d0cd94e2b6
Just liked7ef5e16a1
sets SCR_EL3.HXEn for FEAT_HCX, this commit handles SCR_EL3.FGTEn for FEAT_FGT: When we direct boot a kernel on a CPU which emulates EL3, we need to set up the EL3 system registers as the Linux kernel documentation specifies: https://www.kernel.org/doc/Documentation/arm64/booting.rst > For CPUs with the Fine Grained Traps (FEAT_FGT) extension present: > - If EL3 is present and the kernel is entered at EL2: > - SCR_EL3.FGTEn (bit 27) must be initialised to 0b1. Cc: qemu-stable@nongnu.org Signed-off-by: Fabian Vogt <fvogt@suse.de> Message-id: 4831384.GXAFRqVoOG@linux-e202.suse.de Reviewed-by: Peter Maydell <peter.maydell@linaro.org> Signed-off-by: Peter Maydell <peter.maydell@linaro.org> (cherry picked from commit32b214384e
) Signed-off-by: Michael Tokarev <mjt@tls.msk.ru>
1391 lines
48 KiB
C
1391 lines
48 KiB
C
/*
|
|
* ARM kernel loader.
|
|
*
|
|
* Copyright (c) 2006-2007 CodeSourcery.
|
|
* Written by Paul Brook
|
|
*
|
|
* This code is licensed under the GPL.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qemu/datadir.h"
|
|
#include "qemu/error-report.h"
|
|
#include "qapi/error.h"
|
|
#include <libfdt.h>
|
|
#include "hw/arm/boot.h"
|
|
#include "hw/arm/linux-boot-if.h"
|
|
#include "sysemu/kvm.h"
|
|
#include "sysemu/tcg.h"
|
|
#include "sysemu/sysemu.h"
|
|
#include "sysemu/numa.h"
|
|
#include "hw/boards.h"
|
|
#include "sysemu/reset.h"
|
|
#include "hw/loader.h"
|
|
#include "elf.h"
|
|
#include "sysemu/device_tree.h"
|
|
#include "qemu/config-file.h"
|
|
#include "qemu/option.h"
|
|
#include "qemu/units.h"
|
|
|
|
/* Kernel boot protocol is specified in the kernel docs
|
|
* Documentation/arm/Booting and Documentation/arm64/booting.txt
|
|
* They have different preferred image load offsets from system RAM base.
|
|
*/
|
|
#define KERNEL_ARGS_ADDR 0x100
|
|
#define KERNEL_NOLOAD_ADDR 0x02000000
|
|
#define KERNEL_LOAD_ADDR 0x00010000
|
|
#define KERNEL64_LOAD_ADDR 0x00080000
|
|
|
|
#define ARM64_TEXT_OFFSET_OFFSET 8
|
|
#define ARM64_MAGIC_OFFSET 56
|
|
|
|
#define BOOTLOADER_MAX_SIZE (4 * KiB)
|
|
|
|
AddressSpace *arm_boot_address_space(ARMCPU *cpu,
|
|
const struct arm_boot_info *info)
|
|
{
|
|
/* Return the address space to use for bootloader reads and writes.
|
|
* We prefer the secure address space if the CPU has it and we're
|
|
* going to boot the guest into it.
|
|
*/
|
|
int asidx;
|
|
CPUState *cs = CPU(cpu);
|
|
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_EL3) && info->secure_boot) {
|
|
asidx = ARMASIdx_S;
|
|
} else {
|
|
asidx = ARMASIdx_NS;
|
|
}
|
|
|
|
return cpu_get_address_space(cs, asidx);
|
|
}
|
|
|
|
static const ARMInsnFixup bootloader_aarch64[] = {
|
|
{ 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
|
|
{ 0xaa1f03e1 }, /* mov x1, xzr */
|
|
{ 0xaa1f03e2 }, /* mov x2, xzr */
|
|
{ 0xaa1f03e3 }, /* mov x3, xzr */
|
|
{ 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
|
|
{ 0xd61f0080 }, /* br x4 ; Jump to the kernel entry point */
|
|
{ 0, FIXUP_ARGPTR_LO }, /* arg: .word @DTB Lower 32-bits */
|
|
{ 0, FIXUP_ARGPTR_HI}, /* .word @DTB Higher 32-bits */
|
|
{ 0, FIXUP_ENTRYPOINT_LO }, /* entry: .word @Kernel Entry Lower 32-bits */
|
|
{ 0, FIXUP_ENTRYPOINT_HI }, /* .word @Kernel Entry Higher 32-bits */
|
|
{ 0, FIXUP_TERMINATOR }
|
|
};
|
|
|
|
/* A very small bootloader: call the board-setup code (if needed),
|
|
* set r0-r2, then jump to the kernel.
|
|
* If we're not calling boot setup code then we don't copy across
|
|
* the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
|
|
*/
|
|
|
|
static const ARMInsnFixup bootloader[] = {
|
|
{ 0xe28fe004 }, /* add lr, pc, #4 */
|
|
{ 0xe51ff004 }, /* ldr pc, [pc, #-4] */
|
|
{ 0, FIXUP_BOARD_SETUP },
|
|
#define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
|
|
{ 0xe3a00000 }, /* mov r0, #0 */
|
|
{ 0xe59f1004 }, /* ldr r1, [pc, #4] */
|
|
{ 0xe59f2004 }, /* ldr r2, [pc, #4] */
|
|
{ 0xe59ff004 }, /* ldr pc, [pc, #4] */
|
|
{ 0, FIXUP_BOARDID },
|
|
{ 0, FIXUP_ARGPTR_LO },
|
|
{ 0, FIXUP_ENTRYPOINT_LO },
|
|
{ 0, FIXUP_TERMINATOR }
|
|
};
|
|
|
|
/* Handling for secondary CPU boot in a multicore system.
|
|
* Unlike the uniprocessor/primary CPU boot, this is platform
|
|
* dependent. The default code here is based on the secondary
|
|
* CPU boot protocol used on realview/vexpress boards, with
|
|
* some parameterisation to increase its flexibility.
|
|
* QEMU platform models for which this code is not appropriate
|
|
* should override write_secondary_boot and secondary_cpu_reset_hook
|
|
* instead.
|
|
*
|
|
* This code enables the interrupt controllers for the secondary
|
|
* CPUs and then puts all the secondary CPUs into a loop waiting
|
|
* for an interprocessor interrupt and polling a configurable
|
|
* location for the kernel secondary CPU entry point.
|
|
*/
|
|
#define DSB_INSN 0xf57ff04f
|
|
#define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
|
|
|
|
static const ARMInsnFixup smpboot[] = {
|
|
{ 0xe59f2028 }, /* ldr r2, gic_cpu_if */
|
|
{ 0xe59f0028 }, /* ldr r0, bootreg_addr */
|
|
{ 0xe3a01001 }, /* mov r1, #1 */
|
|
{ 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
|
|
{ 0xe3a010ff }, /* mov r1, #0xff */
|
|
{ 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
|
|
{ 0, FIXUP_DSB }, /* dsb */
|
|
{ 0xe320f003 }, /* wfi */
|
|
{ 0xe5901000 }, /* ldr r1, [r0] */
|
|
{ 0xe1110001 }, /* tst r1, r1 */
|
|
{ 0x0afffffb }, /* beq <wfi> */
|
|
{ 0xe12fff11 }, /* bx r1 */
|
|
{ 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */
|
|
{ 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */
|
|
{ 0, FIXUP_TERMINATOR }
|
|
};
|
|
|
|
void arm_write_bootloader(const char *name,
|
|
AddressSpace *as, hwaddr addr,
|
|
const ARMInsnFixup *insns,
|
|
const uint32_t *fixupcontext)
|
|
{
|
|
/* Fix up the specified bootloader fragment and write it into
|
|
* guest memory using rom_add_blob_fixed(). fixupcontext is
|
|
* an array giving the values to write in for the fixup types
|
|
* which write a value into the code array.
