
|
|
void arm_v7m_cpu_do_interrupt(CPUState *cs)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
CPUARMState *env = &cpu->env;
|
|
uint32_t xpsr = xpsr_read(env);
|
|
uint32_t lr;
|
|
uint32_t addr;
|
|
|
|
arm_log_exception(cs->exception_index);
|
|
|
|
lr = 0xfffffff1;
|
|
if (env->v7m.current_sp)
|
|
lr |= 4;
|
|
if (env->v7m.exception == 0)
|
|
lr |= 8;
|
|
|
|
/* For exceptions we just mark as pending on the NVIC, and let that
|
|
handle it. */
|
|
/* TODO: Need to escalate if the current priority is higher than the
|
|
one we're raising. */
|
|
switch (cs->exception_index) {
|
|
case EXCP_UDEF:
|
|
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
|
|
return;
|
|
case EXCP_SWI:
|
|
/* The PC already points to the next instruction. */
|
|
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
|
|
return;
|
|
case EXCP_PREFETCH_ABORT:
|
|
case EXCP_DATA_ABORT:
|
|
/* TODO: if we implemented the MPU registers, this is where we
|
|
* should set the MMFAR, etc from exception.fsr and exception.vaddress.
|
|
*/
|
|
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
|
|
return;
|
|
case EXCP_BKPT:
|
|
if (semihosting_enabled()) {
|
|
int nr;
|
|
nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
|
|
if (nr == 0xab) {
|
|
env->regs[15] += 2;
|
|
qemu_log_mask(CPU_LOG_INT,
|
|
"...handling as semihosting call 0x%x\n",
|
|
env->regs[0]);
|
|
env->regs[0] = do_arm_semihosting(env);
|
|
return;
|
|
}
|
|
}
|
|
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
|
|
return;
|
|
case EXCP_IRQ:
|
|
env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
|
|
break;
|
|
case EXCP_EXCEPTION_EXIT:
|
|
do_v7m_exception_exit(env);
|
|
return;
|
|
default:
|
|
cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
|
|
return; /* Never happens. Keep compiler happy. */
|
|
}
|
|
|
|
/* Align stack pointer. */
|
|
/* ??? Should only do this if Configuration Control Register
|
|
STACKALIGN bit is set. */
|
|
if (env->regs[13] & 4) {
|
|
env->regs[13] -= 4;
|
|
xpsr |= 0x200;
|
|
}
|
|
/* Switch to the handler mode. */
|
|
v7m_push(env, xpsr);
|
|
v7m_push(env, env->regs[15]);
|
|
v7m_push(env, env->regs[14]);
|
|
v7m_push(env, env->regs[12]);
|
|
v7m_push(env, env->regs[3]);
|
|
v7m_push(env, env->regs[2]);
|
|
v7m_push(env, env->regs[1]);
|
|
v7m_push(env, env->regs[0]);
|
|
switch_v7m_sp(env, 0);
|
|
/* Clear IT bits */
|
|
env->condexec_bits = 0;
|
|
env->regs[14] = lr;
|
|
addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4);
|
|
env->regs[15] = addr & 0xfffffffe;
|
|
env->thumb = addr & 1;
|
|
}
|
|
|
|
/* Function used to synchronize QEMU's AArch64 register set with AArch32
|
|
* register set. This is necessary when switching between AArch32 and AArch64
|
|
* execution state.
|
|
*/
|
|
void aarch64_sync_32_to_64(CPUARMState *env)
|
|
{
|
|
int i;
|
|
uint32_t mode = env->uncached_cpsr & CPSR_M;
|
|
|
|
/* We can blanket copy R[0:7] to X[0:7] */
|
|
for (i = 0; i < 8; i++) {
|
|
env->xregs[i] = env->regs[i];
|
|
}
|
|
|
|
/* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
|
|
* Otherwise, they come from the banked user regs.
|
|
*/
|
|
if (mode == ARM_CPU_MODE_FIQ) {
|
|
for (i = 8; i < 13; i++) {
|
|
env->xregs[i] = env->usr_regs[i - 8];
|
|
}
|
|
} else {
|
|
for (i = 8; i < 13; i++) {
|
|
env->xregs[i] = env->regs[i];
|
|
}
|
|
}
|
|
|
|
/* Registers x13-x23 are the various mode SP and FP registers. Registers
|
|
* r13 and r14 are only copied if we are in that mode, otherwise we copy
|
|
* from the mode banked register.
|
|
*/
|
|
if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
|
|
env->xregs[13] = env->regs[13];
|
|
env->xregs[14] = env->regs[14];
|
|
} else {
|
|
env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
|
|
/* HYP is an exception in that it is copied from r14 */
|
|
if (mode == ARM_CPU_MODE_HYP) {
|
|
env->xregs[14] = env->regs[14];
|
|
} else {
|
|
env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
|
|
}
|
|
}
|
|
|
|
if (mode == ARM_CPU_MODE_HYP) {
|
|
env->xregs[15] = env->regs[13];
|
|
} else {
|
|
env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
|
|
}
|
|
|
|
if (mode == ARM_CPU_MODE_IRQ) {
|
|
env->xregs[16] = env->regs[14];
|
|
env->xregs[17] = env->regs[13];
|
|
} else {
|
|
env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
|
|
env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
|
|
}
|
|
|
|
if (mode == ARM_CPU_MODE_SVC) {
|
|
env->xregs[18] = env->regs[14];
|
|
env->xregs[19] = env->regs[13];
|
|
} else {
|
|
env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
|
|
env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
|
|
}
|
|
|
|
if (mode == ARM_CPU_MODE_ABT) {
|
|
env->xregs[20] = env->regs[14];
|
|
env->xregs[21] = env->regs[13];
|
|
} else {
|
|
env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
|
|
env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
|
|
}
|
|
|
|
if (mode == ARM_CPU_MODE_UND) {
|
|
env->xregs[22] = env->regs[14];
|
|
env->xregs[23] = env->regs[13];
|
|
} else {
|
|
env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
|
|
env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
|
|
}
|
|
|
|
/* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
|
|
* mode, then we can copy from r8-r14. Otherwise, we copy from the
|
|
* FIQ bank for r8-r14.
|
|
*/
|
|
if (mode == ARM_CPU_MODE_FIQ) {
|
|
for (i = 24; i < 31; i++) {
|
|
env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
|
|
}
|
|
} else {
|
|
for (i = 24; i < 29; i++) {
|
|
env->xregs[i] = env->fiq_regs[i - 24];
|
|
}
|
|
env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
|
|
env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
|
|
}
|
|
|
|
env->pc = env->regs[15];
|
|
}
|
|
|
|
/* Function used to synchronize QEMU's AArch32 register set with AArch64
|
|
* register set. This is necessary when switching between AArch32 and AArch64
|
|
* execution state.
|
|
*/
|
|
void aarch64_sync_64_to_32(CPUARMState *env)
|
|
{
|
|
int i;
|
|
uint32_t mode = env->uncached_cpsr & CPSR_M;
|
|
|
|
/* We can blanket copy X[0:7] to R[0:7] */
|
|
for (i = 0; i < 8; i++) {
|
|
env->regs[i] = env->xregs[i];
|
|
}
|
|
|
|
/* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
|
|
* Otherwise, we copy x8-x12 into the banked user regs.
|
|
*/
|
|
if (mode == ARM_CPU_MODE_FIQ) {
|
|
for (i = 8; i < 13; i++) {
|
|
env->usr_regs[i - 8] = env->xregs[i];
|
|
}
|
|
} else {
|
|
for (i = 8; i < 13; i++) {
|
|
env->regs[i] = env->xregs[i];
|
|
}
|
|
}
|
|
|
|
/* Registers r13 & r14 depend on the current mode.
|
|
* If we are in a given mode, we copy the corresponding x registers to r13
|
|
* and r14. Otherwise, we copy the x register to the banked r13 and r14
|
|
* for the mode.
|
|
*/
|
|
if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
|
|
env->regs[13] = env->xregs[13];
|
|
env->regs[14] = env->xregs[14];
|
|
} else {
|
|
env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
|
|
|
|
/* HYP is an exception in that it does not have its own banked r14 but
|
|
* shares the USR r14
|
|
*/
|
|
if (mode == ARM_CPU_MODE_HYP) {
|
|
env->regs[14] = env->xregs[14];
|
|
} else {
|
|
env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
|
|
}
|
|
}
|
|
|
|
if (mode == ARM_CPU_MODE_HYP) {
|
|
env->regs[13] = env->xregs[15];
|
|
} else {
|
|
env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
|
|
}
|
|
|
|
if (mode == ARM_CPU_MODE_IRQ) {
|
|
env->regs[14] = env->xregs[16];
|
|
env->regs[13] = env->xregs[17];
|
|
} else {
|
|
env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
|
|
env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
|
|
}
|
|
|
|
if (mode == ARM_CPU_MODE_SVC) {
|
|
env->regs[14] = env->xregs[18];
|
|
env->regs[13] = env->xregs[19];
|
|
} else {
|
|
env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
|
|
env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
|
|
}
|
|
|
|
if (mode == ARM_CPU_MODE_ABT) {
|
|
env->regs[14] = env->xregs[20];
|
|
env->regs[13] = env->xregs[21];
|
|
} else {
|
|
env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
|
|
env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
|
|
}
|
|
|
|
if (mode == ARM_CPU_MODE_UND) {
|
|
env->regs[14] = env->xregs[22];
|
|
env->regs[13] = env->xregs[23];
|
|
} else {
|
|
env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
|
|
env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
|
|
}
|
|
|
|
/* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
|
|
* mode, then we can copy to r8-r14. Otherwise, we copy to the
|
|
* FIQ bank for r8-r14.
|
|
*/
|
|
if (mode == ARM_CPU_MODE_FIQ) {
|
|
for (i = 24; i < 31; i++) {
|
|
env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
|
|
}
|
|
} else {
|
|
for (i = 24; i < 29; i++) {
|
|
env->fiq_regs[i - 24] = env->xregs[i];
|
|
}
|
|
env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
|
|
env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
|
|
}
|
|
|
|
env->regs[15] = env->pc;
|
|
}
|
|
|
|
/* Handle a CPU exception. */
|
|
void arm_cpu_do_interrupt(CPUState *cs)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
CPUARMState *env = &cpu->env;
|
|
uint32_t addr;
|
|
uint32_t mask;
|
|
int new_mode;
|
|
uint32_t offset;
|
|
uint32_t moe;
|
|
|
|
assert(!IS_M(env));
|
|
|
|
arm_log_exception(cs->exception_index);
|
|
|
|
if (arm_is_psci_call(cpu, cs->exception_index)) {
|
|
arm_handle_psci_call(cpu);
|
|
qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
|
|
return;
|
|
}
|
|
|
|
/* If this is a debug exception we must update the DBGDSCR.MOE bits */
|
|
switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
|
|
case EC_BREAKPOINT:
|
|
case EC_BREAKPOINT_SAME_EL:
|
|
moe = 1;
|
|
break;
|
|
case EC_WATCHPOINT:
|
|
case EC_WATCHPOINT_SAME_EL:
|
|
moe = 10;
|
|
break;
|
|
case EC_AA32_BKPT:
|
|
moe = 3;
|
|
break;
|
|
case EC_VECTORCATCH:
|
|
moe = 5;
|
|
break;
|
|
default:
|
|
moe = 0;
|
|
break;
|
|
}
|
|
|
|
if (moe) {
|
|
env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
|
|
}
|
|
|
|
/* TODO: Vectored interrupt controller. */
|
|
switch (cs->exception_index) {
|
|
case EXCP_UDEF:
|
|
new_mode = ARM_CPU_MODE_UND;
|
|
addr = 0x04;
|
|
mask = CPSR_I;
|
|
if (env->thumb)
|
|
offset = 2;
|
|
else
|
|
offset = 4;
|
|
break;
|
|
case EXCP_SWI:
|
|
if (semihosting_enabled()) {
|
|
/* Check for semihosting interrupt. */
|
|
if (env->thumb) {
|
|
mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code)
|
|
& 0xff;
|
|
} else {
|
|
mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code)
|
|
& 0xffffff;
|
|
}
|
|
/* Only intercept calls from privileged modes, to provide some
|
|
semblance of security. */
|
|
if (((mask == 0x123456 && !env->thumb)
|
|
|| (mask == 0xab && env->thumb))
|
|
&& (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
|
|
qemu_log_mask(CPU_LOG_INT,
|
|
"...handling as semihosting call 0x%x\n",
|
|
env->regs[0]);
|
|
env->regs[0] = do_arm_semihosting(env);
|
|
return;
|
|
}
|
|
}
|
|
new_mode = ARM_CPU_MODE_SVC;
|
|
addr = 0x08;
|
|
mask = CPSR_I;
|
|
/* The PC already points to the next instruction. */
|
|
offset = 0;
|
|
break;
|
|
case EXCP_BKPT:
|
|
/* See if this is a semihosting syscall. */
|
|
if (env->thumb && semihosting_enabled()) {
|
|
mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
|
|
if (mask == 0xab
|
|
&& (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
|
|
env->regs[15] += 2;
|
|
qemu_log_mask(CPU_LOG_INT,
|
|
"...handling as semihosting call 0x%x\n",
|
|
env->regs[0]);
|
|
env->regs[0] = do_arm_semihosting(env);
|
|
return;
|
|
}
|
|
}
|
|
env->exception.fsr = 2;
|
|
/* Fall through to prefetch abort. */
|
|
case EXCP_PREFETCH_ABORT:
|
|
A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
|
|
A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
|
|
qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
|
|
env->exception.fsr, (uint32_t)env->exception.vaddress);
|
|
new_mode = ARM_CPU_MODE_ABT;
|
|
addr = 0x0c;
|
|
mask = CPSR_A | CPSR_I;
|
|
offset = 4;
|
|
break;
|
|
case EXCP_DATA_ABORT:
|
|
A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
|
|
A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
|
|
qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
|
|
env->exception.fsr,
|
|
(uint32_t)env->exception.vaddress);
|
|
new_mode = ARM_CPU_MODE_ABT;
|
|
addr = 0x10;
|
|
mask = CPSR_A | CPSR_I;
|
|
offset = 8;
|
|
break;
|
|
case EXCP_IRQ:
|
|
new_mode = ARM_CPU_MODE_IRQ;
|
|
addr = 0x18;
|
|
/* Disable IRQ and imprecise data aborts. */
|
|
mask = CPSR_A | CPSR_I;
|
|
offset = 4;
|
|
if (env->cp15.scr_el3 & SCR_IRQ) {
|
|
/* IRQ routed to monitor mode */
|
|
new_mode = ARM_CPU_MODE_MON;
|
|
mask |= CPSR_F;
|
|
}
|
|
break;
|
|
case EXCP_FIQ:
|
|
new_mode = ARM_CPU_MODE_FIQ;
|
|
addr = 0x1c;
|
|
/* Disable FIQ, IRQ and imprecise data aborts. */
|
|
mask = CPSR_A | CPSR_I | CPSR_F;
|
|
if (env->cp15.scr_el3 & SCR_FIQ) {
|
|
/* FIQ routed to monitor mode */
|
|
new_mode = ARM_CPU_MODE_MON;
|
|
}
|
|
offset = 4;
|
|
break;
|
|
case EXCP_SMC:
|
|
new_mode = ARM_CPU_MODE_MON;
|
|
addr = 0x08;
|
|
mask = CPSR_A | CPSR_I | CPSR_F;
|
|
offset = 0;
|
|
break;
|
|
default:
|
|
cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
|
|
return; /* Never happens. Keep compiler happy. */
|
|
}
|
|
|
|
if (new_mode == ARM_CPU_MODE_MON) {
|
|
addr += env->cp15.mvbar;
|
|
} else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
|
|
/* High vectors. When enabled, base address cannot be remapped. */
|
|
addr += 0xffff0000;
|
|
} else {
|
|
/* ARM v7 architectures provide a vector base address register to remap
|
|
* the interrupt vector table.
