qemu/hw/block/nvme.c
Klaus Jensen d1322b4668 hw/block/nvme: memset preallocated requests structures
This is preparatory to subsequent patches that change how QSGs/IOVs are
handled. It is important that the qsg and iov members of the NvmeRequest
are initially zeroed.

Signed-off-by: Klaus Jensen <k.jensen@samsung.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Minwoo Im <minwoo.im.dev@gmail.com>
2020-09-02 08:48:50 +02:00

2355 lines
72 KiB
C

/*
* QEMU NVM Express Controller
*
* Copyright (c) 2012, Intel Corporation
*
* Written by Keith Busch <keith.busch@intel.com>
*
* This code is licensed under the GNU GPL v2 or later.
*/
/**
* Reference Specs: http://www.nvmexpress.org, 1.2, 1.1, 1.0e
*
* https://nvmexpress.org/developers/nvme-specification/
*/
/**
* Usage: add options:
* -drive file=<file>,if=none,id=<drive_id>
* -device nvme,drive=<drive_id>,serial=<serial>,id=<id[optional]>, \
* cmb_size_mb=<cmb_size_mb[optional]>, \
* [pmrdev=<mem_backend_file_id>,] \
* max_ioqpairs=<N[optional]>, \
* aerl=<N[optional]>, aer_max_queued=<N[optional]>
*
* Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at
* offset 0 in BAR2 and supports only WDS, RDS and SQS for now.
*
* cmb_size_mb= and pmrdev= options are mutually exclusive due to limitation
* in available BAR's. cmb_size_mb= will take precedence over pmrdev= when
* both provided.
* Enabling pmr emulation can be achieved by pointing to memory-backend-file.
* For example:
* -object memory-backend-file,id=<mem_id>,share=on,mem-path=<file_path>, \
* size=<size> .... -device nvme,...,pmrdev=<mem_id>
*
*
* nvme device parameters
* ~~~~~~~~~~~~~~~~~~~~~~
* - `aerl`
* The Asynchronous Event Request Limit (AERL). Indicates the maximum number
* of concurrently outstanding Asynchronous Event Request commands suppoert
* by the controller. This is a 0's based value.
*
* - `aer_max_queued`
* This is the maximum number of events that the device will enqueue for
* completion when there are no oustanding AERs. When the maximum number of
* enqueued events are reached, subsequent events will be dropped.
*
*/
#include "qemu/osdep.h"
#include "qemu/units.h"
#include "qemu/error-report.h"
#include "hw/block/block.h"
#include "hw/pci/msix.h"
#include "hw/pci/pci.h"
#include "hw/qdev-properties.h"
#include "migration/vmstate.h"
#include "sysemu/sysemu.h"
#include "qapi/error.h"
#include "qapi/visitor.h"
#include "sysemu/hostmem.h"
#include "sysemu/block-backend.h"
#include "exec/memory.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "qemu/cutils.h"
#include "trace.h"
#include "nvme.h"
#define NVME_MAX_IOQPAIRS 0xffff
#define NVME_DB_SIZE 4
#define NVME_SPEC_VER 0x00010300
#define NVME_CMB_BIR 2
#define NVME_PMR_BIR 2
#define NVME_TEMPERATURE 0x143
#define NVME_TEMPERATURE_WARNING 0x157
#define NVME_TEMPERATURE_CRITICAL 0x175
#define NVME_NUM_FW_SLOTS 1
#define NVME_GUEST_ERR(trace, fmt, ...) \
do { \
(trace_##trace)(__VA_ARGS__); \
qemu_log_mask(LOG_GUEST_ERROR, #trace \
" in %s: " fmt "\n", __func__, ## __VA_ARGS__); \
} while (0)
static const bool nvme_feature_support[NVME_FID_MAX] = {
[NVME_ARBITRATION] = true,
[NVME_POWER_MANAGEMENT] = true,
[NVME_TEMPERATURE_THRESHOLD] = true,
[NVME_ERROR_RECOVERY] = true,
[NVME_VOLATILE_WRITE_CACHE] = true,
[NVME_NUMBER_OF_QUEUES] = true,
[NVME_INTERRUPT_COALESCING] = true,
[NVME_INTERRUPT_VECTOR_CONF] = true,
[NVME_WRITE_ATOMICITY] = true,
[NVME_ASYNCHRONOUS_EVENT_CONF] = true,
[NVME_TIMESTAMP] = true,
};
static const uint32_t nvme_feature_cap[NVME_FID_MAX] = {
[NVME_TEMPERATURE_THRESHOLD] = NVME_FEAT_CAP_CHANGE,
[NVME_VOLATILE_WRITE_CACHE] = NVME_FEAT_CAP_CHANGE,
[NVME_NUMBER_OF_QUEUES] = NVME_FEAT_CAP_CHANGE,
[NVME_ASYNCHRONOUS_EVENT_CONF] = NVME_FEAT_CAP_CHANGE,
[NVME_TIMESTAMP] = NVME_FEAT_CAP_CHANGE,
};
static void nvme_process_sq(void *opaque);
static uint16_t nvme_cid(NvmeRequest *req)
{
if (!req) {
return 0xffff;
}
return le16_to_cpu(req->cqe.cid);
}
static uint16_t nvme_sqid(NvmeRequest *req)
{
return le16_to_cpu(req->sq->sqid);
}
static bool nvme_addr_is_cmb(NvmeCtrl *n, hwaddr addr)
{
hwaddr low = n->ctrl_mem.addr;
hwaddr hi = n->ctrl_mem.addr + int128_get64(n->ctrl_mem.size);
return addr >= low && addr < hi;
}
static void nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size)
{
if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr)) {
memcpy(buf, (void *)&n->cmbuf[addr - n->ctrl_mem.addr], size);
return;
}
pci_dma_read(&n->parent_obj, addr, buf, size);
}
static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
{
return sqid < n->params.max_ioqpairs + 1 && n->sq[sqid] != NULL ? 0 : -1;
}
static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
{
return cqid < n->params.max_ioqpairs + 1 && n->cq[cqid] != NULL ? 0 : -1;
}
static void nvme_inc_cq_tail(NvmeCQueue *cq)
{
cq->tail++;
if (cq->tail >= cq->size) {
cq->tail = 0;
cq->phase = !cq->phase;
}
}
static void nvme_inc_sq_head(NvmeSQueue *sq)
{
sq->head = (sq->head + 1) % sq->size;
}
static uint8_t nvme_cq_full(NvmeCQueue *cq)
{
return (cq->tail + 1) % cq->size == cq->head;
}
static uint8_t nvme_sq_empty(NvmeSQueue *sq)
{
return sq->head == sq->tail;
}
static void nvme_irq_check(NvmeCtrl *n)
{
if (msix_enabled(&(n->parent_obj))) {
return;
}
if (~n->bar.intms & n->irq_status) {
pci_irq_assert(&n->parent_obj);
} else {
pci_irq_deassert(&n->parent_obj);
}
}
static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq)
{
if (cq->irq_enabled) {
if (msix_enabled(&(n->parent_obj))) {
trace_pci_nvme_irq_msix(cq->vector);
msix_notify(&(n->parent_obj), cq->vector);
} else {
trace_pci_nvme_irq_pin();
assert(cq->vector < 32);
n->irq_status |= 1 << cq->vector;
nvme_irq_check(n);
}
} else {
trace_pci_nvme_irq_masked();
}
}
static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq)
{
if (cq->irq_enabled) {
if (msix_enabled(&(n->parent_obj))) {
return;
} else {
assert(cq->vector < 32);
n->irq_status &= ~(1 << cq->vector);
nvme_irq_check(n);
}
}
}
static uint16_t nvme_map_prp(QEMUSGList *qsg, QEMUIOVector *iov, uint64_t prp1,
uint64_t prp2, uint32_t len, NvmeCtrl *n)
{
hwaddr trans_len = n->page_size - (prp1 % n->page_size);
trans_len = MIN(len, trans_len);
int num_prps = (len >> n->page_bits) + 1;
if (unlikely(!prp1)) {
trace_pci_nvme_err_invalid_prp();
return NVME_INVALID_FIELD | NVME_DNR;
} else if (n->bar.cmbsz && prp1 >= n->ctrl_mem.addr &&
prp1 < n->ctrl_mem.addr + int128_get64(n->ctrl_mem.size)) {
qsg->nsg = 0;
qemu_iovec_init(iov, num_prps);
qemu_iovec_add(iov, (void *)&n->cmbuf[prp1 - n->ctrl_mem.addr], trans_len);
} else {
pci_dma_sglist_init(qsg, &n->parent_obj, num_prps);
qemu_sglist_add(qsg, prp1, trans_len);
}
len -= trans_len;
if (len) {
if (unlikely(!prp2)) {
trace_pci_nvme_err_invalid_prp2_missing();
goto unmap;
}
if (len > n->page_size) {
uint64_t prp_list[n->max_prp_ents];
uint32_t nents, prp_trans;
int i = 0;
nents = (len + n->page_size - 1) >> n->page_bits;
prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
nvme_addr_read(n, prp2, (void *)prp_list, prp_trans);
while (len != 0) {
uint64_t prp_ent = le64_to_cpu(prp_list[i]);
if (i == n->max_prp_ents - 1 && len > n->page_size) {
if (unlikely(!prp_ent || prp_ent & (n->page_size - 1))) {
trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
goto unmap;
}
i = 0;
nents = (len + n->page_size - 1) >> n->page_bits;
prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
nvme_addr_read(n, prp_ent, (void *)prp_list,
prp_trans);
prp_ent = le64_to_cpu(prp_list[i]);
}
if (unlikely(!prp_ent || prp_ent & (n->page_size - 1))) {
trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
goto unmap;
}
trans_len = MIN(len, n->page_size);