|
|
*/
|
|
int i, len;
|
|
uint32_t *code;
|
|
|
|
len = 0;
|
|
while (insns[len].fixup != FIXUP_TERMINATOR) {
|
|
len++;
|
|
}
|
|
|
|
code = g_new0(uint32_t, len);
|
|
|
|
for (i = 0; i < len; i++) {
|
|
uint32_t insn = insns[i].insn;
|
|
FixupType fixup = insns[i].fixup;
|
|
|
|
switch (fixup) {
|
|
case FIXUP_NONE:
|
|
break;
|
|
case FIXUP_BOARDID:
|
|
case FIXUP_BOARD_SETUP:
|
|
case FIXUP_ARGPTR_LO:
|
|
case FIXUP_ARGPTR_HI:
|
|
case FIXUP_ENTRYPOINT_LO:
|
|
case FIXUP_ENTRYPOINT_HI:
|
|
case FIXUP_GIC_CPU_IF:
|
|
case FIXUP_BOOTREG:
|
|
case FIXUP_DSB:
|
|
insn = fixupcontext[fixup];
|
|
break;
|
|
default:
|
|
abort();
|
|
}
|
|
code[i] = tswap32(insn);
|
|
}
|
|
|
|
assert((len * sizeof(uint32_t)) < BOOTLOADER_MAX_SIZE);
|
|
|
|
rom_add_blob_fixed_as(name, code, len * sizeof(uint32_t), addr, as);
|
|
|
|
g_free(code);
|
|
}
|
|
|
|
static void default_write_secondary(ARMCPU *cpu,
|
|
const struct arm_boot_info *info)
|
|
{
|
|
uint32_t fixupcontext[FIXUP_MAX];
|
|
AddressSpace *as = arm_boot_address_space(cpu, info);
|
|
|
|
fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr;
|
|
fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr;
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
|
|
fixupcontext[FIXUP_DSB] = DSB_INSN;
|
|
} else {
|
|
fixupcontext[FIXUP_DSB] = CP15_DSB_INSN;
|
|
}
|
|
|
|
arm_write_bootloader("smpboot", as, info->smp_loader_start,
|
|
smpboot, fixupcontext);
|
|
}
|
|
|
|
void arm_write_secure_board_setup_dummy_smc(ARMCPU *cpu,
|
|
const struct arm_boot_info *info,
|
|
hwaddr mvbar_addr)
|
|
{
|
|
AddressSpace *as = arm_boot_address_space(cpu, info);
|
|
int n;
|
|
uint32_t mvbar_blob[] = {
|
|
/* mvbar_addr: secure monitor vectors
|
|
* Default unimplemented and unused vectors to spin. Makes it
|
|
* easier to debug (as opposed to the CPU running away).
|
|
*/
|
|
0xeafffffe, /* (spin) */
|
|
0xeafffffe, /* (spin) */
|
|
0xe1b0f00e, /* movs pc, lr ;SMC exception return */
|
|
0xeafffffe, /* (spin) */
|
|
0xeafffffe, /* (spin) */
|
|
0xeafffffe, /* (spin) */
|
|
0xeafffffe, /* (spin) */
|
|
0xeafffffe, /* (spin) */
|
|
};
|
|
uint32_t board_setup_blob[] = {
|
|
/* board setup addr */
|
|
0xee110f51, /* mrc p15, 0, r0, c1, c1, 2 ;read NSACR */
|
|
0xe3800b03, /* orr r0, #0xc00 ;set CP11, CP10 */
|
|
0xee010f51, /* mcr p15, 0, r0, c1, c1, 2 ;write NSACR */
|
|
0xe3a00e00 + (mvbar_addr >> 4), /* mov r0, #mvbar_addr */
|
|
0xee0c0f30, /* mcr p15, 0, r0, c12, c0, 1 ;set MVBAR */
|
|
0xee110f11, /* mrc p15, 0, r0, c1 , c1, 0 ;read SCR */
|
|
0xe3800031, /* orr r0, #0x31 ;enable AW, FW, NS */
|
|
0xee010f11, /* mcr p15, 0, r0, c1, c1, 0 ;write SCR */
|
|
0xe1a0100e, /* mov r1, lr ;save LR across SMC */
|
|
0xe1600070, /* smc #0 ;call monitor to flush SCR */
|
|
0xe1a0f001, /* mov pc, r1 ;return */
|
|
};
|
|
|
|
/* check that mvbar_addr is correctly aligned and relocatable (using MOV) */
|
|
assert((mvbar_addr & 0x1f) == 0 && (mvbar_addr >> 4) < 0x100);
|
|
|
|
/* check that these blobs don't overlap */
|
|
assert((mvbar_addr + sizeof(mvbar_blob) <= info->board_setup_addr)
|
|
|| (info->board_setup_addr + sizeof(board_setup_blob) <= mvbar_addr));
|
|
|
|
for (n = 0; n < ARRAY_SIZE(mvbar_blob); n++) {
|
|
mvbar_blob[n] = tswap32(mvbar_blob[n]);
|
|
}
|
|
rom_add_blob_fixed_as("board-setup-mvbar", mvbar_blob, sizeof(mvbar_blob),
|
|
mvbar_addr, as);
|
|
|
|
for (n = 0; n < ARRAY_SIZE(board_setup_blob); n++) {
|
|
board_setup_blob[n] = tswap32(board_setup_blob[n]);
|
|
}
|
|
rom_add_blob_fixed_as("board-setup", board_setup_blob,
|
|
sizeof(board_setup_blob), info->board_setup_addr, as);
|
|
}
|
|
|
|
static void default_reset_secondary(ARMCPU *cpu,
|
|
const struct arm_boot_info *info)
|
|
{
|
|
AddressSpace *as = arm_boot_address_space(cpu, info);
|
|
CPUState *cs = CPU(cpu);
|
|
|
|
address_space_stl_notdirty(as, info->smp_bootreg_addr,
|
|
0, MEMTXATTRS_UNSPECIFIED, NULL);
|
|
cpu_set_pc(cs, info->smp_loader_start);
|
|
}
|
|
|
|
static inline bool have_dtb(const struct arm_boot_info *info)
|
|
{
|
|
return info->dtb_filename || info->get_dtb;
|
|
}
|
|
|
|
#define WRITE_WORD(p, value) do { \
|
|
address_space_stl_notdirty(as, p, value, \
|
|
MEMTXATTRS_UNSPECIFIED, NULL); \
|
|
p += 4; \
|
|
} while (0)
|
|
|
|
static void set_kernel_args(const struct arm_boot_info *info, AddressSpace *as)
|
|
{
|
|
int initrd_size = info->initrd_size;
|
|
hwaddr base = info->loader_start;
|
|
hwaddr p;
|
|
|
|
p = base + KERNEL_ARGS_ADDR;
|
|
/* ATAG_CORE */
|
|
WRITE_WORD(p, 5);
|
|
WRITE_WORD(p, 0x54410001);
|
|
WRITE_WORD(p, 1);
|
|
WRITE_WORD(p, 0x1000);
|
|
WRITE_WORD(p, 0);
|
|
/* ATAG_MEM */
|
|
/* TODO: handle multiple chips on one ATAG list */