|
|
* This register is only followed in non-monitor mode, and is banked.
|
|
* Note: only bits 31:5 are valid.
|
|
*/
|
|
addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
|
|
}
|
|
|
|
if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
|
|
env->cp15.scr_el3 &= ~SCR_NS;
|
|
}
|
|
|
|
switch_mode (env, new_mode);
|
|
/* For exceptions taken to AArch32 we must clear the SS bit in both
|
|
* PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
|
|
*/
|
|
env->uncached_cpsr &= ~PSTATE_SS;
|
|
env->spsr = cpsr_read(env);
|
|
/* Clear IT bits. */
|
|
env->condexec_bits = 0;
|
|
/* Switch to the new mode, and to the correct instruction set. */
|
|
env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
|
|
env->daif |= mask;
|
|
/* this is a lie, as the was no c1_sys on V4T/V5, but who cares
|
|
* and we should just guard the thumb mode on V4 */
|
|
if (arm_feature(env, ARM_FEATURE_V4T)) {
|
|
env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
|
|
}
|
|
env->regs[14] = env->regs[15] + offset;
|
|
env->regs[15] = addr;
|
|
cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
|
|
}
|
|
|
|
|
|
/* Return the exception level which controls this address translation regime */
|
|
static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
|
|
{
|
|
switch (mmu_idx) {
|
|
case ARMMMUIdx_S2NS:
|
|
case ARMMMUIdx_S1E2:
|
|
return 2;
|
|
case ARMMMUIdx_S1E3:
|
|
return 3;
|
|
case ARMMMUIdx_S1SE0:
|
|
return arm_el_is_aa64(env, 3) ? 1 : 3;
|
|
case ARMMMUIdx_S1SE1:
|
|
case ARMMMUIdx_S1NSE0:
|
|
case ARMMMUIdx_S1NSE1:
|
|
return 1;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
/* Return true if this address translation regime is secure */
|
|
static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
|
|
{
|
|
switch (mmu_idx) {
|
|
case ARMMMUIdx_S12NSE0:
|
|
case ARMMMUIdx_S12NSE1:
|
|
case ARMMMUIdx_S1NSE0:
|
|
case ARMMMUIdx_S1NSE1:
|
|
case ARMMMUIdx_S1E2:
|
|
case ARMMMUIdx_S2NS:
|
|
return false;
|
|
case ARMMMUIdx_S1E3:
|
|
case ARMMMUIdx_S1SE0:
|
|
case ARMMMUIdx_S1SE1:
|
|
return true;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
/* Return the SCTLR value which controls this address translation regime */
|
|
static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
|
|
{
|
|
return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
|
|
}
|
|
|
|
/* Return true if the specified stage of address translation is disabled */
|
|
static inline bool regime_translation_disabled(CPUARMState *env,
|
|
ARMMMUIdx mmu_idx)
|
|
{
|
|
if (mmu_idx == ARMMMUIdx_S2NS) {
|
|
return (env->cp15.hcr_el2 & HCR_VM) == 0;
|
|
}
|
|
return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
|
|
}
|
|
|
|
/* Return the TCR controlling this translation regime */
|
|
static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
|
|
{
|
|
if (mmu_idx == ARMMMUIdx_S2NS) {
|
|
return &env->cp15.vtcr_el2;
|
|
}
|
|
return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
|
|
}
|
|
|
|
/* Return the TTBR associated with this translation regime */
|
|
static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
|
|
int ttbrn)
|
|
{
|
|
if (mmu_idx == ARMMMUIdx_S2NS) {
|
|
return env->cp15.vttbr_el2;
|
|
}
|
|
if (ttbrn == 0) {
|
|
return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
|
|
} else {
|
|
return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
|
|
}
|
|
}
|
|
|
|
/* Return true if the translation regime is using LPAE format page tables */
|
|
static inline bool regime_using_lpae_format(CPUARMState *env,
|
|
ARMMMUIdx mmu_idx)
|
|
{
|
|
int el = regime_el(env, mmu_idx);
|
|
if (el == 2 || arm_el_is_aa64(env, el)) {
|
|
return true;
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_LPAE)
|
|
&& (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
|
|
{
|
|
switch (mmu_idx) {
|
|
case ARMMMUIdx_S1SE0:
|
|
case ARMMMUIdx_S1NSE0:
|
|
return true;
|
|
default:
|
|
return false;
|
|
case ARMMMUIdx_S12NSE0:
|
|
case ARMMMUIdx_S12NSE1:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
/* Translate section/page access permissions to page
|
|
* R/W protection flags
|
|
*
|
|
* @env: CPUARMState
|
|
* @mmu_idx: MMU index indicating required translation regime
|
|
* @ap: The 3-bit access permissions (AP[2:0])
|
|
* @domain_prot: The 2-bit domain access permissions
|
|
*/
|
|
static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
|
|
int ap, int domain_prot)
|
|
{
|
|
bool is_user = regime_is_user(env, mmu_idx);
|
|
|
|
if (domain_prot == 3) {
|
|
return PAGE_READ | PAGE_WRITE;
|
|
}
|
|
|
|
switch (ap) {
|
|
case 0:
|
|
if (arm_feature(env, ARM_FEATURE_V7)) {
|
|
return 0;
|
|
}
|
|
switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
|
|
case SCTLR_S:
|
|
return is_user ? 0 : PAGE_READ;
|
|
case SCTLR_R:
|
|
return PAGE_READ;
|
|
default:
|
|
return 0;
|
|
}
|
|
case 1:
|
|
return is_user ? 0 : PAGE_READ | PAGE_WRITE;
|
|
case 2:
|
|
if (is_user) {
|
|
return PAGE_READ;
|
|
} else {
|
|
return PAGE_READ | PAGE_WRITE;
|
|
}
|
|
case 3:
|
|
return PAGE_READ | PAGE_WRITE;
|
|
case 4: /* Reserved. */
|
|
return 0;
|
|
case 5:
|
|
return is_user ? 0 : PAGE_READ;
|
|
case 6:
|
|
return PAGE_READ;
|
|
case 7:
|
|
if (!arm_feature(env, ARM_FEATURE_V6K)) {
|
|
return 0;
|
|
}
|
|
return PAGE_READ;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
/* Translate section/page access permissions to page
|
|
* R/W protection flags.
|
|
*
|
|
* @ap: The 2-bit simple AP (AP[2:1])
|
|
* @is_user: TRUE if accessing from PL0
|
|
*/
|
|
static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
|
|
{
|
|
switch (ap) {
|
|
case 0:
|
|
return is_user ? 0 : PAGE_READ | PAGE_WRITE;
|
|
case 1:
|
|
return PAGE_READ | PAGE_WRITE;
|
|
case 2:
|
|
return is_user ? 0 : PAGE_READ;
|
|
case 3:
|
|
return PAGE_READ;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
static inline int
|
|
simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
|
|
{
|
|
return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
|
|
}
|
|
|
|
/* Translate section/page access permissions to protection flags
|
|
*
|
|
* @env: CPUARMState
|
|
* @mmu_idx: MMU index indicating required translation regime
|
|
* @is_aa64: TRUE if AArch64
|
|
* @ap: The 2-bit simple AP (AP[2:1])
|
|
* @ns: NS (non-secure) bit
|
|
* @xn: XN (execute-never) bit
|
|
* @pxn: PXN (privileged execute-never) bit
|
|
*/
|
|
static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
|
|
int ap, int ns, int xn, int pxn)
|
|
{
|
|
bool is_user = regime_is_user(env, mmu_idx);
|
|
int prot_rw, user_rw;
|
|
bool have_wxn;
|
|
int wxn = 0;
|
|
|
|
assert(mmu_idx != ARMMMUIdx_S2NS);
|
|
|
|
user_rw = simple_ap_to_rw_prot_is_user(ap, true);
|
|
if (is_user) {
|
|
prot_rw = user_rw;
|
|
} else {
|
|
prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
|
|
}
|
|
|
|
if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
|
|
return prot_rw;
|
|
}
|
|
|
|
/* TODO have_wxn should be replaced with
|
|
* ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
|
|
* when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
|
|
* compatible processors have EL2, which is required for [U]WXN.
|
|
*/
|
|
have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
|
|
|
|
if (have_wxn) {
|
|
wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
|
|
}
|
|
|
|
if (is_aa64) {
|
|
switch (regime_el(env, mmu_idx)) {
|
|
case 1:
|
|
if (!is_user) {
|
|
xn = pxn || (user_rw & PAGE_WRITE);
|
|
}
|
|
break;
|
|
case 2:
|
|
case 3:
|
|
break;
|
|
}
|
|
} else if (arm_feature(env, ARM_FEATURE_V7)) {
|
|
switch (regime_el(env, mmu_idx)) {
|
|
case 1:
|
|
case 3:
|
|
if (is_user) {
|
|
xn = xn || !(user_rw & PAGE_READ);
|
|
} else {
|
|
int uwxn = 0;
|
|
if (have_wxn) {
|
|
uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
|
|
}
|
|
xn = xn || !(prot_rw & PAGE_READ) || pxn ||
|
|
(uwxn && (user_rw & PAGE_WRITE));
|
|
}
|
|
break;
|
|
case 2:
|
|
break;
|
|
}
|
|
} else {
|
|
xn = wxn = 0;
|
|
}
|
|
|
|
if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
|
|
return prot_rw;
|
|
}
|
|
return prot_rw | PAGE_EXEC;
|
|
}
|
|
|
|
static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
|
|
uint32_t *table, uint32_t address)
|
|
{
|
|
/* Note that we can only get here for an AArch32 PL0/PL1 lookup */
|
|
TCR *tcr = regime_tcr(env, mmu_idx);
|
|
|
|
if (address & tcr->mask) {
|
|
if (tcr->raw_tcr & TTBCR_PD1) {
|
|
/* Translation table walk disabled for TTBR1 */
|
|
return false;
|
|
}
|
|
*table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
|
|
} else {
|
|
if (tcr->raw_tcr & TTBCR_PD0) {
|
|
/* Translation table walk disabled for TTBR0 */
|
|
return false;
|
|
}
|
|
*table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
|
|
}
|
|
*table |= (address >> 18) & 0x3ffc;
|
|
return true;
|
|
}
|
|
|
|
/* All loads done in the course of a page table walk go through here.
|
|
* TODO: rather than ignoring errors from physical memory reads (which
|
|
* are external aborts in ARM terminology) we should propagate this
|
|
* error out so that we can turn it into a Data Abort if this walk
|
|
* was being done for a CPU load/store or an address translation instruction
|
|
* (but not if it was for a debug access).
