49cd9ac6a1
find_ram_offset() does not handle size=0 gracefully. It hands out the same RAMBlock offset multiple times, leading to obscure failures later on. Add an assert to warn early if something is incorrectly allocating a zero size RAMBlock. Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2634 lines
74 KiB
C
2634 lines
74 KiB
C
/*
|
|
* Virtual page mapping
|
|
*
|
|
* Copyright (c) 2003 Fabrice Bellard
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#include "config.h"
|
|
#ifdef _WIN32
|
|
#include <windows.h>
|
|
#else
|
|
#include <sys/types.h>
|
|
#include <sys/mman.h>
|
|
#endif
|
|
|
|
#include "qemu-common.h"
|
|
#include "cpu.h"
|
|
#include "tcg.h"
|
|
#include "hw/hw.h"
|
|
#include "hw/qdev.h"
|
|
#include "qemu/osdep.h"
|
|
#include "sysemu/kvm.h"
|
|
#include "hw/xen.h"
|
|
#include "qemu/timer.h"
|
|
#include "qemu/config-file.h"
|
|
#include "exec/memory.h"
|
|
#include "sysemu/dma.h"
|
|
#include "exec/address-spaces.h"
|
|
#if defined(CONFIG_USER_ONLY)
|
|
#include <qemu.h>
|
|
#else /* !CONFIG_USER_ONLY */
|
|
#include "sysemu/xen-mapcache.h"
|
|
#include "trace.h"
|
|
#endif
|
|
#include "exec/cpu-all.h"
|
|
|
|
#include "exec/cputlb.h"
|
|
#include "translate-all.h"
|
|
|
|
#include "exec/memory-internal.h"
|
|
|
|
//#define DEBUG_UNASSIGNED
|
|
//#define DEBUG_SUBPAGE
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
int phys_ram_fd;
|
|
static int in_migration;
|
|
|
|
RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
|
|
|
|
static MemoryRegion *system_memory;
|
|
static MemoryRegion *system_io;
|
|
|
|
AddressSpace address_space_io;
|
|
AddressSpace address_space_memory;
|
|
DMAContext dma_context_memory;
|
|
|
|
MemoryRegion io_mem_ram, io_mem_rom, io_mem_unassigned, io_mem_notdirty;
|
|
static MemoryRegion io_mem_subpage_ram;
|
|
|
|
#endif
|
|
|
|
CPUArchState *first_cpu;
|
|
/* current CPU in the current thread. It is only valid inside
|
|
cpu_exec() */
|
|
DEFINE_TLS(CPUArchState *,cpu_single_env);
|
|
/* 0 = Do not count executed instructions.
|
|
1 = Precise instruction counting.
|
|
2 = Adaptive rate instruction counting. */
|
|
int use_icount;
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
|
|
static MemoryRegionSection *phys_sections;
|
|
static unsigned phys_sections_nb, phys_sections_nb_alloc;
|
|
static uint16_t phys_section_unassigned;
|
|
static uint16_t phys_section_notdirty;
|
|
static uint16_t phys_section_rom;
|
|
static uint16_t phys_section_watch;
|
|
|
|
/* Simple allocator for PhysPageEntry nodes */
|
|
static PhysPageEntry (*phys_map_nodes)[L2_SIZE];
|
|
static unsigned phys_map_nodes_nb, phys_map_nodes_nb_alloc;
|
|
|
|
#define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
|
|
|
|
static void io_mem_init(void);
|
|
static void memory_map_init(void);
|
|
static void *qemu_safe_ram_ptr(ram_addr_t addr);
|
|
|
|
static MemoryRegion io_mem_watch;
|
|
#endif
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
|
|
static void phys_map_node_reserve(unsigned nodes)
|
|
{
|
|
if (phys_map_nodes_nb + nodes > phys_map_nodes_nb_alloc) {
|
|
typedef PhysPageEntry Node[L2_SIZE];
|
|
phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc * 2, 16);
|
|
phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc,
|
|
phys_map_nodes_nb + nodes);
|
|
phys_map_nodes = g_renew(Node, phys_map_nodes,
|
|
phys_map_nodes_nb_alloc);
|
|
}
|
|
}
|
|
|
|
static uint16_t phys_map_node_alloc(void)
|
|
{
|
|
unsigned i;
|
|
uint16_t ret;
|
|
|
|
ret = phys_map_nodes_nb++;
|
|
assert(ret != PHYS_MAP_NODE_NIL);
|
|
assert(ret != phys_map_nodes_nb_alloc);
|
|
for (i = 0; i < L2_SIZE; ++i) {
|
|
phys_map_nodes[ret][i].is_leaf = 0;
|
|
phys_map_nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void phys_map_nodes_reset(void)
|
|
{
|
|
phys_map_nodes_nb = 0;
|
|
}
|
|
|
|
|
|
static void phys_page_set_level(PhysPageEntry *lp, hwaddr *index,
|
|
hwaddr *nb, uint16_t leaf,
|
|
int level)
|
|
{
|
|
PhysPageEntry *p;
|
|
int i;
|
|
hwaddr step = (hwaddr)1 << (level * L2_BITS);
|
|
|
|
if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
|
|
lp->ptr = phys_map_node_alloc();
|
|
p = phys_map_nodes[lp->ptr];
|
|
if (level == 0) {
|
|
for (i = 0; i < L2_SIZE; i++) {
|
|
p[i].is_leaf = 1;
|
|
p[i].ptr = phys_section_unassigned;
|
|
}
|
|
}
|
|
} else {
|
|
p = phys_map_nodes[lp->ptr];
|
|
}
|
|
lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
|
|
|
|
while (*nb && lp < &p[L2_SIZE]) {
|
|
if ((*index & (step - 1)) == 0 && *nb >= step) {
|
|
lp->is_leaf = true;
|
|
lp->ptr = leaf;
|
|
*index += step;
|
|
*nb -= step;
|
|
} else {
|
|
phys_page_set_level(lp, index, nb, leaf, level - 1);
|
|
}
|
|
++lp;
|
|
}
|
|
}
|
|
|
|
static void phys_page_set(AddressSpaceDispatch *d,
|
|
hwaddr index, hwaddr nb,
|
|
uint16_t leaf)
|
|
{
|
|
/* Wildly overreserve - it doesn't matter much. */
|
|
phys_map_node_reserve(3 * P_L2_LEVELS);
|
|
|
|
phys_page_set_level(&d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
|
|
}
|
|
|
|
MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr index)
|
|
{
|
|
PhysPageEntry lp = d->phys_map;
|
|
PhysPageEntry *p;
|
|
int i;
|
|
uint16_t s_index = phys_section_unassigned;
|
|
|
|
for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
|
|
if (lp.ptr == PHYS_MAP_NODE_NIL) {
|
|
goto not_found;
|
|
}
|
|
p = phys_map_nodes[lp.ptr];
|
|
lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
|
|
}
|
|
|
|
s_index = lp.ptr;
|
|
not_found:
|
|
return &phys_sections[s_index];
|
|
}
|
|
|
|
bool memory_region_is_unassigned(MemoryRegion *mr)
|
|
{
|
|
return mr != &io_mem_ram && mr != &io_mem_rom
|
|
&& mr != &io_mem_notdirty && !mr->rom_device
|
|
&& mr != &io_mem_watch;
|
|
}
|
|
#endif
|
|
|
|
void cpu_exec_init_all(void)
|
|
{
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
qemu_mutex_init(&ram_list.mutex);
|
|
memory_map_init();
|
|
io_mem_init();
|
|
#endif
|
|
}
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
|
|
static int cpu_common_post_load(void *opaque, int version_id)
|
|
{
|
|
CPUState *cpu = opaque;
|
|
|
|
/* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
|
|
version_id is increased. */
|
|
cpu->interrupt_request &= ~0x01;
|
|
tlb_flush(cpu->env_ptr, 1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const VMStateDescription vmstate_cpu_common = {
|
|
.name = "cpu_common",
|
|
.version_id = 1,
|
|
.minimum_version_id = 1,
|
|
.minimum_version_id_old = 1,
|
|
.post_load = cpu_common_post_load,
|
|
.fields = (VMStateField []) {
|
|
VMSTATE_UINT32(halted, CPUState),
|
|
VMSTATE_UINT32(interrupt_request, CPUState),
|
|
VMSTATE_END_OF_LIST()
|
|
}
|
|
};
|
|
#else
|
|
#define vmstate_cpu_common vmstate_dummy
|
|
#endif
|
|
|
|
CPUState *qemu_get_cpu(int index)
|
|
{
|
|
CPUArchState *env = first_cpu;
|
|
CPUState *cpu = NULL;
|
|
|
|
while (env) {
|
|
cpu = ENV_GET_CPU(env);
|
|
if (cpu->cpu_index == index) {
|
|
break;
|
|
}
|
|
env = env->next_cpu;
|
|
}
|
|
|
|
return env ? cpu : NULL;
|
|
}
|
|
|
|
void cpu_exec_init(CPUArchState *env)
|
|
{
|
|
CPUState *cpu = ENV_GET_CPU(env);
|
|
CPUClass *cc = CPU_GET_CLASS(cpu);
|
|
CPUArchState **penv;
|
|
int cpu_index;
|
|
|
|
#if defined(CONFIG_USER_ONLY)
|
|
cpu_list_lock();
|
|
#endif
|
|
env->next_cpu = NULL;
|
|
penv = &first_cpu;
|
|
cpu_index = 0;
|
|
while (*penv != NULL) {
|
|
penv = &(*penv)->next_cpu;
|
|
cpu_index++;
|
|
}
|
|
cpu->cpu_index = cpu_index;
|
|
cpu->numa_node = 0;
|
|
QTAILQ_INIT(&env->breakpoints);
|
|
QTAILQ_INIT(&env->watchpoints);
|
|
#ifndef CONFIG_USER_ONLY
|
|
cpu->thread_id = qemu_get_thread_id();
|
|
#endif
|
|
*penv = env;
|
|
#if defined(CONFIG_USER_ONLY)
|
|
cpu_list_unlock();
|
|
#endif
|
|
vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
|
|
#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
|
|
register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
|
|
cpu_save, cpu_load, env);
|
|
assert(cc->vmsd == NULL);
|
|
#endif
|
|
if (cc->vmsd != NULL) {
|
|
vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
|
|
}
|
|
}
|
|
|
|
#if defined(TARGET_HAS_ICE)
|
|
#if defined(CONFIG_USER_ONLY)
|
|
static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
|
|
{
|
|
tb_invalidate_phys_page_range(pc, pc + 1, 0);
|
|
}
|
|
#else
|
|
static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
|
|
{
|
|
tb_invalidate_phys_addr(cpu_get_phys_page_debug(env, pc) |
|
|
(pc & ~TARGET_PAGE_MASK));
