qemu/block/nvme.c
Philippe Mathieu-Daudé fcc8672aca block/nvme: Trace NVMe spec version supported by the controller
NVMe controllers implement different versions of the spec,
and different features of it. It is useful to gather this
information when debugging.

Signed-off-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Message-Id: <20210127212137.3482291-3-philmd@redhat.com>
Reviewed-by: Klaus Jensen <k.jensen@samsung.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2021-02-02 17:05:38 +01:00

1587 lines
46 KiB
C

/*
* NVMe block driver based on vfio
*
* Copyright 2016 - 2018 Red Hat, Inc.
*
* Authors:
* Fam Zheng <famz@redhat.com>
* Paolo Bonzini <pbonzini@redhat.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include <linux/vfio.h>
#include "qapi/error.h"
#include "qapi/qmp/qdict.h"
#include "qapi/qmp/qstring.h"
#include "qemu/error-report.h"
#include "qemu/main-loop.h"
#include "qemu/module.h"
#include "qemu/cutils.h"
#include "qemu/option.h"
#include "qemu/vfio-helpers.h"
#include "block/block_int.h"
#include "sysemu/replay.h"
#include "trace.h"
#include "block/nvme.h"
#define NVME_SQ_ENTRY_BYTES 64
#define NVME_CQ_ENTRY_BYTES 16
#define NVME_QUEUE_SIZE 128
#define NVME_DOORBELL_SIZE 4096
/*
* We have to leave one slot empty as that is the full queue case where
* head == tail + 1.
*/
#define NVME_NUM_REQS (NVME_QUEUE_SIZE - 1)
typedef struct BDRVNVMeState BDRVNVMeState;
/* Same index is used for queues and IRQs */
#define INDEX_ADMIN 0
#define INDEX_IO(n) (1 + n)
/* This driver shares a single MSIX IRQ for the admin and I/O queues */
enum {
MSIX_SHARED_IRQ_IDX = 0,
MSIX_IRQ_COUNT = 1
};
typedef struct {
int32_t head, tail;
uint8_t *queue;
uint64_t iova;
/* Hardware MMIO register */
volatile uint32_t *doorbell;
} NVMeQueue;
typedef struct {
BlockCompletionFunc *cb;
void *opaque;
int cid;
void *prp_list_page;
uint64_t prp_list_iova;
int free_req_next; /* q->reqs[] index of next free req */
} NVMeRequest;
typedef struct {
QemuMutex lock;
/* Read from I/O code path, initialized under BQL */
BDRVNVMeState *s;
int index;
/* Fields protected by BQL */
uint8_t *prp_list_pages;
/* Fields protected by @lock */
CoQueue free_req_queue;
NVMeQueue sq, cq;
int cq_phase;
int free_req_head;
NVMeRequest reqs[NVME_NUM_REQS];
int need_kick;
int inflight;
/* Thread-safe, no lock necessary */
QEMUBH *completion_bh;
} NVMeQueuePair;
struct BDRVNVMeState {
AioContext *aio_context;
QEMUVFIOState *vfio;
void *bar0_wo_map;
/* Memory mapped registers */
volatile struct {
uint32_t sq_tail;
uint32_t cq_head;
} *doorbells;
/* The submission/completion queue pairs.
* [0]: admin queue.
* [1..]: io queues.
*/
NVMeQueuePair **queues;
unsigned queue_count;
size_t page_size;
/* How many uint32_t elements does each doorbell entry take. */
size_t doorbell_scale;
bool write_cache_supported;
EventNotifier irq_notifier[MSIX_IRQ_COUNT];
uint64_t nsze; /* Namespace size reported by identify command */
int nsid; /* The namespace id to read/write data. */
int blkshift;
uint64_t max_transfer;
bool plugged;
bool supports_write_zeroes;
bool supports_discard;
CoMutex dma_map_lock;
CoQueue dma_flush_queue;
/* Total size of mapped qiov, accessed under dma_map_lock */
int dma_map_count;
/* PCI address (required for nvme_refresh_filename()) */
char *device;
struct {
uint64_t completion_errors;
uint64_t aligned_accesses;
uint64_t unaligned_accesses;
} stats;
};
#define NVME_BLOCK_OPT_DEVICE "device"
#define NVME_BLOCK_OPT_NAMESPACE "namespace"
static void nvme_process_completion_bh(void *opaque);
static QemuOptsList runtime_opts = {
.name = "nvme",
.head = QTAILQ_HEAD_INITIALIZER(runtime_opts.head),
.desc = {
{
.name = NVME_BLOCK_OPT_DEVICE,
.type = QEMU_OPT_STRING,
.help = "NVMe PCI device address",
},
{
.name = NVME_BLOCK_OPT_NAMESPACE,
.type = QEMU_OPT_NUMBER,
.help = "NVMe namespace",
},
{ /* end of list */ }
},
};
/* Returns true on success, false on failure. */
static bool nvme_init_queue(BDRVNVMeState *s, NVMeQueue *q,
unsigned nentries, size_t entry_bytes, Error **errp)
{
size_t bytes;
int r;
bytes = ROUND_UP(nentries * entry_bytes, qemu_real_host_page_size);
q->head = q->tail = 0;
q->queue = qemu_try_memalign(qemu_real_host_page_size, bytes);
if (!q->queue) {
error_setg(errp, "Cannot allocate queue");
return false;
}
memset(q->queue, 0, bytes);
r = qemu_vfio_dma_map(s->vfio, q->queue, bytes, false, &q->iova);
if (r) {
error_setg(errp, "Cannot map queue");
return false;
}
return true;
}
static void nvme_free_queue_pair(NVMeQueuePair *q)
{
trace_nvme_free_queue_pair(q->index, q);
if (q->completion_bh) {
qemu_bh_delete(q->completion_bh);
}
qemu_vfree(q->prp_list_pages);
qemu_vfree(q->sq.queue);
qemu_vfree(q->cq.queue);
qemu_mutex_destroy(&q->lock);
g_free(q);
}
static void nvme_free_req_queue_cb(void *opaque)
{
NVMeQueuePair *q = opaque;
qemu_mutex_lock(&q->lock);
while (qemu_co_enter_next(&q->free_req_queue, &q->lock)) {
/* Retry all pending requests */
}
qemu_mutex_unlock(&q->lock);
}
static NVMeQueuePair *nvme_create_queue_pair(BDRVNVMeState *s,
AioContext *aio_context,
unsigned idx, size_t size,
Error **errp)
{
int i, r;
NVMeQueuePair *q;
uint64_t prp_list_iova;
size_t bytes;
q = g_try_new0(NVMeQueuePair, 1);
if (!q) {
return NULL;
}
trace_nvme_create_queue_pair(idx, q, size, aio_context,