if (qsg->nsg){
qemu_sglist_add(qsg, prp_ent, trans_len);
} else {
qemu_iovec_add(iov, (void *)&n->cmbuf[prp_ent - n->ctrl_mem.addr], trans_len);
}
len -= trans_len;
i++;
}
} else {
if (unlikely(prp2 & (n->page_size - 1))) {
trace_pci_nvme_err_invalid_prp2_align(prp2);
goto unmap;
}
if (qsg->nsg) {
qemu_sglist_add(qsg, prp2, len);
} else {
qemu_iovec_add(iov, (void *)&n->cmbuf[prp2 - n->ctrl_mem.addr], trans_len);
}
}
}
return NVME_SUCCESS;
unmap:
qemu_sglist_destroy(qsg);
return NVME_INVALID_FIELD | NVME_DNR;
}
static uint16_t nvme_dma_write_prp(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
uint64_t prp1, uint64_t prp2)
{
QEMUSGList qsg;
QEMUIOVector iov;
uint16_t status = NVME_SUCCESS;
if (nvme_map_prp(&qsg, &iov, prp1, prp2, len, n)) {
return NVME_INVALID_FIELD | NVME_DNR;
}
if (qsg.nsg > 0) {
if (dma_buf_write(ptr, len, &qsg)) {
status = NVME_INVALID_FIELD | NVME_DNR;
}
qemu_sglist_destroy(&qsg);
} else {
if (qemu_iovec_to_buf(&iov, 0, ptr, len) != len) {
status = NVME_INVALID_FIELD | NVME_DNR;
}
qemu_iovec_destroy(&iov);
}
return status;
}
static uint16_t nvme_dma_read_prp(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
uint64_t prp1, uint64_t prp2)
{
QEMUSGList qsg;
QEMUIOVector iov;
uint16_t status = NVME_SUCCESS;
trace_pci_nvme_dma_read(prp1, prp2);
if (nvme_map_prp(&qsg, &iov, prp1, prp2, len, n)) {
return NVME_INVALID_FIELD | NVME_DNR;
}
if (qsg.nsg > 0) {
if (unlikely(dma_buf_read(ptr, len, &qsg))) {
trace_pci_nvme_err_invalid_dma();
status = NVME_INVALID_FIELD | NVME_DNR;
}
qemu_sglist_destroy(&qsg);
} else {
if (unlikely(qemu_iovec_from_buf(&iov, 0, ptr, len) != len)) {
trace_pci_nvme_err_invalid_dma();
status = NVME_INVALID_FIELD | NVME_DNR;
}
qemu_iovec_destroy(&iov);
}
return status;
}
static void nvme_post_cqes(void *opaque)
{
NvmeCQueue *cq = opaque;
NvmeCtrl *n = cq->ctrl;
NvmeRequest *req, *next;
QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
NvmeSQueue *sq;
hwaddr addr;
if (nvme_cq_full(cq)) {
break;
}
QTAILQ_REMOVE(&cq->req_list, req, entry);
sq = req->sq;
req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
req->cqe.sq_id = cpu_to_le16(sq->sqid);
req->cqe.sq_head = cpu_to_le16(sq->head);
addr = cq->dma_addr + cq->tail * n->cqe_size;
nvme_inc_cq_tail(cq);
pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe,
sizeof(req->cqe));
QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
}
if (cq->tail != cq->head) {
nvme_irq_assert(n, cq);
}
}
static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
{
assert(cq->cqid == req->sq->cqid);
trace_pci_nvme_enqueue_req_completion(nvme_cid(req), cq->cqid,
req->status);
QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
}
static void nvme_process_aers(void *opaque)
{
NvmeCtrl *n = opaque;
NvmeAsyncEvent *event, *next;
trace_pci_nvme_process_aers(n->aer_queued);
QTAILQ_FOREACH_SAFE(event, &n->aer_queue, entry, next) {
NvmeRequest *req;
NvmeAerResult *result;
/* can't post cqe if there is nothing to complete */
if (!n->outstanding_aers) {
trace_pci_nvme_no_outstanding_aers();
break;
}
/* ignore if masked (cqe posted, but event not cleared) */
if (n->aer_mask & (1 << event->result.event_type)) {
trace_pci_nvme_aer_masked(event->result.event_type, n->aer_mask);
continue;
}
QTAILQ_REMOVE(&n->aer_queue, event, entry);
n->aer_queued--;
n->aer_mask |= 1 << event->result.event_type;
n->outstanding_aers--;
req = n->aer_reqs[n->outstanding_aers];
result = (NvmeAerResult *) &req->cqe.result;
result->event_type = event->result.event_type;
result->event_info = event->result.event_info;
result->log_page = event->result.log_page;
g_free(event);
req->status = NVME_SUCCESS;
trace_pci_nvme_aer_post_cqe(result->event_type, result->event_info,
result->log_page);
nvme_enqueue_req_completion(&n->admin_cq, req);
}
}
static void nvme_enqueue_event(NvmeCtrl *n, uint8_t event_type,
uint8_t event_info, uint8_t log_page)
{
NvmeAsyncEvent *event;
trace_pci_nvme_enqueue_event(event_type, event_info, log_page);
if (n->aer_queued == n->params.aer_max_queued) {
trace_pci_nvme_enqueue_event_noqueue(n->aer_queued);
return;
}
event = g_new(NvmeAsyncEvent, 1);
event->result = (NvmeAerResult) {
.event_type = event_type,
.event_info = event_info,
.log_page = log_page,
};
QTAILQ_INSERT_TAIL(&n->aer_queue, event, entry);
n->aer_queued++;
nvme_process_aers(n);
}
static void nvme_clear_events(NvmeCtrl *n, uint8_t event_type)
{
n->aer_mask &= ~(1 << event_type);
if (!QTAILQ_EMPTY(&n->aer_queue)) {
nvme_process_aers(n);
}
}
static void nvme_rw_cb(void *opaque, int ret)
{
NvmeRequest *req = opaque;
NvmeSQueue *sq = req->sq;
NvmeCtrl *n = sq->ctrl;
NvmeCQueue *cq = n->cq[sq->cqid];
trace_pci_nvme_rw_cb(nvme_cid(req));
if (!ret) {
block_acct_done(blk_get_stats(n->conf.blk), &req->acct);
req->status = NVME_SUCCESS;
} else {
block_acct_failed(blk_get_stats(n->conf.blk), &req->acct);
req->status = NVME_INTERNAL_DEV_ERROR;
}
if (req->has_sg) {
qemu_sglist_destroy(&req->qsg);
}
nvme_enqueue_req_completion(cq, req);
}
static uint16_t nvme_flush(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
NvmeRequest *req)
{
req->has_sg = false;
block_acct_start(blk_get_stats(n->conf.blk), &req->acct, 0,
BLOCK_ACCT_FLUSH);
req->aiocb = blk_aio_flush(n->conf.blk, nvme_rw_cb, req);
return NVME_NO_COMPLETE;
}
static uint16_t nvme_write_zeros(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
NvmeRequest *req)
{
NvmeRwCmd *rw = (NvmeRwCmd *)cmd;
const uint8_t lba_index = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas);
const uint8_t data_shift = ns->id_ns.lbaf[lba_index].ds;
uint64_t slba = le64_to_cpu(rw->slba);
uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
uint64_t offset = slba << data_shift;
uint32_t count = nlb << data_shift;
trace_pci_nvme_write_zeroes(nvme_cid(req), slba, nlb);
if (unlikely(slba + nlb > ns->id_ns.nsze)) {
trace_pci_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze);
return NVME_LBA_RANGE | NVME_DNR;
}
req->has_sg = false;
block_acct_start(blk_get_stats(n->conf.blk), &req->acct, 0,
BLOCK_ACCT_WRITE);
req->aiocb = blk_aio_pwrite_zeroes(n->conf.blk, offset, count,
BDRV_REQ_MAY_UNMAP, nvme_rw_cb, req);
return NVME_NO_COMPLETE;
}
static uint16_t nvme_rw(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
NvmeRequest *req)
{
NvmeRwCmd *rw = (NvmeRwCmd *)cmd;
uint32_t nlb = le32_to_cpu(rw->nlb) + 1;
uint64_t slba = le64_to_cpu(rw->slba);
uint64_t prp1 = le64_to_cpu(rw->dptr.prp1);
uint64_t prp2 = le64_to_cpu(rw->dptr.prp2);
uint8_t lba_index = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas);
uint8_t data_shift = ns->id_ns.lbaf[lba_index].ds;
uint64_t data_size = (uint64_t)nlb << data_shift;
uint64_t data_offset = slba << data_shift;
int is_write = rw->opcode == NVME_CMD_WRITE ? 1 : 0;
enum BlockAcctType acct = is_write ? BLOCK_ACCT_WRITE : BLOCK_ACCT_READ;
trace_pci_nvme_rw(is_write ? "write" : "read", nlb, data_size, slba);
if (unlikely((slba + nlb) > ns->id_ns.nsze)) {
block_acct_invalid(blk_get_stats(n->conf.blk), acct);
trace_pci_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze);
return NVME_LBA_RANGE | NVME_DNR;
}
if (nvme_map_prp(&req->qsg, &req->iov, prp1, prp2, data_size, n)) {
block_acct_invalid(blk_get_stats(n->conf.blk), acct);
return NVME_INVALID_FIELD | NVME_DNR;
}
dma_acct_start(n->conf.blk, &req->acct, &req->qsg, acct);
if (req->qsg.nsg > 0) {
req->has_sg = true;
req->aiocb = is_write ?
dma_blk_write(n->conf.blk, &req->qsg, data_offset, BDRV_SECTOR_SIZE,
nvme_rw_cb, req) :
dma_blk_read(n->conf.blk, &req->qsg, data_offset, BDRV_SECTOR_SIZE,
nvme_rw_cb, req);
} else {
req->has_sg = false;
req->aiocb = is_write ?
