cdfd14e86a
Convert the VCVTT and VCVTB instructions which convert from f32 and f64 to f16 to decodetree. Since we're no longer constrained to the old decoder's style using cpu_F0s and cpu_F0d we can perform a direct 16 bit store of the right half of the input single-precision register rather than doing a load/modify/store sequence on the full 32 bits. Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
2160 lines
55 KiB
C
2160 lines
55 KiB
C
/*
|
|
* ARM translation: AArch32 VFP instructions
|
|
*
|
|
* Copyright (c) 2003 Fabrice Bellard
|
|
* Copyright (c) 2005-2007 CodeSourcery
|
|
* Copyright (c) 2007 OpenedHand, Ltd.
|
|
* Copyright (c) 2019 Linaro, Ltd.
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/*
|
|
* This file is intended to be included from translate.c; it uses
|
|
* some macros and definitions provided by that file.
|
|
* It might be possible to convert it to a standalone .c file eventually.
|
|
*/
|
|
|
|
/* Include the generated VFP decoder */
|
|
#include "decode-vfp.inc.c"
|
|
#include "decode-vfp-uncond.inc.c"
|
|
|
|
/*
|
|
* Return the offset of a 16-bit half of the specified VFP single-precision
|
|
* register. If top is true, returns the top 16 bits; otherwise the bottom
|
|
* 16 bits.
|
|
*/
|
|
static inline long vfp_f16_offset(unsigned reg, bool top)
|
|
{
|
|
long offs = vfp_reg_offset(false, reg);
|
|
#ifdef HOST_WORDS_BIGENDIAN
|
|
if (!top) {
|
|
offs += 2;
|
|
}
|
|
#else
|
|
if (top) {
|
|
offs += 2;
|
|
}
|
|
#endif
|
|
return offs;
|
|
}
|
|
|
|
/*
|
|
* Check that VFP access is enabled. If it is, do the necessary
|
|
* M-profile lazy-FP handling and then return true.
|
|
* If not, emit code to generate an appropriate exception and
|
|
* return false.
|
|
* The ignore_vfp_enabled argument specifies that we should ignore
|
|
* whether VFP is enabled via FPEXC[EN]: this should be true for FMXR/FMRX
|
|
* accesses to FPSID, FPEXC, MVFR0, MVFR1, MVFR2, and false for all other insns.
|
|
*/
|
|
static bool full_vfp_access_check(DisasContext *s, bool ignore_vfp_enabled)
|
|
{
|
|
if (s->fp_excp_el) {
|
|
if (arm_dc_feature(s, ARM_FEATURE_M)) {
|
|
gen_exception_insn(s, 4, EXCP_NOCP, syn_uncategorized(),
|
|
s->fp_excp_el);
|
|
} else {
|
|
gen_exception_insn(s, 4, EXCP_UDEF,
|
|
syn_fp_access_trap(1, 0xe, false),
|
|
s->fp_excp_el);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
if (!s->vfp_enabled && !ignore_vfp_enabled) {
|
|
assert(!arm_dc_feature(s, ARM_FEATURE_M));
|
|
gen_exception_insn(s, 4, EXCP_UDEF, syn_uncategorized(),
|
|
default_exception_el(s));
|
|
return false;
|
|
}
|
|
|
|
if (arm_dc_feature(s, ARM_FEATURE_M)) {
|
|
/* Handle M-profile lazy FP state mechanics */
|
|
|
|
/* Trigger lazy-state preservation if necessary */
|
|
if (s->v7m_lspact) {
|
|
/*
|
|
* Lazy state saving affects external memory and also the NVIC,
|
|
* so we must mark it as an IO operation for icount.
|
|
*/
|
|
if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) {
|
|
gen_io_start();
|
|
}
|
|
gen_helper_v7m_preserve_fp_state(cpu_env);
|
|
if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) {
|
|
gen_io_end();
|
|
}
|
|
/*
|
|
* If the preserve_fp_state helper doesn't throw an exception
|
|
* then it will clear LSPACT; we don't need to repeat this for
|
|
* any further FP insns in this TB.
|
|
*/
|
|
s->v7m_lspact = false;
|
|
}
|
|
|
|
/* Update ownership of FP context: set FPCCR.S to match current state */
|
|
if (s->v8m_fpccr_s_wrong) {
|
|
TCGv_i32 tmp;
|
|
|
|
tmp = load_cpu_field(v7m.fpccr[M_REG_S]);
|
|
if (s->v8m_secure) {
|
|
tcg_gen_ori_i32(tmp, tmp, R_V7M_FPCCR_S_MASK);
|
|
} else {
|
|
tcg_gen_andi_i32(tmp, tmp, ~R_V7M_FPCCR_S_MASK);
|
|
}
|
|
store_cpu_field(tmp, v7m.fpccr[M_REG_S]);
|
|
/* Don't need to do this for any further FP insns in this TB */
|
|
s->v8m_fpccr_s_wrong = false;
|
|
}
|
|
|
|
if (s->v7m_new_fp_ctxt_needed) {
|
|
/*
|
|
* Create new FP context by updating CONTROL.FPCA, CONTROL.SFPA
|
|
* and the FPSCR.
|
|
*/
|
|
TCGv_i32 control, fpscr;
|
|
uint32_t bits = R_V7M_CONTROL_FPCA_MASK;
|
|
|
|
fpscr = load_cpu_field(v7m.fpdscr[s->v8m_secure]);
|
|
gen_helper_vfp_set_fpscr(cpu_env, fpscr);
|
|
tcg_temp_free_i32(fpscr);
|
|
/*
|
|
* We don't need to arrange to end the TB, because the only
|
|
* parts of FPSCR which we cache in the TB flags are the VECLEN
|
|
* and VECSTRIDE, and those don't exist for M-profile.
|
|
*/
|
|
|
|
if (s->v8m_secure) {
|
|
bits |= R_V7M_CONTROL_SFPA_MASK;
|
|
}
|
|
control = load_cpu_field(v7m.control[M_REG_S]);
|
|
tcg_gen_ori_i32(control, control, bits);
|
|
store_cpu_field(control, v7m.control[M_REG_S]);
|
|
/* Don't need to do this for any further FP insns in this TB */
|
|
s->v7m_new_fp_ctxt_needed = false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* The most usual kind of VFP access check, for everything except
|
|
* FMXR/FMRX to the always-available special registers.
|
|
*/
|
|
static bool vfp_access_check(DisasContext *s)
|
|
{
|
|
return full_vfp_access_check(s, false);
|
|
}
|
|
|
|
static bool trans_VSEL(DisasContext *s, arg_VSEL *a)
|
|
{
|
|
uint32_t rd, rn, rm;
|
|
bool dp = a->dp;
|
|
|
|
if (!dc_isar_feature(aa32_vsel, s)) {
|
|
return false;
|
|
}
|
|
|
|
/* UNDEF accesses to D16-D31 if they don't exist */
|
|
if (dp && !dc_isar_feature(aa32_fp_d32, s) &&
|
|
((a->vm | a->vn | a->vd) & 0x10)) {
|
|
return false;
|
|
}
|
|
rd = a->vd;
|
|
rn = a->vn;
|
|
rm = a->vm;
|
|
|
|
if (!vfp_access_check(s)) {
|
|
return true;
|
|
}
|
|
|
|
if (dp) {
|
|
TCGv_i64 frn, frm, dest;
|
|
TCGv_i64 tmp, zero, zf, nf, vf;
|
|
|
|
zero = tcg_const_i64(0);
|
|
|
|
frn = tcg_temp_new_i64();
|
|
frm = tcg_temp_new_i64();
|
|
dest = tcg_temp_new_i64();
|
|
|
|
zf = tcg_temp_new_i64();
|
|
nf = tcg_temp_new_i64();
|
|
vf = tcg_temp_new_i64();
|
|
|
|
tcg_gen_extu_i32_i64(zf, cpu_ZF);
|
|
tcg_gen_ext_i32_i64(nf, cpu_NF);
|
|
tcg_gen_ext_i32_i64(vf, cpu_VF);
|
|
|
|
neon_load_reg64(frn, rn);
|
|
neon_load_reg64(frm, rm);
|
|
switch (a->cc) {
|
|
case 0: /* eq: Z */
|
|
tcg_gen_movcond_i64(TCG_COND_EQ, dest, zf, zero,
|
|
frn, frm);
|
|
break;
|
|
case 1: /* vs: V */
|
|
tcg_gen_movcond_i64(TCG_COND_LT, dest, vf, zero,
|
|
frn, frm);
|
|
break;
|
|
case 2: /* ge: N == V -> N ^ V == 0 */
|
|
tmp = tcg_temp_new_i64();
|
|
tcg_gen_xor_i64(tmp, vf, nf);
|
|
tcg_gen_movcond_i64(TCG_COND_GE, dest, tmp, zero,
|
|
frn, frm);
|
|
tcg_temp_free_i64(tmp);
|
|
break;
|
|
case 3: /* gt: !Z && N == V */