event_notifier_get_fd(s->irq_notifier));
bytes = QEMU_ALIGN_UP(s->page_size * NVME_NUM_REQS,
qemu_real_host_page_size);
q->prp_list_pages = qemu_try_memalign(qemu_real_host_page_size, bytes);
if (!q->prp_list_pages) {
goto fail;
}
memset(q->prp_list_pages, 0, bytes);
qemu_mutex_init(&q->lock);
q->s = s;
q->index = idx;
qemu_co_queue_init(&q->free_req_queue);
q->completion_bh = aio_bh_new(aio_context, nvme_process_completion_bh, q);
r = qemu_vfio_dma_map(s->vfio, q->prp_list_pages, bytes,
false, &prp_list_iova);
if (r) {
goto fail;
}
q->free_req_head = -1;
for (i = 0; i < NVME_NUM_REQS; i++) {
NVMeRequest *req = &q->reqs[i];
req->cid = i + 1;
req->free_req_next = q->free_req_head;
q->free_req_head = i;
req->prp_list_page = q->prp_list_pages + i * s->page_size;
req->prp_list_iova = prp_list_iova + i * s->page_size;
}
if (!nvme_init_queue(s, &q->sq, size, NVME_SQ_ENTRY_BYTES, errp)) {
goto fail;
}
q->sq.doorbell = &s->doorbells[idx * s->doorbell_scale].sq_tail;
if (!nvme_init_queue(s, &q->cq, size, NVME_CQ_ENTRY_BYTES, errp)) {
goto fail;
}
q->cq.doorbell = &s->doorbells[idx * s->doorbell_scale].cq_head;
return q;
fail:
nvme_free_queue_pair(q);
return NULL;
}
/* With q->lock */
static void nvme_kick(NVMeQueuePair *q)
{
BDRVNVMeState *s = q->s;
if (s->plugged || !q->need_kick) {
return;
}
trace_nvme_kick(s, q->index);
assert(!(q->sq.tail & 0xFF00));
/* Fence the write to submission queue entry before notifying the device. */
smp_wmb();
*q->sq.doorbell = cpu_to_le32(q->sq.tail);
q->inflight += q->need_kick;
q->need_kick = 0;
}
/* Find a free request element if any, otherwise:
* a) if in coroutine context, try to wait for one to become available;
* b) if not in coroutine, return NULL;
*/
static NVMeRequest *nvme_get_free_req(NVMeQueuePair *q)
{
NVMeRequest *req;
qemu_mutex_lock(&q->lock);
while (q->free_req_head == -1) {
if (qemu_in_coroutine()) {
trace_nvme_free_req_queue_wait(q->s, q->index);
qemu_co_queue_wait(&q->free_req_queue, &q->lock);
} else {
qemu_mutex_unlock(&q->lock);
return NULL;
}
}
req = &q->reqs[q->free_req_head];
q->free_req_head = req->free_req_next;
req->free_req_next = -1;
qemu_mutex_unlock(&q->lock);
return req;
}
/* With q->lock */
static void nvme_put_free_req_locked(NVMeQueuePair *q, NVMeRequest *req)
{
req->free_req_next = q->free_req_head;
q->free_req_head = req - q->reqs;
}
/* With q->lock */
static void nvme_wake_free_req_locked(NVMeQueuePair *q)
{
if (!qemu_co_queue_empty(&q->free_req_queue)) {
replay_bh_schedule_oneshot_event(q->s->aio_context,
nvme_free_req_queue_cb, q);
}
}
/* Insert a request in the freelist and wake waiters */
static void nvme_put_free_req_and_wake(NVMeQueuePair *q, NVMeRequest *req)
{
qemu_mutex_lock(&q->lock);
nvme_put_free_req_locked(q, req);
nvme_wake_free_req_locked(q);
qemu_mutex_unlock(&q->lock);
}
static inline int nvme_translate_error(const NvmeCqe *c)
{
uint16_t status = (le16_to_cpu(c->status) >> 1) & 0xFF;
if (status) {
trace_nvme_error(le32_to_cpu(c->result),
le16_to_cpu(c->sq_head),
le16_to_cpu(c->sq_id),
le16_to_cpu(c->cid),
le16_to_cpu(status));
}
switch (status) {
case 0:
return 0;
case 1:
return -ENOSYS;
case 2:
return -EINVAL;
default:
return -EIO;
}
}
/* With q->lock */
static bool nvme_process_completion(NVMeQueuePair *q)
{
BDRVNVMeState *s = q->s;
bool progress = false;
NVMeRequest *preq;
NVMeRequest req;
NvmeCqe *c;
trace_nvme_process_completion(s, q->index, q->inflight);
if (s->plugged) {
trace_nvme_process_completion_queue_plugged(s, q->index);
return false;
}
/*
* Support re-entrancy when a request cb() function invokes aio_poll().
* Pending completions must be visible to aio_poll() so that a cb()
* function can wait for the completion of another request.
*
* The aio_poll() loop will execute our BH and we'll resume completion
* processing there.
*/
qemu_bh_schedule(q->completion_bh);
assert(q->inflight >= 0);
while (q->inflight) {
int ret;
int16_t cid;
c = (NvmeCqe *)&q->cq.queue[q->cq.head * NVME_CQ_ENTRY_BYTES];
if ((le16_to_cpu(c->status) & 0x1) == q->cq_phase) {
break;
}
ret = nvme_translate_error(c);
if (ret) {
s->stats.completion_errors++;
}
q->cq.head = (q->cq.head + 1) % NVME_QUEUE_SIZE;
if (!q->cq.head) {
q->cq_phase = !q->cq_phase;
}
cid = le16_to_cpu(c->cid);
if (cid == 0 || cid > NVME_QUEUE_SIZE) {
warn_report("NVMe: Unexpected CID in completion queue: %"PRIu32", "
"queue size: %u", cid, NVME_QUEUE_SIZE);
continue;
}
trace_nvme_complete_command(s, q->index, cid);
preq = &q->reqs[cid - 1];
req = *preq;
assert(req.cid == cid);
assert(req.cb);
nvme_put_free_req_locked(q, preq);
preq->cb = preq->opaque = NULL;
q->inflight--;
qemu_mutex_unlock(&q->lock);
req.cb(req.opaque, ret);
qemu_mutex_lock(&q->lock);
progress = true;
}
if (progress) {
/* Notify the device so it can post more completions. */
smp_mb_release();
*q->cq.doorbell = cpu_to_le32(q->cq.head);
nvme_wake_free_req_locked(q);
}
qemu_bh_cancel(q->completion_bh);
return progress;
}
static void nvme_process_completion_bh(void *opaque)
{
NVMeQueuePair *q = opaque;
/*
* We're being invoked because a nvme_process_completion() cb() function
* called aio_poll(). The callback may be waiting for further completions
* so notify the device that it has space to fill in more completions now.