|
|
}
|
|
#endif
|
|
#endif /* TARGET_HAS_ICE */
|
|
|
|
#if defined(CONFIG_USER_ONLY)
|
|
void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
|
|
|
|
{
|
|
}
|
|
|
|
int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
|
|
int flags, CPUWatchpoint **watchpoint)
|
|
{
|
|
return -ENOSYS;
|
|
}
|
|
#else
|
|
/* Add a watchpoint. */
|
|
int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
|
|
int flags, CPUWatchpoint **watchpoint)
|
|
{
|
|
target_ulong len_mask = ~(len - 1);
|
|
CPUWatchpoint *wp;
|
|
|
|
/* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
|
|
if ((len & (len - 1)) || (addr & ~len_mask) ||
|
|
len == 0 || len > TARGET_PAGE_SIZE) {
|
|
fprintf(stderr, "qemu: tried to set invalid watchpoint at "
|
|
TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
|
|
return -EINVAL;
|
|
}
|
|
wp = g_malloc(sizeof(*wp));
|
|
|
|
wp->vaddr = addr;
|
|
wp->len_mask = len_mask;
|
|
wp->flags = flags;
|
|
|
|
/* keep all GDB-injected watchpoints in front */
|
|
if (flags & BP_GDB)
|
|
QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
|
|
else
|
|
QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
|
|
|
|
tlb_flush_page(env, addr);
|
|
|
|
if (watchpoint)
|
|
*watchpoint = wp;
|
|
return 0;
|
|
}
|
|
|
|
/* Remove a specific watchpoint. */
|
|
int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
|
|
int flags)
|
|
{
|
|
target_ulong len_mask = ~(len - 1);
|
|
CPUWatchpoint *wp;
|
|
|
|
QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
|
|
if (addr == wp->vaddr && len_mask == wp->len_mask
|
|
&& flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
|
|
cpu_watchpoint_remove_by_ref(env, wp);
|
|
return 0;
|
|
}
|
|
}
|
|
return -ENOENT;
|
|
}
|
|
|
|
/* Remove a specific watchpoint by reference. */
|
|
void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
|
|
{
|
|
QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
|
|
|
|
tlb_flush_page(env, watchpoint->vaddr);
|
|
|
|
g_free(watchpoint);
|
|
}
|
|
|
|
/* Remove all matching watchpoints. */
|
|
void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
|
|
{
|
|
CPUWatchpoint *wp, *next;
|
|
|
|
QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
|
|
if (wp->flags & mask)
|
|
cpu_watchpoint_remove_by_ref(env, wp);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Add a breakpoint. */
|
|
int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
|
|
CPUBreakpoint **breakpoint)
|
|
{
|
|
#if defined(TARGET_HAS_ICE)
|
|
CPUBreakpoint *bp;
|
|
|
|
bp = g_malloc(sizeof(*bp));
|
|
|
|
bp->pc = pc;
|
|
bp->flags = flags;
|
|
|
|
/* keep all GDB-injected breakpoints in front */
|
|
if (flags & BP_GDB)
|
|
QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
|
|
else
|
|
QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
|
|
|
|
breakpoint_invalidate(env, pc);
|
|
|
|
if (breakpoint)
|
|
*breakpoint = bp;
|
|
return 0;
|
|
#else
|
|
return -ENOSYS;
|
|
#endif
|
|
}
|
|
|
|
/* Remove a specific breakpoint. */
|
|
int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
|
|
{
|
|
#if defined(TARGET_HAS_ICE)
|
|
CPUBreakpoint *bp;
|
|
|
|
QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
|
|
if (bp->pc == pc && bp->flags == flags) {
|
|
cpu_breakpoint_remove_by_ref(env, bp);
|
|
return 0;
|
|
}
|
|
}
|
|
return -ENOENT;
|
|
#else
|
|
return -ENOSYS;
|
|
#endif
|
|
}
|
|
|
|
/* Remove a specific breakpoint by reference. */
|
|
void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
|
|
{
|
|
#if defined(TARGET_HAS_ICE)
|
|
QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
|
|
|
|
breakpoint_invalidate(env, breakpoint->pc);
|
|
|
|
g_free(breakpoint);
|
|
#endif
|
|
}
|
|
|
|
/* Remove all matching breakpoints. */
|
|
void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
|
|
{
|
|
#if defined(TARGET_HAS_ICE)
|
|
CPUBreakpoint *bp, *next;
|
|
|
|
QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
|
|
if (bp->flags & mask)
|
|
cpu_breakpoint_remove_by_ref(env, bp);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* enable or disable single step mode. EXCP_DEBUG is returned by the
|
|
CPU loop after each instruction */
|
|
void cpu_single_step(CPUArchState *env, int enabled)
|
|
{
|
|
#if defined(TARGET_HAS_ICE)
|
|
if (env->singlestep_enabled != enabled) {
|
|
env->singlestep_enabled = enabled;
|
|
if (kvm_enabled())
|
|
kvm_update_guest_debug(env, 0);
|
|
else {
|
|
/* must flush all the translated code to avoid inconsistencies */
|
|
/* XXX: only flush what is necessary */
|
|
tb_flush(env);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void cpu_exit(CPUArchState *env)
|
|
{
|
|
CPUState *cpu = ENV_GET_CPU(env);
|
|
|
|
cpu->exit_request = 1;
|
|
cpu->tcg_exit_req = 1;
|
|
}
|
|
|
|
void cpu_abort(CPUArchState *env, const char *fmt, ...)
|
|
{
|
|
va_list ap;
|
|
va_list ap2;
|
|
|
|
va_start(ap, fmt);
|
|
va_copy(ap2, ap);
|
|
fprintf(stderr, "qemu: fatal: ");
|
|
vfprintf(stderr, fmt, ap);
|
|
fprintf(stderr, "\n");
|
|
cpu_dump_state(env, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
|
|
if (qemu_log_enabled()) {
|
|
qemu_log("qemu: fatal: ");
|
|
qemu_log_vprintf(fmt, ap2);
|
|
qemu_log("\n");
|
|
log_cpu_state(env, CPU_DUMP_FPU | CPU_DUMP_CCOP);
|
|
qemu_log_flush();
|
|
qemu_log_close();
|
|
}
|
|
va_end(ap2);
|
|
va_end(ap);
|
|
#if defined(CONFIG_USER_ONLY)
|
|
{
|
|
struct sigaction act;
|
|
sigfillset(&act.sa_mask);
|
|
act.sa_handler = SIG_DFL;
|
|
sigaction(SIGABRT, &act, NULL);
|
|
}
|
|
#endif
|
|
abort();
|
|
}
|
|
|
|
CPUArchState *cpu_copy(CPUArchState *env)
|
|
{
|
|
CPUArchState *new_env = cpu_init(env->cpu_model_str);
|
|
CPUArchState *next_cpu = new_env->next_cpu;
|
|
#if defined(TARGET_HAS_ICE)
|
|
CPUBreakpoint *bp;
|
|
CPUWatchpoint *wp;
|
|
#endif
|
|
|
|
memcpy(new_env, env, sizeof(CPUArchState));
|
|
|
|
/* Preserve chaining. */
|
|
new_env->next_cpu = next_cpu;
|
|
|
|
/* Clone all break/watchpoints.
|
|
Note: Once we support ptrace with hw-debug register access, make sure
|
|
BP_CPU break/watchpoints are handled correctly on clone. */
|
|
QTAILQ_INIT(&env->breakpoints);
|
|
QTAILQ_INIT(&env->watchpoints);
|
|
#if defined(TARGET_HAS_ICE)
|
|
QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
|
|
cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
|
|
}
|
|
QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
|
|
cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
|
|
wp->flags, NULL);
|
|
}
|
|
#endif
|
|
|
|
return new_env;
|
|
}
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
|
|
uintptr_t length)
|
|
{
|
|
uintptr_t start1;
|
|
|
|
/* we modify the TLB cache so that the dirty bit will be set again
|
|
when accessing the range */
|
|
start1 = (uintptr_t)qemu_safe_ram_ptr(start);
|
|
/* Check that we don't span multiple blocks - this breaks the
|
|
address comparisons below. */
|
|
if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
|
|
!= (end - 1) - start) {
|
|
abort();
|
|
}
|
|
cpu_tlb_reset_dirty_all(start1, length);
|
|
|
|
}
|
|
|
|
/* Note: start and end must be within the same ram block. */
|
|
void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
|
|
int dirty_flags)
|
|
{
|
|
uintptr_t length;
|
|
|
|
start &= TARGET_PAGE_MASK;
|
|
end = TARGET_PAGE_ALIGN(end);
|
|
|
|
length = end - start;
|
|
if (length == 0)
|
|
return;
|
|
cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
|
|
|
|
if (tcg_enabled()) {
|
|
tlb_reset_dirty_range_all(start, end, length);
|
|
}
|
|
}
|
|
|
|
static int cpu_physical_memory_set_dirty_tracking(int enable)
|
|
{
|
|
int ret = 0;
|
|
in_migration = enable;
|
|
return ret;
|
|
}
|
|
|
|
hwaddr memory_region_section_get_iotlb(CPUArchState *env,
|
|
MemoryRegionSection *section,
|
|
target_ulong vaddr,
|
|
hwaddr paddr,
|
|
int prot,
|
|
target_ulong *address)
|
|
{
|
|
hwaddr iotlb;
|
|
CPUWatchpoint *wp;
|
|
|
|
if (memory_region_is_ram(section->mr)) {
|
|
/* Normal RAM. */
|
|
iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
|
|
+ memory_region_section_addr(section, paddr);
|
|
if (!section->readonly) {
|
|
iotlb |= phys_section_notdirty;
|
|
} else {
|
|
iotlb |= phys_section_rom;
|
|
}
|
|
} else {
|
|
/* IO handlers are currently passed a physical address.
|
|
It would be nice to pass an offset from the base address
|
|
of that region. This would avoid having to special case RAM,
|
|
and avoid full address decoding in every device.