|
|
tcg_gen_movcond_i64(TCG_COND_NE, dest, zf, zero,
|
|
frn, frm);
|
|
tmp = tcg_temp_new_i64();
|
|
tcg_gen_xor_i64(tmp, vf, nf);
|
|
tcg_gen_movcond_i64(TCG_COND_GE, dest, tmp, zero,
|
|
dest, frm);
|
|
tcg_temp_free_i64(tmp);
|
|
break;
|
|
}
|
|
neon_store_reg64(dest, rd);
|
|
tcg_temp_free_i64(frn);
|
|
tcg_temp_free_i64(frm);
|
|
tcg_temp_free_i64(dest);
|
|
|
|
tcg_temp_free_i64(zf);
|
|
tcg_temp_free_i64(nf);
|
|
tcg_temp_free_i64(vf);
|
|
|
|
tcg_temp_free_i64(zero);
|
|
} else {
|
|
TCGv_i32 frn, frm, dest;
|
|
TCGv_i32 tmp, zero;
|
|
|
|
zero = tcg_const_i32(0);
|
|
|
|
frn = tcg_temp_new_i32();
|
|
frm = tcg_temp_new_i32();
|
|
dest = tcg_temp_new_i32();
|
|
neon_load_reg32(frn, rn);
|
|
neon_load_reg32(frm, rm);
|
|
switch (a->cc) {
|
|
case 0: /* eq: Z */
|
|
tcg_gen_movcond_i32(TCG_COND_EQ, dest, cpu_ZF, zero,
|
|
frn, frm);
|
|
break;
|
|
case 1: /* vs: V */
|
|
tcg_gen_movcond_i32(TCG_COND_LT, dest, cpu_VF, zero,
|
|
frn, frm);
|
|
break;
|
|
case 2: /* ge: N == V -> N ^ V == 0 */
|
|
tmp = tcg_temp_new_i32();
|
|
tcg_gen_xor_i32(tmp, cpu_VF, cpu_NF);
|
|
tcg_gen_movcond_i32(TCG_COND_GE, dest, tmp, zero,
|
|
frn, frm);
|
|
tcg_temp_free_i32(tmp);
|
|
break;
|
|
case 3: /* gt: !Z && N == V */
|
|
tcg_gen_movcond_i32(TCG_COND_NE, dest, cpu_ZF, zero,
|
|
frn, frm);
|
|
tmp = tcg_temp_new_i32();
|
|
tcg_gen_xor_i32(tmp, cpu_VF, cpu_NF);
|
|
tcg_gen_movcond_i32(TCG_COND_GE, dest, tmp, zero,
|
|
dest, frm);
|
|
tcg_temp_free_i32(tmp);
|
|
break;
|
|
}
|
|
neon_store_reg32(dest, rd);
|
|
tcg_temp_free_i32(frn);
|
|
tcg_temp_free_i32(frm);
|
|
tcg_temp_free_i32(dest);
|
|
|
|
tcg_temp_free_i32(zero);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool trans_VMINMAXNM(DisasContext *s, arg_VMINMAXNM *a)
|
|
{
|
|
uint32_t rd, rn, rm;
|
|
bool dp = a->dp;
|
|
bool vmin = a->op;
|
|
TCGv_ptr fpst;
|
|
|
|
if (!dc_isar_feature(aa32_vminmaxnm, s)) {
|
|
return false;
|
|
}
|
|
|
|
/* UNDEF accesses to D16-D31 if they don't exist */
|
|
if (dp && !dc_isar_feature(aa32_fp_d32, s) &&
|
|
((a->vm | a->vn | a->vd) & 0x10)) {
|
|
return false;
|
|
}
|
|
rd = a->vd;
|
|
rn = a->vn;
|
|
rm = a->vm;
|
|
|
|
if (!vfp_access_check(s)) {
|
|
return true;
|
|
}
|
|
|
|
fpst = get_fpstatus_ptr(0);
|
|
|
|
if (dp) {
|
|
TCGv_i64 frn, frm, dest;
|
|
|
|
frn = tcg_temp_new_i64();
|
|
frm = tcg_temp_new_i64();
|
|
dest = tcg_temp_new_i64();
|
|
|
|
neon_load_reg64(frn, rn);
|
|
neon_load_reg64(frm, rm);
|
|
if (vmin) {
|
|
gen_helper_vfp_minnumd(dest, frn, frm, fpst);
|
|
} else {
|
|
gen_helper_vfp_maxnumd(dest, frn, frm, fpst);
|
|
}
|
|
neon_store_reg64(dest, rd);
|
|
tcg_temp_free_i64(frn);
|
|
tcg_temp_free_i64(frm);
|
|
tcg_temp_free_i64(dest);
|
|
} else {
|
|
TCGv_i32 frn, frm, dest;
|
|
|
|
frn = tcg_temp_new_i32();
|
|
frm = tcg_temp_new_i32();
|
|
dest = tcg_temp_new_i32();
|
|
|
|
neon_load_reg32(frn, rn);
|
|
neon_load_reg32(frm, rm);
|
|
if (vmin) {
|
|
gen_helper_vfp_minnums(dest, frn, frm, fpst);
|
|
} else {
|
|
gen_helper_vfp_maxnums(dest, frn, frm, fpst);
|
|
}
|
|
neon_store_reg32(dest, rd);
|
|
tcg_temp_free_i32(frn);
|
|
tcg_temp_free_i32(frm);
|
|
tcg_temp_free_i32(dest);
|
|
}
|
|
|
|
tcg_temp_free_ptr(fpst);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Table for converting the most common AArch32 encoding of
|
|
* rounding mode to arm_fprounding order (which matches the
|
|
* common AArch64 order); see ARM ARM pseudocode FPDecodeRM().
|
|
*/
|
|
static const uint8_t fp_decode_rm[] = {
|
|
FPROUNDING_TIEAWAY,
|
|
FPROUNDING_TIEEVEN,
|
|
FPROUNDING_POSINF,
|
|
FPROUNDING_NEGINF,
|
|
};
|
|
|
|
static bool trans_VRINT(DisasContext *s, arg_VRINT *a)
|
|
{
|
|
uint32_t rd, rm;
|
|
bool dp = a->dp;
|
|
TCGv_ptr fpst;
|
|
TCGv_i32 tcg_rmode;
|
|
int rounding = fp_decode_rm[a->rm];
|
|
|
|
if (!dc_isar_feature(aa32_vrint, s)) {
|
|
return false;
|
|
}
|
|
|
|
/* UNDEF accesses to D16-D31 if they don't exist */
|
|
if (dp && !dc_isar_feature(aa32_fp_d32, s) &&
|
|
((a->vm | a->vd) & 0x10)) {
|
|
return false;
|
|
}
|
|
rd = a->vd;
|
|
rm = a->vm;
|
|
|
|
if (!vfp_access_check(s)) {
|
|
return true;
|
|
}
|
|
|
|
fpst = get_fpstatus_ptr(0);
|
|
|
|
tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rounding));
|
|
gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
|
|
|
|
if (dp) {
|
|
TCGv_i64 tcg_op;
|
|
TCGv_i64 tcg_res;
|
|
tcg_op = tcg_temp_new_i64();
|
|
tcg_res = tcg_temp_new_i64();
|
|
neon_load_reg64(tcg_op, rm);
|
|
gen_helper_rintd(tcg_res, tcg_op, fpst);
|
|
neon_store_reg64(tcg_res, rd);
|
|
tcg_temp_free_i64(tcg_op);
|
|
tcg_temp_free_i64(tcg_res);
|
|
} else {
|
|
TCGv_i32 tcg_op;
|
|
TCGv_i32 tcg_res;
|
|
tcg_op = tcg_temp_new_i32();
|
|
tcg_res = tcg_temp_new_i32();
|
|
neon_load_reg32(tcg_op, rm);
|
|
gen_helper_rints(tcg_res, tcg_op, fpst);
|
|
neon_store_reg32(tcg_res, rd);
|
|
tcg_temp_free_i32(tcg_op);
|
|
tcg_temp_free_i32(tcg_res);
|
|
}
|
|
|
|
gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
|
|
tcg_temp_free_i32(tcg_rmode);
|
|
|
|
tcg_temp_free_ptr(fpst);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_VCVT(DisasContext *s, arg_VCVT *a)
|
|
{
|
|
uint32_t rd, rm;
|
|
bool dp = a->dp;
|
|
TCGv_ptr fpst;
|
|
TCGv_i32 tcg_rmode, tcg_shift;
|
|
int rounding = fp_decode_rm[a->rm];
|
|
bool is_signed = a->op;
|
|
|
|
if (!dc_isar_feature(aa32_vcvt_dr, s)) {
|
|
return false;
|
|
}
|
|
|
|
/* UNDEF accesses to D16-D31 if they don't exist */
|
|
if (dp && !dc_isar_feature(aa32_fp_d32, s) && (a->vm & 0x10)) {
|
|
return false;
|
|
}
|
|
rd = a->vd;
|
|
rm = a->vm;
|
|
|
|
if (!vfp_access_check(s)) {
|
|
return true;
|
|
}
|
|
|
|
fpst = get_fpstatus_ptr(0);
|
|
|
|
tcg_shift = tcg_const_i32(0);
|
|
|
|
tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rounding));
|
|
gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
|
|
|
|
if (dp) {
|
|
TCGv_i64 tcg_double, tcg_res;
|
|
TCGv_i32 tcg_tmp;
|
|
tcg_double = tcg_temp_new_i64();
|
|
tcg_res = tcg_temp_new_i64();
|
|
tcg_tmp = tcg_temp_new_i32();
|
|
neon_load_reg64(tcg_double, rm);
|
|
if (is_signed) {
|
|
gen_helper_vfp_tosld(tcg_res, tcg_double, tcg_shift, fpst);
|
|
} else {
|
|
gen_helper_vfp_tould(tcg_res, tcg_double, tcg_shift, fpst);
|
|
}
|
|
tcg_gen_extrl_i64_i32(tcg_tmp, tcg_res);
|
|
neon_store_reg32(tcg_tmp, rd);
|
|
tcg_temp_free_i32(tcg_tmp);
|
|
tcg_temp_free_i64(tcg_res);
|
|
tcg_temp_free_i64(tcg_double);
|
|
} else {
|
|
TCGv_i32 tcg_single, tcg_res;