|
|
*/
|
|
static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure)
|
|
{
|
|
MemTxAttrs attrs = {};
|
|
|
|
attrs.secure = is_secure;
|
|
return address_space_ldl(cs->as, addr, attrs, NULL);
|
|
}
|
|
|
|
static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure)
|
|
{
|
|
MemTxAttrs attrs = {};
|
|
|
|
attrs.secure = is_secure;
|
|
return address_space_ldq(cs->as, addr, attrs, NULL);
|
|
}
|
|
|
|
static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
|
|
int access_type, ARMMMUIdx mmu_idx,
|
|
hwaddr *phys_ptr, int *prot,
|
|
target_ulong *page_size, uint32_t *fsr)
|
|
{
|
|
CPUState *cs = CPU(arm_env_get_cpu(env));
|
|
int code;
|
|
uint32_t table;
|
|
uint32_t desc;
|
|
int type;
|
|
int ap;
|
|
int domain = 0;
|
|
int domain_prot;
|
|
hwaddr phys_addr;
|
|
uint32_t dacr;
|
|
|
|
/* Pagetable walk. */
|
|
/* Lookup l1 descriptor. */
|
|
if (!get_level1_table_address(env, mmu_idx, &table, address)) {
|
|
/* Section translation fault if page walk is disabled by PD0 or PD1 */
|
|
code = 5;
|
|
goto do_fault;
|
|
}
|
|
desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
|
|
type = (desc & 3);
|
|
domain = (desc >> 5) & 0x0f;
|
|
if (regime_el(env, mmu_idx) == 1) {
|
|
dacr = env->cp15.dacr_ns;
|
|
} else {
|
|
dacr = env->cp15.dacr_s;
|
|
}
|
|
domain_prot = (dacr >> (domain * 2)) & 3;
|
|
if (type == 0) {
|
|
/* Section translation fault. */
|
|
code = 5;
|
|
goto do_fault;
|
|
}
|
|
if (domain_prot == 0 || domain_prot == 2) {
|
|
if (type == 2)
|
|
code = 9; /* Section domain fault. */
|
|
else
|
|
code = 11; /* Page domain fault. */
|
|
goto do_fault;
|
|
}
|
|
if (type == 2) {
|
|
/* 1Mb section. */
|
|
phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
|
|
ap = (desc >> 10) & 3;
|
|
code = 13;
|
|
*page_size = 1024 * 1024;
|
|
} else {
|
|
/* Lookup l2 entry. */
|
|
if (type == 1) {
|
|
/* Coarse pagetable. */
|
|
table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
|
|
} else {
|
|
/* Fine pagetable. */
|
|
table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
|
|
}
|
|
desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
|
|
switch (desc & 3) {
|
|
case 0: /* Page translation fault. */
|
|
code = 7;
|
|
goto do_fault;
|
|
case 1: /* 64k page. */
|
|
phys_addr = (desc & 0xffff0000) | (address & 0xffff);
|
|
ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
|
|
*page_size = 0x10000;
|
|
break;
|
|
case 2: /* 4k page. */
|
|
phys_addr = (desc & 0xfffff000) | (address & 0xfff);
|
|
ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
|
|
*page_size = 0x1000;
|
|
break;
|
|
case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
|
|
if (type == 1) {
|
|
/* ARMv6/XScale extended small page format */
|
|
if (arm_feature(env, ARM_FEATURE_XSCALE)
|
|
|| arm_feature(env, ARM_FEATURE_V6)) {
|
|
phys_addr = (desc & 0xfffff000) | (address & 0xfff);
|
|
*page_size = 0x1000;
|
|
} else {
|
|
/* UNPREDICTABLE in ARMv5; we choose to take a
|
|
* page translation fault.
|
|
*/
|
|
code = 7;
|
|
goto do_fault;
|
|
}
|
|
} else {
|
|
phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
|
|
*page_size = 0x400;
|
|
}
|
|
ap = (desc >> 4) & 3;
|
|
break;
|
|
default:
|
|
/* Never happens, but compiler isn't smart enough to tell. */
|
|
abort();
|
|
}
|
|
code = 15;
|
|
}
|
|
*prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
|
|
*prot |= *prot ? PAGE_EXEC : 0;
|
|
if (!(*prot & (1 << access_type))) {
|
|
/* Access permission fault. */
|
|
goto do_fault;
|
|
}
|
|
*phys_ptr = phys_addr;
|
|
return false;
|
|
do_fault:
|
|
*fsr = code | (domain << 4);
|
|
return true;
|
|
}
|
|
|
|
static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
|
|
int access_type, ARMMMUIdx mmu_idx,
|
|
hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
|
|
target_ulong *page_size, uint32_t *fsr)
|
|
{
|
|
CPUState *cs = CPU(arm_env_get_cpu(env));
|
|
int code;
|
|
uint32_t table;
|
|
uint32_t desc;
|
|
uint32_t xn;
|
|
uint32_t pxn = 0;
|
|
int type;
|
|
int ap;
|
|
int domain = 0;
|
|
int domain_prot;
|
|
hwaddr phys_addr;
|
|
uint32_t dacr;
|
|
bool ns;
|
|
|
|
/* Pagetable walk. */
|
|
/* Lookup l1 descriptor. */
|
|
if (!get_level1_table_address(env, mmu_idx, &table, address)) {
|
|
/* Section translation fault if page walk is disabled by PD0 or PD1 */
|
|
code = 5;
|
|
goto do_fault;
|
|
}
|
|
desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
|
|
type = (desc & 3);
|
|
if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
|
|
/* Section translation fault, or attempt to use the encoding
|
|
* which is Reserved on implementations without PXN.
|
|
*/
|
|
code = 5;
|
|
goto do_fault;
|
|
}
|
|
if ((type == 1) || !(desc & (1 << 18))) {
|
|
/* Page or Section. */
|
|
domain = (desc >> 5) & 0x0f;
|
|
}
|
|
if (regime_el(env, mmu_idx) == 1) {
|
|
dacr = env->cp15.dacr_ns;
|
|
} else {
|
|
dacr = env->cp15.dacr_s;
|
|
}
|
|
domain_prot = (dacr >> (domain * 2)) & 3;
|
|
if (domain_prot == 0 || domain_prot == 2) {
|
|
if (type != 1) {
|
|
code = 9; /* Section domain fault. */
|
|
} else {
|
|
code = 11; /* Page domain fault. */
|
|
}
|
|
goto do_fault;
|
|
}
|
|
if (type != 1) {
|
|
if (desc & (1 << 18)) {
|
|
/* Supersection. */
|
|
phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
|
|
phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
|
|
phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
|
|
*page_size = 0x1000000;
|
|
} else {
|
|
/* Section. */
|
|
phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
|
|
*page_size = 0x100000;
|
|
}
|
|
ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
|
|
xn = desc & (1 << 4);
|
|
pxn = desc & 1;
|
|
code = 13;
|
|
ns = extract32(desc, 19, 1);
|
|
} else {
|
|
if (arm_feature(env, ARM_FEATURE_PXN)) {
|
|
pxn = (desc >> 2) & 1;
|
|
}
|
|
ns = extract32(desc, 3, 1);
|
|
/* Lookup l2 entry. */
|
|
table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
|
|
desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx));
|
|
ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
|
|
switch (desc & 3) {
|
|
case 0: /* Page translation fault. */
|
|
code = 7;
|
|
goto do_fault;
|
|
case 1: /* 64k page. */
|
|
phys_addr = (desc & 0xffff0000) | (address & 0xffff);
|
|
xn = desc & (1 << 15);
|
|
*page_size = 0x10000;
|
|
break;
|
|
case 2: case 3: /* 4k page. */
|
|
phys_addr = (desc & 0xfffff000) | (address & 0xfff);
|
|
xn = desc & 1;
|
|
*page_size = 0x1000;
|
|
break;
|
|
default:
|
|
/* Never happens, but compiler isn't smart enough to tell. */
|
|
abort();
|
|
}
|
|
code = 15;
|
|
}
|
|
if (domain_prot == 3) {
|
|
*prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
|
|
} else {
|
|
if (pxn && !regime_is_user(env, mmu_idx)) {
|
|
xn = 1;
|
|
}
|
|
if (xn && access_type == 2)
|
|
goto do_fault;
|
|
|
|
if (arm_feature(env, ARM_FEATURE_V6K) &&
|
|
(regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
|
|
/* The simplified model uses AP[0] as an access control bit. */
|
|
if ((ap & 1) == 0) {
|
|
/* Access flag fault. */
|
|
code = (code == 15) ? 6 : 3;
|
|
goto do_fault;
|
|
}
|
|
*prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
|
|
} else {
|
|
*prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
|
|
}
|
|
if (*prot && !xn) {
|
|
*prot |= PAGE_EXEC;
|
|
}
|
|
if (!(*prot & (1 << access_type))) {
|
|
/* Access permission fault. */
|
|
goto do_fault;
|
|
}
|
|
}
|
|
if (ns) {
|
|
/* The NS bit will (as required by the architecture) have no effect if
|
|
* the CPU doesn't support TZ or this is a non-secure translation
|
|
* regime, because the attribute will already be non-secure.
|
|
*/
|
|
attrs->secure = false;
|
|
}
|
|
*phys_ptr = phys_addr;
|
|
return false;
|
|
do_fault:
|
|
*fsr = code | (domain << 4);
|
|
return true;
|
|
}
|
|
|
|
/* Fault type for long-descriptor MMU fault reporting; this corresponds
|
|
* to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
|
|
*/
|
|
typedef enum {
|
|
translation_fault = 1,
|
|
access_fault = 2,
|
|
permission_fault = 3,
|
|
} MMUFaultType;
|
|
|
|
static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
|
|
int access_type, ARMMMUIdx mmu_idx,
|
|
hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
|
|
target_ulong *page_size_ptr, uint32_t *fsr)
|
|
{
|
|
CPUState *cs = CPU(arm_env_get_cpu(env));
|
|
/* Read an LPAE long-descriptor translation table. */
|
|
MMUFaultType fault_type = translation_fault;
|
|
uint32_t level = 1;
|
|
uint32_t epd = 0;
|
|
int32_t tsz;
|
|
uint32_t tg;
|
|
uint64_t ttbr;
|
|
int ttbr_select;
|
|
hwaddr descaddr, descmask;
|
|
uint32_t tableattrs;
|
|
target_ulong page_size;
|
|
uint32_t attrs;
|
|
int32_t granule_sz = 9;
|
|
int32_t va_size = 32;
|
|
int32_t tbi = 0;
|
|
TCR *tcr = regime_tcr(env, mmu_idx);
|
|
int ap, ns, xn, pxn;
|
|
uint32_t el = regime_el(env, mmu_idx);
|
|
bool ttbr1_valid = true;
|
|
|
|
/* TODO:
|
|
* This code does not handle the different format TCR for VTCR_EL2.
|
|
* This code also does not support shareability levels.
|
|
* Attribute and permission bit handling should also be checked when adding
|
|
* support for those page table walks.
|
|
*/
|
|
if (arm_el_is_aa64(env, el)) {
|
|
va_size = 64;
|
|
if (el > 1) {
|
|
if (mmu_idx != ARMMMUIdx_S2NS) {
|
|
tbi = extract64(tcr->raw_tcr, 20, 1);
|
|
}
|
|
} else {
|
|
if (extract64(address, 55, 1)) {
|
|
tbi = extract64(tcr->raw_tcr, 38, 1);
|
|
} else {
|
|
tbi = extract64(tcr->raw_tcr, 37, 1);
|
|
}
|
|
}
|
|
tbi *= 8;
|
|
|
|
/* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
|
|
* invalid.
|
|
*/
|
|
if (el > 1) {
|
|
ttbr1_valid = false;
|
|
}
|
|
} else {
|
|
/* There is no TTBR1 for EL2 */
|
|
if (el == 2) {
|
|
ttbr1_valid = false;
|
|
}
|
|
}
|
|
|
|
/* Determine whether this address is in the region controlled by
|
|
* TTBR0 or TTBR1 (or if it is in neither region and should fault).
|
|
* This is a Non-secure PL0/1 stage 1 translation, so controlled by
|
|
* TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
|
|
*/
|
|
uint32_t t0sz = extract32(tcr->raw_tcr, 0, 6);
|
|
if (va_size == 64) {
|
|
t0sz = MIN(t0sz, 39);
|
|
t0sz = MAX(t0sz, 16);
|
|
}
|
|
uint32_t t1sz = extract32(tcr->raw_tcr, 16, 6);
|
|
if (va_size == 64) {
|
|
t1sz = MIN(t1sz, 39);
|
|
t1sz = MAX(t1sz, 16);
|
|
}
|
|
if (t0sz && !extract64(address, va_size - t0sz, t0sz - tbi)) {
|
|
/* there is a ttbr0 region and we are in it (high bits all zero) */
|
|
ttbr_select = 0;
|
|
} else if (ttbr1_valid && t1sz &&
|
|
!extract64(~address, va_size - t1sz, t1sz - tbi)) {
|
|
/* there is a ttbr1 region and we are in it (high bits all one) */
|
|
ttbr_select = 1;
|
|
} else if (!t0sz) {
|
|
/* ttbr0 region is "everything not in the ttbr1 region" */
|
|
ttbr_select = 0;
|
|
} else if (!t1sz && ttbr1_valid) {
|
|
/* ttbr1 region is "everything not in the ttbr0 region" */
|
|
ttbr_select = 1;
|
|
} else {
|
|
/* in the gap between the two regions, this is a Translation fault */
|
|
fault_type = translation_fault;
|
|
goto do_fault;
|
|
}
|
|
|
|
/* Note that QEMU ignores shareability and cacheability attributes,
|
|
* so we don't need to do anything with the SH, ORGN, IRGN fields
|
|
* in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
|
|
* ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
|
|
* implement any ASID-like capability so we can ignore it (instead
|
|
* we will always flush the TLB any time the ASID is changed).
|
|
*/
|
|
if (ttbr_select == 0) {
|
|
ttbr = regime_ttbr(env, mmu_idx, 0);
|
|
if (el < 2) {
|
|
epd = extract32(tcr->raw_tcr, 7, 1);
|
|
}
|
|
tsz = t0sz;
|
|
|
|
tg = extract32(tcr->raw_tcr, 14, 2);
|
|
if (tg == 1) { /* 64KB pages */
|
|
granule_sz = 13;
|
|
}
|
|
if (tg == 2) { /* 16KB pages */
|
|
granule_sz = 11;
|
|
}
|
|
} else {
|
|
/* We should only be here if TTBR1 is valid */
|
|
assert(ttbr1_valid);
|
|
|
|
ttbr = regime_ttbr(env, mmu_idx, 1);
|
|
epd = extract32(tcr->raw_tcr, 23, 1);
|
|
tsz = t1sz;
|
|
|
|
tg = extract32(tcr->raw_tcr, 30, 2);
|
|
if (tg == 3) { /* 64KB pages */
|
|
granule_sz = 13;
|
|
}
|
|
if (tg == 1) { /* 16KB pages */
|
|
granule_sz = 11;
|
|
}
|
|
}
|
|
|
|
/* Here we should have set up all the parameters for the translation:
|
|
* va_size, ttbr, epd, tsz, granule_sz, tbi
|
|
*/
|
|
|
|
if (epd) {
|
|
/* Translation table walk disabled => Translation fault on TLB miss
|
|
* Note: This is always 0 on 64-bit EL2 and EL3.