blk_aio_pwritev(n->conf.blk, data_offset, &req->iov, 0, nvme_rw_cb,
req) :
blk_aio_preadv(n->conf.blk, data_offset, &req->iov, 0, nvme_rw_cb,
req);
}
return NVME_NO_COMPLETE;
}
static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
{
NvmeNamespace *ns;
uint32_t nsid = le32_to_cpu(cmd->nsid);
trace_pci_nvme_io_cmd(nvme_cid(req), nsid, nvme_sqid(req), cmd->opcode);
if (unlikely(nsid == 0 || nsid > n->num_namespaces)) {
trace_pci_nvme_err_invalid_ns(nsid, n->num_namespaces);
return NVME_INVALID_NSID | NVME_DNR;
}
ns = &n->namespaces[nsid - 1];
switch (cmd->opcode) {
case NVME_CMD_FLUSH:
return nvme_flush(n, ns, cmd, req);
case NVME_CMD_WRITE_ZEROS:
return nvme_write_zeros(n, ns, cmd, req);
case NVME_CMD_WRITE:
case NVME_CMD_READ:
return nvme_rw(n, ns, cmd, req);
default:
trace_pci_nvme_err_invalid_opc(cmd->opcode);
return NVME_INVALID_OPCODE | NVME_DNR;
}
}
static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
{
n->sq[sq->sqid] = NULL;
timer_del(sq->timer);
timer_free(sq->timer);
g_free(sq->io_req);
if (sq->sqid) {
g_free(sq);
}
}
static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeCmd *cmd)
{
NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
NvmeRequest *req, *next;
NvmeSQueue *sq;
NvmeCQueue *cq;
uint16_t qid = le16_to_cpu(c->qid);
if (unlikely(!qid || nvme_check_sqid(n, qid))) {
trace_pci_nvme_err_invalid_del_sq(qid);
return NVME_INVALID_QID | NVME_DNR;
}
trace_pci_nvme_del_sq(qid);
sq = n->sq[qid];
while (!QTAILQ_EMPTY(&sq->out_req_list)) {
req = QTAILQ_FIRST(&sq->out_req_list);
assert(req->aiocb);
blk_aio_cancel(req->aiocb);
}
if (!nvme_check_cqid(n, sq->cqid)) {
cq = n->cq[sq->cqid];
QTAILQ_REMOVE(&cq->sq_list, sq, entry);
nvme_post_cqes(cq);
QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
if (req->sq == sq) {
QTAILQ_REMOVE(&cq->req_list, req, entry);
QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
}
}
}
nvme_free_sq(sq, n);
return NVME_SUCCESS;
}
static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
uint16_t sqid, uint16_t cqid, uint16_t size)
{
int i;
NvmeCQueue *cq;
sq->ctrl = n;
sq->dma_addr = dma_addr;
sq->sqid = sqid;
sq->size = size;
sq->cqid = cqid;
sq->head = sq->tail = 0;
sq->io_req = g_new0(NvmeRequest, sq->size);
QTAILQ_INIT(&sq->req_list);
QTAILQ_INIT(&sq->out_req_list);
for (i = 0; i < sq->size; i++) {
sq->io_req[i].sq = sq;
QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
}
sq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_process_sq, sq);
assert(n->cq[cqid]);
cq = n->cq[cqid];
QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
n->sq[sqid] = sq;
}
static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeCmd *cmd)
{
NvmeSQueue *sq;
NvmeCreateSq *c = (NvmeCreateSq *)cmd;
uint16_t cqid = le16_to_cpu(c->cqid);
uint16_t sqid = le16_to_cpu(c->sqid);
uint16_t qsize = le16_to_cpu(c->qsize);
uint16_t qflags = le16_to_cpu(c->sq_flags);
uint64_t prp1 = le64_to_cpu(c->prp1);
trace_pci_nvme_create_sq(prp1, sqid, cqid, qsize, qflags);
if (unlikely(!cqid || nvme_check_cqid(n, cqid))) {
trace_pci_nvme_err_invalid_create_sq_cqid(cqid);
return NVME_INVALID_CQID | NVME_DNR;
}
if (unlikely(!sqid || !nvme_check_sqid(n, sqid))) {
trace_pci_nvme_err_invalid_create_sq_sqid(sqid);
return NVME_INVALID_QID | NVME_DNR;
}
if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) {
trace_pci_nvme_err_invalid_create_sq_size(qsize);
return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
}
if (unlikely(!prp1 || prp1 & (n->page_size - 1))) {
trace_pci_nvme_err_invalid_create_sq_addr(prp1);
return NVME_INVALID_FIELD | NVME_DNR;
}
if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) {
trace_pci_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags));
return NVME_INVALID_FIELD | NVME_DNR;
}
sq = g_malloc0(sizeof(*sq));
nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
return NVME_SUCCESS;
}
static uint16_t nvme_smart_info(NvmeCtrl *n, NvmeCmd *cmd, uint8_t rae,
uint32_t buf_len, uint64_t off,
NvmeRequest *req)
{
uint64_t prp1 = le64_to_cpu(cmd->dptr.prp1);
uint64_t prp2 = le64_to_cpu(cmd->dptr.prp2);
uint32_t nsid = le32_to_cpu(cmd->nsid);
uint32_t trans_len;
time_t current_ms;
uint64_t units_read = 0, units_written = 0;
uint64_t read_commands = 0, write_commands = 0;
NvmeSmartLog smart;
BlockAcctStats *s;
if (nsid && nsid != 0xffffffff) {
return NVME_INVALID_FIELD | NVME_DNR;
}
s = blk_get_stats(n->conf.blk);
units_read = s->nr_bytes[BLOCK_ACCT_READ] >> BDRV_SECTOR_BITS;
units_written = s->nr_bytes[BLOCK_ACCT_WRITE] >> BDRV_SECTOR_BITS;
read_commands = s->nr_ops[BLOCK_ACCT_READ];
write_commands = s->nr_ops[BLOCK_ACCT_WRITE];
if (off > sizeof(smart)) {
return NVME_INVALID_FIELD | NVME_DNR;
}
trans_len = MIN(sizeof(smart) - off, buf_len);
memset(&smart, 0x0, sizeof(smart));
smart.data_units_read[0] = cpu_to_le64(DIV_ROUND_UP(units_read, 1000));
smart.data_units_written[0] = cpu_to_le64(DIV_ROUND_UP(units_written,
1000));
smart.host_read_commands[0] = cpu_to_le64(read_commands);
smart.host_write_commands[0] = cpu_to_le64(write_commands);
smart.temperature = cpu_to_le16(n->temperature);
if ((n->temperature >= n->features.temp_thresh_hi) ||
(n->temperature <= n->features.temp_thresh_low)) {
smart.critical_warning |= NVME_SMART_TEMPERATURE;
}
current_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
smart.power_on_hours[0] =
cpu_to_le64((((current_ms - n->starttime_ms) / 1000) / 60) / 60);
if (!rae) {
nvme_clear_events(n, NVME_AER_TYPE_SMART);
}
return nvme_dma_read_prp(n, (uint8_t *) &smart + off, trans_len, prp1,
prp2);
}
static uint16_t nvme_fw_log_info(NvmeCtrl *n, NvmeCmd *cmd, uint32_t buf_len,
uint64_t off, NvmeRequest *req)
{
uint32_t trans_len;
uint64_t prp1 = le64_to_cpu(cmd->dptr.prp1);
uint64_t prp2 = le64_to_cpu(cmd->dptr.prp2);
NvmeFwSlotInfoLog fw_log = {
.afi = 0x1,
};
strpadcpy((char *)&fw_log.frs1, sizeof(fw_log.frs1), "1.0", ' ');
if (off > sizeof(fw_log)) {
return NVME_INVALID_FIELD | NVME_DNR;
}
trans_len = MIN(sizeof(fw_log) - off, buf_len);
return nvme_dma_read_prp(n, (uint8_t *) &fw_log + off, trans_len, prp1,
prp2);
}
static uint16_t nvme_error_info(NvmeCtrl *n, NvmeCmd *cmd, uint8_t rae,
uint32_t buf_len, uint64_t off,
NvmeRequest *req)
{
uint32_t trans_len;
uint64_t prp1 = le64_to_cpu(cmd->dptr.prp1);
uint64_t prp2 = le64_to_cpu(cmd->dptr.prp2);
NvmeErrorLog errlog;
if (!rae) {
nvme_clear_events(n, NVME_AER_TYPE_ERROR);
}
if (off > sizeof(errlog)) {
return NVME_INVALID_FIELD | NVME_DNR;
}
memset(&errlog, 0x0, sizeof(errlog));
trans_len = MIN(sizeof(errlog) - off, buf_len);
return nvme_dma_read_prp(n, (uint8_t *)&errlog, trans_len, prp1, prp2);
}
static uint16_t nvme_get_log(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
{
uint32_t dw10 = le32_to_cpu(cmd->cdw10);
uint32_t dw11 = le32_to_cpu(cmd->cdw11);
uint32_t dw12 = le32_to_cpu(cmd->cdw12);
uint32_t dw13 = le32_to_cpu(cmd->cdw13);
uint8_t lid = dw10 & 0xff;
uint8_t lsp = (dw10 >> 8) & 0xf;
uint8_t rae = (dw10 >> 15) & 0x1;
uint32_t numdl, numdu;
uint64_t off, lpol, lpou;
size_t len;
numdl = (dw10 >> 16);
numdu = (dw11 & 0xffff);
lpol = dw12;
lpou = dw13;
len = (((numdu << 16) | numdl) + 1) << 2;
off = (lpou << 32ULL) | lpol;
if (off & 0x3) {
return NVME_INVALID_FIELD | NVME_DNR;
}
trace_pci_nvme_get_log(nvme_cid(req), lid, lsp, rae, len, off);
switch (lid) {
case NVME_LOG_ERROR_INFO:
return nvme_error_info(n, cmd, rae, len, off, req);
case NVME_LOG_SMART_INFO:
return nvme_smart_info(n, cmd, rae, len, off, req);
case NVME_LOG_FW_SLOT_INFO:
return nvme_fw_log_info(n, cmd, len, off, req);
default:
trace_pci_nvme_err_invalid_log_page(nvme_cid(req), lid);
return NVME_INVALID_FIELD | NVME_DNR;
}
}
static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
{
n->cq[cq->cqid] = NULL;
timer_del(cq->timer);
timer_free(cq->timer);
msix_vector_unuse(&n->parent_obj, cq->vector);
if (cq->cqid) {
g_free(cq);
}
}
static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeCmd *cmd)
{
NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
NvmeCQueue *cq;
uint16_t qid = le16_to_cpu(c->qid);
if (unlikely(!qid || nvme_check_cqid(n, qid))) {
trace_pci_nvme_err_invalid_del_cq_cqid(qid);
return NVME_INVALID_CQID | NVME_DNR;
}
cq = n->cq[qid];