|
|
tcg_single = tcg_temp_new_i32();
|
|
tcg_res = tcg_temp_new_i32();
|
|
neon_load_reg32(tcg_single, rm);
|
|
if (is_signed) {
|
|
gen_helper_vfp_tosls(tcg_res, tcg_single, tcg_shift, fpst);
|
|
} else {
|
|
gen_helper_vfp_touls(tcg_res, tcg_single, tcg_shift, fpst);
|
|
}
|
|
neon_store_reg32(tcg_res, rd);
|
|
tcg_temp_free_i32(tcg_res);
|
|
tcg_temp_free_i32(tcg_single);
|
|
}
|
|
|
|
gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
|
|
tcg_temp_free_i32(tcg_rmode);
|
|
|
|
tcg_temp_free_i32(tcg_shift);
|
|
|
|
tcg_temp_free_ptr(fpst);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool trans_VMOV_to_gp(DisasContext *s, arg_VMOV_to_gp *a)
|
|
{
|
|
/* VMOV scalar to general purpose register */
|
|
TCGv_i32 tmp;
|
|
int pass;
|
|
uint32_t offset;
|
|
|
|
/* UNDEF accesses to D16-D31 if they don't exist */
|
|
if (!dc_isar_feature(aa32_fp_d32, s) && (a->vn & 0x10)) {
|
|
return false;
|
|
}
|
|
|
|
offset = a->index << a->size;
|
|
pass = extract32(offset, 2, 1);
|
|
offset = extract32(offset, 0, 2) * 8;
|
|
|
|
if (a->size != 2 && !arm_dc_feature(s, ARM_FEATURE_NEON)) {
|
|
return false;
|
|
}
|
|
|
|
if (!vfp_access_check(s)) {
|
|
return true;
|
|
}
|
|
|
|
tmp = neon_load_reg(a->vn, pass);
|
|
switch (a->size) {
|
|
case 0:
|
|
if (offset) {
|
|
tcg_gen_shri_i32(tmp, tmp, offset);
|
|
}
|
|
if (a->u) {
|
|
gen_uxtb(tmp);
|
|
} else {
|
|
gen_sxtb(tmp);
|
|
}
|
|
break;
|
|
case 1:
|
|
if (a->u) {
|
|
if (offset) {
|
|
tcg_gen_shri_i32(tmp, tmp, 16);
|
|
} else {
|
|
gen_uxth(tmp);
|
|
}
|
|
} else {
|
|
if (offset) {
|
|
tcg_gen_sari_i32(tmp, tmp, 16);
|
|
} else {
|
|
gen_sxth(tmp);
|
|
}
|
|
}
|
|
break;
|
|
case 2:
|
|
break;
|
|
}
|
|
store_reg(s, a->rt, tmp);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool trans_VMOV_from_gp(DisasContext *s, arg_VMOV_from_gp *a)
|
|
{
|
|
/* VMOV general purpose register to scalar */
|
|
TCGv_i32 tmp, tmp2;
|
|
int pass;
|
|
uint32_t offset;
|
|
|
|
/* UNDEF accesses to D16-D31 if they don't exist */
|
|
if (!dc_isar_feature(aa32_fp_d32, s) && (a->vn & 0x10)) {
|
|
return false;
|
|
}
|
|
|
|
offset = a->index << a->size;
|
|
pass = extract32(offset, 2, 1);
|
|
offset = extract32(offset, 0, 2) * 8;
|
|
|
|
if (a->size != 2 && !arm_dc_feature(s, ARM_FEATURE_NEON)) {
|
|
return false;
|
|
}
|
|
|
|
if (!vfp_access_check(s)) {
|
|
return true;
|
|
}
|
|
|
|
tmp = load_reg(s, a->rt);
|
|
switch (a->size) {
|
|
case 0:
|
|
tmp2 = neon_load_reg(a->vn, pass);
|
|
tcg_gen_deposit_i32(tmp, tmp2, tmp, offset, 8);
|
|
tcg_temp_free_i32(tmp2);
|
|
break;
|
|
case 1:
|
|
tmp2 = neon_load_reg(a->vn, pass);
|
|
tcg_gen_deposit_i32(tmp, tmp2, tmp, offset, 16);
|
|
tcg_temp_free_i32(tmp2);
|
|
break;
|
|
case 2:
|
|
break;
|
|
}
|
|
neon_store_reg(a->vn, pass, tmp);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool trans_VDUP(DisasContext *s, arg_VDUP *a)
|
|
{
|
|
/* VDUP (general purpose register) */
|
|
TCGv_i32 tmp;
|
|
int size, vec_size;
|
|
|
|
if (!arm_dc_feature(s, ARM_FEATURE_NEON)) {
|
|
return false;
|
|
}
|
|
|
|
/* UNDEF accesses to D16-D31 if they don't exist */
|
|
if (!dc_isar_feature(aa32_fp_d32, s) && (a->vn & 0x10)) {
|
|
return false;
|
|
}
|
|
|
|
if (a->b && a->e) {
|
|
return false;
|
|
}
|
|
|
|
if (a->q && (a->vn & 1)) {
|
|
return false;
|
|
}
|
|
|
|
vec_size = a->q ? 16 : 8;
|
|
if (a->b) {
|
|
size = 0;
|
|
} else if (a->e) {
|
|
size = 1;
|
|
} else {
|
|
size = 2;
|
|
}
|
|
|
|
if (!vfp_access_check(s)) {
|
|
return true;
|
|
}
|
|
|
|
tmp = load_reg(s, a->rt);
|
|
tcg_gen_gvec_dup_i32(size, neon_reg_offset(a->vn, 0),
|
|
vec_size, vec_size, tmp);
|
|
tcg_temp_free_i32(tmp);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool trans_VMSR_VMRS(DisasContext *s, arg_VMSR_VMRS *a)
|
|
{
|
|
TCGv_i32 tmp;
|
|
bool ignore_vfp_enabled = false;
|
|
|
|
if (arm_dc_feature(s, ARM_FEATURE_M)) {
|
|
/*
|
|
* The only M-profile VFP vmrs/vmsr sysreg is FPSCR.
|
|
* Writes to R15 are UNPREDICTABLE; we choose to undef.
|
|
*/
|
|
if (a->rt == 15 || a->reg != ARM_VFP_FPSCR) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
switch (a->reg) {
|
|
case ARM_VFP_FPSID:
|
|
/*
|
|
* VFPv2 allows access to FPSID from userspace; VFPv3 restricts
|
|
* all ID registers to privileged access only.
|
|
*/
|
|
if (IS_USER(s) && arm_dc_feature(s, ARM_FEATURE_VFP3)) {
|
|
return false;
|
|
}
|
|
ignore_vfp_enabled = true;
|
|
break;
|
|
case ARM_VFP_MVFR0:
|
|
case ARM_VFP_MVFR1:
|
|
if (IS_USER(s) || !arm_dc_feature(s, ARM_FEATURE_MVFR)) {
|
|
return false;
|
|
}
|
|
ignore_vfp_enabled = true;
|
|
break;
|
|
case ARM_VFP_MVFR2:
|
|
if (IS_USER(s) || !arm_dc_feature(s, ARM_FEATURE_V8)) {
|
|
return false;
|
|
}
|
|
ignore_vfp_enabled = true;
|
|
break;
|
|
case ARM_VFP_FPSCR:
|
|
break;
|
|
case ARM_VFP_FPEXC:
|
|
if (IS_USER(s)) {
|
|
return false;
|
|
}
|
|
ignore_vfp_enabled = true;
|
|
break;
|
|
case ARM_VFP_FPINST:
|
|
case ARM_VFP_FPINST2:
|
|
/* Not present in VFPv3 */
|
|
if (IS_USER(s) || arm_dc_feature(s, ARM_FEATURE_VFP3)) {
|
|
return false;
|
|
}
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
if (!full_vfp_access_check(s, ignore_vfp_enabled)) {
|
|
return true;
|
|
}
|
|
|
|
if (a->l) {
|
|
/* VMRS, move VFP special register to gp register */
|
|
switch (a->reg) {
|
|
case ARM_VFP_FPSID:
|
|
case ARM_VFP_FPEXC:
|
|
case ARM_VFP_FPINST:
|
|
case ARM_VFP_FPINST2:
|
|
case ARM_VFP_MVFR0:
|
|
case ARM_VFP_MVFR1:
|
|
case ARM_VFP_MVFR2:
|
|
tmp = load_cpu_field(vfp.xregs[a->reg]);
|
|
break;
|
|
case ARM_VFP_FPSCR:
|
|
if (a->rt == 15) {
|
|
tmp = load_cpu_field(vfp.xregs[ARM_VFP_FPSCR]);
|
|
tcg_gen_andi_i32(tmp, tmp, 0xf0000000);
|
|
} else {
|
|
tmp = tcg_temp_new_i32();
|
|
gen_helper_vfp_get_fpscr(tmp, cpu_env);
|
|
}
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
if (a->rt == 15) {
|
|
/* Set the 4 flag bits in the CPSR. */
|
|
gen_set_nzcv(tmp);
|
|
tcg_temp_free_i32(tmp);
|
|
} else {
|
|
store_reg(s, a->rt, tmp);
|
|
}
|
|
} else {
|
|
/* VMSR, move gp register to VFP special register */
|
|
switch (a->reg) {
|
|
case ARM_VFP_FPSID:
|
|
case ARM_VFP_MVFR0:
|
|
case ARM_VFP_MVFR1:
|
|
case ARM_VFP_MVFR2:
|
|
/* Writes are ignored. */
|
|
break;
|
|
case ARM_VFP_FPSCR:
|
|
tmp = load_reg(s, a->rt);
|
|
gen_helper_vfp_set_fpscr(cpu_env, tmp);
|
|
tcg_temp_free_i32(tmp);
|
|
gen_lookup_tb(s);
|
|
break;
|
|
case ARM_VFP_FPEXC:
|
|
/*
|
|
* TODO: VFP subarchitecture support.