|
|
We can't use the high bits of pd for this because
|
|
IO_MEM_ROMD uses these as a ram address. */
|
|
iotlb = section - phys_sections;
|
|
iotlb += memory_region_section_addr(section, paddr);
|
|
}
|
|
|
|
/* Make accesses to pages with watchpoints go via the
|
|
watchpoint trap routines. */
|
|
QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
|
|
if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
|
|
/* Avoid trapping reads of pages with a write breakpoint. */
|
|
if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
|
|
iotlb = phys_section_watch + paddr;
|
|
*address |= TLB_MMIO;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return iotlb;
|
|
}
|
|
#endif /* defined(CONFIG_USER_ONLY) */
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
|
|
#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
|
|
typedef struct subpage_t {
|
|
MemoryRegion iomem;
|
|
hwaddr base;
|
|
uint16_t sub_section[TARGET_PAGE_SIZE];
|
|
} subpage_t;
|
|
|
|
static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
|
|
uint16_t section);
|
|
static subpage_t *subpage_init(hwaddr base);
|
|
static void destroy_page_desc(uint16_t section_index)
|
|
{
|
|
MemoryRegionSection *section = &phys_sections[section_index];
|
|
MemoryRegion *mr = section->mr;
|
|
|
|
if (mr->subpage) {
|
|
subpage_t *subpage = container_of(mr, subpage_t, iomem);
|
|
memory_region_destroy(&subpage->iomem);
|
|
g_free(subpage);
|
|
}
|
|
}
|
|
|
|
static void destroy_l2_mapping(PhysPageEntry *lp, unsigned level)
|
|
{
|
|
unsigned i;
|
|
PhysPageEntry *p;
|
|
|
|
if (lp->ptr == PHYS_MAP_NODE_NIL) {
|
|
return;
|
|
}
|
|
|
|
p = phys_map_nodes[lp->ptr];
|
|
for (i = 0; i < L2_SIZE; ++i) {
|
|
if (!p[i].is_leaf) {
|
|
destroy_l2_mapping(&p[i], level - 1);
|
|
} else {
|
|
destroy_page_desc(p[i].ptr);
|
|
}
|
|
}
|
|
lp->is_leaf = 0;
|
|
lp->ptr = PHYS_MAP_NODE_NIL;
|
|
}
|
|
|
|
static void destroy_all_mappings(AddressSpaceDispatch *d)
|
|
{
|
|
destroy_l2_mapping(&d->phys_map, P_L2_LEVELS - 1);
|
|
phys_map_nodes_reset();
|
|
}
|
|
|
|
static uint16_t phys_section_add(MemoryRegionSection *section)
|
|
{
|
|
if (phys_sections_nb == phys_sections_nb_alloc) {
|
|
phys_sections_nb_alloc = MAX(phys_sections_nb_alloc * 2, 16);
|
|
phys_sections = g_renew(MemoryRegionSection, phys_sections,
|
|
phys_sections_nb_alloc);
|
|
}
|
|
phys_sections[phys_sections_nb] = *section;
|
|
return phys_sections_nb++;
|
|
}
|
|
|
|
static void phys_sections_clear(void)
|
|
{
|
|
phys_sections_nb = 0;
|
|
}
|
|
|
|
static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
|
|
{
|
|
subpage_t *subpage;
|
|
hwaddr base = section->offset_within_address_space
|
|
& TARGET_PAGE_MASK;
|
|
MemoryRegionSection *existing = phys_page_find(d, base >> TARGET_PAGE_BITS);
|
|
MemoryRegionSection subsection = {
|
|
.offset_within_address_space = base,
|
|
.size = TARGET_PAGE_SIZE,
|
|
};
|
|
hwaddr start, end;
|
|
|
|
assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
|
|
|
|
if (!(existing->mr->subpage)) {
|
|
subpage = subpage_init(base);
|
|
subsection.mr = &subpage->iomem;
|
|
phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
|
|
phys_section_add(&subsection));
|
|
} else {
|
|
subpage = container_of(existing->mr, subpage_t, iomem);
|
|
}
|
|
start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
|
|
end = start + section->size - 1;
|
|
subpage_register(subpage, start, end, phys_section_add(section));
|
|
}
|
|
|
|
|
|
static void register_multipage(AddressSpaceDispatch *d, MemoryRegionSection *section)
|
|
{
|
|
hwaddr start_addr = section->offset_within_address_space;
|
|
ram_addr_t size = section->size;
|
|
hwaddr addr;
|
|
uint16_t section_index = phys_section_add(section);
|
|
|
|
assert(size);
|
|
|
|
addr = start_addr;
|
|
phys_page_set(d, addr >> TARGET_PAGE_BITS, size >> TARGET_PAGE_BITS,
|
|
section_index);
|
|
}
|
|
|
|
static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
|
|
{
|
|
AddressSpaceDispatch *d = container_of(listener, AddressSpaceDispatch, listener);
|
|
MemoryRegionSection now = *section, remain = *section;
|
|
|
|
if ((now.offset_within_address_space & ~TARGET_PAGE_MASK)
|
|
|| (now.size < TARGET_PAGE_SIZE)) {
|
|
now.size = MIN(TARGET_PAGE_ALIGN(now.offset_within_address_space)
|
|
- now.offset_within_address_space,
|
|
now.size);
|
|
register_subpage(d, &now);
|
|
remain.size -= now.size;
|
|
remain.offset_within_address_space += now.size;
|
|
remain.offset_within_region += now.size;
|
|
}
|
|
while (remain.size >= TARGET_PAGE_SIZE) {
|
|
now = remain;
|
|
if (remain.offset_within_region & ~TARGET_PAGE_MASK) {
|
|
now.size = TARGET_PAGE_SIZE;
|
|
register_subpage(d, &now);
|
|
} else {
|
|
now.size &= TARGET_PAGE_MASK;
|
|
register_multipage(d, &now);
|
|
}
|
|
remain.size -= now.size;
|
|
remain.offset_within_address_space += now.size;
|
|
remain.offset_within_region += now.size;
|
|
}
|
|
now = remain;
|
|
if (now.size) {
|
|
register_subpage(d, &now);
|
|
}
|
|
}
|
|
|
|
void qemu_flush_coalesced_mmio_buffer(void)
|
|
{
|
|
if (kvm_enabled())
|
|
kvm_flush_coalesced_mmio_buffer();
|
|
}
|
|
|
|
void qemu_mutex_lock_ramlist(void)
|
|
{
|
|
qemu_mutex_lock(&ram_list.mutex);
|
|
}
|
|
|
|
void qemu_mutex_unlock_ramlist(void)
|
|
{
|
|
qemu_mutex_unlock(&ram_list.mutex);
|
|
}
|
|
|
|
#if defined(__linux__) && !defined(TARGET_S390X)
|
|
|
|
#include <sys/vfs.h>
|
|
|
|
#define HUGETLBFS_MAGIC 0x958458f6
|
|
|
|
static long gethugepagesize(const char *path)
|
|
{
|
|
struct statfs fs;
|
|
int ret;
|
|
|
|
do {
|
|
ret = statfs(path, &fs);
|
|
} while (ret != 0 && errno == EINTR);
|
|
|
|
if (ret != 0) {
|
|
perror(path);
|
|
return 0;
|
|
}
|
|
|
|
if (fs.f_type != HUGETLBFS_MAGIC)
|
|
fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
|
|
|
|
return fs.f_bsize;
|
|
}
|
|
|
|
static void *file_ram_alloc(RAMBlock *block,
|
|
ram_addr_t memory,
|
|
const char *path)
|
|
{
|
|
char *filename;
|
|
char *sanitized_name;
|
|
char *c;
|
|
void *area;
|
|
int fd;
|
|
#ifdef MAP_POPULATE
|
|
int flags;
|
|
#endif
|
|
unsigned long hpagesize;
|
|
|
|
hpagesize = gethugepagesize(path);
|
|
if (!hpagesize) {
|
|
return NULL;
|
|
}
|
|
|
|
if (memory < hpagesize) {
|
|
return NULL;
|
|
}
|
|
|
|
if (kvm_enabled() && !kvm_has_sync_mmu()) {
|
|
fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
|
|
return NULL;
|
|
}
|
|
|
|
/* Make name safe to use with mkstemp by replacing '/' with '_'. */
|
|
sanitized_name = g_strdup(block->mr->name);
|
|
for (c = sanitized_name; *c != '\0'; c++) {
|
|
if (*c == '/')
|
|
*c = '_';
|
|
}
|
|
|
|
filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
|
|
sanitized_name);
|
|
g_free(sanitized_name);
|
|
|
|
fd = mkstemp(filename);
|
|
if (fd < 0) {
|
|
perror("unable to create backing store for hugepages");
|
|
g_free(filename);
|
|
return NULL;
|
|
}
|
|
unlink(filename);
|
|
g_free(filename);
|
|
|
|
memory = (memory+hpagesize-1) & ~(hpagesize-1);
|
|
|
|
/*
|
|
* ftruncate is not supported by hugetlbfs in older
|
|
* hosts, so don't bother bailing out on errors.
|
|
* If anything goes wrong with it under other filesystems,
|
|
* mmap will fail.
|
|
*/
|
|
if (ftruncate(fd, memory))
|
|
perror("ftruncate");
|
|
|
|
#ifdef MAP_POPULATE
|
|
/* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
|
|
* MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
|
|
* to sidestep this quirk.
|
|
*/
|
|
flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
|
|
area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
|
|
#else
|
|
area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
|
|
#endif
|
|
if (area == MAP_FAILED) {
|
|
perror("file_ram_alloc: can't mmap RAM pages");
|
|
close(fd);
|
|
return (NULL);
|
|
}
|
|
block->fd = fd;
|
|
return area;
|
|
}
|
|
#endif
|
|
|
|
static ram_addr_t find_ram_offset(ram_addr_t size)
|
|
{
|
|
RAMBlock *block, *next_block;
|
|
ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
|
|
|
|
assert(size != 0); /* it would hand out same offset multiple times */
|
|
|
|
if (QTAILQ_EMPTY(&ram_list.blocks))
|
|
return 0;
|
|
|
|
QTAILQ_FOREACH(block, &ram_list.blocks, next) {
|
|
ram_addr_t end, next = RAM_ADDR_MAX;
|
|
|
|
end = block->offset + block->length;
|
|
|
|
QTAILQ_FOREACH(next_block, &ram_list.blocks, next) {
|
|
if (next_block->offset >= end) {
|
|
next = MIN(next, next_block->offset);
|
|
}
|
|
}
|
|
if (next - end >= size && next - end < mingap) {
|
|
offset = end;
|
|
mingap = next - end;
|
|
}
|
|
}
|
|
|
|
if (offset == RAM_ADDR_MAX) {
|
|
fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
|
|
(uint64_t)size);
|
|
abort();
|
|
}
|
|
|
|
return offset;
|
|
}
|
|
|
|
ram_addr_t last_ram_offset(void)
|
|
{
|
|
RAMBlock *block;
|
|
ram_addr_t last = 0;
|
|
|
|
QTAILQ_FOREACH(block, &ram_list.blocks, next)
|
|
last = MAX(last, block->offset + block->length);
|
|
|
|
return last;
|
|
}
|
|
|
|
static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
|
|
{
|
|
int ret;
|
|
QemuOpts *machine_opts;
|
|
|