if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) {
trace_pci_nvme_err_invalid_del_cq_notempty(qid);
return NVME_INVALID_QUEUE_DEL;
}
nvme_irq_deassert(n, cq);
trace_pci_nvme_del_cq(qid);
nvme_free_cq(cq, n);
return NVME_SUCCESS;
}
static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
uint16_t cqid, uint16_t vector, uint16_t size, uint16_t irq_enabled)
{
int ret;
ret = msix_vector_use(&n->parent_obj, vector);
assert(ret == 0);
cq->ctrl = n;
cq->cqid = cqid;
cq->size = size;
cq->dma_addr = dma_addr;
cq->phase = 1;
cq->irq_enabled = irq_enabled;
cq->vector = vector;
cq->head = cq->tail = 0;
QTAILQ_INIT(&cq->req_list);
QTAILQ_INIT(&cq->sq_list);
n->cq[cqid] = cq;
cq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_post_cqes, cq);
}
static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeCmd *cmd)
{
NvmeCQueue *cq;
NvmeCreateCq *c = (NvmeCreateCq *)cmd;
uint16_t cqid = le16_to_cpu(c->cqid);
uint16_t vector = le16_to_cpu(c->irq_vector);
uint16_t qsize = le16_to_cpu(c->qsize);
uint16_t qflags = le16_to_cpu(c->cq_flags);
uint64_t prp1 = le64_to_cpu(c->prp1);
trace_pci_nvme_create_cq(prp1, cqid, vector, qsize, qflags,
NVME_CQ_FLAGS_IEN(qflags) != 0);
if (unlikely(!cqid || !nvme_check_cqid(n, cqid))) {
trace_pci_nvme_err_invalid_create_cq_cqid(cqid);
return NVME_INVALID_CQID | NVME_DNR;
}
if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) {
trace_pci_nvme_err_invalid_create_cq_size(qsize);
return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
}
if (unlikely(!prp1)) {
trace_pci_nvme_err_invalid_create_cq_addr(prp1);
return NVME_INVALID_FIELD | NVME_DNR;
}
if (unlikely(!msix_enabled(&n->parent_obj) && vector)) {
trace_pci_nvme_err_invalid_create_cq_vector(vector);
return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
}
if (unlikely(vector >= n->params.msix_qsize)) {
trace_pci_nvme_err_invalid_create_cq_vector(vector);
return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
}
if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) {
trace_pci_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags));
return NVME_INVALID_FIELD | NVME_DNR;
}
cq = g_malloc0(sizeof(*cq));
nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
NVME_CQ_FLAGS_IEN(qflags));
/*
* It is only required to set qs_created when creating a completion queue;
* creating a submission queue without a matching completion queue will
* fail.
*/
n->qs_created = true;
return NVME_SUCCESS;
}
static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeIdentify *c)
{
uint64_t prp1 = le64_to_cpu(c->prp1);
uint64_t prp2 = le64_to_cpu(c->prp2);
trace_pci_nvme_identify_ctrl();
return nvme_dma_read_prp(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl),
prp1, prp2);
}
static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeIdentify *c)
{
NvmeNamespace *ns;
uint32_t nsid = le32_to_cpu(c->nsid);
uint64_t prp1 = le64_to_cpu(c->prp1);
uint64_t prp2 = le64_to_cpu(c->prp2);
trace_pci_nvme_identify_ns(nsid);
if (unlikely(nsid == 0 || nsid > n->num_namespaces)) {
trace_pci_nvme_err_invalid_ns(nsid, n->num_namespaces);
return NVME_INVALID_NSID | NVME_DNR;
}
ns = &n->namespaces[nsid - 1];
return nvme_dma_read_prp(n, (uint8_t *)&ns->id_ns, sizeof(ns->id_ns),
prp1, prp2);
}
static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeIdentify *c)
{
static const int data_len = NVME_IDENTIFY_DATA_SIZE;
uint32_t min_nsid = le32_to_cpu(c->nsid);
uint64_t prp1 = le64_to_cpu(c->prp1);
uint64_t prp2 = le64_to_cpu(c->prp2);
uint32_t *list;
uint16_t ret;
int i, j = 0;
trace_pci_nvme_identify_nslist(min_nsid);
/*
* Both 0xffffffff (NVME_NSID_BROADCAST) and 0xfffffffe are invalid values
* since the Active Namespace ID List should return namespaces with ids
* *higher* than the NSID specified in the command. This is also specified
* in the spec (NVM Express v1.3d, Section 5.15.4).
*/
if (min_nsid >= NVME_NSID_BROADCAST - 1) {
return NVME_INVALID_NSID | NVME_DNR;
}
list = g_malloc0(data_len);
for (i = 0; i < n->num_namespaces; i++) {
if (i < min_nsid) {
continue;
}
list[j++] = cpu_to_le32(i + 1);
if (j == data_len / sizeof(uint32_t)) {
break;
}
}
ret = nvme_dma_read_prp(n, (uint8_t *)list, data_len, prp1, prp2);
g_free(list);
return ret;
}
static uint16_t nvme_identify_ns_descr_list(NvmeCtrl *n, NvmeIdentify *c)
{
uint32_t nsid = le32_to_cpu(c->nsid);
uint64_t prp1 = le64_to_cpu(c->prp1);
uint64_t prp2 = le64_to_cpu(c->prp2);
uint8_t list[NVME_IDENTIFY_DATA_SIZE];
struct data {
struct {
NvmeIdNsDescr hdr;
uint8_t v[16];
} uuid;
};
struct data *ns_descrs = (struct data *)list;
trace_pci_nvme_identify_ns_descr_list(nsid);
if (unlikely(nsid == 0 || nsid > n->num_namespaces)) {
trace_pci_nvme_err_invalid_ns(nsid, n->num_namespaces);
return NVME_INVALID_NSID | NVME_DNR;
}
memset(list, 0x0, sizeof(list));
/*
* Because the NGUID and EUI64 fields are 0 in the Identify Namespace data
* structure, a Namespace UUID (nidt = 0x3) must be reported in the
* Namespace Identification Descriptor. Add a very basic Namespace UUID
* here.
*/
ns_descrs->uuid.hdr.nidt = NVME_NIDT_UUID;
ns_descrs->uuid.hdr.nidl = NVME_NIDT_UUID_LEN;
stl_be_p(&ns_descrs->uuid.v, nsid);
return nvme_dma_read_prp(n, list, NVME_IDENTIFY_DATA_SIZE, prp1, prp2);
}
static uint16_t nvme_identify(NvmeCtrl *n, NvmeCmd *cmd)
{
NvmeIdentify *c = (NvmeIdentify *)cmd;
switch (le32_to_cpu(c->cns)) {
case NVME_ID_CNS_NS:
return nvme_identify_ns(n, c);
case NVME_ID_CNS_CTRL:
return nvme_identify_ctrl(n, c);
case NVME_ID_CNS_NS_ACTIVE_LIST:
return nvme_identify_nslist(n, c);
case NVME_ID_CNS_NS_DESCR_LIST:
return nvme_identify_ns_descr_list(n, c);
default:
trace_pci_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns));
return NVME_INVALID_FIELD | NVME_DNR;
}
}
static uint16_t nvme_abort(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
{
uint16_t sqid = le32_to_cpu(cmd->cdw10) & 0xffff;
req->cqe.result = 1;
if (nvme_check_sqid(n, sqid)) {
return NVME_INVALID_FIELD | NVME_DNR;
}
return NVME_SUCCESS;
}
static inline void nvme_set_timestamp(NvmeCtrl *n, uint64_t ts)
{
trace_pci_nvme_setfeat_timestamp(ts);
n->host_timestamp = le64_to_cpu(ts);
n->timestamp_set_qemu_clock_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
}
static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n)
{
uint64_t current_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
uint64_t elapsed_time = current_time - n->timestamp_set_qemu_clock_ms;
union nvme_timestamp {
struct {
uint64_t timestamp:48;
uint64_t sync:1;
uint64_t origin:3;
uint64_t rsvd1:12;
};
uint64_t all;
};
union nvme_timestamp ts;
ts.all = 0;
/*
* If the sum of the Timestamp value set by the host and the elapsed
* time exceeds 2^48, the value returned should be reduced modulo 2^48.
*/
ts.timestamp = (n->host_timestamp + elapsed_time) & 0xffffffffffff;
/* If the host timestamp is non-zero, set the timestamp origin */
ts.origin = n->host_timestamp ? 0x01 : 0x00;
trace_pci_nvme_getfeat_timestamp(ts.all);
return cpu_to_le64(ts.all);
}
static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeCmd *cmd)
{
uint64_t prp1 = le64_to_cpu(cmd->dptr.prp1);
uint64_t prp2 = le64_to_cpu(cmd->dptr.prp2);
uint64_t timestamp = nvme_get_timestamp(n);
return nvme_dma_read_prp(n, (uint8_t *)&timestamp,
sizeof(timestamp), prp1, prp2);
}
static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
{
uint32_t dw10 = le32_to_cpu(cmd->cdw10);
uint32_t dw11 = le32_to_cpu(cmd->cdw11);
uint32_t nsid = le32_to_cpu(cmd->nsid);
uint32_t result;
uint8_t fid = NVME_GETSETFEAT_FID(dw10);
NvmeGetFeatureSelect sel = NVME_GETFEAT_SELECT(dw10);
uint16_t iv;
static const uint32_t nvme_feature_default[NVME_FID_MAX] = {
[NVME_ARBITRATION] = NVME_ARB_AB_NOLIMIT,
};
trace_pci_nvme_getfeat(nvme_cid(req), fid, sel, dw11);
if (!nvme_feature_support[fid]) {
return NVME_INVALID_FIELD | NVME_DNR;
}
if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
if (!nsid || nsid > n->num_namespaces) {
/*
* The Reservation Notification Mask and Reservation Persistence
* features require a status code of Invalid Field in Command when
* NSID is 0xFFFFFFFF. Since the device does not support those
* features we can always return Invalid Namespace or Format as we
* should do for all other features.