|
|
WRITE_WORD(p, 4);
|
|
WRITE_WORD(p, 0x54410002);
|
|
WRITE_WORD(p, info->ram_size);
|
|
WRITE_WORD(p, info->loader_start);
|
|
if (initrd_size) {
|
|
/* ATAG_INITRD2 */
|
|
WRITE_WORD(p, 4);
|
|
WRITE_WORD(p, 0x54420005);
|
|
WRITE_WORD(p, info->initrd_start);
|
|
WRITE_WORD(p, initrd_size);
|
|
}
|
|
if (info->kernel_cmdline && *info->kernel_cmdline) {
|
|
/* ATAG_CMDLINE */
|
|
int cmdline_size;
|
|
|
|
cmdline_size = strlen(info->kernel_cmdline);
|
|
address_space_write(as, p + 8, MEMTXATTRS_UNSPECIFIED,
|
|
info->kernel_cmdline, cmdline_size + 1);
|
|
cmdline_size = (cmdline_size >> 2) + 1;
|
|
WRITE_WORD(p, cmdline_size + 2);
|
|
WRITE_WORD(p, 0x54410009);
|
|
p += cmdline_size * 4;
|
|
}
|
|
if (info->atag_board) {
|
|
/* ATAG_BOARD */
|
|
int atag_board_len;
|
|
uint8_t atag_board_buf[0x1000];
|
|
|
|
atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
|
|
WRITE_WORD(p, (atag_board_len + 8) >> 2);
|
|
WRITE_WORD(p, 0x414f4d50);
|
|
address_space_write(as, p, MEMTXATTRS_UNSPECIFIED,
|
|
atag_board_buf, atag_board_len);
|
|
p += atag_board_len;
|
|
}
|
|
/* ATAG_END */
|
|
WRITE_WORD(p, 0);
|
|
WRITE_WORD(p, 0);
|
|
}
|
|
|
|
static void set_kernel_args_old(const struct arm_boot_info *info,
|
|
AddressSpace *as)
|
|
{
|
|
hwaddr p;
|
|
const char *s;
|
|
int initrd_size = info->initrd_size;
|
|
hwaddr base = info->loader_start;
|
|
|
|
/* see linux/include/asm-arm/setup.h */
|
|
p = base + KERNEL_ARGS_ADDR;
|
|
/* page_size */
|
|
WRITE_WORD(p, 4096);
|
|
/* nr_pages */
|
|
WRITE_WORD(p, info->ram_size / 4096);
|
|
/* ramdisk_size */
|
|
WRITE_WORD(p, 0);
|
|
#define FLAG_READONLY 1
|
|
#define FLAG_RDLOAD 4
|
|
#define FLAG_RDPROMPT 8
|
|
/* flags */
|
|
WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT);
|
|
/* rootdev */
|
|
WRITE_WORD(p, (31 << 8) | 0); /* /dev/mtdblock0 */
|
|
/* video_num_cols */
|
|
WRITE_WORD(p, 0);
|
|
/* video_num_rows */
|
|
WRITE_WORD(p, 0);
|
|
/* video_x */
|
|
WRITE_WORD(p, 0);
|
|
/* video_y */
|
|
WRITE_WORD(p, 0);
|
|
/* memc_control_reg */
|
|
WRITE_WORD(p, 0);
|
|
/* unsigned char sounddefault */
|
|
/* unsigned char adfsdrives */
|
|
/* unsigned char bytes_per_char_h */
|
|
/* unsigned char bytes_per_char_v */
|
|
WRITE_WORD(p, 0);
|
|
/* pages_in_bank[4] */
|
|
WRITE_WORD(p, 0);
|
|
WRITE_WORD(p, 0);
|
|
WRITE_WORD(p, 0);
|
|
WRITE_WORD(p, 0);
|
|
/* pages_in_vram */
|
|
WRITE_WORD(p, 0);
|
|
/* initrd_start */
|
|
if (initrd_size) {
|
|
WRITE_WORD(p, info->initrd_start);
|
|
} else {
|
|
WRITE_WORD(p, 0);
|
|
}
|
|
/* initrd_size */
|
|
WRITE_WORD(p, initrd_size);
|
|
/* rd_start */
|
|
WRITE_WORD(p, 0);
|
|
/* system_rev */
|
|
WRITE_WORD(p, 0);
|
|
/* system_serial_low */
|
|
WRITE_WORD(p, 0);
|
|
/* system_serial_high */
|
|
WRITE_WORD(p, 0);
|
|
/* mem_fclk_21285 */
|
|
WRITE_WORD(p, 0);
|
|
/* zero unused fields */
|
|
while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) {
|
|
WRITE_WORD(p, 0);
|
|
}
|
|
s = info->kernel_cmdline;
|
|
if (s) {
|
|
address_space_write(as, p, MEMTXATTRS_UNSPECIFIED, s, strlen(s) + 1);
|
|
} else {
|
|
WRITE_WORD(p, 0);
|
|
}
|
|
}
|
|
|
|
static int fdt_add_memory_node(void *fdt, uint32_t acells, hwaddr mem_base,
|
|
uint32_t scells, hwaddr mem_len,
|
|
int numa_node_id)
|
|
{
|
|
char *nodename;
|
|
int ret;
|
|
|
|
nodename = g_strdup_printf("/memory@%" PRIx64, mem_base);
|
|
qemu_fdt_add_subnode(fdt, nodename);
|
|
qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
|
|
ret = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg", acells, mem_base,
|
|
scells, mem_len);
|
|
if (ret < 0) {
|
|
goto out;
|
|
}
|
|
|
|
/* only set the NUMA ID if it is specified */
|
|
if (numa_node_id >= 0) {
|
|
ret = qemu_fdt_setprop_cell(fdt, nodename,
|
|
"numa-node-id", numa_node_id);
|
|
}
|
|
out:
|
|
g_free(nodename);
|
|
return ret;
|
|
}
|
|
|
|
static void fdt_add_psci_node(void *fdt)
|
|
{
|
|
uint32_t cpu_suspend_fn;
|
|
uint32_t cpu_off_fn;
|
|
uint32_t cpu_on_fn;
|
|
uint32_t migrate_fn;
|
|
ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
|
|
const char *psci_method;
|
|
int64_t psci_conduit;
|
|
int rc;
|
|
|
|
psci_conduit = object_property_get_int(OBJECT(armcpu),
|
|
"psci-conduit",
|
|
&error_abort);
|
|
switch (psci_conduit) {
|
|
case QEMU_PSCI_CONDUIT_DISABLED:
|
|
return;
|
|
case QEMU_PSCI_CONDUIT_HVC:
|
|
psci_method = "hvc";
|
|
break;
|
|
case QEMU_PSCI_CONDUIT_SMC:
|
|
psci_method = "smc";
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
/*
|
|
* A pre-existing /psci node might specify function ID values
|
|
* that don't match QEMU's PSCI implementation. Delete the whole
|
|
* node and put our own in instead.