|
/* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
|
|
machine_opts = qemu_opts_find(qemu_find_opts("machine"), 0);
|
|
if (machine_opts &&
|
|
!qemu_opt_get_bool(machine_opts, "dump-guest-core", true)) {
|
|
ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
|
|
if (ret) {
|
|
perror("qemu_madvise");
|
|
fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
|
|
"but dump_guest_core=off specified\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
|
|
{
|
|
RAMBlock *new_block, *block;
|
|
|
|
new_block = NULL;
|
|
QTAILQ_FOREACH(block, &ram_list.blocks, next) {
|
|
if (block->offset == addr) {
|
|
new_block = block;
|
|
break;
|
|
}
|
|
}
|
|
assert(new_block);
|
|
assert(!new_block->idstr[0]);
|
|
|
|
if (dev) {
|
|
char *id = qdev_get_dev_path(dev);
|
|
if (id) {
|
|
snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
|
|
g_free(id);
|
|
}
|
|
}
|
|
pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
|
|
|
|
/* This assumes the iothread lock is taken here too. */
|
|
qemu_mutex_lock_ramlist();
|
|
QTAILQ_FOREACH(block, &ram_list.blocks, next) {
|
|
if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
|
|
fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
|
|
new_block->idstr);
|
|
abort();
|
|
}
|
|
}
|
|
qemu_mutex_unlock_ramlist();
|
|
}
|
|
|
|
static int memory_try_enable_merging(void *addr, size_t len)
|
|
{
|
|
QemuOpts *opts;
|
|
|
|
opts = qemu_opts_find(qemu_find_opts("machine"), 0);
|
|
if (opts && !qemu_opt_get_bool(opts, "mem-merge", true)) {
|
|
/* disabled by the user */
|
|
return 0;
|
|
}
|
|
|
|
return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
|
|
}
|
|
|
|
ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
|
|
MemoryRegion *mr)
|
|
{
|
|
RAMBlock *block, *new_block;
|
|
|
|
size = TARGET_PAGE_ALIGN(size);
|
|
new_block = g_malloc0(sizeof(*new_block));
|
|
|
|
/* This assumes the iothread lock is taken here too. */
|
|
qemu_mutex_lock_ramlist();
|
|
new_block->mr = mr;
|
|
new_block->offset = find_ram_offset(size);
|
|
if (host) {
|
|
new_block->host = host;
|
|
new_block->flags |= RAM_PREALLOC_MASK;
|
|
} else {
|
|
if (mem_path) {
|
|
#if defined (__linux__) && !defined(TARGET_S390X)
|
|
new_block->host = file_ram_alloc(new_block, size, mem_path);
|
|
if (!new_block->host) {
|
|
new_block->host = qemu_vmalloc(size);
|
|
memory_try_enable_merging(new_block->host, size);
|
|
}
|
|
#else
|
|
fprintf(stderr, "-mem-path option unsupported\n");
|
|
exit(1);
|
|
#endif
|
|
} else {
|
|
if (xen_enabled()) {
|
|
xen_ram_alloc(new_block->offset, size, mr);
|
|
} else if (kvm_enabled()) {
|
|
/* some s390/kvm configurations have special constraints */
|
|
new_block->host = kvm_vmalloc(size);
|
|
} else {
|
|
new_block->host = qemu_vmalloc(size);
|
|
}
|
|
memory_try_enable_merging(new_block->host, size);
|
|
}
|
|
}
|
|
new_block->length = size;
|
|
|
|
/* Keep the list sorted from biggest to smallest block. */
|
|
QTAILQ_FOREACH(block, &ram_list.blocks, next) {
|
|
if (block->length < new_block->length) {
|
|
break;
|
|
}
|
|
}
|
|
if (block) {
|
|
QTAILQ_INSERT_BEFORE(block, new_block, next);
|
|
} else {
|
|
QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next);
|
|
}
|
|
ram_list.mru_block = NULL;
|
|
|
|
ram_list.version++;
|
|
qemu_mutex_unlock_ramlist();
|
|
|
|
ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
|
|
last_ram_offset() >> TARGET_PAGE_BITS);
|
|
memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
|
|
0, size >> TARGET_PAGE_BITS);
|
|
cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
|
|
|
|
qemu_ram_setup_dump(new_block->host, size);
|
|
qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE);
|
|
|
|
if (kvm_enabled())
|
|
kvm_setup_guest_memory(new_block->host, size);
|
|
|
|
return new_block->offset;
|
|
}
|
|
|
|
ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
|
|
{
|
|
return qemu_ram_alloc_from_ptr(size, NULL, mr);
|
|
}
|
|
|
|
void qemu_ram_free_from_ptr(ram_addr_t addr)
|
|
{
|
|
RAMBlock *block;
|
|
|
|
/* This assumes the iothread lock is taken here too. */
|
|
qemu_mutex_lock_ramlist();
|
|
QTAILQ_FOREACH(block, &ram_list.blocks, next) {
|
|
if (addr == block->offset) {
|
|
QTAILQ_REMOVE(&ram_list.blocks, block, next);
|
|
ram_list.mru_block = NULL;
|
|
ram_list.version++;
|
|
g_free(block);
|
|
break;
|
|
}
|
|
}
|
|
qemu_mutex_unlock_ramlist();
|
|
}
|
|
|
|
void qemu_ram_free(ram_addr_t addr)
|
|
{
|
|
RAMBlock *block;
|
|
|
|
/* This assumes the iothread lock is taken here too. */
|
|
qemu_mutex_lock_ramlist();
|
|
QTAILQ_FOREACH(block, &ram_list.blocks, next) {
|
|
if (addr == block->offset) {
|
|
QTAILQ_REMOVE(&ram_list.blocks, block, next);
|
|
ram_list.mru_block = NULL;
|
|
ram_list.version++;
|
|
if (block->flags & RAM_PREALLOC_MASK) {
|
|
;
|
|
} else if (mem_path) {
|
|
#if defined (__linux__) && !defined(TARGET_S390X)
|
|
if (block->fd) {
|
|
munmap(block->host, block->length);
|
|
close(block->fd);
|
|
} else {
|
|
qemu_vfree(block->host);
|
|
}
|
|
#else
|
|
abort();
|
|
#endif
|
|
} else {
|
|
#if defined(TARGET_S390X) && defined(CONFIG_KVM)
|
|
munmap(block->host, block->length);
|
|
#else
|
|
if (xen_enabled()) {
|
|
xen_invalidate_map_cache_entry(block->host);
|
|
} else {
|
|
qemu_vfree(block->host);
|
|
}
|
|
#endif
|
|
}
|
|
g_free(block);
|
|
break;
|
|
}
|
|
}
|
|
qemu_mutex_unlock_ramlist();
|
|
|
|
}
|
|
|
|
#ifndef _WIN32
|
|
void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
|
|
{
|
|
RAMBlock *block;
|
|
ram_addr_t offset;
|
|
int flags;
|
|
void *area, *vaddr;
|
|
|
|
QTAILQ_FOREACH(block, &ram_list.blocks, next) {
|
|
offset = addr - block->offset;
|
|
if (offset < block->length) {
|
|
vaddr = block->host + offset;
|
|
if (block->flags & RAM_PREALLOC_MASK) {
|
|
;
|
|
} else {
|
|
flags = MAP_FIXED;
|
|
munmap(vaddr, length);
|
|
if (mem_path) {
|
|
#if defined(__linux__) && !defined(TARGET_S390X)
|
|
if (block->fd) {
|
|
#ifdef MAP_POPULATE
|
|
flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
|
|
MAP_PRIVATE;
|
|
#else
|
|
flags |= MAP_PRIVATE;
|
|
#endif
|
|
area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
|
|
flags, block->fd, offset);
|
|
} else {
|
|
flags |= MAP_PRIVATE | MAP_ANONYMOUS;
|
|
area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
|
|
flags, -1, 0);
|
|
}
|
|
#else
|
|
abort();
|
|
#endif
|
|
} else {
|
|
#if defined(TARGET_S390X) && defined(CONFIG_KVM)
|
|
flags |= MAP_SHARED | MAP_ANONYMOUS;
|
|
area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
|
|
flags, -1, 0);
|
|
#else
|
|
flags |= MAP_PRIVATE | MAP_ANONYMOUS;
|
|
area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
|
|
flags, -1, 0);
|
|
#endif
|
|
}
|
|
if (area != vaddr) {
|
|
fprintf(stderr, "Could not remap addr: "
|
|
RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
|
|
length, addr);
|
|
exit(1);
|
|
}
|
|
memory_try_enable_merging(vaddr, length);
|
|
qemu_ram_setup_dump(vaddr, length);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
#endif /* !_WIN32 */
|
|
|
|
/* Return a host pointer to ram allocated with qemu_ram_alloc.
|
|
With the exception of the softmmu code in this file, this should
|
|
only be used for local memory (e.g. video ram) that the device owns,
|
|
and knows it isn't going to access beyond the end of the block.
|
|
|
|
It should not be used for general purpose DMA.
|
|
Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
|
|
*/
|
|
void *qemu_get_ram_ptr(ram_addr_t addr)
|
|
{
|
|
RAMBlock *block;
|
|
|
|
/* The list is protected by the iothread lock here. */
|
|
block = ram_list.mru_block;
|
|
if (block && addr - block->offset < block->length) {
|
|
goto found;
|
|
}
|
|
QTAILQ_FOREACH(block, &ram_list.blocks, next) {
|
|
if (addr - block->offset < block->length) {
|
|
goto found;
|
|
}
|
|
}
|
|
|
|
fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
|
|
abort();
|
|
|
|
found:
|
|
ram_list.mru_block = block;
|
|
if (xen_enabled()) {
|
|
/* We need to check if the requested address is in the RAM
|
|
* because we don't want to map the entire memory in QEMU.
|
|
* In that case just map until the end of the page.
|
|
*/
|
|
if (block->offset == 0) {
|
|
return xen_map_cache(addr, 0, 0);
|
|
} else if (block->host == NULL) {
|
|
block->host =
|
|
xen_map_cache(block->offset, block->length, 1);
|
|
}
|
|
}
|
|
return block->host + (addr - block->offset);
|
|
}
|
|
|
|
/* Return a host pointer to ram allocated with qemu_ram_alloc. Same as
|
|
* qemu_get_ram_ptr but do not touch ram_list.mru_block.
|
|
*
|
|
* ??? Is this still necessary?
|
|
*/
|
|
static void *qemu_safe_ram_ptr(ram_addr_t addr)
|
|
{
|
|
RAMBlock *block;
|
|
|
|
/* The list is protected by the iothread lock here. */
|
|
QTAILQ_FOREACH(block, &ram_list.blocks, next) {
|
|
if (addr - block->offset < block->length) {
|
|
if (xen_enabled()) {
|
|
/* We need to check if the requested address is in the RAM
|
|
* because we don't want to map the entire memory in QEMU.
|
|
* In that case just map until the end of the page.