*/
smp_mb_release();
*q->cq.doorbell = cpu_to_le32(q->cq.head);
nvme_wake_free_req_locked(q);
nvme_process_completion(q);
}
static void nvme_trace_command(const NvmeCmd *cmd)
{
int i;
if (!trace_event_get_state_backends(TRACE_NVME_SUBMIT_COMMAND_RAW)) {
return;
}
for (i = 0; i < 8; ++i) {
uint8_t *cmdp = (uint8_t *)cmd + i * 8;
trace_nvme_submit_command_raw(cmdp[0], cmdp[1], cmdp[2], cmdp[3],
cmdp[4], cmdp[5], cmdp[6], cmdp[7]);
}
}
static void nvme_submit_command(NVMeQueuePair *q, NVMeRequest *req,
NvmeCmd *cmd, BlockCompletionFunc cb,
void *opaque)
{
assert(!req->cb);
req->cb = cb;
req->opaque = opaque;
cmd->cid = cpu_to_le16(req->cid);
trace_nvme_submit_command(q->s, q->index, req->cid);
nvme_trace_command(cmd);
qemu_mutex_lock(&q->lock);
memcpy((uint8_t *)q->sq.queue +
q->sq.tail * NVME_SQ_ENTRY_BYTES, cmd, sizeof(*cmd));
q->sq.tail = (q->sq.tail + 1) % NVME_QUEUE_SIZE;
q->need_kick++;
nvme_kick(q);
nvme_process_completion(q);
qemu_mutex_unlock(&q->lock);
}
static void nvme_admin_cmd_sync_cb(void *opaque, int ret)
{
int *pret = opaque;
*pret = ret;
aio_wait_kick();
}
static int nvme_admin_cmd_sync(BlockDriverState *bs, NvmeCmd *cmd)
{
BDRVNVMeState *s = bs->opaque;
NVMeQueuePair *q = s->queues[INDEX_ADMIN];
AioContext *aio_context = bdrv_get_aio_context(bs);
NVMeRequest *req;
int ret = -EINPROGRESS;
req = nvme_get_free_req(q);
if (!req) {
return -EBUSY;
}
nvme_submit_command(q, req, cmd, nvme_admin_cmd_sync_cb, &ret);
AIO_WAIT_WHILE(aio_context, ret == -EINPROGRESS);
return ret;
}
/* Returns true on success, false on failure. */
static bool nvme_identify(BlockDriverState *bs, int namespace, Error **errp)
{
BDRVNVMeState *s = bs->opaque;
bool ret = false;
union {
NvmeIdCtrl ctrl;
NvmeIdNs ns;
} *id;
NvmeLBAF *lbaf;
uint16_t oncs;
int r;
uint64_t iova;
NvmeCmd cmd = {
.opcode = NVME_ADM_CMD_IDENTIFY,
.cdw10 = cpu_to_le32(0x1),
};
size_t id_size = QEMU_ALIGN_UP(sizeof(*id), qemu_real_host_page_size);
id = qemu_try_memalign(qemu_real_host_page_size, id_size);
if (!id) {
error_setg(errp, "Cannot allocate buffer for identify response");
goto out;
}
r = qemu_vfio_dma_map(s->vfio, id, id_size, true, &iova);
if (r) {
error_setg(errp, "Cannot map buffer for DMA");
goto out;
}
memset(id, 0, id_size);
cmd.dptr.prp1 = cpu_to_le64(iova);
if (nvme_admin_cmd_sync(bs, &cmd)) {
error_setg(errp, "Failed to identify controller");
goto out;
}
if (le32_to_cpu(id->ctrl.nn) < namespace) {
error_setg(errp, "Invalid namespace");
goto out;
}
s->write_cache_supported = le32_to_cpu(id->ctrl.vwc) & 0x1;
s->max_transfer = (id->ctrl.mdts ? 1 << id->ctrl.mdts : 0) * s->page_size;
/* For now the page list buffer per command is one page, to hold at most
* s->page_size / sizeof(uint64_t) entries. */
s->max_transfer = MIN_NON_ZERO(s->max_transfer,
s->page_size / sizeof(uint64_t) * s->page_size);
oncs = le16_to_cpu(id->ctrl.oncs);
s->supports_write_zeroes = !!(oncs & NVME_ONCS_WRITE_ZEROES);
s->supports_discard = !!(oncs & NVME_ONCS_DSM);
memset(id, 0, id_size);
cmd.cdw10 = 0;
cmd.nsid = cpu_to_le32(namespace);
if (nvme_admin_cmd_sync(bs, &cmd)) {
error_setg(errp, "Failed to identify namespace");
goto out;
}
s->nsze = le64_to_cpu(id->ns.nsze);
lbaf = &id->ns.lbaf[NVME_ID_NS_FLBAS_INDEX(id->ns.flbas)];
if (NVME_ID_NS_DLFEAT_WRITE_ZEROES(id->ns.dlfeat) &&
NVME_ID_NS_DLFEAT_READ_BEHAVIOR(id->ns.dlfeat) ==
NVME_ID_NS_DLFEAT_READ_BEHAVIOR_ZEROES) {
bs->supported_write_flags |= BDRV_REQ_MAY_UNMAP;
}
if (lbaf->ms) {
error_setg(errp, "Namespaces with metadata are not yet supported");
goto out;
}
if (lbaf->ds < BDRV_SECTOR_BITS || lbaf->ds > 12 ||
(1 << lbaf->ds) > s->page_size)
{
error_setg(errp, "Namespace has unsupported block size (2^%d)",
lbaf->ds);
goto out;
}
ret = true;
s->blkshift = lbaf->ds;
out:
qemu_vfio_dma_unmap(s->vfio, id);
qemu_vfree(id);
return ret;
}
static bool nvme_poll_queue(NVMeQueuePair *q)
{
bool progress = false;
const size_t cqe_offset = q->cq.head * NVME_CQ_ENTRY_BYTES;
NvmeCqe *cqe = (NvmeCqe *)&q->cq.queue[cqe_offset];
trace_nvme_poll_queue(q->s, q->index);
/*
* Do an early check for completions. q->lock isn't needed because
* nvme_process_completion() only runs in the event loop thread and
* cannot race with itself.