|
|
* For now, keep the EN bit only
|
|
*/
|
|
tmp = load_reg(s, a->rt);
|
|
tcg_gen_andi_i32(tmp, tmp, 1 << 30);
|
|
store_cpu_field(tmp, vfp.xregs[a->reg]);
|
|
gen_lookup_tb(s);
|
|
break;
|
|
case ARM_VFP_FPINST:
|
|
case ARM_VFP_FPINST2:
|
|
tmp = load_reg(s, a->rt);
|
|
store_cpu_field(tmp, vfp.xregs[a->reg]);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool trans_VMOV_single(DisasContext *s, arg_VMOV_single *a)
|
|
{
|
|
TCGv_i32 tmp;
|
|
|
|
if (!vfp_access_check(s)) {
|
|
return true;
|
|
}
|
|
|
|
if (a->l) {
|
|
/* VFP to general purpose register */
|
|
tmp = tcg_temp_new_i32();
|
|
neon_load_reg32(tmp, a->vn);
|
|
if (a->rt == 15) {
|
|
/* Set the 4 flag bits in the CPSR. */
|
|
gen_set_nzcv(tmp);
|
|
tcg_temp_free_i32(tmp);
|
|
} else {
|
|
store_reg(s, a->rt, tmp);
|
|
}
|
|
} else {
|
|
/* general purpose register to VFP */
|
|
tmp = load_reg(s, a->rt);
|
|
neon_store_reg32(tmp, a->vn);
|
|
tcg_temp_free_i32(tmp);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool trans_VMOV_64_sp(DisasContext *s, arg_VMOV_64_sp *a)
|
|
{
|
|
TCGv_i32 tmp;
|
|
|
|
/*
|
|
* VMOV between two general-purpose registers and two single precision
|
|
* floating point registers
|
|
*/
|
|
if (!vfp_access_check(s)) {
|
|
return true;
|
|
}
|
|
|
|
if (a->op) {
|
|
/* fpreg to gpreg */
|
|
tmp = tcg_temp_new_i32();
|
|
neon_load_reg32(tmp, a->vm);
|
|
store_reg(s, a->rt, tmp);
|
|
tmp = tcg_temp_new_i32();
|
|
neon_load_reg32(tmp, a->vm + 1);
|
|
store_reg(s, a->rt2, tmp);
|
|
} else {
|
|
/* gpreg to fpreg */
|
|
tmp = load_reg(s, a->rt);
|
|
neon_store_reg32(tmp, a->vm);
|
|
tmp = load_reg(s, a->rt2);
|
|
neon_store_reg32(tmp, a->vm + 1);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool trans_VMOV_64_dp(DisasContext *s, arg_VMOV_64_sp *a)
|
|
{
|
|
TCGv_i32 tmp;
|
|
|
|
/*
|
|
* VMOV between two general-purpose registers and one double precision
|
|
* floating point register
|
|
*/
|
|
|
|
/* UNDEF accesses to D16-D31 if they don't exist */
|
|
if (!dc_isar_feature(aa32_fp_d32, s) && (a->vm & 0x10)) {
|
|
return false;
|
|
}
|
|
|
|
if (!vfp_access_check(s)) {
|
|
return true;
|
|
}
|
|
|
|
if (a->op) {
|
|
/* fpreg to gpreg */
|
|
tmp = tcg_temp_new_i32();
|
|
neon_load_reg32(tmp, a->vm * 2);
|
|
store_reg(s, a->rt, tmp);
|
|
tmp = tcg_temp_new_i32();
|
|
neon_load_reg32(tmp, a->vm * 2 + 1);
|
|
store_reg(s, a->rt2, tmp);
|
|
} else {
|
|
/* gpreg to fpreg */
|
|
tmp = load_reg(s, a->rt);
|
|
neon_store_reg32(tmp, a->vm * 2);
|
|
tcg_temp_free_i32(tmp);
|
|
tmp = load_reg(s, a->rt2);
|
|
neon_store_reg32(tmp, a->vm * 2 + 1);
|
|
tcg_temp_free_i32(tmp);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool trans_VLDR_VSTR_sp(DisasContext *s, arg_VLDR_VSTR_sp *a)
|
|
{
|
|
uint32_t offset;
|
|
TCGv_i32 addr, tmp;
|
|
|
|
if (!vfp_access_check(s)) {
|
|
return true;
|
|
}
|
|
|
|
offset = a->imm << 2;
|
|
if (!a->u) {
|
|
offset = -offset;
|
|
}
|
|
|
|
if (s->thumb && a->rn == 15) {
|
|
/* This is actually UNPREDICTABLE */
|
|
addr = tcg_temp_new_i32();
|
|
tcg_gen_movi_i32(addr, s->pc & ~2);
|
|
} else {
|
|
addr = load_reg(s, a->rn);
|
|
}
|
|
tcg_gen_addi_i32(addr, addr, offset);
|
|
tmp = tcg_temp_new_i32();
|
|
if (a->l) {
|
|
gen_aa32_ld32u(s, tmp, addr, get_mem_index(s));
|
|
neon_store_reg32(tmp, a->vd);
|
|
} else {
|
|
neon_load_reg32(tmp, a->vd);
|
|
gen_aa32_st32(s, tmp, addr, get_mem_index(s));
|
|
}
|
|
tcg_temp_free_i32(tmp);
|
|
tcg_temp_free_i32(addr);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool trans_VLDR_VSTR_dp(DisasContext *s, arg_VLDR_VSTR_sp *a)
|
|
{
|
|
uint32_t offset;
|
|
TCGv_i32 addr;
|
|
TCGv_i64 tmp;
|
|
|
|
/* UNDEF accesses to D16-D31 if they don't exist */
|
|
if (!dc_isar_feature(aa32_fp_d32, s) && (a->vd & 0x10)) {
|
|
return false;
|
|
}
|
|
|
|
if (!vfp_access_check(s)) {
|
|
return true;
|
|
}
|
|
|
|
offset = a->imm << 2;
|
|
if (!a->u) {
|
|
offset = -offset;
|
|
}
|
|
|
|
if (s->thumb && a->rn == 15) {
|
|
/* This is actually UNPREDICTABLE */
|
|
addr = tcg_temp_new_i32();
|
|
tcg_gen_movi_i32(addr, s->pc & ~2);
|
|
} else {
|
|
addr = load_reg(s, a->rn);
|
|
}
|
|
tcg_gen_addi_i32(addr, addr, offset);
|
|
tmp = tcg_temp_new_i64();
|
|
if (a->l) {
|
|
gen_aa32_ld64(s, tmp, addr, get_mem_index(s));
|
|
neon_store_reg64(tmp, a->vd);
|
|
} else {
|
|
neon_load_reg64(tmp, a->vd);
|
|
gen_aa32_st64(s, tmp, addr, get_mem_index(s));
|
|
}
|
|
tcg_temp_free_i64(tmp);
|
|
tcg_temp_free_i32(addr);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool trans_VLDM_VSTM_sp(DisasContext *s, arg_VLDM_VSTM_sp *a)
|
|
{
|
|
uint32_t offset;
|
|
TCGv_i32 addr, tmp;
|
|
int i, n;
|
|
|
|
n = a->imm;
|
|
|
|
if (n == 0 || (a->vd + n) > 32) {
|
|
/*
|
|
* UNPREDICTABLE cases for bad immediates: we choose to
|
|
* UNDEF to avoid generating huge numbers of TCG ops
|
|
*/
|
|
return false;
|
|
}
|
|
if (a->rn == 15 && a->w) {
|
|
/* writeback to PC is UNPREDICTABLE, we choose to UNDEF */
|
|
return false;
|
|
}
|
|
|
|
if (!vfp_access_check(s)) {
|
|
return true;
|
|
}
|
|
|
|
if (s->thumb && a->rn == 15) {
|
|
/* This is actually UNPREDICTABLE */
|
|
addr = tcg_temp_new_i32();
|
|
tcg_gen_movi_i32(addr, s->pc & ~2);
|
|
} else {
|
|
addr = load_reg(s, a->rn);
|
|
}
|
|
if (a->p) {
|
|
/* pre-decrement */
|
|
tcg_gen_addi_i32(addr, addr, -(a->imm << 2));
|
|
}
|
|
|
|
if (s->v8m_stackcheck && a->rn == 13 && a->w) {
|
|
/*
|
|
* Here 'addr' is the lowest address we will store to,
|
|
* and is either the old SP (if post-increment) or
|
|
* the new SP (if pre-decrement). For post-increment
|
|
* where the old value is below the limit and the new
|
|
* value is above, it is UNKNOWN whether the limit check
|
|
* triggers; we choose to trigger.
|
|
*/
|
|
gen_helper_v8m_stackcheck(cpu_env, addr);
|
|
}
|
|
|
|
offset = 4;
|
|
tmp = tcg_temp_new_i32();
|
|
for (i = 0; i < n; i++) {
|
|
if (a->l) {
|
|
/* load */
|
|
gen_aa32_ld32u(s, tmp, addr, get_mem_index(s));
|
|
neon_store_reg32(tmp, a->vd + i);
|
|
} else {
|
|
/* store */
|
|
neon_load_reg32(tmp, a->vd + i);
|
|
gen_aa32_st32(s, tmp, addr, get_mem_index(s));
|
|
}
|
|
tcg_gen_addi_i32(addr, addr, offset);
|
|
}
|
|
tcg_temp_free_i32(tmp);
|
|
if (a->w) {
|
|
/* writeback */
|
|
if (a->p) {
|
|
offset = -offset * n;
|
|
tcg_gen_addi_i32(addr, addr, offset);
|
|
}
|
|
store_reg(s, a->rn, addr);
|
|
} else {
|
|
tcg_temp_free_i32(addr);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool trans_VLDM_VSTM_dp(DisasContext *s, arg_VLDM_VSTM_dp *a)
|
|
{
|
|
uint32_t offset;
|
|
TCGv_i32 addr;
|
|
TCGv_i64 tmp;
|
|
int i, n;
|
|
|
|
n = a->imm >> 1;
|
|
|
|
if (n == 0 || (a->vd + n) > 32 || n > 16) {
|
|
/*
|
|
* UNPREDICTABLE cases for bad immediates: we choose to
|
|
* UNDEF to avoid generating huge numbers of TCG ops
|
|
*/
|
|
return false;
|
|
}
|
|
if (a->rn == 15 && a->w) {
|
|
/* writeback to PC is UNPREDICTABLE, we choose to UNDEF */
|
|
return false;
|
|
}
|
|
|
|
/* UNDEF accesses to D16-D31 if they don't exist */
|
|
if (!dc_isar_feature(aa32_fp_d32, s) && (a->vd + n) > 16) {
|
|
return false;
|
|
}
|
|
|
|
if (!vfp_access_check(s)) {
|
|
return true;
|
|
}
|
|
|
|
if (s->thumb && a->rn == 15) {
|
|
/* This is actually UNPREDICTABLE */
|
|
addr = tcg_temp_new_i32();
|
|
tcg_gen_movi_i32(addr, s->pc & ~2);
|
|
} else {
|
|
addr = load_reg(s, a->rn);
|
|
}
|
|
if (a->p) {
|
|
/* pre-decrement */
|
|
tcg_gen_addi_i32(addr, addr, -(a->imm << 2));
|
|
}
|
|
|
|
if (s->v8m_stackcheck && a->rn == 13 && a->w) {
|
|
/*
|
|
* Here 'addr' is the lowest address we will store to,
|
|
* and is either the old SP (if post-increment) or
|
|
* the new SP (if pre-decrement). For post-increment
|
|
* where the old value is below the limit and the new
|
|
* value is above, it is UNKNOWN whether the limit check
|
|
* triggers; we choose to trigger.