|
|
*/
|
|
rc = fdt_path_offset(fdt, "/psci");
|
|
if (rc >= 0) {
|
|
qemu_fdt_nop_node(fdt, "/psci");
|
|
}
|
|
|
|
qemu_fdt_add_subnode(fdt, "/psci");
|
|
if (armcpu->psci_version >= QEMU_PSCI_VERSION_0_2) {
|
|
if (armcpu->psci_version < QEMU_PSCI_VERSION_1_0) {
|
|
const char comp[] = "arm,psci-0.2\0arm,psci";
|
|
qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
|
|
} else {
|
|
const char comp[] = "arm,psci-1.0\0arm,psci-0.2\0arm,psci";
|
|
qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
|
|
}
|
|
|
|
cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
|
|
if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
|
|
cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
|
|
cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
|
|
migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
|
|
} else {
|
|
cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
|
|
cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
|
|
migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
|
|
}
|
|
} else {
|
|
qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
|
|
|
|
cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
|
|
cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
|
|
cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
|
|
migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
|
|
}
|
|
|
|
/* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
|
|
* to the instruction that should be used to invoke PSCI functions.
|
|
* However, the device tree binding uses 'method' instead, so that is
|
|
* what we should use here.
|
|
*/
|
|
qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method);
|
|
|
|
qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
|
|
qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
|
|
qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
|
|
qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
|
|
}
|
|
|
|
int arm_load_dtb(hwaddr addr, const struct arm_boot_info *binfo,
|
|
hwaddr addr_limit, AddressSpace *as, MachineState *ms)
|
|
{
|
|
void *fdt = NULL;
|
|
int size, rc, n = 0;
|
|
uint32_t acells, scells;
|
|
unsigned int i;
|
|
hwaddr mem_base, mem_len;
|
|
char **node_path;
|
|
Error *err = NULL;
|
|
|
|
if (binfo->dtb_filename) {
|
|
char *filename;
|
|
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
|
|
if (!filename) {
|
|
fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
|
|
goto fail;
|
|
}
|
|
|
|
fdt = load_device_tree(filename, &size);
|
|
if (!fdt) {
|
|
fprintf(stderr, "Couldn't open dtb file %s\n", filename);
|
|
g_free(filename);
|
|
goto fail;
|
|
}
|
|
g_free(filename);
|
|
} else {
|
|
fdt = binfo->get_dtb(binfo, &size);
|
|
if (!fdt) {
|
|
fprintf(stderr, "Board was unable to create a dtb blob\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
if (addr_limit > addr && size > (addr_limit - addr)) {
|
|
/* Installing the device tree blob at addr would exceed addr_limit.
|
|
* Whether this constitutes failure is up to the caller to decide,
|
|
* so just return 0 as size, i.e., no error.
|
|
*/
|
|
g_free(fdt);
|
|
return 0;
|
|
}
|
|
|
|
acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells",
|
|
NULL, &error_fatal);
|
|
scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells",
|
|
NULL, &error_fatal);
|
|
if (acells == 0 || scells == 0) {
|
|
fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
|
|
goto fail;
|
|
}
|
|
|
|
if (scells < 2 && binfo->ram_size >= 4 * GiB) {
|
|
/* This is user error so deserves a friendlier error message
|
|
* than the failure of setprop_sized_cells would provide
|
|
*/
|
|
fprintf(stderr, "qemu: dtb file not compatible with "
|
|
"RAM size > 4GB\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* nop all root nodes matching /memory or /memory@unit-address */
|
|
node_path = qemu_fdt_node_unit_path(fdt, "memory", &err);
|
|
if (err) {
|
|
error_report_err(err);
|
|
goto fail;
|
|
}
|
|
while (node_path[n]) {
|
|
if (g_str_has_prefix(node_path[n], "/memory")) {
|
|
qemu_fdt_nop_node(fdt, node_path[n]);
|
|
}
|
|
n++;
|
|
}
|
|
g_strfreev(node_path);
|
|
|
|
/*
|
|
* We drop all the memory nodes which correspond to empty NUMA nodes
|
|
* from the device tree, because the Linux NUMA binding document
|
|
* states they should not be generated. Linux will get the NUMA node
|
|
* IDs of the empty NUMA nodes from the distance map if they are needed.
|
|
* This means QEMU users may be obliged to provide command lines which
|
|
* configure distance maps when the empty NUMA node IDs are needed and
|
|
* Linux's default distance map isn't sufficient.
|
|
*/
|
|
if (ms->numa_state != NULL && ms->numa_state->num_nodes > 0) {
|
|
mem_base = binfo->loader_start;
|
|
for (i = 0; i < ms->numa_state->num_nodes; i++) {
|
|
mem_len = ms->numa_state->nodes[i].node_mem;
|
|
if (!mem_len) {
|
|
continue;
|
|
}
|
|
|
|
rc = fdt_add_memory_node(fdt, acells, mem_base,
|
|
scells, mem_len, i);
|
|
if (rc < 0) {
|
|
fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
|
|
mem_base);
|
|
goto fail;
|
|
}
|
|
|
|
mem_base += mem_len;
|
|
}
|
|
} else {
|
|
rc = fdt_add_memory_node(fdt, acells, binfo->loader_start,
|
|
scells, binfo->ram_size, -1);
|
|
if (rc < 0) {
|
|
fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
|
|
binfo->loader_start);
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
rc = fdt_path_offset(fdt, "/chosen");
|
|
if (rc < 0) {
|
|
qemu_fdt_add_subnode(fdt, "/chosen");
|
|
}
|
|
|
|
if (ms->kernel_cmdline && *ms->kernel_cmdline) {
|
|
rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
|
|
ms->kernel_cmdline);
|
|
if (rc < 0) {
|
|
fprintf(stderr, "couldn't set /chosen/bootargs\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
if (binfo->initrd_size) {
|
|
rc = qemu_fdt_setprop_sized_cells(fdt, "/chosen", "linux,initrd-start",
|
|
acells, binfo->initrd_start);
|
|
if (rc < 0) {
|
|
fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
|
|
goto fail;
|
|
}
|
|
|
|
rc = qemu_fdt_setprop_sized_cells(fdt, "/chosen", "linux,initrd-end",
|
|
acells,
|
|
binfo->initrd_start +
|
|
binfo->initrd_size);
|
|
if (rc < 0) {
|
|
fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
fdt_add_psci_node(fdt);
|
|
|
|
if (binfo->modify_dtb) {
|
|
binfo->modify_dtb(binfo, fdt);
|
|
}
|
|
|
|
qemu_fdt_dumpdtb(fdt, size);
|
|
|
|
/* Put the DTB into the memory map as a ROM image: this will ensure
|
|
* the DTB is copied again upon reset, even if addr points into RAM.