*/
if ((le16_to_cpu(cqe->status) & 0x1) == q->cq_phase) {
return false;
}
qemu_mutex_lock(&q->lock);
while (nvme_process_completion(q)) {
/* Keep polling */
progress = true;
}
qemu_mutex_unlock(&q->lock);
return progress;
}
static bool nvme_poll_queues(BDRVNVMeState *s)
{
bool progress = false;
int i;
for (i = 0; i < s->queue_count; i++) {
if (nvme_poll_queue(s->queues[i])) {
progress = true;
}
}
return progress;
}
static void nvme_handle_event(EventNotifier *n)
{
BDRVNVMeState *s = container_of(n, BDRVNVMeState,
irq_notifier[MSIX_SHARED_IRQ_IDX]);
trace_nvme_handle_event(s);
event_notifier_test_and_clear(n);
nvme_poll_queues(s);
}
static bool nvme_add_io_queue(BlockDriverState *bs, Error **errp)
{
BDRVNVMeState *s = bs->opaque;
unsigned n = s->queue_count;
NVMeQueuePair *q;
NvmeCmd cmd;
unsigned queue_size = NVME_QUEUE_SIZE;
assert(n <= UINT16_MAX);
q = nvme_create_queue_pair(s, bdrv_get_aio_context(bs),
n, queue_size, errp);
if (!q) {
return false;
}
cmd = (NvmeCmd) {
.opcode = NVME_ADM_CMD_CREATE_CQ,
.dptr.prp1 = cpu_to_le64(q->cq.iova),
.cdw10 = cpu_to_le32(((queue_size - 1) << 16) | n),
.cdw11 = cpu_to_le32(NVME_CQ_IEN | NVME_CQ_PC),
};
if (nvme_admin_cmd_sync(bs, &cmd)) {
error_setg(errp, "Failed to create CQ io queue [%u]", n);
goto out_error;
}
cmd = (NvmeCmd) {
.opcode = NVME_ADM_CMD_CREATE_SQ,
.dptr.prp1 = cpu_to_le64(q->sq.iova),
.cdw10 = cpu_to_le32(((queue_size - 1) << 16) | n),
.cdw11 = cpu_to_le32(NVME_SQ_PC | (n << 16)),
};
if (nvme_admin_cmd_sync(bs, &cmd)) {
error_setg(errp, "Failed to create SQ io queue [%u]", n);
goto out_error;
}
s->queues = g_renew(NVMeQueuePair *, s->queues, n + 1);
s->queues[n] = q;
s->queue_count++;
return true;
out_error:
nvme_free_queue_pair(q);
return false;
}
static bool nvme_poll_cb(void *opaque)
{
EventNotifier *e = opaque;
BDRVNVMeState *s = container_of(e, BDRVNVMeState,
irq_notifier[MSIX_SHARED_IRQ_IDX]);
return nvme_poll_queues(s);
}
static int nvme_init(BlockDriverState *bs, const char *device, int namespace,
Error **errp)
{
BDRVNVMeState *s = bs->opaque;
NVMeQueuePair *q;
AioContext *aio_context = bdrv_get_aio_context(bs);
int ret;
uint64_t cap;
uint32_t ver;
uint64_t timeout_ms;
uint64_t deadline, now;
volatile NvmeBar *regs = NULL;
qemu_co_mutex_init(&s->dma_map_lock);
qemu_co_queue_init(&s->dma_flush_queue);
s->device = g_strdup(device);
s->nsid = namespace;
s->aio_context = bdrv_get_aio_context(bs);
ret = event_notifier_init(&s->irq_notifier[MSIX_SHARED_IRQ_IDX], 0);
if (ret) {
error_setg(errp, "Failed to init event notifier");
return ret;
}
s->vfio = qemu_vfio_open_pci(device, errp);
if (!s->vfio) {
ret = -EINVAL;
goto out;
}
regs = qemu_vfio_pci_map_bar(s->vfio, 0, 0, sizeof(NvmeBar),
PROT_READ | PROT_WRITE, errp);
if (!regs) {
ret = -EINVAL;
goto out;
}
/* Perform initialize sequence as described in NVMe spec "7.6.1
* Initialization". */
cap = le64_to_cpu(regs->cap);
trace_nvme_controller_capability_raw(cap);
trace_nvme_controller_capability("Maximum Queue Entries Supported",
1 + NVME_CAP_MQES(cap));
trace_nvme_controller_capability("Contiguous Queues Required",
NVME_CAP_CQR(cap));
trace_nvme_controller_capability("Doorbell Stride",
1 << (2 + NVME_CAP_DSTRD(cap)));
trace_nvme_controller_capability("Subsystem Reset Supported",
NVME_CAP_NSSRS(cap));
trace_nvme_controller_capability("Memory Page Size Minimum",
1 << (12 + NVME_CAP_MPSMIN(cap)));
trace_nvme_controller_capability("Memory Page Size Maximum",
1 << (12 + NVME_CAP_MPSMAX(cap)));
if (!NVME_CAP_CSS(cap)) {
error_setg(errp, "Device doesn't support NVMe command set");
ret = -EINVAL;
goto out;
}
s->page_size = 1u << (12 + NVME_CAP_MPSMIN(cap));
s->doorbell_scale = (4 << NVME_CAP_DSTRD(cap)) / sizeof(uint32_t);
bs->bl.opt_mem_alignment = s->page_size;
bs->bl.request_alignment = s->page_size;
timeout_ms = MIN(500 * NVME_CAP_TO(cap), 30000);
ver = le32_to_cpu(regs->vs);
trace_nvme_controller_spec_version(extract32(ver, 16, 16),
extract32(ver, 8, 8),
extract32(ver, 0, 8));
/* Reset device to get a clean state. */
regs->cc = cpu_to_le32(le32_to_cpu(regs->cc) & 0xFE);
/* Wait for CSTS.RDY = 0. */
deadline = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + timeout_ms * SCALE_MS;
while (NVME_CSTS_RDY(le32_to_cpu(regs->csts))) {
if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
error_setg(errp, "Timeout while waiting for device to reset (%"
PRId64 " ms)",
timeout_ms);
ret = -ETIMEDOUT;
goto out;
}
}
s->bar0_wo_map = qemu_vfio_pci_map_bar(s->vfio, 0, 0,
sizeof(NvmeBar) + NVME_DOORBELL_SIZE,
PROT_WRITE, errp);
s->doorbells = (void *)((uintptr_t)s->bar0_wo_map + sizeof(NvmeBar));
if (!s->doorbells) {
ret = -EINVAL;
goto out;
}
/* Set up admin queue. */
s->queues = g_new(NVMeQueuePair *, 1);