|
|
*/
|
|
gen_helper_v8m_stackcheck(cpu_env, addr);
|
|
}
|
|
|
|
offset = 8;
|
|
tmp = tcg_temp_new_i64();
|
|
for (i = 0; i < n; i++) {
|
|
if (a->l) {
|
|
/* load */
|
|
gen_aa32_ld64(s, tmp, addr, get_mem_index(s));
|
|
neon_store_reg64(tmp, a->vd + i);
|
|
} else {
|
|
/* store */
|
|
neon_load_reg64(tmp, a->vd + i);
|
|
gen_aa32_st64(s, tmp, addr, get_mem_index(s));
|
|
}
|
|
tcg_gen_addi_i32(addr, addr, offset);
|
|
}
|
|
tcg_temp_free_i64(tmp);
|
|
if (a->w) {
|
|
/* writeback */
|
|
if (a->p) {
|
|
offset = -offset * n;
|
|
} else if (a->imm & 1) {
|
|
offset = 4;
|
|
} else {
|
|
offset = 0;
|
|
}
|
|
|
|
if (offset != 0) {
|
|
tcg_gen_addi_i32(addr, addr, offset);
|
|
}
|
|
store_reg(s, a->rn, addr);
|
|
} else {
|
|
tcg_temp_free_i32(addr);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Types for callbacks for do_vfp_3op_sp() and do_vfp_3op_dp().
|
|
* The callback should emit code to write a value to vd. If
|
|
* do_vfp_3op_{sp,dp}() was passed reads_vd then the TCGv vd
|
|
* will contain the old value of the relevant VFP register;
|
|
* otherwise it must be written to only.
|
|
*/
|
|
typedef void VFPGen3OpSPFn(TCGv_i32 vd,
|
|
TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst);
|
|
typedef void VFPGen3OpDPFn(TCGv_i64 vd,
|
|
TCGv_i64 vn, TCGv_i64 vm, TCGv_ptr fpst);
|
|
|
|
/*
|
|
* Types for callbacks for do_vfp_2op_sp() and do_vfp_2op_dp().
|
|
* The callback should emit code to write a value to vd (which
|
|
* should be written to only).
|
|
*/
|
|
typedef void VFPGen2OpSPFn(TCGv_i32 vd, TCGv_i32 vm);
|
|
typedef void VFPGen2OpDPFn(TCGv_i64 vd, TCGv_i64 vm);
|
|
|
|
/*
|
|
* Perform a 3-operand VFP data processing instruction. fn is the
|
|
* callback to do the actual operation; this function deals with the
|
|
* code to handle looping around for VFP vector processing.
|
|
*/
|
|
static bool do_vfp_3op_sp(DisasContext *s, VFPGen3OpSPFn *fn,
|
|
int vd, int vn, int vm, bool reads_vd)
|
|
{
|
|
uint32_t delta_m = 0;
|
|
uint32_t delta_d = 0;
|
|
uint32_t bank_mask = 0;
|
|
int veclen = s->vec_len;
|
|
TCGv_i32 f0, f1, fd;
|
|
TCGv_ptr fpst;
|
|
|
|
if (!dc_isar_feature(aa32_fpshvec, s) &&
|
|
(veclen != 0 || s->vec_stride != 0)) {
|
|
return false;
|
|
}
|
|
|
|
if (!vfp_access_check(s)) {
|
|
return true;
|
|
}
|
|
|
|
if (veclen > 0) {
|
|
bank_mask = 0x18;
|
|
|
|
/* Figure out what type of vector operation this is. */
|
|
if ((vd & bank_mask) == 0) {
|
|
/* scalar */
|
|
veclen = 0;
|
|
} else {
|
|
delta_d = s->vec_stride + 1;
|
|
|
|
if ((vm & bank_mask) == 0) {
|
|
/* mixed scalar/vector */
|
|
delta_m = 0;
|
|
} else {
|
|
/* vector */
|
|
delta_m = delta_d;
|
|
}
|
|
}
|
|
}
|
|
|
|
f0 = tcg_temp_new_i32();
|
|
f1 = tcg_temp_new_i32();
|
|
fd = tcg_temp_new_i32();
|
|
fpst = get_fpstatus_ptr(0);
|
|
|
|
neon_load_reg32(f0, vn);
|
|
neon_load_reg32(f1, vm);
|
|
|
|
for (;;) {
|
|
if (reads_vd) {
|
|
neon_load_reg32(fd, vd);
|
|
}
|
|
fn(fd, f0, f1, fpst);
|
|
neon_store_reg32(fd, vd);
|
|
|
|
if (veclen == 0) {
|
|
break;
|
|
}
|
|
|
|
/* Set up the operands for the next iteration */
|
|
veclen--;
|
|
vd = ((vd + delta_d) & (bank_mask - 1)) | (vd & bank_mask);
|
|
vn = ((vn + delta_d) & (bank_mask - 1)) | (vn & bank_mask);
|
|
neon_load_reg32(f0, vn);
|
|
if (delta_m) {
|
|
vm = ((vm + delta_m) & (bank_mask - 1)) | (vm & bank_mask);
|
|
neon_load_reg32(f1, vm);
|
|
}
|
|
}
|
|
|
|
tcg_temp_free_i32(f0);
|
|
tcg_temp_free_i32(f1);
|
|
tcg_temp_free_i32(fd);
|
|
tcg_temp_free_ptr(fpst);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool do_vfp_3op_dp(DisasContext *s, VFPGen3OpDPFn *fn,
|
|
int vd, int vn, int vm, bool reads_vd)
|
|
{
|
|
uint32_t delta_m = 0;
|
|
uint32_t delta_d = 0;
|
|
uint32_t bank_mask = 0;
|
|
int veclen = s->vec_len;
|
|
TCGv_i64 f0, f1, fd;
|
|
TCGv_ptr fpst;
|
|
|
|
/* UNDEF accesses to D16-D31 if they don't exist */
|
|
if (!dc_isar_feature(aa32_fp_d32, s) && ((vd | vn | vm) & 0x10)) {
|
|
return false;
|
|
}
|
|
|
|
if (!dc_isar_feature(aa32_fpshvec, s) &&
|
|
(veclen != 0 || s->vec_stride != 0)) {
|
|
return false;
|
|
}
|
|
|
|
if (!vfp_access_check(s)) {
|
|
return true;
|
|
}
|
|
|
|
if (veclen > 0) {
|
|
bank_mask = 0xc;
|
|
|
|
/* Figure out what type of vector operation this is. */
|
|
if ((vd & bank_mask) == 0) {
|
|
/* scalar */
|
|
veclen = 0;
|
|
} else {
|
|
delta_d = (s->vec_stride >> 1) + 1;
|
|
|
|
if ((vm & bank_mask) == 0) {
|
|
/* mixed scalar/vector */
|
|
delta_m = 0;
|
|
} else {
|
|
/* vector */
|
|
delta_m = delta_d;
|
|
}
|
|
}
|
|
}
|
|
|
|
f0 = tcg_temp_new_i64();
|
|
f1 = tcg_temp_new_i64();
|
|
fd = tcg_temp_new_i64();
|
|
fpst = get_fpstatus_ptr(0);
|
|
|
|
neon_load_reg64(f0, vn);
|
|
neon_load_reg64(f1, vm);
|
|
|
|
for (;;) {
|
|
if (reads_vd) {
|
|
neon_load_reg64(fd, vd);
|
|
}
|
|
fn(fd, f0, f1, fpst);
|
|
neon_store_reg64(fd, vd);
|
|
|
|
if (veclen == 0) {
|
|
break;
|
|
}
|
|
/* Set up the operands for the next iteration */
|
|
veclen--;
|
|
vd = ((vd + delta_d) & (bank_mask - 1)) | (vd & bank_mask);
|
|
vn = ((vn + delta_d) & (bank_mask - 1)) | (vn & bank_mask);
|
|
neon_load_reg64(f0, vn);
|
|
if (delta_m) {
|
|
vm = ((vm + delta_m) & (bank_mask - 1)) | (vm & bank_mask);
|
|
neon_load_reg64(f1, vm);
|
|
}
|
|
}
|
|
|
|
tcg_temp_free_i64(f0);
|
|
tcg_temp_free_i64(f1);
|
|
tcg_temp_free_i64(fd);
|
|
tcg_temp_free_ptr(fpst);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool do_vfp_2op_sp(DisasContext *s, VFPGen2OpSPFn *fn, int vd, int vm)
|
|
{
|
|
uint32_t delta_m = 0;
|
|
uint32_t delta_d = 0;
|
|
uint32_t bank_mask = 0;
|
|
int veclen = s->vec_len;
|
|
TCGv_i32 f0, fd;
|
|
|
|
if (!dc_isar_feature(aa32_fpshvec, s) &&
|
|
(veclen != 0 || s->vec_stride != 0)) {
|
|
return false;
|
|
}
|
|
|
|
if (!vfp_access_check(s)) {
|
|
return true;
|
|
}
|
|
|
|
if (veclen > 0) {