|
|
*/
|
|
rom_add_blob_fixed_as("dtb", fdt, size, addr, as);
|
|
qemu_register_reset_nosnapshotload(qemu_fdt_randomize_seeds,
|
|
rom_ptr_for_as(as, addr, size));
|
|
|
|
if (fdt != ms->fdt) {
|
|
g_free(ms->fdt);
|
|
ms->fdt = fdt;
|
|
}
|
|
|
|
return size;
|
|
|
|
fail:
|
|
g_free(fdt);
|
|
return -1;
|
|
}
|
|
|
|
static void do_cpu_reset(void *opaque)
|
|
{
|
|
ARMCPU *cpu = opaque;
|
|
CPUState *cs = CPU(cpu);
|
|
CPUARMState *env = &cpu->env;
|
|
const struct arm_boot_info *info = env->boot_info;
|
|
|
|
cpu_reset(cs);
|
|
if (info) {
|
|
if (!info->is_linux) {
|
|
int i;
|
|
/* Jump to the entry point. */
|
|
uint64_t entry = info->entry;
|
|
|
|
switch (info->endianness) {
|
|
case ARM_ENDIANNESS_LE:
|
|
env->cp15.sctlr_el[1] &= ~SCTLR_E0E;
|
|
for (i = 1; i < 4; ++i) {
|
|
env->cp15.sctlr_el[i] &= ~SCTLR_EE;
|
|
}
|
|
env->uncached_cpsr &= ~CPSR_E;
|
|
break;
|
|
case ARM_ENDIANNESS_BE8:
|
|
env->cp15.sctlr_el[1] |= SCTLR_E0E;
|
|
for (i = 1; i < 4; ++i) {
|
|
env->cp15.sctlr_el[i] |= SCTLR_EE;
|
|
}
|
|
env->uncached_cpsr |= CPSR_E;
|
|
break;
|
|
case ARM_ENDIANNESS_BE32:
|
|
env->cp15.sctlr_el[1] |= SCTLR_B;
|
|
break;
|
|
case ARM_ENDIANNESS_UNKNOWN:
|
|
break; /* Board's decision */
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
cpu_set_pc(cs, entry);
|
|
} else {
|
|
/* If we are booting Linux then we need to check whether we are
|
|
* booting into secure or non-secure state and adjust the state
|
|
* accordingly. Out of reset, ARM is defined to be in secure state
|
|
* (SCR.NS = 0), we change that here if non-secure boot has been
|
|
* requested.
|
|
*/
|
|
if (arm_feature(env, ARM_FEATURE_EL3)) {
|
|
/* AArch64 is defined to come out of reset into EL3 if enabled.
|
|
* If we are booting Linux then we need to adjust our EL as
|
|
* Linux expects us to be in EL2 or EL1. AArch32 resets into
|
|
* SVC, which Linux expects, so no privilege/exception level to
|
|
* adjust.
|
|
*/
|
|
if (env->aarch64) {
|
|
env->cp15.scr_el3 |= SCR_RW;
|
|
if (arm_feature(env, ARM_FEATURE_EL2)) {
|
|
env->cp15.hcr_el2 |= HCR_RW;
|
|
env->pstate = PSTATE_MODE_EL2h;
|
|
} else {
|
|
env->pstate = PSTATE_MODE_EL1h;
|
|
}
|
|
if (cpu_isar_feature(aa64_pauth, cpu)) {
|
|
env->cp15.scr_el3 |= SCR_API | SCR_APK;
|
|
}
|
|
if (cpu_isar_feature(aa64_mte, cpu)) {
|
|
env->cp15.scr_el3 |= SCR_ATA;
|
|
}
|
|
if (cpu_isar_feature(aa64_sve, cpu)) {
|
|
env->cp15.cptr_el[3] |= R_CPTR_EL3_EZ_MASK;
|
|
env->vfp.zcr_el[3] = 0xf;
|
|
}
|
|
if (cpu_isar_feature(aa64_sme, cpu)) {
|
|
env->cp15.cptr_el[3] |= R_CPTR_EL3_ESM_MASK;
|
|
env->cp15.scr_el3 |= SCR_ENTP2;
|
|
env->vfp.smcr_el[3] = 0xf;
|
|
}
|
|
if (cpu_isar_feature(aa64_hcx, cpu)) {
|
|
env->cp15.scr_el3 |= SCR_HXEN;
|
|
}
|
|
if (cpu_isar_feature(aa64_fgt, cpu)) {
|
|
env->cp15.scr_el3 |= SCR_FGTEN;
|
|
}
|
|
|
|
/* AArch64 kernels never boot in secure mode */
|
|
assert(!info->secure_boot);
|
|
/* This hook is only supported for AArch32 currently:
|
|
* bootloader_aarch64[] will not call the hook, and
|
|
* the code above has already dropped us into EL2 or EL1.
|
|
*/
|
|
assert(!info->secure_board_setup);
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_EL2)) {
|
|
/* If we have EL2 then Linux expects the HVC insn to work */
|
|
env->cp15.scr_el3 |= SCR_HCE;
|
|
}
|
|
|
|
/* Set to non-secure if not a secure boot */
|
|
if (!info->secure_boot &&
|
|
(cs != first_cpu || !info->secure_board_setup)) {
|
|
/* Linux expects non-secure state */
|
|
env->cp15.scr_el3 |= SCR_NS;
|
|
/* Set NSACR.{CP11,CP10} so NS can access the FPU */
|
|
env->cp15.nsacr |= 3 << 10;
|
|
}
|
|
}
|
|
|
|
if (!env->aarch64 && !info->secure_boot &&
|
|
arm_feature(env, ARM_FEATURE_EL2)) {
|
|
/*
|
|
* This is an AArch32 boot not to Secure state, and
|
|
* we have Hyp mode available, so boot the kernel into
|
|
* Hyp mode. This is not how the CPU comes out of reset,
|
|
* so we need to manually put it there.
|
|
*/
|
|
cpsr_write(env, ARM_CPU_MODE_HYP, CPSR_M, CPSRWriteRaw);
|
|
}
|
|
|
|
if (cs == first_cpu) {
|
|
AddressSpace *as = arm_boot_address_space(cpu, info);
|
|
|
|
cpu_set_pc(cs, info->loader_start);
|
|
|
|
if (!have_dtb(info)) {
|
|
if (old_param) {
|
|
set_kernel_args_old(info, as);
|
|
} else {
|
|
set_kernel_args(info, as);
|
|
}
|
|
}
|
|
} else if (info->secondary_cpu_reset_hook) {
|
|
info->secondary_cpu_reset_hook(cpu, info);
|
|
}
|
|
}
|
|
|
|
if (tcg_enabled()) {
|
|
arm_rebuild_hflags(env);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int do_arm_linux_init(Object *obj, void *opaque)
|
|
{
|
|
if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) {
|
|
ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj);
|
|
ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj);
|
|
struct arm_boot_info *info = opaque;
|
|
|
|
if (albifc->arm_linux_init) {
|
|
albifc->arm_linux_init(albif, info->secure_boot);
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry,
|
|
uint64_t *lowaddr, uint64_t *highaddr,
|
|
int elf_machine, AddressSpace *as)
|
|
{
|
|
bool elf_is64;
|
|
union {
|
|
Elf32_Ehdr h32;
|
|
Elf64_Ehdr h64;
|
|
} elf_header;
|
|
int data_swab = 0;
|
|
bool big_endian;
|
|
ssize_t ret = -1;
|
|
Error *err = NULL;
|
|
|
|
|
|
load_elf_hdr(info->kernel_filename, &elf_header, &elf_is64, &err);
|
|
if (err) {
|
|
error_free(err);
|
|
return ret;
|
|
}
|
|
|
|
if (elf_is64) {
|
|
big_endian = elf_header.h64.e_ident[EI_DATA] == ELFDATA2MSB;
|
|
info->endianness = big_endian ? ARM_ENDIANNESS_BE8
|
|
: ARM_ENDIANNESS_LE;
|
|
} else {
|
|
big_endian = elf_header.h32.e_ident[EI_DATA] == ELFDATA2MSB;
|
|
if (big_endian) {
|
|
if (bswap32(elf_header.h32.e_flags) & EF_ARM_BE8) {
|
|
info->endianness = ARM_ENDIANNESS_BE8;
|
|
} else {
|
|
info->endianness = ARM_ENDIANNESS_BE32;
|
|
/* In BE32, the CPU has a different view of the per-byte
|
|
* address map than the rest of the system. BE32 ELF files
|
|
* are organised such that they can be programmed through
|
|
* the CPU's per-word byte-reversed view of the world. QEMU
|
|
* however loads ELF files independently of the CPU. So
|
|
* tell the ELF loader to byte reverse the data for us.