q = nvme_create_queue_pair(s, aio_context, 0, NVME_QUEUE_SIZE, errp);
if (!q) {
ret = -EINVAL;
goto out;
}
s->queues[INDEX_ADMIN] = q;
s->queue_count = 1;
QEMU_BUILD_BUG_ON((NVME_QUEUE_SIZE - 1) & 0xF000);
regs->aqa = cpu_to_le32(((NVME_QUEUE_SIZE - 1) << AQA_ACQS_SHIFT) |
((NVME_QUEUE_SIZE - 1) << AQA_ASQS_SHIFT));
regs->asq = cpu_to_le64(q->sq.iova);
regs->acq = cpu_to_le64(q->cq.iova);
/* After setting up all control registers we can enable device now. */
regs->cc = cpu_to_le32((ctz32(NVME_CQ_ENTRY_BYTES) << CC_IOCQES_SHIFT) |
(ctz32(NVME_SQ_ENTRY_BYTES) << CC_IOSQES_SHIFT) |
CC_EN_MASK);
/* Wait for CSTS.RDY = 1. */
now = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
deadline = now + timeout_ms * SCALE_MS;
while (!NVME_CSTS_RDY(le32_to_cpu(regs->csts))) {
if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) > deadline) {
error_setg(errp, "Timeout while waiting for device to start (%"
PRId64 " ms)",
timeout_ms);
ret = -ETIMEDOUT;
goto out;
}
}
ret = qemu_vfio_pci_init_irq(s->vfio, s->irq_notifier,
VFIO_PCI_MSIX_IRQ_INDEX, errp);
if (ret) {
goto out;
}
aio_set_event_notifier(bdrv_get_aio_context(bs),
&s->irq_notifier[MSIX_SHARED_IRQ_IDX],
false, nvme_handle_event, nvme_poll_cb);
if (!nvme_identify(bs, namespace, errp)) {
ret = -EIO;
goto out;
}
/* Set up command queues. */
if (!nvme_add_io_queue(bs, errp)) {
ret = -EIO;
}
out:
if (regs) {
qemu_vfio_pci_unmap_bar(s->vfio, 0, (void *)regs, 0, sizeof(NvmeBar));
}
/* Cleaning up is done in nvme_file_open() upon error. */
return ret;
}
/* Parse a filename in the format of nvme://XXXX:XX:XX.X/X. Example:
*
* nvme://0000:44:00.0/1
*
* where the "nvme://" is a fixed form of the protocol prefix, the middle part
* is the PCI address, and the last part is the namespace number starting from
* 1 according to the NVMe spec. */
static void nvme_parse_filename(const char *filename, QDict *options,
Error **errp)
{
int pref = strlen("nvme://");
if (strlen(filename) > pref && !strncmp(filename, "nvme://", pref)) {
const char *tmp = filename + pref;
char *device;
const char *namespace;
unsigned long ns;
const char *slash = strchr(tmp, '/');
if (!slash) {
qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, tmp);
return;
}
device = g_strndup(tmp, slash - tmp);
qdict_put_str(options, NVME_BLOCK_OPT_DEVICE, device);
g_free(device);
namespace = slash + 1;
if (*namespace && qemu_strtoul(namespace, NULL, 10, &ns)) {
error_setg(errp, "Invalid namespace '%s', positive number expected",
namespace);
return;
}
qdict_put_str(options, NVME_BLOCK_OPT_NAMESPACE,
*namespace ? namespace : "1");
}
}
static int nvme_enable_disable_write_cache(BlockDriverState *bs, bool enable,
Error **errp)
{
int ret;
BDRVNVMeState *s = bs->opaque;
NvmeCmd cmd = {
.opcode = NVME_ADM_CMD_SET_FEATURES,
.nsid = cpu_to_le32(s->nsid),
.cdw10 = cpu_to_le32(0x06),
.cdw11 = cpu_to_le32(enable ? 0x01 : 0x00),
};
ret = nvme_admin_cmd_sync(bs, &cmd);
if (ret) {
error_setg(errp, "Failed to configure NVMe write cache");
}
return ret;
}
static void nvme_close(BlockDriverState *bs)
{
BDRVNVMeState *s = bs->opaque;
for (unsigned i = 0; i < s->queue_count; ++i) {
nvme_free_queue_pair(s->queues[i]);
}
g_free(s->queues);
aio_set_event_notifier(bdrv_get_aio_context(bs),
&s->irq_notifier[MSIX_SHARED_IRQ_IDX],
false, NULL, NULL);
event_notifier_cleanup(&s->irq_notifier[MSIX_SHARED_IRQ_IDX]);
qemu_vfio_pci_unmap_bar(s->vfio, 0, s->bar0_wo_map,
0, sizeof(NvmeBar) + NVME_DOORBELL_SIZE);
qemu_vfio_close(s->vfio);
g_free(s->device);
}
static int nvme_file_open(BlockDriverState *bs, QDict *options, int flags,
Error **errp)
{
const char *device;
QemuOpts *opts;
int namespace;
int ret;
BDRVNVMeState *s = bs->opaque;
bs->supported_write_flags = BDRV_REQ_FUA;
opts = qemu_opts_create(&runtime_opts, NULL, 0, &error_abort);
qemu_opts_absorb_qdict(opts, options, &error_abort);
device = qemu_opt_get(opts, NVME_BLOCK_OPT_DEVICE);
if (!device) {
error_setg(errp, "'" NVME_BLOCK_OPT_DEVICE "' option is required");
qemu_opts_del(opts);
return -EINVAL;
}
namespace = qemu_opt_get_number(opts, NVME_BLOCK_OPT_NAMESPACE, 1);
ret = nvme_init(bs, device, namespace, errp);
qemu_opts_del(opts);
if (ret) {
goto fail;
}
if (flags & BDRV_O_NOCACHE) {
if (!s->write_cache_supported) {
error_setg(errp,
"NVMe controller doesn't support write cache configuration");
ret = -EINVAL;
} else {
ret = nvme_enable_disable_write_cache(bs, !(flags & BDRV_O_NOCACHE),
errp);
}
if (ret) {
goto fail;
}
}
return 0;
fail:
nvme_close(bs);
return ret;
}
static int64_t nvme_getlength(BlockDriverState *bs)
{
BDRVNVMeState *s = bs->opaque;
return s->nsze << s->blkshift;
}
static uint32_t nvme_get_blocksize(BlockDriverState *bs)
{
BDRVNVMeState *s = bs->opaque;
assert(s->blkshift >= BDRV_SECTOR_BITS && s->blkshift <= 12);