|
|
*/
|
|
goto do_fault;
|
|
}
|
|
|
|
/* The starting level depends on the virtual address size (which can be
|
|
* up to 48 bits) and the translation granule size. It indicates the number
|
|
* of strides (granule_sz bits at a time) needed to consume the bits
|
|
* of the input address. In the pseudocode this is:
|
|
* level = 4 - RoundUp((inputsize - grainsize) / stride)
|
|
* where their 'inputsize' is our 'va_size - tsz', 'grainsize' is
|
|
* our 'granule_sz + 3' and 'stride' is our 'granule_sz'.
|
|
* Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
|
|
* = 4 - (va_size - tsz - granule_sz - 3 + granule_sz - 1) / granule_sz
|
|
* = 4 - (va_size - tsz - 4) / granule_sz;
|
|
*/
|
|
level = 4 - (va_size - tsz - 4) / granule_sz;
|
|
|
|
/* Clear the vaddr bits which aren't part of the within-region address,
|
|
* so that we don't have to special case things when calculating the
|
|
* first descriptor address.
|
|
*/
|
|
if (tsz) {
|
|
address &= (1ULL << (va_size - tsz)) - 1;
|
|
}
|
|
|
|
descmask = (1ULL << (granule_sz + 3)) - 1;
|
|
|
|
/* Now we can extract the actual base address from the TTBR */
|
|
descaddr = extract64(ttbr, 0, 48);
|
|
descaddr &= ~((1ULL << (va_size - tsz - (granule_sz * (4 - level)))) - 1);
|
|
|
|
/* Secure accesses start with the page table in secure memory and
|
|
* can be downgraded to non-secure at any step. Non-secure accesses
|
|
* remain non-secure. We implement this by just ORing in the NSTable/NS
|
|
* bits at each step.
|
|
*/
|
|
tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
|
|
for (;;) {
|
|
uint64_t descriptor;
|
|
bool nstable;
|
|
|
|
descaddr |= (address >> (granule_sz * (4 - level))) & descmask;
|
|
descaddr &= ~7ULL;
|
|
nstable = extract32(tableattrs, 4, 1);
|
|
descriptor = arm_ldq_ptw(cs, descaddr, !nstable);
|
|
if (!(descriptor & 1) ||
|
|
(!(descriptor & 2) && (level == 3))) {
|
|
/* Invalid, or the Reserved level 3 encoding */
|
|
goto do_fault;
|
|
}
|
|
descaddr = descriptor & 0xfffffff000ULL;
|
|
|
|
if ((descriptor & 2) && (level < 3)) {
|
|
/* Table entry. The top five bits are attributes which may
|
|
* propagate down through lower levels of the table (and
|
|
* which are all arranged so that 0 means "no effect", so
|
|
* we can gather them up by ORing in the bits at each level).
|
|
*/
|
|
tableattrs |= extract64(descriptor, 59, 5);
|
|
level++;
|
|
continue;
|
|
}
|
|
/* Block entry at level 1 or 2, or page entry at level 3.
|
|
* These are basically the same thing, although the number
|
|
* of bits we pull in from the vaddr varies.
|
|
*/
|
|
page_size = (1ULL << ((granule_sz * (4 - level)) + 3));
|
|
descaddr |= (address & (page_size - 1));
|
|
/* Extract attributes from the descriptor and merge with table attrs */
|
|
attrs = extract64(descriptor, 2, 10)
|
|
| (extract64(descriptor, 52, 12) << 10);
|
|
attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
|
|
attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
|
|
/* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
|
|
* means "force PL1 access only", which means forcing AP[1] to 0.
|
|
*/
|
|
if (extract32(tableattrs, 2, 1)) {
|
|
attrs &= ~(1 << 4);
|
|
}
|
|
attrs |= nstable << 3; /* NS */
|
|
break;
|
|
}
|
|
/* Here descaddr is the final physical address, and attributes
|
|
* are all in attrs.
|
|
*/
|
|
fault_type = access_fault;
|
|
if ((attrs & (1 << 8)) == 0) {
|
|
/* Access flag */
|
|
goto do_fault;
|
|
}
|
|
|
|
ap = extract32(attrs, 4, 2);
|
|
ns = extract32(attrs, 3, 1);
|
|
xn = extract32(attrs, 12, 1);
|
|
pxn = extract32(attrs, 11, 1);
|
|
|
|
*prot = get_S1prot(env, mmu_idx, va_size == 64, ap, ns, xn, pxn);
|
|
|
|
fault_type = permission_fault;
|
|
if (!(*prot & (1 << access_type))) {
|
|
goto do_fault;
|
|
}
|
|
|
|
if (ns) {
|
|
/* The NS bit will (as required by the architecture) have no effect if
|
|
* the CPU doesn't support TZ or this is a non-secure translation
|
|
* regime, because the attribute will already be non-secure.
|
|
*/
|
|
txattrs->secure = false;
|
|
}
|
|
*phys_ptr = descaddr;
|
|
*page_size_ptr = page_size;
|
|
return false;
|
|
|
|
do_fault:
|
|
/* Long-descriptor format IFSR/DFSR value */
|
|
*fsr = (1 << 9) | (fault_type << 2) | level;
|
|
return true;
|
|
}
|
|
|
|
static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
|
|
ARMMMUIdx mmu_idx,
|
|
int32_t address, int *prot)
|
|
{
|
|
*prot = PAGE_READ | PAGE_WRITE;
|
|
switch (address) {
|
|
case 0xF0000000 ... 0xFFFFFFFF:
|
|
if (regime_sctlr(env, mmu_idx) & SCTLR_V) { /* hivecs execing is ok */
|
|
*prot |= PAGE_EXEC;
|
|
}
|
|
break;
|
|
case 0x00000000 ... 0x7FFFFFFF:
|
|
*prot |= PAGE_EXEC;
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
|
|
int access_type, ARMMMUIdx mmu_idx,
|
|
hwaddr *phys_ptr, int *prot, uint32_t *fsr)
|
|
{
|
|
ARMCPU *cpu = arm_env_get_cpu(env);
|
|
int n;
|
|
bool is_user = regime_is_user(env, mmu_idx);
|
|
|
|
*phys_ptr = address;
|
|
*prot = 0;
|
|
|
|
if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
|
|
get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
|
|
} else { /* MPU enabled */
|
|
for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
|
|
/* region search */
|
|
uint32_t base = env->pmsav7.drbar[n];
|
|
uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
|
|
uint32_t rmask;
|
|
bool srdis = false;
|
|
|
|
if (!(env->pmsav7.drsr[n] & 0x1)) {
|
|
continue;
|
|
}
|
|
|
|
if (!rsize) {
|
|
qemu_log_mask(LOG_GUEST_ERROR, "DRSR.Rsize field can not be 0");
|
|
continue;
|
|
}
|
|
rsize++;
|
|
rmask = (1ull << rsize) - 1;
|
|
|
|
if (base & rmask) {
|
|
qemu_log_mask(LOG_GUEST_ERROR, "DRBAR %" PRIx32 " misaligned "
|
|
"to DRSR region size, mask = %" PRIx32,
|
|
base, rmask);
|
|
continue;
|
|
}
|
|
|
|
if (address < base || address > base + rmask) {
|
|
continue;
|
|
}
|
|
|
|
/* Region matched */
|
|
|
|
if (rsize >= 8) { /* no subregions for regions < 256 bytes */
|
|
int i, snd;
|
|
uint32_t srdis_mask;
|
|
|
|
rsize -= 3; /* sub region size (power of 2) */
|
|
snd = ((address - base) >> rsize) & 0x7;
|
|
srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
|
|
|
|
srdis_mask = srdis ? 0x3 : 0x0;
|
|
for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
|
|
/* This will check in groups of 2, 4 and then 8, whether
|
|
* the subregion bits are consistent. rsize is incremented
|
|
* back up to give the region size, considering consistent
|
|
* adjacent subregions as one region. Stop testing if rsize
|
|
* is already big enough for an entire QEMU page.
|
|
*/
|
|
int snd_rounded = snd & ~(i - 1);
|
|
uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
|
|
snd_rounded + 8, i);
|
|
if (srdis_mask ^ srdis_multi) {
|
|
break;
|
|
}
|
|
srdis_mask = (srdis_mask << i) | srdis_mask;
|
|
rsize++;
|
|
}
|
|
}
|
|
if (rsize < TARGET_PAGE_BITS) {
|
|
qemu_log_mask(LOG_UNIMP, "No support for MPU (sub)region"
|
|
"alignment of %" PRIu32 " bits. Minimum is %d\n",
|
|
rsize, TARGET_PAGE_BITS);
|
|
continue;
|
|
}
|
|
if (srdis) {
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (n == -1) { /* no hits */
|
|
if (cpu->pmsav7_dregion &&
|
|
(is_user || !(regime_sctlr(env, mmu_idx) & SCTLR_BR))) {
|
|
/* background fault */
|
|
*fsr = 0;
|
|
return true;
|
|
}
|
|
get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
|
|
} else { /* a MPU hit! */
|
|
uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
|
|
|
|
if (is_user) { /* User mode AP bit decoding */
|
|
switch (ap) {
|
|
case 0:
|
|
case 1:
|
|
case 5:
|
|
break; /* no access */
|
|
case 3:
|
|
*prot |= PAGE_WRITE;
|
|
/* fall through */
|
|
case 2:
|
|
case 6:
|
|
*prot |= PAGE_READ | PAGE_EXEC;
|
|
break;
|
|
default:
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"Bad value for AP bits in DRACR %"
|
|
PRIx32 "\n", ap);
|
|
}
|
|
} else { /* Priv. mode AP bits decoding */
|
|
switch (ap) {
|
|
case 0:
|
|
break; /* no access */
|
|
case 1:
|
|
case 2:
|
|
case 3:
|
|
*prot |= PAGE_WRITE;
|
|
/* fall through */
|
|
case 5:
|
|
case 6:
|
|
*prot |= PAGE_READ | PAGE_EXEC;
|
|
break;
|
|
default:
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"Bad value for AP bits in DRACR %"
|
|
PRIx32 "\n", ap);
|
|
}
|
|
}
|
|
|
|
/* execute never */
|
|
if (env->pmsav7.dracr[n] & (1 << 12)) {
|
|
*prot &= ~PAGE_EXEC;
|
|
}
|
|
}
|
|
}
|
|
|
|
*fsr = 0x00d; /* Permission fault */
|
|
return !(*prot & (1 << access_type));
|
|
}
|
|
|
|
static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
|
|
int access_type, ARMMMUIdx mmu_idx,
|
|
hwaddr *phys_ptr, int *prot, uint32_t *fsr)
|
|
{
|
|
int n;
|
|
uint32_t mask;
|
|
uint32_t base;
|
|
bool is_user = regime_is_user(env, mmu_idx);
|
|
|
|
*phys_ptr = address;
|
|
for (n = 7; n >= 0; n--) {
|
|
base = env->cp15.c6_region[n];
|
|
if ((base & 1) == 0) {
|
|
continue;
|
|
}
|
|
mask = 1 << ((base >> 1) & 0x1f);
|
|
/* Keep this shift separate from the above to avoid an
|
|
(undefined) << 32. */
|
|
mask = (mask << 1) - 1;
|
|
if (((base ^ address) & ~mask) == 0) {
|
|
break;
|
|
}
|
|
}
|
|
if (n < 0) {
|
|
*fsr = 2;
|
|
return true;
|
|
}
|
|
|
|
if (access_type == 2) {
|
|
mask = env->cp15.pmsav5_insn_ap;
|
|
} else {
|
|
mask = env->cp15.pmsav5_data_ap;
|
|
}
|
|
mask = (mask >> (n * 4)) & 0xf;
|
|
switch (mask) {
|
|
case 0:
|
|
*fsr = 1;
|
|
return true;
|
|
case 1:
|
|
if (is_user) {
|
|
*fsr = 1;
|
|
return true;
|
|
}
|
|
*prot = PAGE_READ | PAGE_WRITE;
|
|
break;
|
|
case 2:
|
|
*prot = PAGE_READ;
|
|
if (!is_user) {
|
|
*prot |= PAGE_WRITE;
|
|
}
|
|
break;
|
|
case 3:
|
|
*prot = PAGE_READ | PAGE_WRITE;
|
|
break;
|
|
case 5:
|
|
if (is_user) {
|
|
*fsr = 1;
|
|
return true;
|
|
}
|
|
*prot = PAGE_READ;
|
|
break;
|
|
case 6:
|
|
*prot = PAGE_READ;
|
|
break;
|
|
default:
|
|
/* Bad permission. */
|
|
*fsr = 1;
|
|
return true;
|
|
}
|
|
*prot |= PAGE_EXEC;
|
|
return false;
|
|
}
|
|
|
|
/* get_phys_addr - get the physical address for this virtual address
|
|
*
|
|
* Find the physical address corresponding to the given virtual address,
|
|
* by doing a translation table walk on MMU based systems or using the
|
|
* MPU state on MPU based systems.
|
|
*
|
|
* Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
|
|
* prot and page_size may not be filled in, and the populated fsr value provides
|
|
* information on why the translation aborted, in the format of a
|
|
* DFSR/IFSR fault register, with the following caveats:
|
|
* * we honour the short vs long DFSR format differences.