*/
return NVME_INVALID_NSID | NVME_DNR;
}
}
switch (sel) {
case NVME_GETFEAT_SELECT_CURRENT:
break;
case NVME_GETFEAT_SELECT_SAVED:
/* no features are saveable by the controller; fallthrough */
case NVME_GETFEAT_SELECT_DEFAULT:
goto defaults;
case NVME_GETFEAT_SELECT_CAP:
result = nvme_feature_cap[fid];
goto out;
}
switch (fid) {
case NVME_TEMPERATURE_THRESHOLD:
result = 0;
/*
* The controller only implements the Composite Temperature sensor, so
* return 0 for all other sensors.
*/
if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
goto out;
}
switch (NVME_TEMP_THSEL(dw11)) {
case NVME_TEMP_THSEL_OVER:
result = n->features.temp_thresh_hi;
goto out;
case NVME_TEMP_THSEL_UNDER:
result = n->features.temp_thresh_low;
goto out;
}
return NVME_INVALID_FIELD | NVME_DNR;
case NVME_VOLATILE_WRITE_CACHE:
result = blk_enable_write_cache(n->conf.blk);
trace_pci_nvme_getfeat_vwcache(result ? "enabled" : "disabled");
goto out;
case NVME_ASYNCHRONOUS_EVENT_CONF:
result = n->features.async_config;
goto out;
case NVME_TIMESTAMP:
return nvme_get_feature_timestamp(n, cmd);
default:
break;
}
defaults:
switch (fid) {
case NVME_TEMPERATURE_THRESHOLD:
result = 0;
if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
break;
}
if (NVME_TEMP_THSEL(dw11) == NVME_TEMP_THSEL_OVER) {
result = NVME_TEMPERATURE_WARNING;
}
break;
case NVME_NUMBER_OF_QUEUES:
result = (n->params.max_ioqpairs - 1) |
((n->params.max_ioqpairs - 1) << 16);
trace_pci_nvme_getfeat_numq(result);
break;
case NVME_INTERRUPT_VECTOR_CONF:
iv = dw11 & 0xffff;
if (iv >= n->params.max_ioqpairs + 1) {
return NVME_INVALID_FIELD | NVME_DNR;
}
result = iv;
if (iv == n->admin_cq.vector) {
result |= NVME_INTVC_NOCOALESCING;
}
break;
default:
result = nvme_feature_default[fid];
break;
}
out:
req->cqe.result = cpu_to_le32(result);
return NVME_SUCCESS;
}
static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeCmd *cmd)
{
uint16_t ret;
uint64_t timestamp;
uint64_t prp1 = le64_to_cpu(cmd->dptr.prp1);
uint64_t prp2 = le64_to_cpu(cmd->dptr.prp2);
ret = nvme_dma_write_prp(n, (uint8_t *)&timestamp,
sizeof(timestamp), prp1, prp2);
if (ret != NVME_SUCCESS) {
return ret;
}
nvme_set_timestamp(n, timestamp);
return NVME_SUCCESS;
}
static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
{
uint32_t dw10 = le32_to_cpu(cmd->cdw10);
uint32_t dw11 = le32_to_cpu(cmd->cdw11);
uint32_t nsid = le32_to_cpu(cmd->nsid);
uint8_t fid = NVME_GETSETFEAT_FID(dw10);
uint8_t save = NVME_SETFEAT_SAVE(dw10);
trace_pci_nvme_setfeat(nvme_cid(req), fid, save, dw11);
if (save) {
return NVME_FID_NOT_SAVEABLE | NVME_DNR;
}
if (!nvme_feature_support[fid]) {
return NVME_INVALID_FIELD | NVME_DNR;
}
if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
if (!nsid || (nsid != NVME_NSID_BROADCAST &&
nsid > n->num_namespaces)) {
return NVME_INVALID_NSID | NVME_DNR;
}
} else if (nsid && nsid != NVME_NSID_BROADCAST) {
if (nsid > n->num_namespaces) {
return NVME_INVALID_NSID | NVME_DNR;
}
return NVME_FEAT_NOT_NS_SPEC | NVME_DNR;
}
if (!(nvme_feature_cap[fid] & NVME_FEAT_CAP_CHANGE)) {
return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
}
switch (fid) {
case NVME_TEMPERATURE_THRESHOLD:
if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
break;
}
switch (NVME_TEMP_THSEL(dw11)) {
case NVME_TEMP_THSEL_OVER:
n->features.temp_thresh_hi = NVME_TEMP_TMPTH(dw11);
break;
case NVME_TEMP_THSEL_UNDER:
n->features.temp_thresh_low = NVME_TEMP_TMPTH(dw11);
break;
default:
return NVME_INVALID_FIELD | NVME_DNR;
}
if (((n->temperature >= n->features.temp_thresh_hi) ||
(n->temperature <= n->features.temp_thresh_low)) &&
NVME_AEC_SMART(n->features.async_config) & NVME_SMART_TEMPERATURE) {
nvme_enqueue_event(n, NVME_AER_TYPE_SMART,
NVME_AER_INFO_SMART_TEMP_THRESH,
NVME_LOG_SMART_INFO);
}
break;
case NVME_VOLATILE_WRITE_CACHE:
if (!(dw11 & 0x1) && blk_enable_write_cache(n->conf.blk)) {
blk_flush(n->conf.blk);
}
blk_set_enable_write_cache(n->conf.blk, dw11 & 1);
break;
case NVME_NUMBER_OF_QUEUES:
if (n->qs_created) {
return NVME_CMD_SEQ_ERROR | NVME_DNR;
}
/*
* NVMe v1.3, Section 5.21.1.7: 0xffff is not an allowed value for NCQR
* and NSQR.
*/
if ((dw11 & 0xffff) == 0xffff || ((dw11 >> 16) & 0xffff) == 0xffff) {
return NVME_INVALID_FIELD | NVME_DNR;
}
trace_pci_nvme_setfeat_numq((dw11 & 0xFFFF) + 1,
((dw11 >> 16) & 0xFFFF) + 1,
n->params.max_ioqpairs,
n->params.max_ioqpairs);
req->cqe.result = cpu_to_le32((n->params.max_ioqpairs - 1) |
((n->params.max_ioqpairs - 1) << 16));
break;
case NVME_ASYNCHRONOUS_EVENT_CONF:
n->features.async_config = dw11;
break;
case NVME_TIMESTAMP:
return nvme_set_feature_timestamp(n, cmd);
default:
return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
}
return NVME_SUCCESS;
}
static uint16_t nvme_aer(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
{
trace_pci_nvme_aer(nvme_cid(req));
if (n->outstanding_aers > n->params.aerl) {
trace_pci_nvme_aer_aerl_exceeded();
return NVME_AER_LIMIT_EXCEEDED;
}
n->aer_reqs[n->outstanding_aers] = req;
n->outstanding_aers++;
if (!QTAILQ_EMPTY(&n->aer_queue)) {
nvme_process_aers(n);
}
return NVME_NO_COMPLETE;
}
static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
{
trace_pci_nvme_admin_cmd(nvme_cid(req), nvme_sqid(req), cmd->opcode);
switch (cmd->opcode) {
case NVME_ADM_CMD_DELETE_SQ:
return nvme_del_sq(n, cmd);
case NVME_ADM_CMD_CREATE_SQ:
return nvme_create_sq(n, cmd);
case NVME_ADM_CMD_GET_LOG_PAGE:
return nvme_get_log(n, cmd, req);
case NVME_ADM_CMD_DELETE_CQ:
return nvme_del_cq(n, cmd);
case NVME_ADM_CMD_CREATE_CQ:
return nvme_create_cq(n, cmd);
case NVME_ADM_CMD_IDENTIFY:
return nvme_identify(n, cmd);
case NVME_ADM_CMD_ABORT:
return nvme_abort(n, cmd, req);
case NVME_ADM_CMD_SET_FEATURES:
return nvme_set_feature(n, cmd, req);
case NVME_ADM_CMD_GET_FEATURES:
return nvme_get_feature(n, cmd, req);
case NVME_ADM_CMD_ASYNC_EV_REQ:
return nvme_aer(n, cmd, req);
default:
trace_pci_nvme_err_invalid_admin_opc(cmd->opcode);
return NVME_INVALID_OPCODE | NVME_DNR;
}
}
static void nvme_process_sq(void *opaque)
{
NvmeSQueue *sq = opaque;
NvmeCtrl *n = sq->ctrl;
NvmeCQueue *cq = n->cq[sq->cqid];
uint16_t status;
hwaddr addr;
NvmeCmd cmd;
NvmeRequest *req;
while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
addr = sq->dma_addr + sq->head * n->sqe_size;
nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd));
nvme_inc_sq_head(sq);
req = QTAILQ_FIRST(&sq->req_list);
QTAILQ_REMOVE(&sq->req_list, req, entry);
QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
memset(&req->cqe, 0, sizeof(req->cqe));
req->cqe.cid = cmd.cid;
status = sq->sqid ? nvme_io_cmd(n, &cmd, req) :
nvme_admin_cmd(n, &cmd, req);
if (status != NVME_NO_COMPLETE) {
req->status = status;
nvme_enqueue_req_completion(cq, req);
}
}
}
static void nvme_clear_ctrl(NvmeCtrl *n)
{
int i;
blk_drain(n->conf.blk);
for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
if (n->sq[i] != NULL) {
nvme_free_sq(n->sq[i], n);
}
}
for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
if (n->cq[i] != NULL) {
nvme_free_cq(n->cq[i], n);
}
}
while (!QTAILQ_EMPTY(&n->aer_queue)) {
NvmeAsyncEvent *event = QTAILQ_FIRST(&n->aer_queue);
QTAILQ_REMOVE(&n->aer_queue, event, entry);
g_free(event);
}
n->aer_queued = 0;
n->outstanding_aers = 0;
n->qs_created = false;
blk_flush(n->conf.blk);
n->bar.cc = 0;
}
static int nvme_start_ctrl(NvmeCtrl *n)
{
uint32_t page_bits = NVME_CC_MPS(n->bar.cc) + 12;
uint32_t page_size = 1 << page_bits;
if (unlikely(n->cq[0])) {
trace_pci_nvme_err_startfail_cq();
return -1;
}
if (unlikely(n->sq[0])) {
trace_pci_nvme_err_startfail_sq();
return -1;
}
if (unlikely(!n->bar.asq)) {
trace_pci_nvme_err_startfail_nbarasq();
return -1;
}
if (unlikely(!n->bar.acq)) {
trace_pci_nvme_err_startfail_nbaracq();
return -1;
}
if (unlikely(n->bar.asq & (page_size - 1))) {
trace_pci_nvme_err_startfail_asq_misaligned(n->bar.asq);
return -1;
}
if (unlikely(n->bar.acq & (page_size - 1))) {
trace_pci_nvme_err_startfail_acq_misaligned(n->bar.acq);
return -1;
}
if (unlikely(NVME_CC_MPS(n->bar.cc) <
NVME_CAP_MPSMIN(n->bar.cap))) {
trace_pci_nvme_err_startfail_page_too_small(
NVME_CC_MPS(n->bar.cc),
NVME_CAP_MPSMIN(n->bar.cap));
return -1;
}