return UINT32_C(1) << s->blkshift;
}
static int nvme_probe_blocksizes(BlockDriverState *bs, BlockSizes *bsz)
{
uint32_t blocksize = nvme_get_blocksize(bs);
bsz->phys = blocksize;
bsz->log = blocksize;
return 0;
}
/* Called with s->dma_map_lock */
static coroutine_fn int nvme_cmd_unmap_qiov(BlockDriverState *bs,
QEMUIOVector *qiov)
{
int r = 0;
BDRVNVMeState *s = bs->opaque;
s->dma_map_count -= qiov->size;
if (!s->dma_map_count && !qemu_co_queue_empty(&s->dma_flush_queue)) {
r = qemu_vfio_dma_reset_temporary(s->vfio);
if (!r) {
qemu_co_queue_restart_all(&s->dma_flush_queue);
}
}
return r;
}
/* Called with s->dma_map_lock */
static coroutine_fn int nvme_cmd_map_qiov(BlockDriverState *bs, NvmeCmd *cmd,
NVMeRequest *req, QEMUIOVector *qiov)
{
BDRVNVMeState *s = bs->opaque;
uint64_t *pagelist = req->prp_list_page;
int i, j, r;
int entries = 0;
assert(qiov->size);
assert(QEMU_IS_ALIGNED(qiov->size, s->page_size));
assert(qiov->size / s->page_size <= s->page_size / sizeof(uint64_t));
for (i = 0; i < qiov->niov; ++i) {
bool retry = true;
uint64_t iova;
size_t len = QEMU_ALIGN_UP(qiov->iov[i].iov_len,
qemu_real_host_page_size);
try_map:
r = qemu_vfio_dma_map(s->vfio,
qiov->iov[i].iov_base,
len, true, &iova);
if (r == -ENOMEM && retry) {
retry = false;
trace_nvme_dma_flush_queue_wait(s);
if (s->dma_map_count) {
trace_nvme_dma_map_flush(s);
qemu_co_queue_wait(&s->dma_flush_queue, &s->dma_map_lock);
} else {
r = qemu_vfio_dma_reset_temporary(s->vfio);
if (r) {
goto fail;
}
}
goto try_map;
}
if (r) {
goto fail;
}
for (j = 0; j < qiov->iov[i].iov_len / s->page_size; j++) {
pagelist[entries++] = cpu_to_le64(iova + j * s->page_size);
}
trace_nvme_cmd_map_qiov_iov(s, i, qiov->iov[i].iov_base,
qiov->iov[i].iov_len / s->page_size);
}
s->dma_map_count += qiov->size;
assert(entries <= s->page_size / sizeof(uint64_t));
switch (entries) {
case 0:
abort();
case 1:
cmd->dptr.prp1 = pagelist[0];
cmd->dptr.prp2 = 0;
break;
case 2:
cmd->dptr.prp1 = pagelist[0];
cmd->dptr.prp2 = pagelist[1];
break;
default:
cmd->dptr.prp1 = pagelist[0];
cmd->dptr.prp2 = cpu_to_le64(req->prp_list_iova + sizeof(uint64_t));
break;
}
trace_nvme_cmd_map_qiov(s, cmd, req, qiov, entries);
for (i = 0; i < entries; ++i) {
trace_nvme_cmd_map_qiov_pages(s, i, pagelist[i]);
}
return 0;
fail:
/* No need to unmap [0 - i) iovs even if we've failed, since we don't
* increment s->dma_map_count. This is okay for fixed mapping memory areas
* because they are already mapped before calling this function; for
* temporary mappings, a later nvme_cmd_(un)map_qiov will reclaim by
* calling qemu_vfio_dma_reset_temporary when necessary. */
return r;
}
typedef struct {
Coroutine *co;
int ret;
AioContext *ctx;
} NVMeCoData;
static void nvme_rw_cb_bh(void *opaque)
{
NVMeCoData *data = opaque;
qemu_coroutine_enter(data->co);
}
static void nvme_rw_cb(void *opaque, int ret)
{
NVMeCoData *data = opaque;
data->ret = ret;
if (!data->co) {
/* The rw coroutine hasn't yielded, don't try to enter. */
return;
}
replay_bh_schedule_oneshot_event(data->ctx, nvme_rw_cb_bh, data);
}
static coroutine_fn int nvme_co_prw_aligned(BlockDriverState *bs,
uint64_t offset, uint64_t bytes,
QEMUIOVector *qiov,
bool is_write,
int flags)
{
int r;
BDRVNVMeState *s = bs->opaque;
NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
NVMeRequest *req;
uint32_t cdw12 = (((bytes >> s->blkshift) - 1) & 0xFFFF) |
(flags & BDRV_REQ_FUA ? 1 << 30 : 0);
NvmeCmd cmd = {
.opcode = is_write ? NVME_CMD_WRITE : NVME_CMD_READ,
.nsid = cpu_to_le32(s->nsid),
.cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
.cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
.cdw12 = cpu_to_le32(cdw12),
};
NVMeCoData data = {
.ctx = bdrv_get_aio_context(bs),
.ret = -EINPROGRESS,
};
trace_nvme_prw_aligned(s, is_write, offset, bytes, flags, qiov->niov);
assert(s->queue_count > 1);
req = nvme_get_free_req(ioq);
assert(req);
qemu_co_mutex_lock(&s->dma_map_lock);
r = nvme_cmd_map_qiov(bs, &cmd, req, qiov);
qemu_co_mutex_unlock(&s->dma_map_lock);
if (r) {
nvme_put_free_req_and_wake(ioq, req);
return r;
}
nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
data.co = qemu_coroutine_self();
while (data.ret == -EINPROGRESS) {
qemu_coroutine_yield();
}
qemu_co_mutex_lock(&s->dma_map_lock);
r = nvme_cmd_unmap_qiov(bs, qiov);
qemu_co_mutex_unlock(&s->dma_map_lock);
if (r) {
return r;
}
trace_nvme_rw_done(s, is_write, offset, bytes, data.ret);
return data.ret;
}
static inline bool nvme_qiov_aligned(BlockDriverState *bs,
const QEMUIOVector *qiov)
{
int i;
BDRVNVMeState *s = bs->opaque;
for (i = 0; i < qiov->niov; ++i) {
if (!QEMU_PTR_IS_ALIGNED(qiov->iov[i].iov_base,
qemu_real_host_page_size) ||