|
|
*/
|
|
data_swab = 2;
|
|
}
|
|
} else {
|
|
info->endianness = ARM_ENDIANNESS_LE;
|
|
}
|
|
}
|
|
|
|
ret = load_elf_as(info->kernel_filename, NULL, NULL, NULL,
|
|
pentry, lowaddr, highaddr, NULL, big_endian, elf_machine,
|
|
1, data_swab, as);
|
|
if (ret <= 0) {
|
|
/* The header loaded but the image didn't */
|
|
exit(1);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static uint64_t load_aarch64_image(const char *filename, hwaddr mem_base,
|
|
hwaddr *entry, AddressSpace *as)
|
|
{
|
|
hwaddr kernel_load_offset = KERNEL64_LOAD_ADDR;
|
|
uint64_t kernel_size = 0;
|
|
uint8_t *buffer;
|
|
int size;
|
|
|
|
/* On aarch64, it's the bootloader's job to uncompress the kernel. */
|
|
size = load_image_gzipped_buffer(filename, LOAD_IMAGE_MAX_GUNZIP_BYTES,
|
|
&buffer);
|
|
|
|
if (size < 0) {
|
|
gsize len;
|
|
|
|
/* Load as raw file otherwise */
|
|
if (!g_file_get_contents(filename, (char **)&buffer, &len, NULL)) {
|
|
return -1;
|
|
}
|
|
size = len;
|
|
|
|
/* Unpack the image if it is a EFI zboot image */
|
|
if (unpack_efi_zboot_image(&buffer, &size) < 0) {
|
|
g_free(buffer);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* check the arm64 magic header value -- very old kernels may not have it */
|
|
if (size > ARM64_MAGIC_OFFSET + 4 &&
|
|
memcmp(buffer + ARM64_MAGIC_OFFSET, "ARM\x64", 4) == 0) {
|
|
uint64_t hdrvals[2];
|
|
|
|
/* The arm64 Image header has text_offset and image_size fields at 8 and
|
|
* 16 bytes into the Image header, respectively. The text_offset field
|
|
* is only valid if the image_size is non-zero.
|
|
*/
|
|
memcpy(&hdrvals, buffer + ARM64_TEXT_OFFSET_OFFSET, sizeof(hdrvals));
|
|
|
|
kernel_size = le64_to_cpu(hdrvals[1]);
|
|
|
|
if (kernel_size != 0) {
|
|
kernel_load_offset = le64_to_cpu(hdrvals[0]);
|
|
|
|
/*
|
|
* We write our startup "bootloader" at the very bottom of RAM,
|
|
* so that bit can't be used for the image. Luckily the Image
|
|
* format specification is that the image requests only an offset
|
|
* from a 2MB boundary, not an absolute load address. So if the
|
|
* image requests an offset that might mean it overlaps with the
|
|
* bootloader, we can just load it starting at 2MB+offset rather
|
|
* than 0MB + offset.
|
|
*/
|
|
if (kernel_load_offset < BOOTLOADER_MAX_SIZE) {
|
|
kernel_load_offset += 2 * MiB;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Kernels before v3.17 don't populate the image_size field, and
|
|
* raw images have no header. For those our best guess at the size
|
|
* is the size of the Image file itself.
|
|
*/
|
|
if (kernel_size == 0) {
|
|
kernel_size = size;
|
|
}
|
|
|
|
*entry = mem_base + kernel_load_offset;
|
|
rom_add_blob_fixed_as(filename, buffer, size, *entry, as);
|
|
|
|
g_free(buffer);
|
|
|
|
return kernel_size;
|
|
}
|
|
|
|
static void arm_setup_direct_kernel_boot(ARMCPU *cpu,
|
|
struct arm_boot_info *info)
|
|
{
|
|
/* Set up for a direct boot of a kernel image file. */
|
|
CPUState *cs;
|
|
AddressSpace *as = arm_boot_address_space(cpu, info);
|
|
ssize_t kernel_size;
|
|
int initrd_size;
|
|
int is_linux = 0;
|
|
uint64_t elf_entry;
|
|
/* Addresses of first byte used and first byte not used by the image */
|
|
uint64_t image_low_addr = 0, image_high_addr = 0;
|
|
int elf_machine;
|
|
hwaddr entry;
|
|
static const ARMInsnFixup *primary_loader;
|
|
uint64_t ram_end = info->loader_start + info->ram_size;
|
|
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
|
|
primary_loader = bootloader_aarch64;
|
|
elf_machine = EM_AARCH64;
|
|
} else {
|
|
primary_loader = bootloader;
|
|
if (!info->write_board_setup) {
|
|
primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET;
|
|
}
|
|
elf_machine = EM_ARM;
|
|
}
|
|
|
|
/* Assume that raw images are linux kernels, and ELF images are not. */
|
|
kernel_size = arm_load_elf(info, &elf_entry, &image_low_addr,
|
|
&image_high_addr, elf_machine, as);
|
|
if (kernel_size > 0 && have_dtb(info)) {
|
|
/*
|
|
* If there is still some room left at the base of RAM, try and put
|
|
* the DTB there like we do for images loaded with -bios or -pflash.