if (unlikely(NVME_CC_MPS(n->bar.cc) >
NVME_CAP_MPSMAX(n->bar.cap))) {
trace_pci_nvme_err_startfail_page_too_large(
NVME_CC_MPS(n->bar.cc),
NVME_CAP_MPSMAX(n->bar.cap));
return -1;
}
if (unlikely(NVME_CC_IOCQES(n->bar.cc) <
NVME_CTRL_CQES_MIN(n->id_ctrl.cqes))) {
trace_pci_nvme_err_startfail_cqent_too_small(
NVME_CC_IOCQES(n->bar.cc),
NVME_CTRL_CQES_MIN(n->bar.cap));
return -1;
}
if (unlikely(NVME_CC_IOCQES(n->bar.cc) >
NVME_CTRL_CQES_MAX(n->id_ctrl.cqes))) {
trace_pci_nvme_err_startfail_cqent_too_large(
NVME_CC_IOCQES(n->bar.cc),
NVME_CTRL_CQES_MAX(n->bar.cap));
return -1;
}
if (unlikely(NVME_CC_IOSQES(n->bar.cc) <
NVME_CTRL_SQES_MIN(n->id_ctrl.sqes))) {
trace_pci_nvme_err_startfail_sqent_too_small(
NVME_CC_IOSQES(n->bar.cc),
NVME_CTRL_SQES_MIN(n->bar.cap));
return -1;
}
if (unlikely(NVME_CC_IOSQES(n->bar.cc) >
NVME_CTRL_SQES_MAX(n->id_ctrl.sqes))) {
trace_pci_nvme_err_startfail_sqent_too_large(
NVME_CC_IOSQES(n->bar.cc),
NVME_CTRL_SQES_MAX(n->bar.cap));
return -1;
}
if (unlikely(!NVME_AQA_ASQS(n->bar.aqa))) {
trace_pci_nvme_err_startfail_asqent_sz_zero();
return -1;
}
if (unlikely(!NVME_AQA_ACQS(n->bar.aqa))) {
trace_pci_nvme_err_startfail_acqent_sz_zero();
return -1;
}
n->page_bits = page_bits;
n->page_size = page_size;
n->max_prp_ents = n->page_size / sizeof(uint64_t);
n->cqe_size = 1 << NVME_CC_IOCQES(n->bar.cc);
n->sqe_size = 1 << NVME_CC_IOSQES(n->bar.cc);
nvme_init_cq(&n->admin_cq, n, n->bar.acq, 0, 0,
NVME_AQA_ACQS(n->bar.aqa) + 1, 1);
nvme_init_sq(&n->admin_sq, n, n->bar.asq, 0, 0,
NVME_AQA_ASQS(n->bar.aqa) + 1);
nvme_set_timestamp(n, 0ULL);
QTAILQ_INIT(&n->aer_queue);
return 0;
}
static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
unsigned size)
{
if (unlikely(offset & (sizeof(uint32_t) - 1))) {
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_misaligned32,
"MMIO write not 32-bit aligned,"
" offset=0x%"PRIx64"", offset);
/* should be ignored, fall through for now */
}
if (unlikely(size < sizeof(uint32_t))) {
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_toosmall,
"MMIO write smaller than 32-bits,"
" offset=0x%"PRIx64", size=%u",
offset, size);
/* should be ignored, fall through for now */
}
switch (offset) {
case 0xc: /* INTMS */
if (unlikely(msix_enabled(&(n->parent_obj)))) {
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
"undefined access to interrupt mask set"
" when MSI-X is enabled");
/* should be ignored, fall through for now */
}
n->bar.intms |= data & 0xffffffff;
n->bar.intmc = n->bar.intms;
trace_pci_nvme_mmio_intm_set(data & 0xffffffff, n->bar.intmc);
nvme_irq_check(n);
break;
case 0x10: /* INTMC */
if (unlikely(msix_enabled(&(n->parent_obj)))) {
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
"undefined access to interrupt mask clr"
" when MSI-X is enabled");
/* should be ignored, fall through for now */
}
n->bar.intms &= ~(data & 0xffffffff);
n->bar.intmc = n->bar.intms;
trace_pci_nvme_mmio_intm_clr(data & 0xffffffff, n->bar.intmc);
nvme_irq_check(n);
break;
case 0x14: /* CC */
trace_pci_nvme_mmio_cfg(data & 0xffffffff);
/* Windows first sends data, then sends enable bit */
if (!NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc) &&
!NVME_CC_SHN(data) && !NVME_CC_SHN(n->bar.cc))
{
n->bar.cc = data;
}
if (NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc)) {
n->bar.cc = data;
if (unlikely(nvme_start_ctrl(n))) {
trace_pci_nvme_err_startfail();
n->bar.csts = NVME_CSTS_FAILED;
} else {
trace_pci_nvme_mmio_start_success();
n->bar.csts = NVME_CSTS_READY;
}
} else if (!NVME_CC_EN(data) && NVME_CC_EN(n->bar.cc)) {
trace_pci_nvme_mmio_stopped();
nvme_clear_ctrl(n);
n->bar.csts &= ~NVME_CSTS_READY;
}
if (NVME_CC_SHN(data) && !(NVME_CC_SHN(n->bar.cc))) {
trace_pci_nvme_mmio_shutdown_set();
nvme_clear_ctrl(n);
n->bar.cc = data;
n->bar.csts |= NVME_CSTS_SHST_COMPLETE;
} else if (!NVME_CC_SHN(data) && NVME_CC_SHN(n->bar.cc)) {
trace_pci_nvme_mmio_shutdown_cleared();
n->bar.csts &= ~NVME_CSTS_SHST_COMPLETE;
n->bar.cc = data;
}
break;
case 0x1C: /* CSTS */
if (data & (1 << 4)) {
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ssreset_w1c_unsupported,
"attempted to W1C CSTS.NSSRO"
" but CAP.NSSRS is zero (not supported)");
} else if (data != 0) {
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ro_csts,
"attempted to set a read only bit"
" of controller status");
}
break;
case 0x20: /* NSSR */
if (data == 0x4E564D65) {
trace_pci_nvme_ub_mmiowr_ssreset_unsupported();
} else {
/* The spec says that writes of other values have no effect */
return;
}
break;
case 0x24: /* AQA */
n->bar.aqa = data & 0xffffffff;
trace_pci_nvme_mmio_aqattr(data & 0xffffffff);
break;
case 0x28: /* ASQ */
n->bar.asq = data;
trace_pci_nvme_mmio_asqaddr(data);
break;
case 0x2c: /* ASQ hi */
n->bar.asq |= data << 32;
trace_pci_nvme_mmio_asqaddr_hi(data, n->bar.asq);
break;
case 0x30: /* ACQ */
trace_pci_nvme_mmio_acqaddr(data);
n->bar.acq = data;
break;
case 0x34: /* ACQ hi */
n->bar.acq |= data << 32;
trace_pci_nvme_mmio_acqaddr_hi(data, n->bar.acq);
break;
case 0x38: /* CMBLOC */
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbloc_reserved,
"invalid write to reserved CMBLOC"
" when CMBSZ is zero, ignored");
return;
case 0x3C: /* CMBSZ */
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbsz_readonly,
"invalid write to read only CMBSZ, ignored");
return;
case 0xE00: /* PMRCAP */
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrcap_readonly,
"invalid write to PMRCAP register, ignored");
return;
case 0xE04: /* TODO PMRCTL */
break;
case 0xE08: /* PMRSTS */
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrsts_readonly,
"invalid write to PMRSTS register, ignored");
return;
case 0xE0C: /* PMREBS */
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrebs_readonly,
"invalid write to PMREBS register, ignored");
return;
case 0xE10: /* PMRSWTP */
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrswtp_readonly,
"invalid write to PMRSWTP register, ignored");
return;
case 0xE14: /* TODO PMRMSC */
break;
default:
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_invalid,
"invalid MMIO write,"
" offset=0x%"PRIx64", data=%"PRIx64"",
offset, data);
break;
}
}
static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
{
NvmeCtrl *n = (NvmeCtrl *)opaque;
uint8_t *ptr = (uint8_t *)&n->bar;
uint64_t val = 0;
trace_pci_nvme_mmio_read(addr);
if (unlikely(addr & (sizeof(uint32_t) - 1))) {
NVME_GUEST_ERR(pci_nvme_ub_mmiord_misaligned32,
"MMIO read not 32-bit aligned,"
" offset=0x%"PRIx64"", addr);
/* should RAZ, fall through for now */
} else if (unlikely(size < sizeof(uint32_t))) {
NVME_GUEST_ERR(pci_nvme_ub_mmiord_toosmall,
"MMIO read smaller than 32-bits,"
" offset=0x%"PRIx64"", addr);
/* should RAZ, fall through for now */
}
if (addr < sizeof(n->bar)) {
/*
* When PMRWBM bit 1 is set then read from
* from PMRSTS should ensure prior writes
* made it to persistent media
*/
if (addr == 0xE08 &&
(NVME_PMRCAP_PMRWBM(n->bar.pmrcap) & 0x02)) {
memory_region_msync(&n->pmrdev->mr, 0, n->pmrdev->size);
}
memcpy(&val, ptr + addr, size);
} else {
NVME_GUEST_ERR(pci_nvme_ub_mmiord_invalid_ofs,
"MMIO read beyond last register,"
" offset=0x%"PRIx64", returning 0", addr);
}
return val;
}
static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
{
uint32_t qid;
if (unlikely(addr & ((1 << 2) - 1))) {
NVME_GUEST_ERR(pci_nvme_ub_db_wr_misaligned,
"doorbell write not 32-bit aligned,"
" offset=0x%"PRIx64", ignoring", addr);
return;
}
if (((addr - 0x1000) >> 2) & 1) {
/* Completion queue doorbell write */
uint16_t new_head = val & 0xffff;
int start_sqs;
NvmeCQueue *cq;
qid = (addr - (0x1000 + (1 << 2))) >> 3;
if (unlikely(nvme_check_cqid(n, qid))) {
NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cq,
"completion queue doorbell write"
" for nonexistent queue,"
" sqid=%"PRIu32", ignoring", qid);
/*
* NVM Express v1.3d, Section 4.1 state: "If host software writes
* an invalid value to the Submission Queue Tail Doorbell or
* Completion Queue Head Doorbell regiter and an Asynchronous Event
* Request command is outstanding, then an asynchronous event is
* posted to the Admin Completion Queue with a status code of
* Invalid Doorbell Write Value."