|
|
bank_mask = 0x18;
|
|
|
|
/* Figure out what type of vector operation this is. */
|
|
if ((vd & bank_mask) == 0) {
|
|
/* scalar */
|
|
veclen = 0;
|
|
} else {
|
|
delta_d = s->vec_stride + 1;
|
|
|
|
if ((vm & bank_mask) == 0) {
|
|
/* mixed scalar/vector */
|
|
delta_m = 0;
|
|
} else {
|
|
/* vector */
|
|
delta_m = delta_d;
|
|
}
|
|
}
|
|
}
|
|
|
|
f0 = tcg_temp_new_i32();
|
|
fd = tcg_temp_new_i32();
|
|
|
|
neon_load_reg32(f0, vm);
|
|
|
|
for (;;) {
|
|
fn(fd, f0);
|
|
neon_store_reg32(fd, vd);
|
|
|
|
if (veclen == 0) {
|
|
break;
|
|
}
|
|
|
|
if (delta_m == 0) {
|
|
/* single source one-many */
|
|
while (veclen--) {
|
|
vd = ((vd + delta_d) & (bank_mask - 1)) | (vd & bank_mask);
|
|
neon_store_reg32(fd, vd);
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Set up the operands for the next iteration */
|
|
veclen--;
|
|
vd = ((vd + delta_d) & (bank_mask - 1)) | (vd & bank_mask);
|
|
vm = ((vm + delta_m) & (bank_mask - 1)) | (vm & bank_mask);
|
|
neon_load_reg32(f0, vm);
|
|
}
|
|
|
|
tcg_temp_free_i32(f0);
|
|
tcg_temp_free_i32(fd);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool do_vfp_2op_dp(DisasContext *s, VFPGen2OpDPFn *fn, int vd, int vm)
|
|
{
|
|
uint32_t delta_m = 0;
|
|
uint32_t delta_d = 0;
|
|
uint32_t bank_mask = 0;
|
|
int veclen = s->vec_len;
|
|
TCGv_i64 f0, fd;
|
|
|
|
/* UNDEF accesses to D16-D31 if they don't exist */
|
|
if (!dc_isar_feature(aa32_fp_d32, s) && ((vd | vm) & 0x10)) {
|
|
return false;
|
|
}
|
|
|
|
if (!dc_isar_feature(aa32_fpshvec, s) &&
|
|
(veclen != 0 || s->vec_stride != 0)) {
|
|
return false;
|
|
}
|
|
|
|
if (!vfp_access_check(s)) {
|
|
return true;
|
|
}
|
|
|
|
if (veclen > 0) {
|
|
bank_mask = 0xc;
|
|
|
|
/* Figure out what type of vector operation this is. */
|
|
if ((vd & bank_mask) == 0) {
|
|
/* scalar */
|
|
veclen = 0;
|
|
} else {
|
|
delta_d = (s->vec_stride >> 1) + 1;
|
|
|
|
if ((vm & bank_mask) == 0) {
|
|
/* mixed scalar/vector */
|
|
delta_m = 0;
|
|
} else {
|
|
/* vector */
|
|
delta_m = delta_d;
|
|
}
|
|
}
|
|
}
|
|
|
|
f0 = tcg_temp_new_i64();
|
|
fd = tcg_temp_new_i64();
|
|
|
|
neon_load_reg64(f0, vm);
|
|
|
|
for (;;) {
|
|
fn(fd, f0);
|
|
neon_store_reg64(fd, vd);
|
|
|
|
if (veclen == 0) {
|
|
break;
|
|
}
|
|
|
|
if (delta_m == 0) {
|
|
/* single source one-many */
|
|
while (veclen--) {
|
|
vd = ((vd + delta_d) & (bank_mask - 1)) | (vd & bank_mask);
|
|
neon_store_reg64(fd, vd);
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Set up the operands for the next iteration */
|
|
veclen--;
|
|
vd = ((vd + delta_d) & (bank_mask - 1)) | (vd & bank_mask);
|
|
vm = ((vm + delta_m) & (bank_mask - 1)) | (vm & bank_mask);
|
|
neon_load_reg64(f0, vm);
|
|
}
|
|
|
|
tcg_temp_free_i64(f0);
|
|
tcg_temp_free_i64(fd);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void gen_VMLA_sp(TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst)
|
|
{
|
|
/* Note that order of inputs to the add matters for NaNs */
|
|
TCGv_i32 tmp = tcg_temp_new_i32();
|
|
|
|
gen_helper_vfp_muls(tmp, vn, vm, fpst);
|
|
gen_helper_vfp_adds(vd, vd, tmp, fpst);
|
|
tcg_temp_free_i32(tmp);
|
|
}
|
|
|
|
static bool trans_VMLA_sp(DisasContext *s, arg_VMLA_sp *a)
|
|
{
|
|
return do_vfp_3op_sp(s, gen_VMLA_sp, a->vd, a->vn, a->vm, true);
|
|
}
|
|
|
|
static void gen_VMLA_dp(TCGv_i64 vd, TCGv_i64 vn, TCGv_i64 vm, TCGv_ptr fpst)
|
|
{
|
|
/* Note that order of inputs to the add matters for NaNs */
|
|
TCGv_i64 tmp = tcg_temp_new_i64();
|
|
|
|
gen_helper_vfp_muld(tmp, vn, vm, fpst);
|
|
gen_helper_vfp_addd(vd, vd, tmp, fpst);
|
|
tcg_temp_free_i64(tmp);
|
|
}
|
|
|
|
static bool trans_VMLA_dp(DisasContext *s, arg_VMLA_sp *a)
|
|
{
|
|
return do_vfp_3op_dp(s, gen_VMLA_dp, a->vd, a->vn, a->vm, true);
|
|
}
|
|
|
|
static void gen_VMLS_sp(TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst)
|
|
{
|
|
/*
|
|
* VMLS: vd = vd + -(vn * vm)
|
|
* Note that order of inputs to the add matters for NaNs.
|
|
*/
|
|
TCGv_i32 tmp = tcg_temp_new_i32();
|
|
|
|
gen_helper_vfp_muls(tmp, vn, vm, fpst);
|
|
gen_helper_vfp_negs(tmp, tmp);
|
|
gen_helper_vfp_adds(vd, vd, tmp, fpst);
|
|
tcg_temp_free_i32(tmp);
|
|
}
|
|
|
|
static bool trans_VMLS_sp(DisasContext *s, arg_VMLS_sp *a)
|
|
{
|
|
return do_vfp_3op_sp(s, gen_VMLS_sp, a->vd, a->vn, a->vm, true);
|
|
}
|
|
|
|
static void gen_VMLS_dp(TCGv_i64 vd, TCGv_i64 vn, TCGv_i64 vm, TCGv_ptr fpst)
|
|
{
|
|
/*
|
|
* VMLS: vd = vd + -(vn * vm)
|
|
* Note that order of inputs to the add matters for NaNs.
|
|
*/
|
|
TCGv_i64 tmp = tcg_temp_new_i64();
|
|
|
|
gen_helper_vfp_muld(tmp, vn, vm, fpst);
|
|
gen_helper_vfp_negd(tmp, tmp);
|
|
gen_helper_vfp_addd(vd, vd, tmp, fpst);
|
|
tcg_temp_free_i64(tmp);
|
|
}
|
|
|
|
static bool trans_VMLS_dp(DisasContext *s, arg_VMLS_sp *a)
|
|
{
|
|
return do_vfp_3op_dp(s, gen_VMLS_dp, a->vd, a->vn, a->vm, true);
|
|
}
|
|
|
|
static void gen_VNMLS_sp(TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst)
|
|
{
|
|
/*
|
|
* VNMLS: -fd + (fn * fm)
|
|
* Note that it isn't valid to replace (-A + B) with (B - A) or similar
|
|
* plausible looking simplifications because this will give wrong results
|
|
* for NaNs.
|
|
*/
|
|
TCGv_i32 tmp = tcg_temp_new_i32();
|
|
|
|
gen_helper_vfp_muls(tmp, vn, vm, fpst);
|
|
gen_helper_vfp_negs(vd, vd);
|
|
gen_helper_vfp_adds(vd, vd, tmp, fpst);
|
|
tcg_temp_free_i32(tmp);
|
|
}
|
|
|
|
static bool trans_VNMLS_sp(DisasContext *s, arg_VNMLS_sp *a)
|
|
{
|
|
return do_vfp_3op_sp(s, gen_VNMLS_sp, a->vd, a->vn, a->vm, true);
|
|
}
|
|
|
|
static void gen_VNMLS_dp(TCGv_i64 vd, TCGv_i64 vn, TCGv_i64 vm, TCGv_ptr fpst)
|
|
{
|
|
/*
|
|
* VNMLS: -fd + (fn * fm)
|
|
* Note that it isn't valid to replace (-A + B) with (B - A) or similar
|
|
* plausible looking simplifications because this will give wrong results
|
|
* for NaNs.