|
|
*/
|
|
if (block->offset == 0) {
|
|
return xen_map_cache(addr, 0, 0);
|
|
} else if (block->host == NULL) {
|
|
block->host =
|
|
xen_map_cache(block->offset, block->length, 1);
|
|
}
|
|
}
|
|
return block->host + (addr - block->offset);
|
|
}
|
|
}
|
|
|
|
fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
|
|
abort();
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
|
|
* but takes a size argument */
|
|
static void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
|
|
{
|
|
if (*size == 0) {
|
|
return NULL;
|
|
}
|
|
if (xen_enabled()) {
|
|
return xen_map_cache(addr, *size, 1);
|
|
} else {
|
|
RAMBlock *block;
|
|
|
|
QTAILQ_FOREACH(block, &ram_list.blocks, next) {
|
|
if (addr - block->offset < block->length) {
|
|
if (addr - block->offset + *size > block->length)
|
|
*size = block->length - addr + block->offset;
|
|
return block->host + (addr - block->offset);
|
|
}
|
|
}
|
|
|
|
fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
|
|
abort();
|
|
}
|
|
}
|
|
|
|
void qemu_put_ram_ptr(void *addr)
|
|
{
|
|
trace_qemu_put_ram_ptr(addr);
|
|
}
|
|
|
|
int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
|
|
{
|
|
RAMBlock *block;
|
|
uint8_t *host = ptr;
|
|
|
|
if (xen_enabled()) {
|
|
*ram_addr = xen_ram_addr_from_mapcache(ptr);
|
|
return 0;
|
|
}
|
|
|
|
QTAILQ_FOREACH(block, &ram_list.blocks, next) {
|
|
/* This case append when the block is not mapped. */
|
|
if (block->host == NULL) {
|
|
continue;
|
|
}
|
|
if (host - block->host < block->length) {
|
|
*ram_addr = block->offset + (host - block->host);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
/* Some of the softmmu routines need to translate from a host pointer
|
|
(typically a TLB entry) back to a ram offset. */
|
|
ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
|
|
{
|
|
ram_addr_t ram_addr;
|
|
|
|
if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
|
|
fprintf(stderr, "Bad ram pointer %p\n", ptr);
|
|
abort();
|
|
}
|
|
return ram_addr;
|
|
}
|
|
|
|
static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
|
|
unsigned size)
|
|
{
|
|
#ifdef DEBUG_UNASSIGNED
|
|
printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
|
|
#endif
|
|
#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
|
|
cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, size);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
static void unassigned_mem_write(void *opaque, hwaddr addr,
|
|
uint64_t val, unsigned size)
|
|
{
|
|
#ifdef DEBUG_UNASSIGNED
|
|
printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
|
|
#endif
|
|
#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
|
|
cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, size);
|
|
#endif
|
|
}
|
|
|
|
static const MemoryRegionOps unassigned_mem_ops = {
|
|
.read = unassigned_mem_read,
|
|
.write = unassigned_mem_write,
|
|
.endianness = DEVICE_NATIVE_ENDIAN,
|
|
};
|
|
|
|
static uint64_t error_mem_read(void *opaque, hwaddr addr,
|
|
unsigned size)
|
|
{
|
|
abort();
|
|
}
|
|
|
|
static void error_mem_write(void *opaque, hwaddr addr,
|
|
uint64_t value, unsigned size)
|
|
{
|
|
abort();
|
|
}
|
|
|
|
static const MemoryRegionOps error_mem_ops = {
|
|
.read = error_mem_read,
|
|
.write = error_mem_write,
|
|
.endianness = DEVICE_NATIVE_ENDIAN,
|
|
};
|
|
|
|
static const MemoryRegionOps rom_mem_ops = {
|
|
.read = error_mem_read,
|
|
.write = unassigned_mem_write,
|
|
.endianness = DEVICE_NATIVE_ENDIAN,
|
|
};
|
|
|
|
static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
|
|
uint64_t val, unsigned size)
|
|
{
|
|
int dirty_flags;
|
|
dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
|
|
if (!(dirty_flags & CODE_DIRTY_FLAG)) {
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
tb_invalidate_phys_page_fast(ram_addr, size);
|
|
dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
|
|
#endif
|
|
}
|
|
switch (size) {
|
|
case 1:
|
|
stb_p(qemu_get_ram_ptr(ram_addr), val);
|
|
break;
|
|
case 2:
|
|
stw_p(qemu_get_ram_ptr(ram_addr), val);
|
|
break;
|
|
case 4:
|
|
stl_p(qemu_get_ram_ptr(ram_addr), val);
|
|
break;
|
|
default:
|
|
abort();
|
|
}
|
|
dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
|
|
cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
|
|
/* we remove the notdirty callback only if the code has been
|
|
flushed */
|
|
if (dirty_flags == 0xff)
|
|
tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
|
|
}
|
|
|
|
static const MemoryRegionOps notdirty_mem_ops = {
|
|
.read = error_mem_read,
|
|
.write = notdirty_mem_write,
|
|
.endianness = DEVICE_NATIVE_ENDIAN,
|
|
};
|
|
|
|
/* Generate a debug exception if a watchpoint has been hit. */
|
|
static void check_watchpoint(int offset, int len_mask, int flags)
|
|
{
|
|
CPUArchState *env = cpu_single_env;
|
|
target_ulong pc, cs_base;
|
|
target_ulong vaddr;
|
|
CPUWatchpoint *wp;
|
|
int cpu_flags;
|
|
|
|
if (env->watchpoint_hit) {
|
|
/* We re-entered the check after replacing the TB. Now raise
|
|
* the debug interrupt so that is will trigger after the
|
|
* current instruction. */
|
|
cpu_interrupt(ENV_GET_CPU(env), CPU_INTERRUPT_DEBUG);
|
|
return;
|
|
}
|
|
vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
|
|
QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
|
|
if ((vaddr == (wp->vaddr & len_mask) ||
|
|
(vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
|
|
wp->flags |= BP_WATCHPOINT_HIT;
|
|
if (!env->watchpoint_hit) {
|
|
env->watchpoint_hit = wp;
|
|
tb_check_watchpoint(env);
|
|
if (wp->flags & BP_STOP_BEFORE_ACCESS) {
|
|
env->exception_index = EXCP_DEBUG;
|
|
cpu_loop_exit(env);
|
|
} else {
|
|
cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
|
|
tb_gen_code(env, pc, cs_base, cpu_flags, 1);
|
|
cpu_resume_from_signal(env, NULL);
|
|
}
|
|
}
|
|
} else {
|
|
wp->flags &= ~BP_WATCHPOINT_HIT;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
|
|
so these check for a hit then pass through to the normal out-of-line
|
|
phys routines. */
|
|
static uint64_t watch_mem_read(void *opaque, hwaddr addr,
|
|
unsigned size)
|
|
{
|
|
check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
|
|
switch (size) {
|
|
case 1: return ldub_phys(addr);
|
|
case 2: return lduw_phys(addr);
|
|
case 4: return ldl_phys(addr);
|
|
default: abort();
|
|
}
|
|
}
|
|
|
|
static void watch_mem_write(void *opaque, hwaddr addr,
|
|
uint64_t val, unsigned size)
|
|
{
|
|
check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
|
|
switch (size) {
|
|
case 1:
|
|
stb_phys(addr, val);
|
|
break;
|
|
case 2:
|
|
stw_phys(addr, val);
|
|
break;
|
|
case 4:
|
|
stl_phys(addr, val);
|
|
break;
|
|
default: abort();
|
|
}
|
|
}
|
|
|
|
static const MemoryRegionOps watch_mem_ops = {
|
|
.read = watch_mem_read,
|
|
.write = watch_mem_write,
|
|
.endianness = DEVICE_NATIVE_ENDIAN,
|
|
};
|
|
|
|
static uint64_t subpage_read(void *opaque, hwaddr addr,
|
|
unsigned len)
|
|
{
|
|
subpage_t *mmio = opaque;
|
|
unsigned int idx = SUBPAGE_IDX(addr);
|
|
MemoryRegionSection *section;
|
|
#if defined(DEBUG_SUBPAGE)
|
|
printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
|
|
mmio, len, addr, idx);
|
|
#endif
|
|
|
|
section = &phys_sections[mmio->sub_section[idx]];
|
|
addr += mmio->base;
|
|
addr -= section->offset_within_address_space;
|
|
addr += section->offset_within_region;
|
|
return io_mem_read(section->mr, addr, len);
|
|
}
|
|
|
|
static void subpage_write(void *opaque, hwaddr addr,
|
|
uint64_t value, unsigned len)
|
|
{
|
|
subpage_t *mmio = opaque;
|
|
unsigned int idx = SUBPAGE_IDX(addr);
|
|
MemoryRegionSection *section;
|
|
#if defined(DEBUG_SUBPAGE)
|
|
printf("%s: subpage %p len %d addr " TARGET_FMT_plx
|
|
" idx %d value %"PRIx64"\n",
|
|
__func__, mmio, len, addr, idx, value);
|
|
#endif
|
|
|
|
section = &phys_sections[mmio->sub_section[idx]];
|
|
addr += mmio->base;
|
|
addr -= section->offset_within_address_space;
|
|
addr += section->offset_within_region;
|
|
io_mem_write(section->mr, addr, value, len);
|
|
}
|
|
|
|
static const MemoryRegionOps subpage_ops = {
|
|
.read = subpage_read,
|
|
.write = subpage_write,
|
|
.endianness = DEVICE_NATIVE_ENDIAN,
|
|
};
|
|
|
|
static uint64_t subpage_ram_read(void *opaque, hwaddr addr,
|
|
unsigned size)
|
|
{
|
|
ram_addr_t raddr = addr;
|
|
void *ptr = qemu_get_ram_ptr(raddr);
|
|
switch (size) {
|
|
case 1: return ldub_p(ptr);
|
|
case 2: return lduw_p(ptr);
|
|
case 4: return ldl_p(ptr);
|
|
default: abort();
|
|
}
|
|
}
|
|
|
|
static void subpage_ram_write(void *opaque, hwaddr addr,
|
|
uint64_t value, unsigned size)
|
|
{
|
|
ram_addr_t raddr = addr;
|
|
void *ptr = qemu_get_ram_ptr(raddr);
|
|
switch (size) {
|
|
case 1: return stb_p(ptr, value);
|
|
case 2: return stw_p(ptr, value);
|
|
case 4: return stl_p(ptr, value);
|
|
default: abort();
|
|
}
|
|
}
|
|
|
|
static const MemoryRegionOps subpage_ram_ops = {
|
|
.read = subpage_ram_read,
|
|
.write = subpage_ram_write,
|
|
.endianness = DEVICE_NATIVE_ENDIAN,
|
|
};
|
|
|
|
static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
|
|
uint16_t section)
|
|
{
|
|
int idx, eidx;
|
|
|
|
if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
|
|
return -1;
|
|
idx = SUBPAGE_IDX(start);
|
|
eidx = SUBPAGE_IDX(end);
|
|
#if defined(DEBUG_SUBPAGE)
|
|
printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
|
|
mmio, start, end, idx, eidx, memory);
|
|
#endif
|
|
if (memory_region_is_ram(phys_sections[section].mr)) {
|
|
MemoryRegionSection new_section = phys_sections[section];
|
|
new_section.mr = &io_mem_subpage_ram;