!QEMU_IS_ALIGNED(qiov->iov[i].iov_len, qemu_real_host_page_size)) {
trace_nvme_qiov_unaligned(qiov, i, qiov->iov[i].iov_base,
qiov->iov[i].iov_len, s->page_size);
return false;
}
}
return true;
}
static int nvme_co_prw(BlockDriverState *bs, uint64_t offset, uint64_t bytes,
QEMUIOVector *qiov, bool is_write, int flags)
{
BDRVNVMeState *s = bs->opaque;
int r;
uint8_t *buf = NULL;
QEMUIOVector local_qiov;
size_t len = QEMU_ALIGN_UP(bytes, qemu_real_host_page_size);
assert(QEMU_IS_ALIGNED(offset, s->page_size));
assert(QEMU_IS_ALIGNED(bytes, s->page_size));
assert(bytes <= s->max_transfer);
if (nvme_qiov_aligned(bs, qiov)) {
s->stats.aligned_accesses++;
return nvme_co_prw_aligned(bs, offset, bytes, qiov, is_write, flags);
}
s->stats.unaligned_accesses++;
trace_nvme_prw_buffered(s, offset, bytes, qiov->niov, is_write);
buf = qemu_try_memalign(qemu_real_host_page_size, len);
if (!buf) {
return -ENOMEM;
}
qemu_iovec_init(&local_qiov, 1);
if (is_write) {
qemu_iovec_to_buf(qiov, 0, buf, bytes);
}
qemu_iovec_add(&local_qiov, buf, bytes);
r = nvme_co_prw_aligned(bs, offset, bytes, &local_qiov, is_write, flags);
qemu_iovec_destroy(&local_qiov);
if (!r && !is_write) {
qemu_iovec_from_buf(qiov, 0, buf, bytes);
}
qemu_vfree(buf);
return r;
}
static coroutine_fn int nvme_co_preadv(BlockDriverState *bs,
uint64_t offset, uint64_t bytes,
QEMUIOVector *qiov, int flags)
{
return nvme_co_prw(bs, offset, bytes, qiov, false, flags);
}
static coroutine_fn int nvme_co_pwritev(BlockDriverState *bs,
uint64_t offset, uint64_t bytes,
QEMUIOVector *qiov, int flags)
{
return nvme_co_prw(bs, offset, bytes, qiov, true, flags);
}
static coroutine_fn int nvme_co_flush(BlockDriverState *bs)
{
BDRVNVMeState *s = bs->opaque;
NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
NVMeRequest *req;
NvmeCmd cmd = {
.opcode = NVME_CMD_FLUSH,
.nsid = cpu_to_le32(s->nsid),
};
NVMeCoData data = {
.ctx = bdrv_get_aio_context(bs),
.ret = -EINPROGRESS,
};
assert(s->queue_count > 1);
req = nvme_get_free_req(ioq);
assert(req);
nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
data.co = qemu_coroutine_self();
if (data.ret == -EINPROGRESS) {
qemu_coroutine_yield();
}
return data.ret;
}
static coroutine_fn int nvme_co_pwrite_zeroes(BlockDriverState *bs,
int64_t offset,
int bytes,
BdrvRequestFlags flags)
{
BDRVNVMeState *s = bs->opaque;
NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
NVMeRequest *req;
uint32_t cdw12 = ((bytes >> s->blkshift) - 1) & 0xFFFF;
if (!s->supports_write_zeroes) {
return -ENOTSUP;
}
NvmeCmd cmd = {
.opcode = NVME_CMD_WRITE_ZEROES,
.nsid = cpu_to_le32(s->nsid),
.cdw10 = cpu_to_le32((offset >> s->blkshift) & 0xFFFFFFFF),
.cdw11 = cpu_to_le32(((offset >> s->blkshift) >> 32) & 0xFFFFFFFF),
};
NVMeCoData data = {
.ctx = bdrv_get_aio_context(bs),
.ret = -EINPROGRESS,
};
if (flags & BDRV_REQ_MAY_UNMAP) {
cdw12 |= (1 << 25);
}
if (flags & BDRV_REQ_FUA) {
cdw12 |= (1 << 30);
}
cmd.cdw12 = cpu_to_le32(cdw12);
trace_nvme_write_zeroes(s, offset, bytes, flags);
assert(s->queue_count > 1);
req = nvme_get_free_req(ioq);
assert(req);
nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
data.co = qemu_coroutine_self();
while (data.ret == -EINPROGRESS) {
qemu_coroutine_yield();
}
trace_nvme_rw_done(s, true, offset, bytes, data.ret);
return data.ret;
}
static int coroutine_fn nvme_co_pdiscard(BlockDriverState *bs,
int64_t offset,
int bytes)
{
BDRVNVMeState *s = bs->opaque;
NVMeQueuePair *ioq = s->queues[INDEX_IO(0)];
NVMeRequest *req;
NvmeDsmRange *buf;
QEMUIOVector local_qiov;
int ret;
NvmeCmd cmd = {
.opcode = NVME_CMD_DSM,
.nsid = cpu_to_le32(s->nsid),
.cdw10 = cpu_to_le32(0), /*number of ranges - 0 based*/
.cdw11 = cpu_to_le32(1 << 2), /*deallocate bit*/
};
NVMeCoData data = {
.ctx = bdrv_get_aio_context(bs),
.ret = -EINPROGRESS,
};
if (!s->supports_discard) {
return -ENOTSUP;
}
assert(s->queue_count > 1);
buf = qemu_try_memalign(s->page_size, s->page_size);
if (!buf) {
return -ENOMEM;
}
memset(buf, 0, s->page_size);
buf->nlb = cpu_to_le32(bytes >> s->blkshift);
buf->slba = cpu_to_le64(offset >> s->blkshift);
buf->cattr = 0;
qemu_iovec_init(&local_qiov, 1);
qemu_iovec_add(&local_qiov, buf, 4096);
req = nvme_get_free_req(ioq);
assert(req);
qemu_co_mutex_lock(&s->dma_map_lock);
ret = nvme_cmd_map_qiov(bs, &cmd, req, &local_qiov);
qemu_co_mutex_unlock(&s->dma_map_lock);
if (ret) {
nvme_put_free_req_and_wake(ioq, req);
goto out;
}
trace_nvme_dsm(s, offset, bytes);
nvme_submit_command(ioq, req, &cmd, nvme_rw_cb, &data);
data.co = qemu_coroutine_self();
while (data.ret == -EINPROGRESS) {
qemu_coroutine_yield();
}
qemu_co_mutex_lock(&s->dma_map_lock);
ret = nvme_cmd_unmap_qiov(bs, &local_qiov);
qemu_co_mutex_unlock(&s->dma_map_lock);
if (ret) {
goto out;
}
ret = data.ret;