|
|
*/
|
|
if (image_low_addr > info->loader_start
|
|
|| image_high_addr < info->loader_start) {
|
|
/*
|
|
* Set image_low_addr as address limit for arm_load_dtb if it may be
|
|
* pointing into RAM, otherwise pass '0' (no limit)
|
|
*/
|
|
if (image_low_addr < info->loader_start) {
|
|
image_low_addr = 0;
|
|
}
|
|
info->dtb_start = info->loader_start;
|
|
info->dtb_limit = image_low_addr;
|
|
}
|
|
}
|
|
entry = elf_entry;
|
|
if (kernel_size < 0) {
|
|
uint64_t loadaddr = info->loader_start + KERNEL_NOLOAD_ADDR;
|
|
kernel_size = load_uimage_as(info->kernel_filename, &entry, &loadaddr,
|
|
&is_linux, NULL, NULL, as);
|
|
if (kernel_size >= 0) {
|
|
image_low_addr = loadaddr;
|
|
image_high_addr = image_low_addr + kernel_size;
|
|
}
|
|
}
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
|
|
kernel_size = load_aarch64_image(info->kernel_filename,
|
|
info->loader_start, &entry, as);
|
|
is_linux = 1;
|
|
if (kernel_size >= 0) {
|
|
image_low_addr = entry;
|
|
image_high_addr = image_low_addr + kernel_size;
|
|
}
|
|
} else if (kernel_size < 0) {
|
|
/* 32-bit ARM */
|
|
entry = info->loader_start + KERNEL_LOAD_ADDR;
|
|
kernel_size = load_image_targphys_as(info->kernel_filename, entry,
|
|
ram_end - KERNEL_LOAD_ADDR, as);
|
|
is_linux = 1;
|
|
if (kernel_size >= 0) {
|
|
image_low_addr = entry;
|
|
image_high_addr = image_low_addr + kernel_size;
|
|
}
|
|
}
|
|
if (kernel_size < 0) {
|
|
error_report("could not load kernel '%s'", info->kernel_filename);
|
|
exit(1);
|
|
}
|
|
|
|
if (kernel_size > info->ram_size) {
|
|
error_report("kernel '%s' is too large to fit in RAM "
|
|
"(kernel size %zd, RAM size %" PRId64 ")",
|
|
info->kernel_filename, kernel_size, info->ram_size);
|
|
exit(1);
|
|
}
|
|
|
|
info->entry = entry;
|
|
|
|
/*
|
|
* We want to put the initrd far enough into RAM that when the
|
|
* kernel is uncompressed it will not clobber the initrd. However
|
|
* on boards without much RAM we must ensure that we still leave
|
|
* enough room for a decent sized initrd, and on boards with large
|
|
* amounts of RAM we must avoid the initrd being so far up in RAM
|
|
* that it is outside lowmem and inaccessible to the kernel.
|
|
* So for boards with less than 256MB of RAM we put the initrd
|
|
* halfway into RAM, and for boards with 256MB of RAM or more we put
|
|
* the initrd at 128MB.
|
|
* We also refuse to put the initrd somewhere that will definitely
|
|
* overlay the kernel we just loaded, though for kernel formats which
|
|
* don't tell us their exact size (eg self-decompressing 32-bit kernels)
|
|
* we might still make a bad choice here.
|
|
*/
|
|
info->initrd_start = info->loader_start +
|
|
MIN(info->ram_size / 2, 128 * MiB);
|
|
if (image_high_addr) {
|
|
info->initrd_start = MAX(info->initrd_start, image_high_addr);
|
|
}
|
|
info->initrd_start = TARGET_PAGE_ALIGN(info->initrd_start);
|
|
|
|
if (is_linux) {
|
|
uint32_t fixupcontext[FIXUP_MAX];
|
|
|
|
if (info->initrd_filename) {
|
|
|
|
if (info->initrd_start >= ram_end) {
|
|
error_report("not enough space after kernel to load initrd");
|
|
exit(1);
|
|
}
|
|
|
|
initrd_size = load_ramdisk_as(info->initrd_filename,
|
|
info->initrd_start,
|
|
ram_end - info->initrd_start, as);
|
|
if (initrd_size < 0) {
|
|
initrd_size = load_image_targphys_as(info->initrd_filename,
|
|
info->initrd_start,
|
|
ram_end -
|
|
info->initrd_start,
|
|
as);
|
|
}
|
|
if (initrd_size < 0) {
|
|
error_report("could not load initrd '%s'",
|
|
info->initrd_filename);
|
|
exit(1);
|
|
}
|
|
if (info->initrd_start + initrd_size > ram_end) {
|
|
error_report("could not load initrd '%s': "
|
|
"too big to fit into RAM after the kernel",
|
|
info->initrd_filename);
|
|
exit(1);
|
|
}
|
|
} else {
|
|
initrd_size = 0;
|
|
}
|
|
info->initrd_size = initrd_size;
|
|
|
|
fixupcontext[FIXUP_BOARDID] = info->board_id;
|
|
fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr;
|
|
|
|
/*
|
|
* for device tree boot, we pass the DTB directly in r2. Otherwise
|
|
* we point to the kernel args.
|
|
*/
|
|
if (have_dtb(info)) {
|
|
hwaddr align;
|
|
|
|
if (elf_machine == EM_AARCH64) {
|
|
/*
|
|
* Some AArch64 kernels on early bootup map the fdt region as
|
|
*
|
|
* [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
|
|
*
|
|
* Let's play safe and prealign it to 2MB to give us some space.
|
|
*/
|
|
align = 2 * MiB;
|
|
} else {
|
|
/*
|
|
* Some 32bit kernels will trash anything in the 4K page the
|
|
* initrd ends in, so make sure the DTB isn't caught up in that.
|
|
*/
|
|
align = 4 * KiB;
|
|
}
|
|
|
|
/* Place the DTB after the initrd in memory with alignment. */
|
|
info->dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size,
|
|
align);
|
|
if (info->dtb_start >= ram_end) {
|
|
error_report("Not enough space for DTB after kernel/initrd");
|
|
exit(1);
|
|
}
|
|
fixupcontext[FIXUP_ARGPTR_LO] = info->dtb_start;
|
|
fixupcontext[FIXUP_ARGPTR_HI] = info->dtb_start >> 32;
|
|
} else {
|
|
fixupcontext[FIXUP_ARGPTR_LO] =
|
|
info->loader_start + KERNEL_ARGS_ADDR;
|
|
fixupcontext[FIXUP_ARGPTR_HI] =
|
|
(info->loader_start + KERNEL_ARGS_ADDR) >> 32;
|
|
if (info->ram_size >= 4 * GiB) {
|
|
error_report("RAM size must be less than 4GB to boot"
|
|
" Linux kernel using ATAGS (try passing a device tree"
|
|
" using -dtb)");
|
|
exit(1);
|
|
}
|
|
}
|
|
fixupcontext[FIXUP_ENTRYPOINT_LO] = entry;
|
|
fixupcontext[FIXUP_ENTRYPOINT_HI] = entry >> 32;
|
|
|
|
arm_write_bootloader("bootloader", as, info->loader_start,
|
|
primary_loader, fixupcontext);
|
|
|
|
if (info->write_board_setup) {
|
|
info->write_board_setup(cpu, info);
|
|
}
|
|
|
|
/*
|
|
* Notify devices which need to fake up firmware initialization
|
|
* that we're doing a direct kernel boot.
|
|
*/
|
|
object_child_foreach_recursive(object_get_root(),
|
|
do_arm_linux_init, info);
|
|
}
|
|
info->is_linux = is_linux;
|
|
|
|
for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
|
|
ARM_CPU(cs)->env.boot_info = info;
|
|
}
|
|
}
|
|
|
|
static void arm_setup_firmware_boot(ARMCPU *cpu, struct arm_boot_info *info)
|
|
{
|
|
/* Set up for booting firmware (which might load a kernel via fw_cfg) */
|
|
|
|
if (have_dtb(info)) {
|
|
/*
|
|
* If we have a device tree blob, but no kernel to supply it to (or
|
|
* the kernel is supposed to be loaded by the bootloader), copy the
|
|
* DTB to the base of RAM for the bootloader to pick up.