|
|
section = phys_section_add(&new_section);
|
|
}
|
|
for (; idx <= eidx; idx++) {
|
|
mmio->sub_section[idx] = section;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static subpage_t *subpage_init(hwaddr base)
|
|
{
|
|
subpage_t *mmio;
|
|
|
|
mmio = g_malloc0(sizeof(subpage_t));
|
|
|
|
mmio->base = base;
|
|
memory_region_init_io(&mmio->iomem, &subpage_ops, mmio,
|
|
"subpage", TARGET_PAGE_SIZE);
|
|
mmio->iomem.subpage = true;
|
|
#if defined(DEBUG_SUBPAGE)
|
|
printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
|
|
mmio, base, TARGET_PAGE_SIZE, subpage_memory);
|
|
#endif
|
|
subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, phys_section_unassigned);
|
|
|
|
return mmio;
|
|
}
|
|
|
|
static uint16_t dummy_section(MemoryRegion *mr)
|
|
{
|
|
MemoryRegionSection section = {
|
|
.mr = mr,
|
|
.offset_within_address_space = 0,
|
|
.offset_within_region = 0,
|
|
.size = UINT64_MAX,
|
|
};
|
|
|
|
return phys_section_add(§ion);
|
|
}
|
|
|
|
MemoryRegion *iotlb_to_region(hwaddr index)
|
|
{
|
|
return phys_sections[index & ~TARGET_PAGE_MASK].mr;
|
|
}
|
|
|
|
static void io_mem_init(void)
|
|
{
|
|
memory_region_init_io(&io_mem_ram, &error_mem_ops, NULL, "ram", UINT64_MAX);
|
|
memory_region_init_io(&io_mem_rom, &rom_mem_ops, NULL, "rom", UINT64_MAX);
|
|
memory_region_init_io(&io_mem_unassigned, &unassigned_mem_ops, NULL,
|
|
"unassigned", UINT64_MAX);
|
|
memory_region_init_io(&io_mem_notdirty, ¬dirty_mem_ops, NULL,
|
|
"notdirty", UINT64_MAX);
|
|
memory_region_init_io(&io_mem_subpage_ram, &subpage_ram_ops, NULL,
|
|
"subpage-ram", UINT64_MAX);
|
|
memory_region_init_io(&io_mem_watch, &watch_mem_ops, NULL,
|
|
"watch", UINT64_MAX);
|
|
}
|
|
|
|
static void mem_begin(MemoryListener *listener)
|
|
{
|
|
AddressSpaceDispatch *d = container_of(listener, AddressSpaceDispatch, listener);
|
|
|
|
destroy_all_mappings(d);
|
|
d->phys_map.ptr = PHYS_MAP_NODE_NIL;
|
|
}
|
|
|
|
static void core_begin(MemoryListener *listener)
|
|
{
|
|
phys_sections_clear();
|
|
phys_section_unassigned = dummy_section(&io_mem_unassigned);
|
|
phys_section_notdirty = dummy_section(&io_mem_notdirty);
|
|
phys_section_rom = dummy_section(&io_mem_rom);
|
|
phys_section_watch = dummy_section(&io_mem_watch);
|
|
}
|
|
|
|
static void tcg_commit(MemoryListener *listener)
|
|
{
|
|
CPUArchState *env;
|
|
|
|
/* since each CPU stores ram addresses in its TLB cache, we must
|
|
reset the modified entries */
|
|
/* XXX: slow ! */
|
|
for(env = first_cpu; env != NULL; env = env->next_cpu) {
|
|
tlb_flush(env, 1);
|
|
}
|
|
}
|
|
|
|
static void core_log_global_start(MemoryListener *listener)
|
|
{
|
|
cpu_physical_memory_set_dirty_tracking(1);
|
|
}
|
|
|
|
static void core_log_global_stop(MemoryListener *listener)
|
|
{
|
|
cpu_physical_memory_set_dirty_tracking(0);
|
|
}
|
|
|
|
static void io_region_add(MemoryListener *listener,
|
|
MemoryRegionSection *section)
|
|
{
|
|
MemoryRegionIORange *mrio = g_new(MemoryRegionIORange, 1);
|
|
|
|
mrio->mr = section->mr;
|
|
mrio->offset = section->offset_within_region;
|
|
iorange_init(&mrio->iorange, &memory_region_iorange_ops,
|
|
section->offset_within_address_space, section->size);
|
|
ioport_register(&mrio->iorange);
|
|
}
|
|
|
|
static void io_region_del(MemoryListener *listener,
|
|
MemoryRegionSection *section)
|
|
{
|
|
isa_unassign_ioport(section->offset_within_address_space, section->size);
|
|
}
|
|
|
|
static MemoryListener core_memory_listener = {
|
|
.begin = core_begin,
|
|
.log_global_start = core_log_global_start,
|
|
.log_global_stop = core_log_global_stop,
|
|
.priority = 1,
|
|
};
|
|
|
|
static MemoryListener io_memory_listener = {
|
|
.region_add = io_region_add,
|
|
.region_del = io_region_del,
|
|
.priority = 0,
|
|
};
|
|
|
|
static MemoryListener tcg_memory_listener = {
|
|
.commit = tcg_commit,
|
|
};
|
|
|
|
void address_space_init_dispatch(AddressSpace *as)
|
|
{
|
|
AddressSpaceDispatch *d = g_new(AddressSpaceDispatch, 1);
|
|
|
|
d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
|
|
d->listener = (MemoryListener) {
|
|
.begin = mem_begin,
|
|
.region_add = mem_add,
|
|
.region_nop = mem_add,
|
|
.priority = 0,
|
|
};
|
|
as->dispatch = d;
|
|
memory_listener_register(&d->listener, as);
|
|
}
|
|
|
|
void address_space_destroy_dispatch(AddressSpace *as)
|
|
{
|
|
AddressSpaceDispatch *d = as->dispatch;
|
|
|
|
memory_listener_unregister(&d->listener);
|
|
destroy_l2_mapping(&d->phys_map, P_L2_LEVELS - 1);
|
|
g_free(d);
|
|
as->dispatch = NULL;
|
|
}
|
|
|
|
static void memory_map_init(void)
|
|
{
|
|
system_memory = g_malloc(sizeof(*system_memory));
|
|
memory_region_init(system_memory, "system", INT64_MAX);
|
|
address_space_init(&address_space_memory, system_memory);
|
|
address_space_memory.name = "memory";
|
|
|
|
system_io = g_malloc(sizeof(*system_io));
|
|
memory_region_init(system_io, "io", 65536);
|
|
address_space_init(&address_space_io, system_io);
|
|
address_space_io.name = "I/O";
|
|
|
|
memory_listener_register(&core_memory_listener, &address_space_memory);
|
|
memory_listener_register(&io_memory_listener, &address_space_io);
|
|
memory_listener_register(&tcg_memory_listener, &address_space_memory);
|
|
|
|
dma_context_init(&dma_context_memory, &address_space_memory,
|
|
NULL, NULL, NULL);
|
|
}
|
|
|
|
MemoryRegion *get_system_memory(void)
|
|
{
|
|
return system_memory;
|
|
}
|
|
|
|
MemoryRegion *get_system_io(void)
|
|
{
|
|
return system_io;
|
|
}
|
|
|
|
#endif /* !defined(CONFIG_USER_ONLY) */
|
|
|
|
/* physical memory access (slow version, mainly for debug) */
|
|
#if defined(CONFIG_USER_ONLY)
|
|
int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
|
|
uint8_t *buf, int len, int is_write)
|
|
{
|
|
int l, flags;
|
|
target_ulong page;
|
|
void * p;
|
|
|
|
while (len > 0) {
|
|
page = addr & TARGET_PAGE_MASK;
|
|
l = (page + TARGET_PAGE_SIZE) - addr;
|
|
if (l > len)
|
|
l = len;
|
|
flags = page_get_flags(page);
|
|
if (!(flags & PAGE_VALID))
|
|
return -1;
|
|
if (is_write) {
|
|
if (!(flags & PAGE_WRITE))
|
|
return -1;
|
|
/* XXX: this code should not depend on lock_user */
|
|
if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
|
|
return -1;
|
|
memcpy(p, buf, l);
|
|
unlock_user(p, addr, l);
|
|
} else {
|
|
if (!(flags & PAGE_READ))
|
|
return -1;
|
|
/* XXX: this code should not depend on lock_user */
|
|
if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
|
|
return -1;
|
|
memcpy(buf, p, l);
|
|
unlock_user(p, addr, 0);
|
|
}
|
|
len -= l;
|
|
buf += l;
|
|
addr += l;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#else
|
|
|
|
static void invalidate_and_set_dirty(hwaddr addr,
|
|
hwaddr length)
|
|
{
|
|
if (!cpu_physical_memory_is_dirty(addr)) {
|
|
/* invalidate code */
|
|
tb_invalidate_phys_page_range(addr, addr + length, 0);
|
|
/* set dirty bit */
|
|
cpu_physical_memory_set_dirty_flags(addr, (0xff & ~CODE_DIRTY_FLAG));
|
|
}
|
|
xen_modified_memory(addr, length);
|
|
}
|
|
|
|
void address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
|
|
int len, bool is_write)
|
|
{
|
|
AddressSpaceDispatch *d = as->dispatch;
|
|
int l;
|
|
uint8_t *ptr;
|
|
uint32_t val;
|
|
hwaddr page;
|
|
MemoryRegionSection *section;
|
|
|
|
while (len > 0) {
|
|
page = addr & TARGET_PAGE_MASK;
|
|
l = (page + TARGET_PAGE_SIZE) - addr;
|
|
if (l > len)
|
|
l = len;
|
|
section = phys_page_find(d, page >> TARGET_PAGE_BITS);
|
|
|
|
if (is_write) {
|
|
if (!memory_region_is_ram(section->mr)) {
|
|
hwaddr addr1;
|
|
addr1 = memory_region_section_addr(section, addr);
|
|
/* XXX: could force cpu_single_env to NULL to avoid
|
|
potential bugs */
|
|
if (l >= 4 && ((addr1 & 3) == 0)) {
|
|
/* 32 bit write access */
|
|
val = ldl_p(buf);
|
|
io_mem_write(section->mr, addr1, val, 4);
|
|
l = 4;
|
|
} else if (l >= 2 && ((addr1 & 1) == 0)) {
|
|
/* 16 bit write access */
|
|
val = lduw_p(buf);
|
|
io_mem_write(section->mr, addr1, val, 2);
|
|
l = 2;
|
|
} else {
|
|
/* 8 bit write access */
|
|
val = ldub_p(buf);
|
|
io_mem_write(section->mr, addr1, val, 1);
|
|
l = 1;
|
|
}
|
|
} else if (!section->readonly) {
|
|
ram_addr_t addr1;
|
|
addr1 = memory_region_get_ram_addr(section->mr)
|
|
+ memory_region_section_addr(section, addr);
|
|
/* RAM case */
|
|
ptr = qemu_get_ram_ptr(addr1);
|
|
memcpy(ptr, buf, l);
|
|
invalidate_and_set_dirty(addr1, l);
|
|
qemu_put_ram_ptr(ptr);
|
|
}
|
|
} else {
|
|
if (!(memory_region_is_ram(section->mr) ||
|
|
memory_region_is_romd(section->mr))) {
|
|
hwaddr addr1;
|
|
/* I/O case */
|
|
addr1 = memory_region_section_addr(section, addr);
|
|
if (l >= 4 && ((addr1 & 3) == 0)) {
|
|
/* 32 bit read access */
|
|
val = io_mem_read(section->mr, addr1, 4);
|
|
stl_p(buf, val);
|
|
l = 4;
|
|
} else if (l >= 2 && ((addr1 & 1) == 0)) {
|
|
/* 16 bit read access */
|
|
val = io_mem_read(section->mr, addr1, 2);
|
|
stw_p(buf, val);
|
|
l = 2;
|
|
} else {
|
|
/* 8 bit read access */
|
|
val = io_mem_read(section->mr, addr1, 1);
|
|
stb_p(buf, val);
|
|
l = 1;
|
|
}
|
|
} else {
|
|
/* RAM case */
|
|
ptr = qemu_get_ram_ptr(section->mr->ram_addr
|
|
+ memory_region_section_addr(section,
|
|
addr));
|
|
memcpy(buf, ptr, l);
|
|
qemu_put_ram_ptr(ptr);
|
|
}
|
|
}
|
|
len -= l;
|
|
buf += l;
|
|
addr += l;
|
|
}
|
|
}
|
|
|
|
void address_space_write(AddressSpace *as, hwaddr addr,
|
|
const uint8_t *buf, int len)
|
|
{
|
|
address_space_rw(as, addr, (uint8_t *)buf, len, true);
|
|
}
|
|
|
|
/**
|
|
* address_space_read: read from an address space.