|
|
* * the WnR bit is never set (the caller must do this).
|
|
* * for PSMAv5 based systems we don't bother to return a full FSR format
|
|
* value.
|
|
*
|
|
* @env: CPUARMState
|
|
* @address: virtual address to get physical address for
|
|
* @access_type: 0 for read, 1 for write, 2 for execute
|
|
* @mmu_idx: MMU index indicating required translation regime
|
|
* @phys_ptr: set to the physical address corresponding to the virtual address
|
|
* @attrs: set to the memory transaction attributes to use
|
|
* @prot: set to the permissions for the page containing phys_ptr
|
|
* @page_size: set to the size of the page containing phys_ptr
|
|
* @fsr: set to the DFSR/IFSR value on failure
|
|
*/
|
|
static inline bool get_phys_addr(CPUARMState *env, target_ulong address,
|
|
int access_type, ARMMMUIdx mmu_idx,
|
|
hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
|
|
target_ulong *page_size, uint32_t *fsr)
|
|
{
|
|
if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
|
|
/* TODO: when we support EL2 we should here call ourselves recursively
|
|
* to do the stage 1 and then stage 2 translations. The arm_ld*_ptw
|
|
* functions will also need changing to perform ARMMMUIdx_S2NS loads
|
|
* rather than direct physical memory loads when appropriate.
|
|
* For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
|
|
*/
|
|
assert(!arm_feature(env, ARM_FEATURE_EL2));
|
|
mmu_idx += ARMMMUIdx_S1NSE0;
|
|
}
|
|
|
|
/* The page table entries may downgrade secure to non-secure, but
|
|
* cannot upgrade an non-secure translation regime's attributes
|
|
* to secure.
|
|
*/
|
|
attrs->secure = regime_is_secure(env, mmu_idx);
|
|
attrs->user = regime_is_user(env, mmu_idx);
|
|
|
|
/* Fast Context Switch Extension. This doesn't exist at all in v8.
|
|
* In v7 and earlier it affects all stage 1 translations.
|
|
*/
|
|
if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
|
|
&& !arm_feature(env, ARM_FEATURE_V8)) {
|
|
if (regime_el(env, mmu_idx) == 3) {
|
|
address += env->cp15.fcseidr_s;
|
|
} else {
|
|
address += env->cp15.fcseidr_ns;
|
|
}
|
|
}
|
|
|
|
/* pmsav7 has special handling for when MPU is disabled so call it before
|
|
* the common MMU/MPU disabled check below.
|
|
*/
|
|
if (arm_feature(env, ARM_FEATURE_MPU) &&
|
|
arm_feature(env, ARM_FEATURE_V7)) {
|
|
*page_size = TARGET_PAGE_SIZE;
|
|
return get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
|
|
phys_ptr, prot, fsr);
|
|
}
|
|
|
|
if (regime_translation_disabled(env, mmu_idx)) {
|
|
/* MMU/MPU disabled. */
|
|
*phys_ptr = address;
|
|
*prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
|
|
*page_size = TARGET_PAGE_SIZE;
|
|
return 0;
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_MPU)) {
|
|
/* Pre-v7 MPU */
|
|
*page_size = TARGET_PAGE_SIZE;
|
|
return get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
|
|
phys_ptr, prot, fsr);
|
|
}
|
|
|
|
if (regime_using_lpae_format(env, mmu_idx)) {
|
|
return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr,
|
|
attrs, prot, page_size, fsr);
|
|
} else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
|
|
return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr,
|
|
attrs, prot, page_size, fsr);
|
|
} else {
|
|
return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr,
|
|
prot, page_size, fsr);
|
|
}
|
|
}
|
|
|
|
/* Walk the page table and (if the mapping exists) add the page
|
|
* to the TLB. Return false on success, or true on failure. Populate
|
|
* fsr with ARM DFSR/IFSR fault register format value on failure.
|
|
*/
|
|
bool arm_tlb_fill(CPUState *cs, vaddr address,
|
|
int access_type, int mmu_idx, uint32_t *fsr)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
CPUARMState *env = &cpu->env;
|
|
hwaddr phys_addr;
|
|
target_ulong page_size;
|
|
int prot;
|
|
int ret;
|
|
MemTxAttrs attrs = {};
|
|
|
|
ret = get_phys_addr(env, address, access_type, mmu_idx, &phys_addr,
|
|
&attrs, &prot, &page_size, fsr);
|
|
if (!ret) {
|
|
/* Map a single [sub]page. */
|
|
phys_addr &= TARGET_PAGE_MASK;
|
|
address &= TARGET_PAGE_MASK;
|
|
tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
|
|
prot, mmu_idx, page_size);
|
|
return 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
hwaddr arm_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
CPUARMState *env = &cpu->env;
|
|
hwaddr phys_addr;
|
|
target_ulong page_size;
|
|
int prot;
|
|
bool ret;
|
|
uint32_t fsr;
|
|
MemTxAttrs attrs = {};
|
|
|
|
ret = get_phys_addr(env, addr, 0, cpu_mmu_index(env, false), &phys_addr,
|
|
&attrs, &prot, &page_size, &fsr);
|
|
|
|
if (ret) {
|
|
return -1;
|
|
}
|
|
|
|
return phys_addr;
|
|
}
|
|
|
|
void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
|
|
{
|
|
if ((env->uncached_cpsr & CPSR_M) == mode) {
|
|
env->regs[13] = val;
|
|
} else {
|
|
env->banked_r13[bank_number(mode)] = val;
|
|
}
|
|
}
|
|
|
|
uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
|
|
{
|
|
if ((env->uncached_cpsr & CPSR_M) == mode) {
|
|
return env->regs[13];
|
|
} else {
|
|
return env->banked_r13[bank_number(mode)];
|
|
}
|
|
}
|
|
|
|
uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
|
|
{
|
|
ARMCPU *cpu = arm_env_get_cpu(env);
|
|
|
|
switch (reg) {
|
|
case 0: /* APSR */
|
|
return xpsr_read(env) & 0xf8000000;
|
|
case 1: /* IAPSR */
|
|
return xpsr_read(env) & 0xf80001ff;
|
|
case 2: /* EAPSR */
|
|
return xpsr_read(env) & 0xff00fc00;
|
|
case 3: /* xPSR */
|
|
return xpsr_read(env) & 0xff00fdff;
|
|
case 5: /* IPSR */
|
|
return xpsr_read(env) & 0x000001ff;
|
|
case 6: /* EPSR */
|
|
return xpsr_read(env) & 0x0700fc00;
|
|
case 7: /* IEPSR */
|
|
return xpsr_read(env) & 0x0700edff;
|
|
case 8: /* MSP */
|
|
return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
|
|
case 9: /* PSP */
|
|
return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
|
|
case 16: /* PRIMASK */
|
|
return (env->daif & PSTATE_I) != 0;
|
|
case 17: /* BASEPRI */
|
|
case 18: /* BASEPRI_MAX */
|
|
return env->v7m.basepri;
|
|
case 19: /* FAULTMASK */
|
|
return (env->daif & PSTATE_F) != 0;
|
|
case 20: /* CONTROL */
|
|
return env->v7m.control;
|
|
default:
|
|
/* ??? For debugging only. */
|
|
cpu_abort(CPU(cpu), "Unimplemented system register read (%d)\n", reg);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
|
|
{
|
|
ARMCPU *cpu = arm_env_get_cpu(env);
|
|
|
|
switch (reg) {
|
|
case 0: /* APSR */
|
|
xpsr_write(env, val, 0xf8000000);
|
|
break;
|
|
case 1: /* IAPSR */
|
|
xpsr_write(env, val, 0xf8000000);
|
|
break;
|
|
case 2: /* EAPSR */
|
|
xpsr_write(env, val, 0xfe00fc00);
|
|
break;
|
|
case 3: /* xPSR */
|
|
xpsr_write(env, val, 0xfe00fc00);
|
|
break;
|
|
case 5: /* IPSR */
|
|
/* IPSR bits are readonly. */
|
|
break;
|
|
case 6: /* EPSR */
|
|
xpsr_write(env, val, 0x0600fc00);
|
|
break;
|
|
case 7: /* IEPSR */
|
|
xpsr_write(env, val, 0x0600fc00);
|
|
break;
|
|
case 8: /* MSP */
|
|
if (env->v7m.current_sp)
|
|
env->v7m.other_sp = val;
|
|
else
|
|
env->regs[13] = val;
|
|
break;
|
|
case 9: /* PSP */
|
|
if (env->v7m.current_sp)
|
|
env->regs[13] = val;
|
|
else
|
|
env->v7m.other_sp = val;
|
|
break;
|
|
case 16: /* PRIMASK */
|
|
if (val & 1) {
|
|
env->daif |= PSTATE_I;
|
|
} else {
|
|
env->daif &= ~PSTATE_I;
|
|
}
|
|
break;
|
|
case 17: /* BASEPRI */
|
|
env->v7m.basepri = val & 0xff;
|
|
break;
|
|
case 18: /* BASEPRI_MAX */
|
|
val &= 0xff;
|
|
if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
|
|
env->v7m.basepri = val;
|
|
break;
|
|
case 19: /* FAULTMASK */
|
|
if (val & 1) {
|
|
env->daif |= PSTATE_F;
|
|
} else {
|
|
env->daif &= ~PSTATE_F;
|
|
}
|
|
break;
|
|
case 20: /* CONTROL */
|
|
env->v7m.control = val & 3;
|
|
switch_v7m_sp(env, (val & 2) != 0);
|
|
break;
|
|
default:
|
|
/* ??? For debugging only. */
|
|
cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg);
|
|
return;
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
|
|
{
|
|
/* Implement DC ZVA, which zeroes a fixed-length block of memory.
|
|
* Note that we do not implement the (architecturally mandated)
|
|
* alignment fault for attempts to use this on Device memory
|
|
* (which matches the usual QEMU behaviour of not implementing either
|
|
* alignment faults or any memory attribute handling).
|
|
*/
|
|
|
|
ARMCPU *cpu = arm_env_get_cpu(env);
|
|
uint64_t blocklen = 4 << cpu->dcz_blocksize;
|
|
uint64_t vaddr = vaddr_in & ~(blocklen - 1);
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
{
|
|
/* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
|
|
* the block size so we might have to do more than one TLB lookup.
|
|
* We know that in fact for any v8 CPU the page size is at least 4K
|
|
* and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
|
|
* 1K as an artefact of legacy v5 subpage support being present in the
|
|
* same QEMU executable.
|
|
*/
|
|
int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
|
|
void *hostaddr[maxidx];
|
|
int try, i;
|
|
unsigned mmu_idx = cpu_mmu_index(env, false);
|
|
TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
|
|
|
|
for (try = 0; try < 2; try++) {
|
|
|
|
for (i = 0; i < maxidx; i++) {
|
|
hostaddr[i] = tlb_vaddr_to_host(env,
|
|
vaddr + TARGET_PAGE_SIZE * i,
|
|
1, mmu_idx);
|
|
if (!hostaddr[i]) {
|
|
break;
|
|
}
|
|
}
|
|
if (i == maxidx) {
|
|
/* If it's all in the TLB it's fair game for just writing to;
|
|
* we know we don't need to update dirty status, etc.
|
|
*/
|
|
for (i = 0; i < maxidx - 1; i++) {
|
|
memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
|
|
}
|
|
memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
|
|
return;
|
|
}
|
|
/* OK, try a store and see if we can populate the tlb. This
|
|
* might cause an exception if the memory isn't writable,
|
|
* in which case we will longjmp out of here. We must for
|
|
* this purpose use the actual register value passed to us
|
|
* so that we get the fault address right.
|
|
*/
|
|
helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETRA());
|
|
/* Now we can populate the other TLB entries, if any */
|
|
for (i = 0; i < maxidx; i++) {
|
|
uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
|
|
if (va != (vaddr_in & TARGET_PAGE_MASK)) {
|
|
helper_ret_stb_mmu(env, va, 0, oi, GETRA());
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Slow path (probably attempt to do this to an I/O device or
|
|
* similar, or clearing of a block of code we have translations
|
|
* cached for). Just do a series of byte writes as the architecture
|
|
* demands. It's not worth trying to use a cpu_physical_memory_map(),
|
|
* memset(), unmap() sequence here because:
|
|
* + we'd need to account for the blocksize being larger than a page
|
|
* + the direct-RAM access case is almost always going to be dealt
|
|
* with in the fastpath code above, so there's no speed benefit
|
|
* + we would have to deal with the map returning NULL because the
|
|
* bounce buffer was in use
|
|
*/
|
|
for (i = 0; i < blocklen; i++) {
|
|
helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETRA());
|
|
}
|
|
}
|
|
#else
|
|
memset(g2h(vaddr), 0, blocklen);
|
|
#endif
|
|
}
|
|
|
|
/* Note that signed overflow is undefined in C. The following routines are
|
|
careful to use unsigned types where modulo arithmetic is required.