|
|
*/
|
|
TCGv_i64 tmp = tcg_temp_new_i64();
|
|
|
|
gen_helper_vfp_muld(tmp, vn, vm, fpst);
|
|
gen_helper_vfp_negd(vd, vd);
|
|
gen_helper_vfp_addd(vd, vd, tmp, fpst);
|
|
tcg_temp_free_i64(tmp);
|
|
}
|
|
|
|
static bool trans_VNMLS_dp(DisasContext *s, arg_VNMLS_sp *a)
|
|
{
|
|
return do_vfp_3op_dp(s, gen_VNMLS_dp, a->vd, a->vn, a->vm, true);
|
|
}
|
|
|
|
static void gen_VNMLA_sp(TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst)
|
|
{
|
|
/* VNMLA: -fd + -(fn * fm) */
|
|
TCGv_i32 tmp = tcg_temp_new_i32();
|
|
|
|
gen_helper_vfp_muls(tmp, vn, vm, fpst);
|
|
gen_helper_vfp_negs(tmp, tmp);
|
|
gen_helper_vfp_negs(vd, vd);
|
|
gen_helper_vfp_adds(vd, vd, tmp, fpst);
|
|
tcg_temp_free_i32(tmp);
|
|
}
|
|
|
|
static bool trans_VNMLA_sp(DisasContext *s, arg_VNMLA_sp *a)
|
|
{
|
|
return do_vfp_3op_sp(s, gen_VNMLA_sp, a->vd, a->vn, a->vm, true);
|
|
}
|
|
|
|
static void gen_VNMLA_dp(TCGv_i64 vd, TCGv_i64 vn, TCGv_i64 vm, TCGv_ptr fpst)
|
|
{
|
|
/* VNMLA: -fd + (fn * fm) */
|
|
TCGv_i64 tmp = tcg_temp_new_i64();
|
|
|
|
gen_helper_vfp_muld(tmp, vn, vm, fpst);
|
|
gen_helper_vfp_negd(tmp, tmp);
|
|
gen_helper_vfp_negd(vd, vd);
|
|
gen_helper_vfp_addd(vd, vd, tmp, fpst);
|
|
tcg_temp_free_i64(tmp);
|
|
}
|
|
|
|
static bool trans_VNMLA_dp(DisasContext *s, arg_VNMLA_sp *a)
|
|
{
|
|
return do_vfp_3op_dp(s, gen_VNMLA_dp, a->vd, a->vn, a->vm, true);
|
|
}
|
|
|
|
static bool trans_VMUL_sp(DisasContext *s, arg_VMUL_sp *a)
|
|
{
|
|
return do_vfp_3op_sp(s, gen_helper_vfp_muls, a->vd, a->vn, a->vm, false);
|
|
}
|
|
|
|
static bool trans_VMUL_dp(DisasContext *s, arg_VMUL_sp *a)
|
|
{
|
|
return do_vfp_3op_dp(s, gen_helper_vfp_muld, a->vd, a->vn, a->vm, false);
|
|
}
|
|
|
|
static void gen_VNMUL_sp(TCGv_i32 vd, TCGv_i32 vn, TCGv_i32 vm, TCGv_ptr fpst)
|
|
{
|
|
/* VNMUL: -(fn * fm) */
|
|
gen_helper_vfp_muls(vd, vn, vm, fpst);
|
|
gen_helper_vfp_negs(vd, vd);
|
|
}
|
|
|
|
static bool trans_VNMUL_sp(DisasContext *s, arg_VNMUL_sp *a)
|
|
{
|
|
return do_vfp_3op_sp(s, gen_VNMUL_sp, a->vd, a->vn, a->vm, false);
|
|
}
|
|
|
|
static void gen_VNMUL_dp(TCGv_i64 vd, TCGv_i64 vn, TCGv_i64 vm, TCGv_ptr fpst)
|
|
{
|
|
/* VNMUL: -(fn * fm) */
|
|
gen_helper_vfp_muld(vd, vn, vm, fpst);
|
|
gen_helper_vfp_negd(vd, vd);
|
|
}
|
|
|
|
static bool trans_VNMUL_dp(DisasContext *s, arg_VNMUL_sp *a)
|
|
{
|
|
return do_vfp_3op_dp(s, gen_VNMUL_dp, a->vd, a->vn, a->vm, false);
|
|
}
|
|
|
|
static bool trans_VADD_sp(DisasContext *s, arg_VADD_sp *a)
|
|
{
|
|
return do_vfp_3op_sp(s, gen_helper_vfp_adds, a->vd, a->vn, a->vm, false);
|
|
}
|
|
|
|
static bool trans_VADD_dp(DisasContext *s, arg_VADD_sp *a)
|
|
{
|
|
return do_vfp_3op_dp(s, gen_helper_vfp_addd, a->vd, a->vn, a->vm, false);
|
|
}
|
|
|
|
static bool trans_VSUB_sp(DisasContext *s, arg_VSUB_sp *a)
|
|
{
|
|
return do_vfp_3op_sp(s, gen_helper_vfp_subs, a->vd, a->vn, a->vm, false);
|
|
}
|
|
|
|
static bool trans_VSUB_dp(DisasContext *s, arg_VSUB_sp *a)
|
|
{
|
|
return do_vfp_3op_dp(s, gen_helper_vfp_subd, a->vd, a->vn, a->vm, false);
|
|
}
|
|
|
|
static bool trans_VDIV_sp(DisasContext *s, arg_VDIV_sp *a)
|
|
{
|
|
return do_vfp_3op_sp(s, gen_helper_vfp_divs, a->vd, a->vn, a->vm, false);
|
|
}
|
|
|
|
static bool trans_VDIV_dp(DisasContext *s, arg_VDIV_sp *a)
|
|
{
|
|
return do_vfp_3op_dp(s, gen_helper_vfp_divd, a->vd, a->vn, a->vm, false);
|
|
}
|
|
|
|
static bool trans_VFM_sp(DisasContext *s, arg_VFM_sp *a)
|
|
{
|
|
/*
|
|
* VFNMA : fd = muladd(-fd, fn, fm)
|
|
* VFNMS : fd = muladd(-fd, -fn, fm)
|
|
* VFMA : fd = muladd( fd, fn, fm)
|
|
* VFMS : fd = muladd( fd, -fn, fm)
|
|
*
|
|
* These are fused multiply-add, and must be done as one floating
|
|
* point operation with no rounding between the multiplication and
|
|
* addition steps. NB that doing the negations here as separate
|
|
* steps is correct : an input NaN should come out with its sign
|
|
* bit flipped if it is a negated-input.
|
|
*/
|
|
TCGv_ptr fpst;
|
|
TCGv_i32 vn, vm, vd;
|
|
|
|
/*
|
|
* Present in VFPv4 only.
|
|
* In v7A, UNPREDICTABLE with non-zero vector length/stride; from
|
|
* v8A, must UNDEF. We choose to UNDEF for both v7A and v8A.
|
|
*/
|
|
if (!arm_dc_feature(s, ARM_FEATURE_VFP4) ||
|
|
(s->vec_len != 0 || s->vec_stride != 0)) {
|
|
return false;
|
|
}
|
|
|
|
if (!vfp_access_check(s)) {
|
|
return true;
|
|
}
|
|
|
|
vn = tcg_temp_new_i32();
|
|
vm = tcg_temp_new_i32();
|
|
vd = tcg_temp_new_i32();
|
|
|
|
neon_load_reg32(vn, a->vn);
|
|
neon_load_reg32(vm, a->vm);
|
|
if (a->o2) {
|
|
/* VFNMS, VFMS */
|
|
gen_helper_vfp_negs(vn, vn);
|
|
}
|
|
neon_load_reg32(vd, a->vd);
|
|
if (a->o1 & 1) {
|
|
/* VFNMA, VFNMS */
|
|
gen_helper_vfp_negs(vd, vd);
|
|
}
|
|
fpst = get_fpstatus_ptr(0);
|
|
gen_helper_vfp_muladds(vd, vn, vm, vd, fpst);
|
|
neon_store_reg32(vd, a->vd);
|
|
|
|
tcg_temp_free_ptr(fpst);
|
|
tcg_temp_free_i32(vn);
|
|
tcg_temp_free_i32(vm);
|
|
tcg_temp_free_i32(vd);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool trans_VFM_dp(DisasContext *s, arg_VFM_sp *a)
|
|
{
|
|
/*
|
|
* VFNMA : fd = muladd(-fd, fn, fm)
|
|
* VFNMS : fd = muladd(-fd, -fn, fm)
|
|
* VFMA : fd = muladd( fd, fn, fm)
|
|
* VFMS : fd = muladd( fd, -fn, fm)
|
|
*
|
|
* These are fused multiply-add, and must be done as one floating
|
|
* point operation with no rounding between the multiplication and
|
|
* addition steps. NB that doing the negations here as separate
|
|
* steps is correct : an input NaN should come out with its sign
|
|
* bit flipped if it is a negated-input.
|
|
*/
|
|
TCGv_ptr fpst;
|
|
TCGv_i64 vn, vm, vd;
|
|
|
|
/*
|
|
* Present in VFPv4 only.
|
|
* In v7A, UNPREDICTABLE with non-zero vector length/stride; from
|
|
* v8A, must UNDEF. We choose to UNDEF for both v7A and v8A.