*
* Also note that the spec includes the "Invalid Doorbell Register"
* status code, but nowhere does it specify when to use it.
* However, it seems reasonable to use it here in a similar
* fashion.
*/
if (n->outstanding_aers) {
nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
NVME_LOG_ERROR_INFO);
}
return;
}
cq = n->cq[qid];
if (unlikely(new_head >= cq->size)) {
NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cqhead,
"completion queue doorbell write value"
" beyond queue size, sqid=%"PRIu32","
" new_head=%"PRIu16", ignoring",
qid, new_head);
if (n->outstanding_aers) {
nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
NVME_AER_INFO_ERR_INVALID_DB_VALUE,
NVME_LOG_ERROR_INFO);
}
return;
}
trace_pci_nvme_mmio_doorbell_cq(cq->cqid, new_head);
start_sqs = nvme_cq_full(cq) ? 1 : 0;
cq->head = new_head;
if (start_sqs) {
NvmeSQueue *sq;
QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
}
timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
}
if (cq->tail == cq->head) {
nvme_irq_deassert(n, cq);
}
} else {
/* Submission queue doorbell write */
uint16_t new_tail = val & 0xffff;
NvmeSQueue *sq;
qid = (addr - 0x1000) >> 3;
if (unlikely(nvme_check_sqid(n, qid))) {
NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sq,
"submission queue doorbell write"
" for nonexistent queue,"
" sqid=%"PRIu32", ignoring", qid);
if (n->outstanding_aers) {
nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
NVME_LOG_ERROR_INFO);
}
return;
}
sq = n->sq[qid];
if (unlikely(new_tail >= sq->size)) {
NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sqtail,
"submission queue doorbell write value"
" beyond queue size, sqid=%"PRIu32","
" new_tail=%"PRIu16", ignoring",
qid, new_tail);
if (n->outstanding_aers) {
nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
NVME_AER_INFO_ERR_INVALID_DB_VALUE,
NVME_LOG_ERROR_INFO);
}
return;
}
trace_pci_nvme_mmio_doorbell_sq(sq->sqid, new_tail);
sq->tail = new_tail;
timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
}
}
static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
unsigned size)
{
NvmeCtrl *n = (NvmeCtrl *)opaque;
trace_pci_nvme_mmio_write(addr, data);
if (addr < sizeof(n->bar)) {
nvme_write_bar(n, addr, data, size);
} else {
nvme_process_db(n, addr, data);
}
}
static const MemoryRegionOps nvme_mmio_ops = {
.read = nvme_mmio_read,
.write = nvme_mmio_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.impl = {
.min_access_size = 2,
.max_access_size = 8,
},
};
static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data,
unsigned size)
{
NvmeCtrl *n = (NvmeCtrl *)opaque;
stn_le_p(&n->cmbuf[addr], size, data);
}
static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size)
{
NvmeCtrl *n = (NvmeCtrl *)opaque;
return ldn_le_p(&n->cmbuf[addr], size);
}
static const MemoryRegionOps nvme_cmb_ops = {
.read = nvme_cmb_read,
.write = nvme_cmb_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.impl = {
.min_access_size = 1,
.max_access_size = 8,
},
};
static void nvme_check_constraints(NvmeCtrl *n, Error **errp)
{
NvmeParams *params = &n->params;
if (params->num_queues) {
warn_report("num_queues is deprecated; please use max_ioqpairs "
"instead");
params->max_ioqpairs = params->num_queues - 1;
}
if (params->max_ioqpairs < 1 ||
params->max_ioqpairs > NVME_MAX_IOQPAIRS) {
error_setg(errp, "max_ioqpairs must be between 1 and %d",
NVME_MAX_IOQPAIRS);
return;
}
if (params->msix_qsize < 1 ||
params->msix_qsize > PCI_MSIX_FLAGS_QSIZE + 1) {
error_setg(errp, "msix_qsize must be between 1 and %d",
PCI_MSIX_FLAGS_QSIZE + 1);
return;
}
if (!n->conf.blk) {
error_setg(errp, "drive property not set");
return;
}
if (!params->serial) {
error_setg(errp, "serial property not set");
return;
}
if (!n->params.cmb_size_mb && n->pmrdev) {
if (host_memory_backend_is_mapped(n->pmrdev)) {
error_setg(errp, "can't use already busy memdev: %s",
object_get_canonical_path_component(OBJECT(n->pmrdev)));
return;
}
if (!is_power_of_2(n->pmrdev->size)) {
error_setg(errp, "pmr backend size needs to be power of 2 in size");
return;
}
host_memory_backend_set_mapped(n->pmrdev, true);
}
}
static void nvme_init_state(NvmeCtrl *n)
{
n->num_namespaces = 1;
/* add one to max_ioqpairs to account for the admin queue pair */
n->reg_size = pow2ceil(sizeof(NvmeBar) +
2 * (n->params.max_ioqpairs + 1) * NVME_DB_SIZE);
n->namespaces = g_new0(NvmeNamespace, n->num_namespaces);
n->sq = g_new0(NvmeSQueue *, n->params.max_ioqpairs + 1);
n->cq = g_new0(NvmeCQueue *, n->params.max_ioqpairs + 1);
n->temperature = NVME_TEMPERATURE;
n->features.temp_thresh_hi = NVME_TEMPERATURE_WARNING;
n->starttime_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
n->aer_reqs = g_new0(NvmeRequest *, n->params.aerl + 1);
}
static void nvme_init_blk(NvmeCtrl *n, Error **errp)
{
if (!blkconf_blocksizes(&n->conf, errp)) {
return;
}
blkconf_apply_backend_options(&n->conf, blk_is_read_only(n->conf.blk),
false, errp);
}
static void nvme_init_namespace(NvmeCtrl *n, NvmeNamespace *ns, Error **errp)
{
int64_t bs_size;
NvmeIdNs *id_ns = &ns->id_ns;
bs_size = blk_getlength(n->conf.blk);
if (bs_size < 0) {
error_setg_errno(errp, -bs_size, "could not get backing file size");
return;
}
n->ns_size = bs_size;
id_ns->lbaf[0].ds = BDRV_SECTOR_BITS;
id_ns->nsze = cpu_to_le64(nvme_ns_nlbas(n, ns));
/* no thin provisioning */
id_ns->ncap = id_ns->nsze;
id_ns->nuse = id_ns->ncap;
}
static void nvme_init_cmb(NvmeCtrl *n, PCIDevice *pci_dev)
{
NVME_CMBLOC_SET_BIR(n->bar.cmbloc, NVME_CMB_BIR);
NVME_CMBLOC_SET_OFST(n->bar.cmbloc, 0);
NVME_CMBSZ_SET_SQS(n->bar.cmbsz, 1);
NVME_CMBSZ_SET_CQS(n->bar.cmbsz, 0);
NVME_CMBSZ_SET_LISTS(n->bar.cmbsz, 0);
NVME_CMBSZ_SET_RDS(n->bar.cmbsz, 1);
NVME_CMBSZ_SET_WDS(n->bar.cmbsz, 1);
NVME_CMBSZ_SET_SZU(n->bar.cmbsz, 2); /* MBs */
NVME_CMBSZ_SET_SZ(n->bar.cmbsz, n->params.cmb_size_mb);
n->cmbuf = g_malloc0(NVME_CMBSZ_GETSIZE(n->bar.cmbsz));
memory_region_init_io(&n->ctrl_mem, OBJECT(n), &nvme_cmb_ops, n,
"nvme-cmb", NVME_CMBSZ_GETSIZE(n->bar.cmbsz));
pci_register_bar(pci_dev, NVME_CMBLOC_BIR(n->bar.cmbloc),
PCI_BASE_ADDRESS_SPACE_MEMORY |
PCI_BASE_ADDRESS_MEM_TYPE_64 |
PCI_BASE_ADDRESS_MEM_PREFETCH, &n->ctrl_mem);
}
static void nvme_init_pmr(NvmeCtrl *n, PCIDevice *pci_dev)
{
/* Controller Capabilities register */
NVME_CAP_SET_PMRS(n->bar.cap, 1);
/* PMR Capabities register */
n->bar.pmrcap = 0;
NVME_PMRCAP_SET_RDS(n->bar.pmrcap, 0);
NVME_PMRCAP_SET_WDS(n->bar.pmrcap, 0);
NVME_PMRCAP_SET_BIR(n->bar.pmrcap, NVME_PMR_BIR);