|
|
Failure to do so _will_ break on newer gcc. */
|
|
|
|
/* Signed saturating arithmetic. */
|
|
|
|
/* Perform 16-bit signed saturating addition. */
|
|
static inline uint16_t add16_sat(uint16_t a, uint16_t b)
|
|
{
|
|
uint16_t res;
|
|
|
|
res = a + b;
|
|
if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
|
|
if (a & 0x8000)
|
|
res = 0x8000;
|
|
else
|
|
res = 0x7fff;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/* Perform 8-bit signed saturating addition. */
|
|
static inline uint8_t add8_sat(uint8_t a, uint8_t b)
|
|
{
|
|
uint8_t res;
|
|
|
|
res = a + b;
|
|
if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
|
|
if (a & 0x80)
|
|
res = 0x80;
|
|
else
|
|
res = 0x7f;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/* Perform 16-bit signed saturating subtraction. */
|
|
static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
|
|
{
|
|
uint16_t res;
|
|
|
|
res = a - b;
|
|
if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
|
|
if (a & 0x8000)
|
|
res = 0x8000;
|
|
else
|
|
res = 0x7fff;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/* Perform 8-bit signed saturating subtraction. */
|
|
static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
|
|
{
|
|
uint8_t res;
|
|
|
|
res = a - b;
|
|
if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
|
|
if (a & 0x80)
|
|
res = 0x80;
|
|
else
|
|
res = 0x7f;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
|
|
#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
|
|
#define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
|
|
#define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
|
|
#define PFX q
|
|
|
|
#include "op_addsub.h"
|
|
|
|
/* Unsigned saturating arithmetic. */
|
|
static inline uint16_t add16_usat(uint16_t a, uint16_t b)
|
|
{
|
|
uint16_t res;
|
|
res = a + b;
|
|
if (res < a)
|
|
res = 0xffff;
|
|
return res;
|
|
}
|
|
|
|
static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
|
|
{
|
|
if (a > b)
|
|
return a - b;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
static inline uint8_t add8_usat(uint8_t a, uint8_t b)
|
|
{
|
|
uint8_t res;
|
|
res = a + b;
|
|
if (res < a)
|
|
res = 0xff;
|
|
return res;
|
|
}
|
|
|
|
static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
|
|
{
|
|
if (a > b)
|
|
return a - b;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
|
|
#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
|
|
#define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
|
|
#define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
|
|
#define PFX uq
|
|
|
|
#include "op_addsub.h"
|
|
|
|
/* Signed modulo arithmetic. */
|
|
#define SARITH16(a, b, n, op) do { \
|
|
int32_t sum; \
|
|
sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
|
|
RESULT(sum, n, 16); \
|
|
if (sum >= 0) \
|
|
ge |= 3 << (n * 2); \
|
|
} while(0)
|
|
|
|
#define SARITH8(a, b, n, op) do { \
|
|
int32_t sum; \
|
|
sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
|
|
RESULT(sum, n, 8); \
|
|
if (sum >= 0) \
|
|
ge |= 1 << n; \
|
|
} while(0)
|
|
|
|
|
|
#define ADD16(a, b, n) SARITH16(a, b, n, +)
|
|
#define SUB16(a, b, n) SARITH16(a, b, n, -)
|
|
#define ADD8(a, b, n) SARITH8(a, b, n, +)
|
|
#define SUB8(a, b, n) SARITH8(a, b, n, -)
|
|
#define PFX s
|
|
#define ARITH_GE
|
|
|
|
#include "op_addsub.h"
|
|
|
|
/* Unsigned modulo arithmetic. */
|
|
#define ADD16(a, b, n) do { \
|
|
uint32_t sum; \
|
|
sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
|
|
RESULT(sum, n, 16); \
|
|
if ((sum >> 16) == 1) \
|
|
ge |= 3 << (n * 2); \
|
|
} while(0)
|
|
|
|
#define ADD8(a, b, n) do { \
|
|
uint32_t sum; \
|
|
sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
|
|
RESULT(sum, n, 8); \
|
|
if ((sum >> 8) == 1) \
|
|
ge |= 1 << n; \
|
|
} while(0)
|
|
|
|
#define SUB16(a, b, n) do { \
|
|
uint32_t sum; \
|
|
sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
|
|
RESULT(sum, n, 16); \
|
|
if ((sum >> 16) == 0) \
|
|
ge |= 3 << (n * 2); \
|
|
} while(0)
|
|
|
|
#define SUB8(a, b, n) do { \
|
|
uint32_t sum; \
|
|
sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
|
|
RESULT(sum, n, 8); \
|
|
if ((sum >> 8) == 0) \
|
|
ge |= 1 << n; \
|
|
} while(0)
|
|
|
|
#define PFX u
|
|
#define ARITH_GE
|
|
|
|
#include "op_addsub.h"
|
|
|
|
/* Halved signed arithmetic. */
|
|
#define ADD16(a, b, n) \
|
|
RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
|
|
#define SUB16(a, b, n) \
|
|
RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
|
|
#define ADD8(a, b, n) \
|
|
RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
|
|
#define SUB8(a, b, n) \
|
|
RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
|
|
#define PFX sh
|
|
|
|
#include "op_addsub.h"
|
|
|
|
/* Halved unsigned arithmetic. */
|
|
#define ADD16(a, b, n) \
|
|
RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
|
|
#define SUB16(a, b, n) \
|
|
RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
|
|
#define ADD8(a, b, n) \
|
|
RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
|
|
#define SUB8(a, b, n) \
|
|
RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
|
|
#define PFX uh
|
|
|
|
#include "op_addsub.h"
|
|
|
|
static inline uint8_t do_usad(uint8_t a, uint8_t b)
|
|
{
|
|
if (a > b)
|
|
return a - b;
|
|
else
|
|
return b - a;
|
|
}
|
|
|
|
/* Unsigned sum of absolute byte differences. */
|
|
uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
|
|
{
|
|
uint32_t sum;
|
|
sum = do_usad(a, b);
|
|
sum += do_usad(a >> 8, b >> 8);
|
|
sum += do_usad(a >> 16, b >>16);
|
|
sum += do_usad(a >> 24, b >> 24);
|
|
return sum;
|
|
}
|
|
|
|
/* For ARMv6 SEL instruction. */
|
|
uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
|
|
{
|
|
uint32_t mask;
|
|
|
|
mask = 0;
|
|
if (flags & 1)
|
|
mask |= 0xff;
|
|
if (flags & 2)
|
|
mask |= 0xff00;
|
|
if (flags & 4)
|
|
mask |= 0xff0000;
|
|
if (flags & 8)
|
|
mask |= 0xff000000;
|
|
return (a & mask) | (b & ~mask);
|
|
}
|
|
|
|
/* VFP support. We follow the convention used for VFP instructions:
|
|
Single precision routines have a "s" suffix, double precision a
|
|
"d" suffix. */
|
|
|
|
/* Convert host exception flags to vfp form. */
|
|
static inline int vfp_exceptbits_from_host(int host_bits)
|
|
{
|
|
int target_bits = 0;
|
|
|
|
if (host_bits & float_flag_invalid)
|
|
target_bits |= 1;
|
|
if (host_bits & float_flag_divbyzero)
|
|
target_bits |= 2;
|
|
if (host_bits & float_flag_overflow)
|
|
target_bits |= 4;
|
|
if (host_bits & (float_flag_underflow | float_flag_output_denormal))
|
|
target_bits |= 8;
|
|
if (host_bits & float_flag_inexact)
|
|
target_bits |= 0x10;
|
|
if (host_bits & float_flag_input_denormal)
|
|
target_bits |= 0x80;
|
|
return target_bits;
|
|
}
|
|
|
|
uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
|
|
{
|
|
int i;
|
|
uint32_t fpscr;
|
|
|
|
fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
|
|
| (env->vfp.vec_len << 16)
|
|
| (env->vfp.vec_stride << 20);
|
|
i = get_float_exception_flags(&env->vfp.fp_status);
|
|
i |= get_float_exception_flags(&env->vfp.standard_fp_status);
|
|
fpscr |= vfp_exceptbits_from_host(i);
|
|
return fpscr;
|
|
}
|
|
|
|
uint32_t vfp_get_fpscr(CPUARMState *env)
|
|
{
|
|
return HELPER(vfp_get_fpscr)(env);
|
|
}
|
|
|
|
/* Convert vfp exception flags to target form. */
|
|
static inline int vfp_exceptbits_to_host(int target_bits)
|
|
{
|
|
int host_bits = 0;
|
|
|
|
if (target_bits & 1)
|
|
host_bits |= float_flag_invalid;
|
|
if (target_bits & 2)
|
|
host_bits |= float_flag_divbyzero;
|
|
if (target_bits & 4)
|
|
host_bits |= float_flag_overflow;
|
|
if (target_bits & 8)
|
|
host_bits |= float_flag_underflow;
|
|
if (target_bits & 0x10)
|
|
host_bits |= float_flag_inexact;
|
|
if (target_bits & 0x80)
|
|
host_bits |= float_flag_input_denormal;
|
|
return host_bits;
|
|
}
|
|
|
|
void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
|
|
{
|
|
int i;
|
|
uint32_t changed;
|
|
|
|
changed = env->vfp.xregs[ARM_VFP_FPSCR];
|
|
env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
|
|
env->vfp.vec_len = (val >> 16) & 7;
|
|
env->vfp.vec_stride = (val >> 20) & 3;
|
|
|
|
changed ^= val;
|
|
if (changed & (3 << 22)) {
|
|
i = (val >> 22) & 3;
|
|
switch (i) {
|
|
case FPROUNDING_TIEEVEN:
|
|
i = float_round_nearest_even;
|
|
break;
|
|
case FPROUNDING_POSINF:
|
|
i = float_round_up;
|
|
break;
|
|
case FPROUNDING_NEGINF:
|
|
i = float_round_down;
|
|
break;
|
|
case FPROUNDING_ZERO:
|
|
i = float_round_to_zero;
|
|
break;
|
|
}
|
|
set_float_rounding_mode(i, &env->vfp.fp_status);
|
|
}
|
|
if (changed & (1 << 24)) {
|
|
set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
|
|
set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
|
|
}
|
|
if (changed & (1 << 25))
|
|
set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
|
|
|
|
i = vfp_exceptbits_to_host(val);
|
|
set_float_exception_flags(i, &env->vfp.fp_status);
|
|
set_float_exception_flags(0, &env->vfp.standard_fp_status);
|
|
}
|
|
|
|
void vfp_set_fpscr(CPUARMState *env, uint32_t val)
|
|
{
|
|
HELPER(vfp_set_fpscr)(env, val);
|
|
}
|
|
|
|
#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
|
|
|
|
#define VFP_BINOP(name) \
|
|
float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
|
|
{ \
|
|
float_status *fpst = fpstp; \
|
|
return float32_ ## name(a, b, fpst); \
|
|
} \
|
|
float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
|
|
{ \
|
|
float_status *fpst = fpstp; \
|
|
return float64_ ## name(a, b, fpst); \
|
|
}
|
|
VFP_BINOP(add)
|
|
VFP_BINOP(sub)
|
|
VFP_BINOP(mul)
|
|
VFP_BINOP(div)
|
|
VFP_BINOP(min)
|
|
VFP_BINOP(max)
|
|
VFP_BINOP(minnum)
|
|
VFP_BINOP(maxnum)
|
|
#undef VFP_BINOP
|
|
|
|
float32 VFP_HELPER(neg, s)(float32 a)
|
|
{
|
|
return float32_chs(a);
|
|
}
|
|
|
|
float64 VFP_HELPER(neg, d)(float64 a)
|
|
{
|
|
return float64_chs(a);
|
|
}
|
|
|
|
float32 VFP_HELPER(abs, s)(float32 a)
|
|
{
|
|
return float32_abs(a);
|
|
}
|
|
|
|
float64 VFP_HELPER(abs, d)(float64 a)
|
|
{
|
|
return float64_abs(a);
|
|
}
|
|
|
|
float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
|
|
{
|
|
return float32_sqrt(a, &env->vfp.fp_status);
|
|
}
|
|
|
|
float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
|
|
{
|
|
return float64_sqrt(a, &env->vfp.fp_status);
|
|
}
|
|
|
|
/* XXX: check quiet/signaling case */
|
|
#define DO_VFP_cmp(p, type) \
|
|
void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
|
|
{ \
|
|
uint32_t flags; \
|
|
switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
|
|
case 0: flags = 0x6; break; \
|
|
case -1: flags = 0x8; break; \
|
|
case 1: flags = 0x2; break; \
|
|
default: case 2: flags = 0x3; break; \
|
|
} \
|
|
env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
|
|
| (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
|
|
} \
|
|
void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
|
|
{ \
|
|
uint32_t flags; \
|
|
switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
|
|
case 0: flags = 0x6; break; \
|
|
case -1: flags = 0x8; break; \
|
|
case 1: flags = 0x2; break; \
|
|
default: case 2: flags = 0x3; break; \
|
|
} \
|
|
env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
|
|
| (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
|
|
}
|
|
DO_VFP_cmp(s, float32)
|
|
DO_VFP_cmp(d, float64)
|
|
#undef DO_VFP_cmp
|
|
|
|
/* Integer to float and float to integer conversions */
|
|
|
|
#define CONV_ITOF(name, fsz, sign) \
|
|
float##fsz HELPER(name)(uint32_t x, void *fpstp) \
|
|
{ \
|
|
float_status *fpst = fpstp; \
|
|
return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
|
|
}
|
|
|
|
#define CONV_FTOI(name, fsz, sign, round) \
|
|
uint32_t HELPER(name)(float##fsz x, void *fpstp) \
|
|
{ \
|
|
float_status *fpst = fpstp; \
|
|
if (float##fsz##_is_any_nan(x)) { \
|
|
float_raise(float_flag_invalid, fpst); \
|
|
return 0; \
|
|
} \
|
|
return float##fsz##_to_##sign##int32##round(x, fpst); \
|
|
}
|
|
|
|
#define FLOAT_CONVS(name, p, fsz, sign) \
|
|
CONV_ITOF(vfp_##name##to##p, fsz, sign) \
|
|
CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
|
|
CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
|
|
|
|
FLOAT_CONVS(si, s, 32, )
|
|
FLOAT_CONVS(si, d, 64, )
|
|
FLOAT_CONVS(ui, s, 32, u)
|
|
FLOAT_CONVS(ui, d, 64, u)
|
|
|
|
#undef CONV_ITOF
|
|
#undef CONV_FTOI
|
|
#undef FLOAT_CONVS
|
|
|
|
/* floating point conversion */
|
|
float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
|
|
{
|
|
float64 r = float32_to_float64(x, &env->vfp.fp_status);
|
|
/* ARM requires that S<->D conversion of any kind of NaN generates
|
|
* a quiet NaN by forcing the most significant frac bit to 1.