|
|
*
|
|
* @as: #AddressSpace to be accessed
|
|
* @addr: address within that address space
|
|
* @buf: buffer with the data transferred
|
|
*/
|
|
void address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len)
|
|
{
|
|
address_space_rw(as, addr, buf, len, false);
|
|
}
|
|
|
|
|
|
void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
|
|
int len, int is_write)
|
|
{
|
|
return address_space_rw(&address_space_memory, addr, buf, len, is_write);
|
|
}
|
|
|
|
/* used for ROM loading : can write in RAM and ROM */
|
|
void cpu_physical_memory_write_rom(hwaddr addr,
|
|
const uint8_t *buf, int len)
|
|
{
|
|
AddressSpaceDispatch *d = address_space_memory.dispatch;
|
|
int l;
|
|
uint8_t *ptr;
|
|
hwaddr page;
|
|
MemoryRegionSection *section;
|
|
|
|
while (len > 0) {
|
|
page = addr & TARGET_PAGE_MASK;
|
|
l = (page + TARGET_PAGE_SIZE) - addr;
|
|
if (l > len)
|
|
l = len;
|
|
section = phys_page_find(d, page >> TARGET_PAGE_BITS);
|
|
|
|
if (!(memory_region_is_ram(section->mr) ||
|
|
memory_region_is_romd(section->mr))) {
|
|
/* do nothing */
|
|
} else {
|
|
unsigned long addr1;
|
|
addr1 = memory_region_get_ram_addr(section->mr)
|
|
+ memory_region_section_addr(section, addr);
|
|
/* ROM/RAM case */
|
|
ptr = qemu_get_ram_ptr(addr1);
|
|
memcpy(ptr, buf, l);
|
|
invalidate_and_set_dirty(addr1, l);
|
|
qemu_put_ram_ptr(ptr);
|
|
}
|
|
len -= l;
|
|
buf += l;
|
|
addr += l;
|
|
}
|
|
}
|
|
|
|
typedef struct {
|
|
void *buffer;
|
|
hwaddr addr;
|
|
hwaddr len;
|
|
} BounceBuffer;
|
|
|
|
static BounceBuffer bounce;
|
|
|
|
typedef struct MapClient {
|
|
void *opaque;
|
|
void (*callback)(void *opaque);
|
|
QLIST_ENTRY(MapClient) link;
|
|
} MapClient;
|
|
|
|
static QLIST_HEAD(map_client_list, MapClient) map_client_list
|
|
= QLIST_HEAD_INITIALIZER(map_client_list);
|
|
|
|
void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
|
|
{
|
|
MapClient *client = g_malloc(sizeof(*client));
|
|
|
|
client->opaque = opaque;
|
|
client->callback = callback;
|
|
QLIST_INSERT_HEAD(&map_client_list, client, link);
|
|
return client;
|
|
}
|
|
|
|
static void cpu_unregister_map_client(void *_client)
|
|
{
|
|
MapClient *client = (MapClient *)_client;
|
|
|
|
QLIST_REMOVE(client, link);
|
|
g_free(client);
|
|
}
|
|
|
|
static void cpu_notify_map_clients(void)
|
|
{
|
|
MapClient *client;
|
|
|
|
while (!QLIST_EMPTY(&map_client_list)) {
|
|
client = QLIST_FIRST(&map_client_list);
|
|
client->callback(client->opaque);
|
|
cpu_unregister_map_client(client);
|
|
}
|
|
}
|
|
|
|
/* Map a physical memory region into a host virtual address.
|
|
* May map a subset of the requested range, given by and returned in *plen.
|
|
* May return NULL if resources needed to perform the mapping are exhausted.
|
|
* Use only for reads OR writes - not for read-modify-write operations.
|
|
* Use cpu_register_map_client() to know when retrying the map operation is
|
|
* likely to succeed.
|
|
*/
|
|
void *address_space_map(AddressSpace *as,
|
|
hwaddr addr,
|
|
hwaddr *plen,
|
|
bool is_write)
|
|
{
|
|
AddressSpaceDispatch *d = as->dispatch;
|
|
hwaddr len = *plen;
|
|
hwaddr todo = 0;
|
|
int l;
|
|
hwaddr page;
|
|
MemoryRegionSection *section;
|
|
ram_addr_t raddr = RAM_ADDR_MAX;
|
|
ram_addr_t rlen;
|
|
void *ret;
|
|
|
|
while (len > 0) {
|
|
page = addr & TARGET_PAGE_MASK;
|
|
l = (page + TARGET_PAGE_SIZE) - addr;
|
|
if (l > len)
|
|
l = len;
|
|
section = phys_page_find(d, page >> TARGET_PAGE_BITS);
|
|
|
|
if (!(memory_region_is_ram(section->mr) && !section->readonly)) {
|
|
if (todo || bounce.buffer) {
|
|
break;
|
|
}
|
|
bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
|
|
bounce.addr = addr;
|
|
bounce.len = l;
|
|
if (!is_write) {
|
|
address_space_read(as, addr, bounce.buffer, l);
|
|
}
|
|
|
|
*plen = l;
|
|
return bounce.buffer;
|
|
}
|
|
if (!todo) {
|
|
raddr = memory_region_get_ram_addr(section->mr)
|
|
+ memory_region_section_addr(section, addr);
|
|
}
|
|
|
|
len -= l;
|
|
addr += l;
|
|
todo += l;
|
|
}
|
|
rlen = todo;
|
|
ret = qemu_ram_ptr_length(raddr, &rlen);
|
|
*plen = rlen;
|
|
return ret;
|
|
}
|
|
|
|
/* Unmaps a memory region previously mapped by address_space_map().
|
|
* Will also mark the memory as dirty if is_write == 1. access_len gives
|
|
* the amount of memory that was actually read or written by the caller.
|
|
*/
|
|
void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
|
|
int is_write, hwaddr access_len)
|
|
{
|
|
if (buffer != bounce.buffer) {
|
|
if (is_write) {
|
|
ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
|
|
while (access_len) {
|
|
unsigned l;
|
|
l = TARGET_PAGE_SIZE;
|
|
if (l > access_len)
|
|
l = access_len;
|
|
invalidate_and_set_dirty(addr1, l);
|
|
addr1 += l;
|
|
access_len -= l;
|
|
}
|
|
}
|
|
if (xen_enabled()) {
|
|
xen_invalidate_map_cache_entry(buffer);
|
|
}
|
|
return;
|
|
}
|
|
if (is_write) {
|
|
address_space_write(as, bounce.addr, bounce.buffer, access_len);
|
|
}
|
|
qemu_vfree(bounce.buffer);
|
|
bounce.buffer = NULL;
|
|
cpu_notify_map_clients();
|
|
}
|
|
|
|
void *cpu_physical_memory_map(hwaddr addr,
|
|
hwaddr *plen,
|
|
int is_write)
|
|
{
|
|
return address_space_map(&address_space_memory, addr, plen, is_write);
|
|
}
|
|
|
|
void cpu_physical_memory_unmap(void *buffer, hwaddr len,
|
|
int is_write, hwaddr access_len)
|
|
{
|
|
return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
|
|
}
|
|
|
|
/* warning: addr must be aligned */
|
|
static inline uint32_t ldl_phys_internal(hwaddr addr,
|
|
enum device_endian endian)
|
|
{
|
|
uint8_t *ptr;
|
|
uint32_t val;
|
|
MemoryRegionSection *section;
|
|
|
|
section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
|
|
|
|
if (!(memory_region_is_ram(section->mr) ||
|
|
memory_region_is_romd(section->mr))) {
|
|
/* I/O case */
|
|
addr = memory_region_section_addr(section, addr);
|
|
val = io_mem_read(section->mr, addr, 4);
|
|
#if defined(TARGET_WORDS_BIGENDIAN)
|
|
if (endian == DEVICE_LITTLE_ENDIAN) {
|
|
val = bswap32(val);
|
|
}
|
|
#else
|
|
if (endian == DEVICE_BIG_ENDIAN) {
|
|
val = bswap32(val);
|
|
}
|
|
#endif
|
|
} else {
|
|
/* RAM case */
|
|
ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
|
|
& TARGET_PAGE_MASK)
|
|
+ memory_region_section_addr(section, addr));
|
|
switch (endian) {
|
|
case DEVICE_LITTLE_ENDIAN:
|
|
val = ldl_le_p(ptr);
|
|
break;
|
|
case DEVICE_BIG_ENDIAN:
|
|
val = ldl_be_p(ptr);
|
|
break;
|
|
default:
|
|
val = ldl_p(ptr);
|
|
break;
|
|
}
|
|
}
|
|
return val;
|
|
}
|
|
|
|
uint32_t ldl_phys(hwaddr addr)
|
|
{
|
|
return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
|
|
}
|
|
|
|
uint32_t ldl_le_phys(hwaddr addr)
|
|
{
|
|
return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
|
|
}
|
|
|
|
uint32_t ldl_be_phys(hwaddr addr)
|
|
{
|
|
return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
|
|
}
|
|
|
|
/* warning: addr must be aligned */
|
|
static inline uint64_t ldq_phys_internal(hwaddr addr,
|
|
enum device_endian endian)
|
|
{
|
|
uint8_t *ptr;
|
|
uint64_t val;
|
|
MemoryRegionSection *section;
|
|
|
|
section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
|
|
|
|
if (!(memory_region_is_ram(section->mr) ||
|
|
memory_region_is_romd(section->mr))) {
|
|
/* I/O case */
|
|
addr = memory_region_section_addr(section, addr);
|
|
|
|
/* XXX This is broken when device endian != cpu endian.