|
|
*/
|
|
info->dtb_start = info->loader_start;
|
|
}
|
|
|
|
if (info->kernel_filename) {
|
|
FWCfgState *fw_cfg;
|
|
bool try_decompressing_kernel;
|
|
|
|
fw_cfg = fw_cfg_find();
|
|
|
|
if (!fw_cfg) {
|
|
error_report("This machine type does not support loading both "
|
|
"a guest firmware/BIOS image and a guest kernel at "
|
|
"the same time. You should change your QEMU command "
|
|
"line to specify one or the other, but not both.");
|
|
exit(1);
|
|
}
|
|
|
|
try_decompressing_kernel = arm_feature(&cpu->env,
|
|
ARM_FEATURE_AARCH64);
|
|
|
|
/*
|
|
* Expose the kernel, the command line, and the initrd in fw_cfg.
|
|
* We don't process them here at all, it's all left to the
|
|
* firmware.
|
|
*/
|
|
load_image_to_fw_cfg(fw_cfg,
|
|
FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
|
|
info->kernel_filename,
|
|
try_decompressing_kernel);
|
|
load_image_to_fw_cfg(fw_cfg,
|
|
FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
|
|
info->initrd_filename, false);
|
|
|
|
if (info->kernel_cmdline) {
|
|
fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
|
|
strlen(info->kernel_cmdline) + 1);
|
|
fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
|
|
info->kernel_cmdline);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We will start from address 0 (typically a boot ROM image) in the
|
|
* same way as hardware. Leave env->boot_info NULL, so that
|
|
* do_cpu_reset() knows it does not need to alter the PC on reset.
|
|
*/
|
|
}
|
|
|
|
void arm_load_kernel(ARMCPU *cpu, MachineState *ms, struct arm_boot_info *info)
|
|
{
|
|
CPUState *cs;
|
|
AddressSpace *as = arm_boot_address_space(cpu, info);
|
|
int boot_el;
|
|
CPUARMState *env = &cpu->env;
|
|
int nb_cpus = 0;
|
|
|
|
/*
|
|
* CPU objects (unlike devices) are not automatically reset on system
|
|
* reset, so we must always register a handler to do so. If we're
|
|
* actually loading a kernel, the handler is also responsible for
|
|
* arranging that we start it correctly.
|
|
*/
|
|
for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
|
|
qemu_register_reset(do_cpu_reset, ARM_CPU(cs));
|
|
nb_cpus++;
|
|
}
|
|
|
|
/*
|
|
* The board code is not supposed to set secure_board_setup unless
|
|
* running its code in secure mode is actually possible, and KVM
|
|
* doesn't support secure.
|
|
*/
|
|
assert(!(info->secure_board_setup && kvm_enabled()));
|
|
info->kernel_filename = ms->kernel_filename;
|
|
info->kernel_cmdline = ms->kernel_cmdline;
|
|
info->initrd_filename = ms->initrd_filename;
|
|
info->dtb_filename = ms->dtb;
|
|
info->dtb_limit = 0;
|
|
|
|
/* Load the kernel. */
|
|
if (!info->kernel_filename || info->firmware_loaded) {
|
|
arm_setup_firmware_boot(cpu, info);
|
|
} else {
|
|
arm_setup_direct_kernel_boot(cpu, info);
|
|
}
|
|
|
|
/*
|
|
* Disable the PSCI conduit if it is set up to target the same
|
|
* or a lower EL than the one we're going to start the guest code in.
|
|
* This logic needs to agree with the code in do_cpu_reset() which
|
|
* decides whether we're going to boot the guest in the highest
|
|
* supported exception level or in a lower one.
|
|
*/
|
|
|
|
/*
|
|
* If PSCI is enabled, then SMC calls all go to the PSCI handler and
|
|
* are never emulated to trap into guest code. It therefore does not
|
|
* make sense for the board to have a setup code fragment that runs
|
|
* in Secure, because this will probably need to itself issue an SMC of some
|
|
* kind as part of its operation.
|
|
*/
|
|
assert(info->psci_conduit == QEMU_PSCI_CONDUIT_DISABLED ||
|
|
!info->secure_board_setup);
|
|
|
|
/* Boot into highest supported EL ... */
|
|
if (arm_feature(env, ARM_FEATURE_EL3)) {
|
|
boot_el = 3;
|
|
} else if (arm_feature(env, ARM_FEATURE_EL2)) {
|
|
boot_el = 2;
|
|
} else {
|
|
boot_el = 1;
|
|
}
|
|
/* ...except that if we're booting Linux we adjust the EL we boot into */
|
|
if (info->is_linux && !info->secure_boot) {
|
|
boot_el = arm_feature(env, ARM_FEATURE_EL2) ? 2 : 1;
|
|
}
|
|
|
|
if ((info->psci_conduit == QEMU_PSCI_CONDUIT_HVC && boot_el >= 2) ||
|
|
(info->psci_conduit == QEMU_PSCI_CONDUIT_SMC && boot_el == 3)) {
|
|
info->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
|
|
}
|
|
|
|
if (info->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
|
|
for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
|
|
Object *cpuobj = OBJECT(cs);
|
|
|
|
object_property_set_int(cpuobj, "psci-conduit", info->psci_conduit,
|
|
&error_abort);
|
|
/*
|
|
* Secondary CPUs start in PSCI powered-down state. Like the
|
|
* code in do_cpu_reset(), we assume first_cpu is the primary
|
|
* CPU.
|
|
*/
|
|
if (cs != first_cpu) {
|
|
object_property_set_bool(cpuobj, "start-powered-off", true,
|
|
&error_abort);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (info->psci_conduit == QEMU_PSCI_CONDUIT_DISABLED &&
|
|
info->is_linux && nb_cpus > 1) {
|
|
/*
|
|
* We're booting Linux but not using PSCI, so for SMP we need
|
|
* to write a custom secondary CPU boot loader stub, and arrange
|
|
* for the secondary CPU reset to make the accompanying initialization.
|
|
*/
|
|
if (!info->secondary_cpu_reset_hook) {
|
|
info->secondary_cpu_reset_hook = default_reset_secondary;
|
|
}
|
|
if (!info->write_secondary_boot) {
|
|
info->write_secondary_boot = default_write_secondary;
|
|
}
|
|
info->write_secondary_boot(cpu, info);
|
|
} else {
|
|
/*
|
|
* No secondary boot stub; don't use the reset hook that would
|
|
* have set the CPU up to call it
|
|
*/
|
|
info->write_secondary_boot = NULL;
|
|
info->secondary_cpu_reset_hook = NULL;
|
|
}
|
|
|
|
/*
|
|
* arm_load_dtb() may add a PSCI node so it must be called after we have
|
|
* decided whether to enable PSCI and set the psci-conduit CPU properties.
|
|
*/
|
|
if (!info->skip_dtb_autoload && have_dtb(info)) {
|
|
if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
|
|
exit(1);
|
|
}
|
|
}
|
|
}
|
|
|
|
static const TypeInfo arm_linux_boot_if_info = {
|
|
.name = TYPE_ARM_LINUX_BOOT_IF,
|
|
.parent = TYPE_INTERFACE,
|
|
.class_size = sizeof(ARMLinuxBootIfClass),
|
|
};
|
|
|
|
static void arm_linux_boot_register_types(void)
|
|
{
|
|
type_register_static(&arm_linux_boot_if_info);
|
|
}
|
|
|
|
type_init(arm_linux_boot_register_types)
|