|
|
*/
|
|
return float64_maybe_silence_nan(r);
|
|
}
|
|
|
|
float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
|
|
{
|
|
float32 r = float64_to_float32(x, &env->vfp.fp_status);
|
|
/* ARM requires that S<->D conversion of any kind of NaN generates
|
|
* a quiet NaN by forcing the most significant frac bit to 1.
|
|
*/
|
|
return float32_maybe_silence_nan(r);
|
|
}
|
|
|
|
/* VFP3 fixed point conversion. */
|
|
#define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
|
|
float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
|
|
void *fpstp) \
|
|
{ \
|
|
float_status *fpst = fpstp; \
|
|
float##fsz tmp; \
|
|
tmp = itype##_to_##float##fsz(x, fpst); \
|
|
return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
|
|
}
|
|
|
|
/* Notice that we want only input-denormal exception flags from the
|
|
* scalbn operation: the other possible flags (overflow+inexact if
|
|
* we overflow to infinity, output-denormal) aren't correct for the
|
|
* complete scale-and-convert operation.
|
|
*/
|
|
#define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
|
|
uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
|
|
uint32_t shift, \
|
|
void *fpstp) \
|
|
{ \
|
|
float_status *fpst = fpstp; \
|
|
int old_exc_flags = get_float_exception_flags(fpst); \
|
|
float##fsz tmp; \
|
|
if (float##fsz##_is_any_nan(x)) { \
|
|
float_raise(float_flag_invalid, fpst); \
|
|
return 0; \
|
|
} \
|
|
tmp = float##fsz##_scalbn(x, shift, fpst); \
|
|
old_exc_flags |= get_float_exception_flags(fpst) \
|
|
& float_flag_input_denormal; \
|
|
set_float_exception_flags(old_exc_flags, fpst); \
|
|
return float##fsz##_to_##itype##round(tmp, fpst); \
|
|
}
|
|
|
|
#define VFP_CONV_FIX(name, p, fsz, isz, itype) \
|
|
VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
|
|
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
|
|
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
|
|
|
|
#define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
|
|
VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
|
|
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
|
|
|
|
VFP_CONV_FIX(sh, d, 64, 64, int16)
|
|
VFP_CONV_FIX(sl, d, 64, 64, int32)
|
|
VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
|
|
VFP_CONV_FIX(uh, d, 64, 64, uint16)
|
|
VFP_CONV_FIX(ul, d, 64, 64, uint32)
|
|
VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
|
|
VFP_CONV_FIX(sh, s, 32, 32, int16)
|
|
VFP_CONV_FIX(sl, s, 32, 32, int32)
|
|
VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
|
|
VFP_CONV_FIX(uh, s, 32, 32, uint16)
|
|
VFP_CONV_FIX(ul, s, 32, 32, uint32)
|
|
VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
|
|
#undef VFP_CONV_FIX
|
|
#undef VFP_CONV_FIX_FLOAT
|
|
#undef VFP_CONV_FLOAT_FIX_ROUND
|
|
|
|
/* Set the current fp rounding mode and return the old one.
|
|
* The argument is a softfloat float_round_ value.
|
|
*/
|
|
uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
|
|
{
|
|
float_status *fp_status = &env->vfp.fp_status;
|
|
|
|
uint32_t prev_rmode = get_float_rounding_mode(fp_status);
|
|
set_float_rounding_mode(rmode, fp_status);
|
|
|
|
return prev_rmode;
|
|
}
|
|
|
|
/* Set the current fp rounding mode in the standard fp status and return
|
|
* the old one. This is for NEON instructions that need to change the
|
|
* rounding mode but wish to use the standard FPSCR values for everything
|
|
* else. Always set the rounding mode back to the correct value after
|
|
* modifying it.
|
|
* The argument is a softfloat float_round_ value.
|
|
*/
|
|
uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
|
|
{
|
|
float_status *fp_status = &env->vfp.standard_fp_status;
|
|
|
|
uint32_t prev_rmode = get_float_rounding_mode(fp_status);
|
|
set_float_rounding_mode(rmode, fp_status);
|
|
|
|
return prev_rmode;
|
|
}
|
|
|
|
/* Half precision conversions. */
|
|
static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
|
|
{
|
|
int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
|
|
float32 r = float16_to_float32(make_float16(a), ieee, s);
|
|
if (ieee) {
|
|
return float32_maybe_silence_nan(r);
|
|
}
|
|
return r;
|
|
}
|
|
|
|
static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
|
|
{
|
|
int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
|
|
float16 r = float32_to_float16(a, ieee, s);
|
|
if (ieee) {
|
|
r = float16_maybe_silence_nan(r);
|
|
}
|
|
return float16_val(r);
|
|
}
|
|
|
|
float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
|
|
{
|
|
return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
|
|
}
|
|
|
|
uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
|
|
{
|
|
return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
|
|
}
|
|
|
|
float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
|
|
{
|
|
return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
|
|
}
|
|
|
|
uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
|
|
{
|
|
return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
|
|
}
|
|
|
|
float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
|
|
{
|
|
int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
|
|
float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
|
|
if (ieee) {
|
|
return float64_maybe_silence_nan(r);
|
|
}
|
|
return r;
|
|
}
|
|
|
|
uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
|
|
{
|
|
int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
|
|
float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
|
|
if (ieee) {
|
|
r = float16_maybe_silence_nan(r);
|
|
}
|
|
return float16_val(r);
|
|
}
|
|
|
|
#define float32_two make_float32(0x40000000)
|
|
#define float32_three make_float32(0x40400000)
|
|
#define float32_one_point_five make_float32(0x3fc00000)
|
|
|
|
float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
|
|
{
|
|
float_status *s = &env->vfp.standard_fp_status;
|
|
if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
|
|
(float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
|
|
if (!(float32_is_zero(a) || float32_is_zero(b))) {
|
|
float_raise(float_flag_input_denormal, s);
|
|
}
|
|
return float32_two;
|
|
}
|
|
return float32_sub(float32_two, float32_mul(a, b, s), s);
|
|
}
|
|
|
|
float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
|
|
{
|
|
float_status *s = &env->vfp.standard_fp_status;
|
|
float32 product;
|
|
if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
|
|
(float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
|
|
if (!(float32_is_zero(a) || float32_is_zero(b))) {
|
|
float_raise(float_flag_input_denormal, s);
|
|
}
|
|
return float32_one_point_five;
|
|
}
|
|
product = float32_mul(a, b, s);
|
|
return float32_div(float32_sub(float32_three, product, s), float32_two, s);
|
|
}
|
|
|
|
/* NEON helpers. */
|
|
|
|
/* Constants 256 and 512 are used in some helpers; we avoid relying on
|
|
* int->float conversions at run-time. */
|
|
#define float64_256 make_float64(0x4070000000000000LL)
|
|
#define float64_512 make_float64(0x4080000000000000LL)
|
|
#define float32_maxnorm make_float32(0x7f7fffff)
|
|
#define float64_maxnorm make_float64(0x7fefffffffffffffLL)
|
|
|
|
/* Reciprocal functions
|
|
*
|
|
* The algorithm that must be used to calculate the estimate
|
|
* is specified by the ARM ARM, see FPRecipEstimate()
|
|
*/
|
|
|
|
static float64 recip_estimate(float64 a, float_status *real_fp_status)
|
|
{
|
|
/* These calculations mustn't set any fp exception flags,
|
|
* so we use a local copy of the fp_status.
|
|
*/
|
|
float_status dummy_status = *real_fp_status;
|
|
float_status *s = &dummy_status;
|
|
/* q = (int)(a * 512.0) */
|
|
float64 q = float64_mul(float64_512, a, s);
|
|
int64_t q_int = float64_to_int64_round_to_zero(q, s);
|
|
|
|
/* r = 1.0 / (((double)q + 0.5) / 512.0) */
|
|
q = int64_to_float64(q_int, s);
|
|
q = float64_add(q, float64_half, s);
|
|
q = float64_div(q, float64_512, s);
|
|
q = float64_div(float64_one, q, s);
|
|
|
|
/* s = (int)(256.0 * r + 0.5) */
|
|
q = float64_mul(q, float64_256, s);
|
|
q = float64_add(q, float64_half, s);
|
|
q_int = float64_to_int64_round_to_zero(q, s);
|
|
|
|
/* return (double)s / 256.0 */
|
|
return float64_div(int64_to_float64(q_int, s), float64_256, s);
|
|
}
|
|
|
|
/* Common wrapper to call recip_estimate */
|
|
static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
|
|
{
|
|
uint64_t val64 = float64_val(num);
|
|
uint64_t frac = extract64(val64, 0, 52);
|
|
int64_t exp = extract64(val64, 52, 11);
|
|
uint64_t sbit;
|
|
float64 scaled, estimate;
|
|
|
|
/* Generate the scaled number for the estimate function */
|
|
if (exp == 0) {
|
|
if (extract64(frac, 51, 1) == 0) {
|
|
exp = -1;
|
|
frac = extract64(frac, 0, 50) << 2;
|
|
} else {
|
|
frac = extract64(frac, 0, 51) << 1;
|
|
}
|
|
}
|
|
|
|
/* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
|
|
scaled = make_float64((0x3feULL << 52)
|
|
| extract64(frac, 44, 8) << 44);
|
|
|
|
estimate = recip_estimate(scaled, fpst);
|
|
|
|
/* Build new result */
|
|
val64 = float64_val(estimate);
|
|
sbit = 0x8000000000000000ULL & val64;
|
|
exp = off - exp;
|
|
frac = extract64(val64, 0, 52);
|
|
|
|
if (exp == 0) {
|
|
frac = 1ULL << 51 | extract64(frac, 1, 51);
|
|
} else if (exp == -1) {
|
|
frac = 1ULL << 50 | extract64(frac, 2, 50);
|
|
exp = 0;
|
|
}
|
|
|
|
return make_float64(sbit | (exp << 52) | frac);
|
|
}
|
|
|
|
static bool round_to_inf(float_status *fpst, bool sign_bit)
|
|
{
|
|
switch (fpst->float_rounding_mode) {
|
|
case float_round_nearest_even: /* Round to Nearest */
|
|
return true;
|
|
case float_round_up: /* Round to +Inf */
|
|
return !sign_bit;
|
|
case float_round_down: /* Round to -Inf */
|
|
return sign_bit;
|
|
case float_round_to_zero: /* Round to Zero */
|
|
return false;
|
|
}
|
|
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
float32 HELPER(recpe_f32)(float32 input, void *fpstp)
|
|
{
|
|
float_status *fpst = fpstp;
|
|
float32 f32 = float32_squash_input_denormal(input, fpst);
|
|
uint32_t f32_val = float32_val(f32);
|
|
uint32_t f32_sbit = 0x80000000ULL & f32_val;
|
|
int32_t f32_exp = extract32(f32_val, 23, 8);
|
|
uint32_t f32_frac = extract32(f32_val, 0, 23);
|
|
float64 f64, r64;
|
|
uint64_t r64_val;
|
|
int64_t r64_exp;
|
|
uint64_t r64_frac;
|
|
|
|
if (float32_is_any_nan(f32)) {
|
|
float32 nan = f32;
|
|
if (float32_is_signaling_nan(f32)) {
|
|
float_raise(float_flag_invalid, fpst);
|
|
nan = float32_maybe_silence_nan(f32);
|
|
}
|
|
if (fpst->default_nan_mode) {
|
|
nan = float32_default_nan;
|
|
}
|
|
return nan;
|
|
} else if (float32_is_infinity(f32)) {
|
|
return float32_set_sign(float32_zero, float32_is_neg(f32));
|
|
} else if (float32_is_zero(f32)) {
|
|
float_raise(float_flag_divbyzero, fpst);
|
|
return float32_set_sign(float32_infinity, float32_is_neg(f32));
|
|
} else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
|
|
/* Abs(value) < 2.0^-128 */
|
|
float_raise(float_flag_overflow | float_flag_inexact, fpst);
|
|
if (round_to_inf(fpst, f32_sbit)) {
|
|
return float32_set_sign(float32_infinity, float32_is_neg(f32));
|
|
} else {
|
|
return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
|
|
}
|
|
} else if (f32_exp >= 253 && fpst->flush_to_zero) {
|
|
float_raise(float_flag_underflow, fpst);
|
|
return float32_set_sign(float32_zero, float32_is_neg(f32));
|
|
}
|
|
|
|
|
|
f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
|
|
r64 = call_recip_estimate(f64, 253, fpst);
|
|
r64_val = float64_val(r64);
|
|
r64_exp = extract64(r64_val, 52, 11);
|
|
r64_frac = extract64(r64_val, 0, 52);
|
|
|
|
/* result = sign : result_exp<7:0> : fraction<51:29>; */
|
|
return make_float32(f32_sbit |
|
|
(r64_exp & 0xff) << 23 |
|
|
extract64(r64_frac, 29, 24));
|
|
}
|
|
|
|
float64 HELPER(recpe_f64)(float64 input, void *fpstp)
|
|
{
|
|
float_status *fpst = fpstp;
|
|
float64 f64 = float64_squash_input_denormal(input, fpst);
|
|
uint64_t f64_val = float64_val(f64);
|
|
uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
|
|
int64_t f64_exp = extract64(f64_val, 52, 11);
|
|
float64 r64;
|
|
uint64_t r64_val;
|
|
int64_t r64_exp;
|
|
uint64_t r64_frac;
|
|
|
|
/* Deal with any special cases */
|
|
if (float64_is_any_nan(f64)) {
|
|
float64 nan = f64;
|
|
if (float64_is_signaling_nan(f64)) {
|
|
float_raise(float_flag_invalid, fpst);
|
|
nan = float64_maybe_silence_nan(f64);
|
|
}
|
|
if (fpst->default_nan_mode) {
|
|
nan = float64_default_nan;
|
|
}
|
|
return nan;
|
|
} else if (float64_is_infinity(f64)) {
|
|
return float64_set_sign(float64_zero, float64_is_neg(f64));
|
|
} else if (float64_is_zero(f64)) {
|
|
float_raise(float_flag_divbyzero, fpst);
|
|
return float64_set_sign(float64_infinity, float64_is_neg(f64));
|
|
} else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
|
|
/* Abs(value) < 2.0^-1024 */
|
|
float_raise(float_flag_overflow | float_flag_inexact, fpst);
|
|
if (round_to_inf(fpst, f64_sbit)) {
|
|
return float64_set_sign(float64_infinity, float64_is_neg(f64));
|
|
} else {
|
|
return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
|
|
}
|
|
} else if (f64_exp >= 2045 && fpst->flush_to_zero) {
|
|
float_raise(float_flag_underflow, fpst);
|
|
return float64_set_sign(float64_zero, float64_is_neg(f64));
|
|
}
|
|
|
|
r64 = call_recip_estimate(f64, 2045, fpst);
|
|
r64_val = float64_val(r64);
|
|
r64_exp = extract64(r64_val, 52, 11);
|
|
r64_frac = extract64(r64_val, 0, 52);
|
|
|
|
/* result = sign : result_exp<10:0> : fraction<51:0> */
|
|
return make_float64(f64_sbit |
|
|
((r64_exp & 0x7ff) << 52) |
|
|
r64_frac);
|
|
}
|
|
|
|
/* The algorithm that must be used to calculate the estimate
|
|
* is specified by the ARM ARM.