|
|
Fix and add "endian" variable check */
|
|
#ifdef TARGET_WORDS_BIGENDIAN
|
|
val = io_mem_read(section->mr, addr, 4) << 32;
|
|
val |= io_mem_read(section->mr, addr + 4, 4);
|
|
#else
|
|
val = io_mem_read(section->mr, addr, 4);
|
|
val |= io_mem_read(section->mr, addr + 4, 4) << 32;
|
|
#endif
|
|
} else {
|
|
/* RAM case */
|
|
ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
|
|
& TARGET_PAGE_MASK)
|
|
+ memory_region_section_addr(section, addr));
|
|
switch (endian) {
|
|
case DEVICE_LITTLE_ENDIAN:
|
|
val = ldq_le_p(ptr);
|
|
break;
|
|
case DEVICE_BIG_ENDIAN:
|
|
val = ldq_be_p(ptr);
|
|
break;
|
|
default:
|
|
val = ldq_p(ptr);
|
|
break;
|
|
}
|
|
}
|
|
return val;
|
|
}
|
|
|
|
uint64_t ldq_phys(hwaddr addr)
|
|
{
|
|
return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
|
|
}
|
|
|
|
uint64_t ldq_le_phys(hwaddr addr)
|
|
{
|
|
return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
|
|
}
|
|
|
|
uint64_t ldq_be_phys(hwaddr addr)
|
|
{
|
|
return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
|
|
}
|
|
|
|
/* XXX: optimize */
|
|
uint32_t ldub_phys(hwaddr addr)
|
|
{
|
|
uint8_t val;
|
|
cpu_physical_memory_read(addr, &val, 1);
|
|
return val;
|
|
}
|
|
|
|
/* warning: addr must be aligned */
|
|
static inline uint32_t lduw_phys_internal(hwaddr addr,
|
|
enum device_endian endian)
|
|
{
|
|
uint8_t *ptr;
|
|
uint64_t val;
|
|
MemoryRegionSection *section;
|
|
|
|
section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
|
|
|
|
if (!(memory_region_is_ram(section->mr) ||
|
|
memory_region_is_romd(section->mr))) {
|
|
/* I/O case */
|
|
addr = memory_region_section_addr(section, addr);
|
|
val = io_mem_read(section->mr, addr, 2);
|
|
#if defined(TARGET_WORDS_BIGENDIAN)
|
|
if (endian == DEVICE_LITTLE_ENDIAN) {
|
|
val = bswap16(val);
|
|
}
|
|
#else
|
|
if (endian == DEVICE_BIG_ENDIAN) {
|
|
val = bswap16(val);
|
|
}
|
|
#endif
|
|
} else {
|
|
/* RAM case */
|
|
ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
|
|
& TARGET_PAGE_MASK)
|
|
+ memory_region_section_addr(section, addr));
|
|
switch (endian) {
|
|
case DEVICE_LITTLE_ENDIAN:
|
|
val = lduw_le_p(ptr);
|
|
break;
|
|
case DEVICE_BIG_ENDIAN:
|
|
val = lduw_be_p(ptr);
|
|
break;
|
|
default:
|
|
val = lduw_p(ptr);
|
|
break;
|
|
}
|
|
}
|
|
return val;
|
|
}
|
|
|
|
uint32_t lduw_phys(hwaddr addr)
|
|
{
|
|
return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
|
|
}
|
|
|
|
uint32_t lduw_le_phys(hwaddr addr)
|
|
{
|
|
return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
|
|
}
|
|
|
|
uint32_t lduw_be_phys(hwaddr addr)
|
|
{
|
|
return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
|
|
}
|
|
|
|
/* warning: addr must be aligned. The ram page is not masked as dirty
|
|
and the code inside is not invalidated. It is useful if the dirty
|
|
bits are used to track modified PTEs */
|
|
void stl_phys_notdirty(hwaddr addr, uint32_t val)
|
|
{
|
|
uint8_t *ptr;
|
|
MemoryRegionSection *section;
|
|
|
|
section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
|
|
|
|
if (!memory_region_is_ram(section->mr) || section->readonly) {
|
|
addr = memory_region_section_addr(section, addr);
|
|
if (memory_region_is_ram(section->mr)) {
|
|
section = &phys_sections[phys_section_rom];
|
|
}
|
|
io_mem_write(section->mr, addr, val, 4);
|
|
} else {
|
|
unsigned long addr1 = (memory_region_get_ram_addr(section->mr)
|
|
& TARGET_PAGE_MASK)
|
|
+ memory_region_section_addr(section, addr);
|
|
ptr = qemu_get_ram_ptr(addr1);
|
|
stl_p(ptr, val);
|
|
|
|
if (unlikely(in_migration)) {
|
|
if (!cpu_physical_memory_is_dirty(addr1)) {
|
|
/* invalidate code */
|
|
tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
|
|
/* set dirty bit */
|
|
cpu_physical_memory_set_dirty_flags(
|
|
addr1, (0xff & ~CODE_DIRTY_FLAG));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void stq_phys_notdirty(hwaddr addr, uint64_t val)
|
|
{
|
|
uint8_t *ptr;
|
|
MemoryRegionSection *section;
|
|
|
|
section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
|
|
|
|
if (!memory_region_is_ram(section->mr) || section->readonly) {
|
|
addr = memory_region_section_addr(section, addr);
|
|
if (memory_region_is_ram(section->mr)) {
|
|
section = &phys_sections[phys_section_rom];
|
|
}
|
|
#ifdef TARGET_WORDS_BIGENDIAN
|
|
io_mem_write(section->mr, addr, val >> 32, 4);
|
|
io_mem_write(section->mr, addr + 4, (uint32_t)val, 4);
|
|
#else
|
|
io_mem_write(section->mr, addr, (uint32_t)val, 4);
|
|
io_mem_write(section->mr, addr + 4, val >> 32, 4);
|
|
#endif
|
|
} else {
|
|
ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
|
|
& TARGET_PAGE_MASK)
|
|
+ memory_region_section_addr(section, addr));
|
|
stq_p(ptr, val);
|
|
}
|
|
}
|
|
|
|
/* warning: addr must be aligned */
|
|
static inline void stl_phys_internal(hwaddr addr, uint32_t val,
|
|
enum device_endian endian)
|
|
{
|
|
uint8_t *ptr;
|
|
MemoryRegionSection *section;
|
|
|
|
section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
|
|
|
|
if (!memory_region_is_ram(section->mr) || section->readonly) {
|
|
addr = memory_region_section_addr(section, addr);
|
|
if (memory_region_is_ram(section->mr)) {
|
|
section = &phys_sections[phys_section_rom];
|
|
}
|
|
#if defined(TARGET_WORDS_BIGENDIAN)
|
|
if (endian == DEVICE_LITTLE_ENDIAN) {
|
|
val = bswap32(val);
|
|
}
|
|
#else
|
|
if (endian == DEVICE_BIG_ENDIAN) {
|
|
val = bswap32(val);
|
|
}
|
|
#endif
|
|
io_mem_write(section->mr, addr, val, 4);
|
|
} else {
|
|
unsigned long addr1;
|
|
addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
|
|
+ memory_region_section_addr(section, addr);
|
|
/* RAM case */
|
|
ptr = qemu_get_ram_ptr(addr1);
|
|
switch (endian) {
|
|
case DEVICE_LITTLE_ENDIAN:
|
|
stl_le_p(ptr, val);
|
|
break;
|
|
case DEVICE_BIG_ENDIAN:
|
|
stl_be_p(ptr, val);
|
|
break;
|
|
default:
|
|
stl_p(ptr, val);
|
|
break;
|
|
}
|
|
invalidate_and_set_dirty(addr1, 4);
|
|
}
|
|
}
|
|
|
|
void stl_phys(hwaddr addr, uint32_t val)
|
|
{
|
|
stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
|
|
}
|
|
|
|
void stl_le_phys(hwaddr addr, uint32_t val)
|
|
{
|
|
stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
|
|
}
|
|
|
|
void stl_be_phys(hwaddr addr, uint32_t val)
|
|
{
|
|
stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
|
|
}
|
|
|
|
/* XXX: optimize */
|
|
void stb_phys(hwaddr addr, uint32_t val)
|
|
{
|
|
uint8_t v = val;
|
|
cpu_physical_memory_write(addr, &v, 1);
|
|
}
|
|
|
|
/* warning: addr must be aligned */
|
|
static inline void stw_phys_internal(hwaddr addr, uint32_t val,
|
|
enum device_endian endian)
|
|
{
|
|
uint8_t *ptr;
|
|
MemoryRegionSection *section;
|
|
|
|
section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
|
|
|
|
if (!memory_region_is_ram(section->mr) || section->readonly) {
|
|
addr = memory_region_section_addr(section, addr);
|
|
if (memory_region_is_ram(section->mr)) {
|
|
section = &phys_sections[phys_section_rom];
|
|
}
|
|
#if defined(TARGET_WORDS_BIGENDIAN)
|
|
if (endian == DEVICE_LITTLE_ENDIAN) {
|
|
val = bswap16(val);
|
|
}
|
|
#else
|
|
if (endian == DEVICE_BIG_ENDIAN) {
|
|
val = bswap16(val);
|
|
}
|
|
#endif
|
|
io_mem_write(section->mr, addr, val, 2);
|
|
} else {
|
|
unsigned long addr1;
|
|
addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
|
|
+ memory_region_section_addr(section, addr);
|
|
/* RAM case */
|
|
ptr = qemu_get_ram_ptr(addr1);
|
|
switch (endian) {
|
|
case DEVICE_LITTLE_ENDIAN:
|
|
stw_le_p(ptr, val);
|
|
break;
|
|
case DEVICE_BIG_ENDIAN:
|
|
stw_be_p(ptr, val);
|
|
break;
|
|
default:
|
|
stw_p(ptr, val);
|
|
break;
|
|
}
|
|
invalidate_and_set_dirty(addr1, 2);
|
|
}
|
|
}
|
|
|
|
void stw_phys(hwaddr addr, uint32_t val)
|
|
{
|
|
stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
|
|
}
|
|
|
|
void stw_le_phys(hwaddr addr, uint32_t val)
|
|
{
|
|
stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
|
|
}
|
|
|
|
void stw_be_phys(hwaddr addr, uint32_t val)
|
|
{
|
|
stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
|
|
}
|
|
|
|
/* XXX: optimize */
|
|
void stq_phys(hwaddr addr, uint64_t val)
|
|
{
|
|
val = tswap64(val);
|
|
cpu_physical_memory_write(addr, &val, 8);
|
|
}
|
|
|
|
void stq_le_phys(hwaddr addr, uint64_t val)
|
|
{
|
|
val = cpu_to_le64(val);
|
|
cpu_physical_memory_write(addr, &val, 8);
|
|
}
|
|
|
|
void stq_be_phys(hwaddr addr, uint64_t val)
|
|
{
|
|
val = cpu_to_be64(val);
|
|
cpu_physical_memory_write(addr, &val, 8);
|
|
}
|
|
|
|
/* virtual memory access for debug (includes writing to ROM) */
|
|
int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
|
|
uint8_t *buf, int len, int is_write)
|
|
{
|
|
int l;
|
|
hwaddr phys_addr;
|
|
target_ulong page;
|
|
|
|
while (len > 0) {
|
|
page = addr & TARGET_PAGE_MASK;
|
|
phys_addr = cpu_get_phys_page_debug(env, page);
|
|
/* if no physical page mapped, return an error */
|
|
if (phys_addr == -1)
|
|
return -1;
|
|
l = (page + TARGET_PAGE_SIZE) - addr;
|
|
if (l > len)
|
|
l = len;
|
|
phys_addr += (addr & ~TARGET_PAGE_MASK);
|
|
if (is_write)
|
|
cpu_physical_memory_write_rom(phys_addr, buf, l);
|
|
else
|
|
cpu_physical_memory_rw(phys_addr, buf, l, is_write);
|
|
len -= l;
|
|
buf += l;
|
|
addr += l;
|
|
}
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
|
|
/*
|
|
* A helper function for the _utterly broken_ virtio device model to find out if
|
|
* it's running on a big endian machine. Don't do this at home kids!
|
|
*/
|
|
bool virtio_is_big_endian(void);
|
|
bool virtio_is_big_endian(void)
|
|
{
|
|
#if defined(TARGET_WORDS_BIGENDIAN)
|
|
return true;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
bool cpu_physical_memory_is_io(hwaddr phys_addr)
|
|
{
|
|
MemoryRegionSection *section;
|
|
|
|
section = phys_page_find(address_space_memory.dispatch,
|
|
phys_addr >> TARGET_PAGE_BITS);
|
|
|
|
return !(memory_region_is_ram(section->mr) ||
|
|
memory_region_is_romd(section->mr));
|
|
}
|
|
#endif
|