trace_nvme_dsm_done(s, offset, bytes, ret);
out:
qemu_iovec_destroy(&local_qiov);
qemu_vfree(buf);
return ret;
}
static int coroutine_fn nvme_co_truncate(BlockDriverState *bs, int64_t offset,
bool exact, PreallocMode prealloc,
BdrvRequestFlags flags, Error **errp)
{
int64_t cur_length;
if (prealloc != PREALLOC_MODE_OFF) {
error_setg(errp, "Unsupported preallocation mode '%s'",
PreallocMode_str(prealloc));
return -ENOTSUP;
}
cur_length = nvme_getlength(bs);
if (offset != cur_length && exact) {
error_setg(errp, "Cannot resize NVMe devices");
return -ENOTSUP;
} else if (offset > cur_length) {
error_setg(errp, "Cannot grow NVMe devices");
return -EINVAL;
}
return 0;
}
static int nvme_reopen_prepare(BDRVReopenState *reopen_state,
BlockReopenQueue *queue, Error **errp)
{
return 0;
}
static void nvme_refresh_filename(BlockDriverState *bs)
{
BDRVNVMeState *s = bs->opaque;
snprintf(bs->exact_filename, sizeof(bs->exact_filename), "nvme://%s/%i",
s->device, s->nsid);
}
static void nvme_refresh_limits(BlockDriverState *bs, Error **errp)
{
BDRVNVMeState *s = bs->opaque;
bs->bl.opt_mem_alignment = s->page_size;
bs->bl.request_alignment = s->page_size;
bs->bl.max_transfer = s->max_transfer;
}
static void nvme_detach_aio_context(BlockDriverState *bs)
{
BDRVNVMeState *s = bs->opaque;
for (unsigned i = 0; i < s->queue_count; i++) {
NVMeQueuePair *q = s->queues[i];
qemu_bh_delete(q->completion_bh);
q->completion_bh = NULL;
}
aio_set_event_notifier(bdrv_get_aio_context(bs),
&s->irq_notifier[MSIX_SHARED_IRQ_IDX],
false, NULL, NULL);
}
static void nvme_attach_aio_context(BlockDriverState *bs,
AioContext *new_context)
{
BDRVNVMeState *s = bs->opaque;
s->aio_context = new_context;
aio_set_event_notifier(new_context, &s->irq_notifier[MSIX_SHARED_IRQ_IDX],
false, nvme_handle_event, nvme_poll_cb);
for (unsigned i = 0; i < s->queue_count; i++) {
NVMeQueuePair *q = s->queues[i];
q->completion_bh =
aio_bh_new(new_context, nvme_process_completion_bh, q);
}
}
static void nvme_aio_plug(BlockDriverState *bs)
{
BDRVNVMeState *s = bs->opaque;
assert(!s->plugged);
s->plugged = true;
}
static void nvme_aio_unplug(BlockDriverState *bs)
{
BDRVNVMeState *s = bs->opaque;
assert(s->plugged);
s->plugged = false;
for (unsigned i = INDEX_IO(0); i < s->queue_count; i++) {
NVMeQueuePair *q = s->queues[i];
qemu_mutex_lock(&q->lock);
nvme_kick(q);
nvme_process_completion(q);
qemu_mutex_unlock(&q->lock);
}
}
static void nvme_register_buf(BlockDriverState *bs, void *host, size_t size)
{
int ret;
BDRVNVMeState *s = bs->opaque;
ret = qemu_vfio_dma_map(s->vfio, host, size, false, NULL);
if (ret) {
/* FIXME: we may run out of IOVA addresses after repeated
* bdrv_register_buf/bdrv_unregister_buf, because nvme_vfio_dma_unmap
* doesn't reclaim addresses for fixed mappings. */
error_report("nvme_register_buf failed: %s", strerror(-ret));
}
}
static void nvme_unregister_buf(BlockDriverState *bs, void *host)
{
BDRVNVMeState *s = bs->opaque;
qemu_vfio_dma_unmap(s->vfio, host);
}
static BlockStatsSpecific *nvme_get_specific_stats(BlockDriverState *bs)
{
BlockStatsSpecific *stats = g_new(BlockStatsSpecific, 1);
BDRVNVMeState *s = bs->opaque;
stats->driver = BLOCKDEV_DRIVER_NVME;
stats->u.nvme = (BlockStatsSpecificNvme) {
.completion_errors = s->stats.completion_errors,
.aligned_accesses = s->stats.aligned_accesses,
.unaligned_accesses = s->stats.unaligned_accesses,
};
return stats;
}
static const char *const nvme_strong_runtime_opts[] = {
NVME_BLOCK_OPT_DEVICE,
NVME_BLOCK_OPT_NAMESPACE,
NULL
};
static BlockDriver bdrv_nvme = {
.format_name = "nvme",
.protocol_name = "nvme",
.instance_size = sizeof(BDRVNVMeState),
.bdrv_co_create_opts = bdrv_co_create_opts_simple,
.create_opts = &bdrv_create_opts_simple,
.bdrv_parse_filename = nvme_parse_filename,
.bdrv_file_open = nvme_file_open,
.bdrv_close = nvme_close,
.bdrv_getlength = nvme_getlength,
.bdrv_probe_blocksizes = nvme_probe_blocksizes,
.bdrv_co_truncate = nvme_co_truncate,
.bdrv_co_preadv = nvme_co_preadv,
.bdrv_co_pwritev = nvme_co_pwritev,
.bdrv_co_pwrite_zeroes = nvme_co_pwrite_zeroes,
.bdrv_co_pdiscard = nvme_co_pdiscard,
.bdrv_co_flush_to_disk = nvme_co_flush,
.bdrv_reopen_prepare = nvme_reopen_prepare,
.bdrv_refresh_filename = nvme_refresh_filename,
.bdrv_refresh_limits = nvme_refresh_limits,
.strong_runtime_opts = nvme_strong_runtime_opts,
.bdrv_get_specific_stats = nvme_get_specific_stats,
.bdrv_detach_aio_context = nvme_detach_aio_context,
.bdrv_attach_aio_context = nvme_attach_aio_context,
.bdrv_io_plug = nvme_aio_plug,
.bdrv_io_unplug = nvme_aio_unplug,
.bdrv_register_buf = nvme_register_buf,
.bdrv_unregister_buf = nvme_unregister_buf,
};
static void bdrv_nvme_init(void)
{
bdrv_register(&bdrv_nvme);
}
block_init(bdrv_nvme_init);