|
|
*/
|
|
static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
|
|
{
|
|
/* These calculations mustn't set any fp exception flags,
|
|
* so we use a local copy of the fp_status.
|
|
*/
|
|
float_status dummy_status = *real_fp_status;
|
|
float_status *s = &dummy_status;
|
|
float64 q;
|
|
int64_t q_int;
|
|
|
|
if (float64_lt(a, float64_half, s)) {
|
|
/* range 0.25 <= a < 0.5 */
|
|
|
|
/* a in units of 1/512 rounded down */
|
|
/* q0 = (int)(a * 512.0); */
|
|
q = float64_mul(float64_512, a, s);
|
|
q_int = float64_to_int64_round_to_zero(q, s);
|
|
|
|
/* reciprocal root r */
|
|
/* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
|
|
q = int64_to_float64(q_int, s);
|
|
q = float64_add(q, float64_half, s);
|
|
q = float64_div(q, float64_512, s);
|
|
q = float64_sqrt(q, s);
|
|
q = float64_div(float64_one, q, s);
|
|
} else {
|
|
/* range 0.5 <= a < 1.0 */
|
|
|
|
/* a in units of 1/256 rounded down */
|
|
/* q1 = (int)(a * 256.0); */
|
|
q = float64_mul(float64_256, a, s);
|
|
int64_t q_int = float64_to_int64_round_to_zero(q, s);
|
|
|
|
/* reciprocal root r */
|
|
/* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
|
|
q = int64_to_float64(q_int, s);
|
|
q = float64_add(q, float64_half, s);
|
|
q = float64_div(q, float64_256, s);
|
|
q = float64_sqrt(q, s);
|
|
q = float64_div(float64_one, q, s);
|
|
}
|
|
/* r in units of 1/256 rounded to nearest */
|
|
/* s = (int)(256.0 * r + 0.5); */
|
|
|
|
q = float64_mul(q, float64_256,s );
|
|
q = float64_add(q, float64_half, s);
|
|
q_int = float64_to_int64_round_to_zero(q, s);
|
|
|
|
/* return (double)s / 256.0;*/
|
|
return float64_div(int64_to_float64(q_int, s), float64_256, s);
|
|
}
|
|
|
|
float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
|
|
{
|
|
float_status *s = fpstp;
|
|
float32 f32 = float32_squash_input_denormal(input, s);
|
|
uint32_t val = float32_val(f32);
|
|
uint32_t f32_sbit = 0x80000000 & val;
|
|
int32_t f32_exp = extract32(val, 23, 8);
|
|
uint32_t f32_frac = extract32(val, 0, 23);
|
|
uint64_t f64_frac;
|
|
uint64_t val64;
|
|
int result_exp;
|
|
float64 f64;
|
|
|
|
if (float32_is_any_nan(f32)) {
|
|
float32 nan = f32;
|
|
if (float32_is_signaling_nan(f32)) {
|
|
float_raise(float_flag_invalid, s);
|
|
nan = float32_maybe_silence_nan(f32);
|
|
}
|
|
if (s->default_nan_mode) {
|
|
nan = float32_default_nan;
|
|
}
|
|
return nan;
|
|
} else if (float32_is_zero(f32)) {
|
|
float_raise(float_flag_divbyzero, s);
|
|
return float32_set_sign(float32_infinity, float32_is_neg(f32));
|
|
} else if (float32_is_neg(f32)) {
|
|
float_raise(float_flag_invalid, s);
|
|
return float32_default_nan;
|
|
} else if (float32_is_infinity(f32)) {
|
|
return float32_zero;
|
|
}
|
|
|
|
/* Scale and normalize to a double-precision value between 0.25 and 1.0,
|
|
* preserving the parity of the exponent. */
|
|
|
|
f64_frac = ((uint64_t) f32_frac) << 29;
|
|
if (f32_exp == 0) {
|
|
while (extract64(f64_frac, 51, 1) == 0) {
|
|
f64_frac = f64_frac << 1;
|
|
f32_exp = f32_exp-1;
|
|
}
|
|
f64_frac = extract64(f64_frac, 0, 51) << 1;
|
|
}
|
|
|
|
if (extract64(f32_exp, 0, 1) == 0) {
|
|
f64 = make_float64(((uint64_t) f32_sbit) << 32
|
|
| (0x3feULL << 52)
|
|
| f64_frac);
|
|
} else {
|
|
f64 = make_float64(((uint64_t) f32_sbit) << 32
|
|
| (0x3fdULL << 52)
|
|
| f64_frac);
|
|
}
|
|
|
|
result_exp = (380 - f32_exp) / 2;
|
|
|
|
f64 = recip_sqrt_estimate(f64, s);
|
|
|
|
val64 = float64_val(f64);
|
|
|
|
val = ((result_exp & 0xff) << 23)
|
|
| ((val64 >> 29) & 0x7fffff);
|
|
return make_float32(val);
|
|
}
|
|
|
|
float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
|
|
{
|
|
float_status *s = fpstp;
|
|
float64 f64 = float64_squash_input_denormal(input, s);
|
|
uint64_t val = float64_val(f64);
|
|
uint64_t f64_sbit = 0x8000000000000000ULL & val;
|
|
int64_t f64_exp = extract64(val, 52, 11);
|
|
uint64_t f64_frac = extract64(val, 0, 52);
|
|
int64_t result_exp;
|
|
uint64_t result_frac;
|
|
|
|
if (float64_is_any_nan(f64)) {
|
|
float64 nan = f64;
|
|
if (float64_is_signaling_nan(f64)) {
|
|
float_raise(float_flag_invalid, s);
|
|
nan = float64_maybe_silence_nan(f64);
|
|
}
|
|
if (s->default_nan_mode) {
|
|
nan = float64_default_nan;
|
|
}
|
|
return nan;
|
|
} else if (float64_is_zero(f64)) {
|
|
float_raise(float_flag_divbyzero, s);
|
|
return float64_set_sign(float64_infinity, float64_is_neg(f64));
|
|
} else if (float64_is_neg(f64)) {
|
|
float_raise(float_flag_invalid, s);
|
|
return float64_default_nan;
|
|
} else if (float64_is_infinity(f64)) {
|
|
return float64_zero;
|
|
}
|
|
|
|
/* Scale and normalize to a double-precision value between 0.25 and 1.0,
|
|
* preserving the parity of the exponent. */
|
|
|
|
if (f64_exp == 0) {
|
|
while (extract64(f64_frac, 51, 1) == 0) {
|
|
f64_frac = f64_frac << 1;
|
|
f64_exp = f64_exp - 1;
|
|
}
|
|
f64_frac = extract64(f64_frac, 0, 51) << 1;
|
|
}
|
|
|
|
if (extract64(f64_exp, 0, 1) == 0) {
|
|
f64 = make_float64(f64_sbit
|
|
| (0x3feULL << 52)
|
|
| f64_frac);
|
|
} else {
|
|
f64 = make_float64(f64_sbit
|
|
| (0x3fdULL << 52)
|
|
| f64_frac);
|
|
}
|
|
|
|
result_exp = (3068 - f64_exp) / 2;
|
|
|
|
f64 = recip_sqrt_estimate(f64, s);
|
|
|
|
result_frac = extract64(float64_val(f64), 0, 52);
|
|
|
|
return make_float64(f64_sbit |
|
|
((result_exp & 0x7ff) << 52) |
|
|
result_frac);
|
|
}
|
|
|
|
uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
|
|
{
|
|
float_status *s = fpstp;
|
|
float64 f64;
|
|
|
|
if ((a & 0x80000000) == 0) {
|
|
return 0xffffffff;
|
|
}
|
|
|
|
f64 = make_float64((0x3feULL << 52)
|
|
| ((int64_t)(a & 0x7fffffff) << 21));
|
|
|
|
f64 = recip_estimate(f64, s);
|
|
|
|
return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
|
|
}
|
|
|
|
uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
|
|
{
|
|
float_status *fpst = fpstp;
|
|
float64 f64;
|
|
|
|
if ((a & 0xc0000000) == 0) {
|
|
return 0xffffffff;
|
|
}
|
|
|
|
if (a & 0x80000000) {
|
|
f64 = make_float64((0x3feULL << 52)
|
|
| ((uint64_t)(a & 0x7fffffff) << 21));
|
|
} else { /* bits 31-30 == '01' */
|
|
f64 = make_float64((0x3fdULL << 52)
|
|
| ((uint64_t)(a & 0x3fffffff) << 22));
|
|
}
|
|
|
|
f64 = recip_sqrt_estimate(f64, fpst);
|
|
|
|
return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
|
|
}
|
|
|
|
/* VFPv4 fused multiply-accumulate */
|
|
float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
|
|
{
|
|
float_status *fpst = fpstp;
|
|
return float32_muladd(a, b, c, 0, fpst);
|
|
}
|
|
|
|
float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
|
|
{
|
|
float_status *fpst = fpstp;
|
|
return float64_muladd(a, b, c, 0, fpst);
|
|
}
|
|
|
|
/* ARMv8 round to integral */
|
|
float32 HELPER(rints_exact)(float32 x, void *fp_status)
|
|
{
|
|
return float32_round_to_int(x, fp_status);
|
|
}
|
|
|
|
float64 HELPER(rintd_exact)(float64 x, void *fp_status)
|
|
{
|
|
return float64_round_to_int(x, fp_status);
|
|
}
|
|
|
|
float32 HELPER(rints)(float32 x, void *fp_status)
|
|
{
|
|
int old_flags = get_float_exception_flags(fp_status), new_flags;
|
|
float32 ret;
|
|
|
|
ret = float32_round_to_int(x, fp_status);
|
|
|
|
/* Suppress any inexact exceptions the conversion produced */
|
|
if (!(old_flags & float_flag_inexact)) {
|
|
new_flags = get_float_exception_flags(fp_status);
|
|
set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
float64 HELPER(rintd)(float64 x, void *fp_status)
|
|
{
|
|
int old_flags = get_float_exception_flags(fp_status), new_flags;
|
|
float64 ret;
|
|
|
|
ret = float64_round_to_int(x, fp_status);
|
|
|
|
new_flags = get_float_exception_flags(fp_status);
|
|
|
|
/* Suppress any inexact exceptions the conversion produced */
|
|
if (!(old_flags & float_flag_inexact)) {
|
|
new_flags = get_float_exception_flags(fp_status);
|
|
set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Convert ARM rounding mode to softfloat */
|
|
int arm_rmode_to_sf(int rmode)
|
|
{
|
|
switch (rmode) {
|
|
case FPROUNDING_TIEAWAY:
|
|
rmode = float_round_ties_away;
|
|
break;
|
|
case FPROUNDING_ODD:
|
|
/* FIXME: add support for TIEAWAY and ODD */
|
|
qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
|
|
rmode);
|
|
case FPROUNDING_TIEEVEN:
|
|
default:
|
|
rmode = float_round_nearest_even;
|
|
break;
|
|
case FPROUNDING_POSINF:
|
|
rmode = float_round_up;
|
|
break;
|
|
case FPROUNDING_NEGINF:
|
|
rmode = float_round_down;
|
|
break;
|
|
case FPROUNDING_ZERO:
|
|
rmode = float_round_to_zero;
|
|
break;
|
|
}
|
|
return rmode;
|
|
}
|
|
|
|
/* CRC helpers.
|
|
* The upper bytes of val (above the number specified by 'bytes') must have
|
|
* been zeroed out by the caller.
|
|
*/
|
|
uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
|
|
{
|
|
uint8_t buf[4];
|
|
|
|
stl_le_p(buf, val);
|
|
|
|
/* zlib crc32 converts the accumulator and output to one's complement. */
|
|
return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
|
|
}
|
|
|
|
uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
|
|
{
|
|
uint8_t buf[4];
|
|
|
|
stl_le_p(buf, val);
|
|
|
|
/* Linux crc32c converts the output to one's complement. */
|
|
return crc32c(acc, buf, bytes) ^ 0xffffffff;
|
|
}
|