NVME_PMRCAP_SET_PMRTU(n->bar.pmrcap, 0);
/* Turn on bit 1 support */
NVME_PMRCAP_SET_PMRWBM(n->bar.pmrcap, 0x02);
NVME_PMRCAP_SET_PMRTO(n->bar.pmrcap, 0);
NVME_PMRCAP_SET_CMSS(n->bar.pmrcap, 0);
/* PMR Control register */
n->bar.pmrctl = 0;
NVME_PMRCTL_SET_EN(n->bar.pmrctl, 0);
/* PMR Status register */
n->bar.pmrsts = 0;
NVME_PMRSTS_SET_ERR(n->bar.pmrsts, 0);
NVME_PMRSTS_SET_NRDY(n->bar.pmrsts, 0);
NVME_PMRSTS_SET_HSTS(n->bar.pmrsts, 0);
NVME_PMRSTS_SET_CBAI(n->bar.pmrsts, 0);
/* PMR Elasticity Buffer Size register */
n->bar.pmrebs = 0;
NVME_PMREBS_SET_PMRSZU(n->bar.pmrebs, 0);
NVME_PMREBS_SET_RBB(n->bar.pmrebs, 0);
NVME_PMREBS_SET_PMRWBZ(n->bar.pmrebs, 0);
/* PMR Sustained Write Throughput register */
n->bar.pmrswtp = 0;
NVME_PMRSWTP_SET_PMRSWTU(n->bar.pmrswtp, 0);
NVME_PMRSWTP_SET_PMRSWTV(n->bar.pmrswtp, 0);
/* PMR Memory Space Control register */
n->bar.pmrmsc = 0;
NVME_PMRMSC_SET_CMSE(n->bar.pmrmsc, 0);
NVME_PMRMSC_SET_CBA(n->bar.pmrmsc, 0);
pci_register_bar(pci_dev, NVME_PMRCAP_BIR(n->bar.pmrcap),
PCI_BASE_ADDRESS_SPACE_MEMORY |
PCI_BASE_ADDRESS_MEM_TYPE_64 |
PCI_BASE_ADDRESS_MEM_PREFETCH, &n->pmrdev->mr);
}
static void nvme_init_pci(NvmeCtrl *n, PCIDevice *pci_dev, Error **errp)
{
uint8_t *pci_conf = pci_dev->config;
pci_conf[PCI_INTERRUPT_PIN] = 1;
pci_config_set_prog_interface(pci_conf, 0x2);
pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_EXPRESS);
pcie_endpoint_cap_init(pci_dev, 0x80);
memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n, "nvme",
n->reg_size);
pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
PCI_BASE_ADDRESS_MEM_TYPE_64, &n->iomem);
if (msix_init_exclusive_bar(pci_dev, n->params.msix_qsize, 4, errp)) {
return;
}
if (n->params.cmb_size_mb) {
nvme_init_cmb(n, pci_dev);
} else if (n->pmrdev) {
nvme_init_pmr(n, pci_dev);
}
}
static void nvme_init_ctrl(NvmeCtrl *n, PCIDevice *pci_dev)
{
NvmeIdCtrl *id = &n->id_ctrl;
uint8_t *pci_conf = pci_dev->config;
char *subnqn;
id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
strpadcpy((char *)id->fr, sizeof(id->fr), "1.0", ' ');
strpadcpy((char *)id->sn, sizeof(id->sn), n->params.serial, ' ');
id->rab = 6;
id->ieee[0] = 0x00;
id->ieee[1] = 0x02;
id->ieee[2] = 0xb3;
id->ver = cpu_to_le32(NVME_SPEC_VER);
id->oacs = cpu_to_le16(0);
/*
* Because the controller always completes the Abort command immediately,
* there can never be more than one concurrently executing Abort command,
* so this value is never used for anything. Note that there can easily be
* many Abort commands in the queues, but they are not considered
* "executing" until processed by nvme_abort.
*
* The specification recommends a value of 3 for Abort Command Limit (four
* concurrently outstanding Abort commands), so lets use that though it is
* inconsequential.
*/
id->acl = 3;
id->aerl = n->params.aerl;
id->frmw = (NVME_NUM_FW_SLOTS << 1) | NVME_FRMW_SLOT1_RO;
id->lpa = NVME_LPA_EXTENDED;
/* recommended default value (~70 C) */
id->wctemp = cpu_to_le16(NVME_TEMPERATURE_WARNING);
id->cctemp = cpu_to_le16(NVME_TEMPERATURE_CRITICAL);
id->sqes = (0x6 << 4) | 0x6;
id->cqes = (0x4 << 4) | 0x4;
id->nn = cpu_to_le32(n->num_namespaces);
id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROS | NVME_ONCS_TIMESTAMP |
NVME_ONCS_FEATURES);
subnqn = g_strdup_printf("nqn.2019-08.org.qemu:%s", n->params.serial);
strpadcpy((char *)id->subnqn, sizeof(id->subnqn), subnqn, '\0');
g_free(subnqn);
id->psd[0].mp = cpu_to_le16(0x9c4);
id->psd[0].enlat = cpu_to_le32(0x10);
id->psd[0].exlat = cpu_to_le32(0x4);
if (blk_enable_write_cache(n->conf.blk)) {
id->vwc = 1;
}
n->bar.cap = 0;
NVME_CAP_SET_MQES(n->bar.cap, 0x7ff);
NVME_CAP_SET_CQR(n->bar.cap, 1);
NVME_CAP_SET_TO(n->bar.cap, 0xf);
NVME_CAP_SET_CSS(n->bar.cap, 1);
NVME_CAP_SET_MPSMAX(n->bar.cap, 4);
n->bar.vs = NVME_SPEC_VER;
n->bar.intmc = n->bar.intms = 0;
}
static void nvme_realize(PCIDevice *pci_dev, Error **errp)
{
NvmeCtrl *n = NVME(pci_dev);
Error *local_err = NULL;
int i;
nvme_check_constraints(n, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
nvme_init_state(n);
nvme_init_blk(n, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
nvme_init_pci(n, pci_dev, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
nvme_init_ctrl(n, pci_dev);
for (i = 0; i < n->num_namespaces; i++) {
nvme_init_namespace(n, &n->namespaces[i], &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
}
}
static void nvme_exit(PCIDevice *pci_dev)
{
NvmeCtrl *n = NVME(pci_dev);
nvme_clear_ctrl(n);
g_free(n->namespaces);
g_free(n->cq);
g_free(n->sq);
g_free(n->aer_reqs);
if (n->params.cmb_size_mb) {
g_free(n->cmbuf);
}
if (n->pmrdev) {
host_memory_backend_set_mapped(n->pmrdev, false);
}
msix_uninit_exclusive_bar(pci_dev);
}
static Property nvme_props[] = {
DEFINE_BLOCK_PROPERTIES(NvmeCtrl, conf),
DEFINE_PROP_LINK("pmrdev", NvmeCtrl, pmrdev, TYPE_MEMORY_BACKEND,
HostMemoryBackend *),
DEFINE_PROP_STRING("serial", NvmeCtrl, params.serial),
DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, params.cmb_size_mb, 0),
DEFINE_PROP_UINT32("num_queues", NvmeCtrl, params.num_queues, 0),
DEFINE_PROP_UINT32("max_ioqpairs", NvmeCtrl, params.max_ioqpairs, 64),
DEFINE_PROP_UINT16("msix_qsize", NvmeCtrl, params.msix_qsize, 65),
DEFINE_PROP_UINT8("aerl", NvmeCtrl, params.aerl, 3),
DEFINE_PROP_UINT32("aer_max_queued", NvmeCtrl, params.aer_max_queued, 64),
DEFINE_PROP_END_OF_LIST(),
};
static const VMStateDescription nvme_vmstate = {
.name = "nvme",
.unmigratable = 1,
};
static void nvme_class_init(ObjectClass *oc, void *data)
{
DeviceClass *dc = DEVICE_CLASS(oc);
PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
pc->realize = nvme_realize;
pc->exit = nvme_exit;
pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
pc->vendor_id = PCI_VENDOR_ID_INTEL;
pc->device_id = 0x5845;
pc->revision = 2;
set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
dc->desc = "Non-Volatile Memory Express";
device_class_set_props(dc, nvme_props);
dc->vmsd = &nvme_vmstate;
}
static void nvme_instance_init(Object *obj)
{
NvmeCtrl *s = NVME(obj);
device_add_bootindex_property(obj, &s->conf.bootindex,
"bootindex", "/namespace@1,0",
DEVICE(obj));
}
static const TypeInfo nvme_info = {
.name = TYPE_NVME,
.parent = TYPE_PCI_DEVICE,
.instance_size = sizeof(NvmeCtrl),
.class_init = nvme_class_init,
.instance_init = nvme_instance_init,
.interfaces = (InterfaceInfo[]) {
{ INTERFACE_PCIE_DEVICE },
{ }
},
};
static void nvme_register_types(void)
{
type_register_static(&nvme_info);
}
type_init(nvme_register_types)