|
|
*/
|
|
if (!arm_dc_feature(s, ARM_FEATURE_VFP4) ||
|
|
(s->vec_len != 0 || s->vec_stride != 0)) {
|
|
return false;
|
|
}
|
|
|
|
/* UNDEF accesses to D16-D31 if they don't exist. */
|
|
if (!dc_isar_feature(aa32_fp_d32, s) && ((a->vd | a->vn | a->vm) & 0x10)) {
|
|
return false;
|
|
}
|
|
|
|
if (!vfp_access_check(s)) {
|
|
return true;
|
|
}
|
|
|
|
vn = tcg_temp_new_i64();
|
|
vm = tcg_temp_new_i64();
|
|
vd = tcg_temp_new_i64();
|
|
|
|
neon_load_reg64(vn, a->vn);
|
|
neon_load_reg64(vm, a->vm);
|
|
if (a->o2) {
|
|
/* VFNMS, VFMS */
|
|
gen_helper_vfp_negd(vn, vn);
|
|
}
|
|
neon_load_reg64(vd, a->vd);
|
|
if (a->o1 & 1) {
|
|
/* VFNMA, VFNMS */
|
|
gen_helper_vfp_negd(vd, vd);
|
|
}
|
|
fpst = get_fpstatus_ptr(0);
|
|
gen_helper_vfp_muladdd(vd, vn, vm, vd, fpst);
|
|
neon_store_reg64(vd, a->vd);
|
|
|
|
tcg_temp_free_ptr(fpst);
|
|
tcg_temp_free_i64(vn);
|
|
tcg_temp_free_i64(vm);
|
|
tcg_temp_free_i64(vd);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool trans_VMOV_imm_sp(DisasContext *s, arg_VMOV_imm_sp *a)
|
|
{
|
|
uint32_t delta_d = 0;
|
|
uint32_t bank_mask = 0;
|
|
int veclen = s->vec_len;
|
|
TCGv_i32 fd;
|
|
uint32_t n, i, vd;
|
|
|
|
vd = a->vd;
|
|
|
|
if (!dc_isar_feature(aa32_fpshvec, s) &&
|
|
(veclen != 0 || s->vec_stride != 0)) {
|
|
return false;
|
|
}
|
|
|
|
if (!arm_dc_feature(s, ARM_FEATURE_VFP3)) {
|
|
return false;
|
|
}
|
|
|
|
if (!vfp_access_check(s)) {
|
|
return true;
|
|
}
|
|
|
|
if (veclen > 0) {
|
|
bank_mask = 0x18;
|
|
/* Figure out what type of vector operation this is. */
|
|
if ((vd & bank_mask) == 0) {
|
|
/* scalar */
|
|
veclen = 0;
|
|
} else {
|
|
delta_d = s->vec_stride + 1;
|
|
}
|
|
}
|
|
|
|
n = (a->imm4h << 28) & 0x80000000;
|
|
i = ((a->imm4h << 4) & 0x70) | a->imm4l;
|
|
if (i & 0x40) {
|
|
i |= 0x780;
|
|
} else {
|
|
i |= 0x800;
|
|
}
|
|
n |= i << 19;
|
|
|
|
fd = tcg_temp_new_i32();
|
|
tcg_gen_movi_i32(fd, n);
|
|
|
|
for (;;) {
|
|
neon_store_reg32(fd, vd);
|
|
|
|
if (veclen == 0) {
|
|
break;
|
|
}
|
|
|
|
/* Set up the operands for the next iteration */
|
|
veclen--;
|
|
vd = ((vd + delta_d) & (bank_mask - 1)) | (vd & bank_mask);
|
|
}
|
|
|
|
tcg_temp_free_i32(fd);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_VMOV_imm_dp(DisasContext *s, arg_VMOV_imm_dp *a)
|
|
{
|
|
uint32_t delta_d = 0;
|
|
uint32_t bank_mask = 0;
|
|
int veclen = s->vec_len;
|
|
TCGv_i64 fd;
|
|
uint32_t n, i, vd;
|
|
|
|
vd = a->vd;
|
|
|
|
/* UNDEF accesses to D16-D31 if they don't exist. */
|
|
if (!dc_isar_feature(aa32_fp_d32, s) && (vd & 0x10)) {
|
|
return false;
|
|
}
|
|
|
|
if (!dc_isar_feature(aa32_fpshvec, s) &&
|
|
(veclen != 0 || s->vec_stride != 0)) {
|
|
return false;
|
|
}
|
|
|
|
if (!arm_dc_feature(s, ARM_FEATURE_VFP3)) {
|
|
return false;
|
|
}
|
|
|
|
if (!vfp_access_check(s)) {
|
|
return true;
|
|
}
|
|
|
|
if (veclen > 0) {
|
|
bank_mask = 0xc;
|
|
/* Figure out what type of vector operation this is. */
|
|
if ((vd & bank_mask) == 0) {
|
|
/* scalar */
|
|
veclen = 0;
|
|
} else {
|
|
delta_d = (s->vec_stride >> 1) + 1;
|
|
}
|
|
}
|
|
|
|
n = (a->imm4h << 28) & 0x80000000;
|
|
i = ((a->imm4h << 4) & 0x70) | a->imm4l;
|
|
if (i & 0x40) {
|
|
i |= 0x3f80;
|
|
} else {
|
|
i |= 0x4000;
|
|
}
|
|
n |= i << 16;
|
|
|
|
fd = tcg_temp_new_i64();
|
|
tcg_gen_movi_i64(fd, ((uint64_t)n) << 32);
|
|
|
|
for (;;) {
|
|
neon_store_reg64(fd, vd);
|
|
|
|
if (veclen == 0) {
|
|
break;
|
|
}
|
|
|
|
/* Set up the operands for the next iteration */
|
|
veclen--;
|
|
vd = ((vd + delta_d) & (bank_mask - 1)) | (vd & bank_mask);
|
|
}
|
|
|
|
tcg_temp_free_i64(fd);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_VMOV_reg_sp(DisasContext *s, arg_VMOV_reg_sp *a)
|
|
{
|
|
return do_vfp_2op_sp(s, tcg_gen_mov_i32, a->vd, a->vm);
|
|
}
|
|
|
|
static bool trans_VMOV_reg_dp(DisasContext *s, arg_VMOV_reg_dp *a)
|
|
{
|
|
return do_vfp_2op_dp(s, tcg_gen_mov_i64, a->vd, a->vm);
|
|
}
|
|
|
|
static bool trans_VABS_sp(DisasContext *s, arg_VABS_sp *a)
|
|
{
|
|
return do_vfp_2op_sp(s, gen_helper_vfp_abss, a->vd, a->vm);
|
|
}
|
|
|
|
static bool trans_VABS_dp(DisasContext *s, arg_VABS_dp *a)
|
|
{
|
|
return do_vfp_2op_dp(s, gen_helper_vfp_absd, a->vd, a->vm);
|
|
}
|
|
|
|
static bool trans_VNEG_sp(DisasContext *s, arg_VNEG_sp *a)
|
|
{
|
|
return do_vfp_2op_sp(s, gen_helper_vfp_negs, a->vd, a->vm);
|
|
}
|
|
|
|
static bool trans_VNEG_dp(DisasContext *s, arg_VNEG_dp *a)
|
|
{
|
|
return do_vfp_2op_dp(s, gen_helper_vfp_negd, a->vd, a->vm);
|
|
}
|
|
|
|
static void gen_VSQRT_sp(TCGv_i32 vd, TCGv_i32 vm)
|
|
{
|
|
gen_helper_vfp_sqrts(vd, vm, cpu_env);
|
|
}
|
|
|
|
static bool trans_VSQRT_sp(DisasContext *s, arg_VSQRT_sp *a)
|
|
{
|
|
return do_vfp_2op_sp(s, gen_VSQRT_sp, a->vd, a->vm);
|
|
}
|
|
|
|
static void gen_VSQRT_dp(TCGv_i64 vd, TCGv_i64 vm)
|
|
{
|
|
gen_helper_vfp_sqrtd(vd, vm, cpu_env);
|
|
}
|
|
|
|
static bool trans_VSQRT_dp(DisasContext *s, arg_VSQRT_dp *a)
|
|
{
|
|
return do_vfp_2op_dp(s, gen_VSQRT_dp, a->vd, a->vm);
|
|
}
|
|
|
|
static bool trans_VCMP_sp(DisasContext *s, arg_VCMP_sp *a)
|
|
{
|
|
TCGv_i32 vd, vm;
|
|
|
|
/* Vm/M bits must be zero for the Z variant */
|
|
if (a->z && a->vm != 0) {
|
|
return false;
|
|
}
|
|
|
|
if (!vfp_access_check(s)) {
|
|
return true;
|
|
}
|
|
|
|
vd = tcg_temp_new_i32();
|
|
vm = tcg_temp_new_i32();
|
|
|
|
neon_load_reg32(vd, a->vd);
|
|
if (a->z) {
|
|
tcg_gen_movi_i32(vm, 0);
|
|
} else {
|
|
neon_load_reg32(vm, a->vm);
|
|
}
|
|
|
|
if (a->e) {
|
|
gen_helper_vfp_cmpes(vd, vm, cpu_env);
|
|
} else {
|
|
gen_helper_vfp_cmps(vd, vm, cpu_env);
|
|
}
|
|
|
|
tcg_temp_free_i32(vd);
|
|
tcg_temp_free_i32(vm);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool trans_VCMP_dp(DisasContext *s, arg_VCMP_dp *a)
|
|
{
|
|
TCGv_i64 vd, vm;
|
|
|
|
/* Vm/M bits must be zero for the Z variant */
|
|
if (a->z && a->vm != 0) {
|
|
return false;
|
|
}
|
|
|
|
/* UNDEF accesses to D16-D31 if they don't exist. */
|
|
if (!dc_isar_feature(aa32_fp_d32, s) && ((a->vd | a->vm) & 0x10)) {
|
|
return false;
|
|
}
|
|
|
|
if (!vfp_access_check(s)) {
|
|
return true;
|
|
}
|
|
|
|
vd = tcg_temp_new_i64();
|
|
vm = tcg_temp_new_i64();
|
|
|
|
neon_load_reg64(vd, a->vd);
|
|
if (a->z) {
|
|
tcg_gen_movi_i64(vm, 0);
|
|
} else {
|
|
neon_load_reg64(vm, a->vm);
|
|
}
|
|
|
|
if (a->e) {
|
|
gen_helper_vfp_cmped(vd, vm, cpu_env);
|
|
} else {
|
|
gen_helper_vfp_cmpd(vd, vm, cpu_env);
|
|
}
|
|
|
|
tcg_temp_free_i64(vd);
|
|
tcg_temp_free_i64(vm);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool trans_VCVT_f32_f16(DisasContext *s, arg_VCVT_f32_f16 *a)
|
|
{
|
|
TCGv_ptr fpst;
|
|
TCGv_i32 ahp_mode;
|
|
TCGv_i32 tmp;
|
|
|
|
if (!dc_isar_feature(aa32_fp16_spconv, s)) {
|
|
return false;
|
|
}
|
|
|
|
if (!vfp_access_check(s)) {
|
|
return true;
|
|
}
|
|
|
|
fpst = get_fpstatus_ptr(false);
|
|
ahp_mode = get_ahp_flag();
|
|
tmp = tcg_temp_new_i32();
|
|
/* The T bit tells us if we want the low or high 16 bits of Vm */
|
|
tcg_gen_ld16u_i32(tmp, cpu_env, vfp_f16_offset(a->vm, a->t));
|
|
gen_helper_vfp_fcvt_f16_to_f32(tmp, tmp, fpst, ahp_mode);
|
|
neon_store_reg32(tmp, a->vd);
|
|
tcg_temp_free_i32(ahp_mode);
|
|
tcg_temp_free_ptr(fpst);
|
|
tcg_temp_free_i32(tmp);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_VCVT_f64_f16(DisasContext *s, arg_VCVT_f64_f16 *a)
|
|
{
|
|
TCGv_ptr fpst;
|
|
TCGv_i32 ahp_mode;
|
|
TCGv_i32 tmp;
|
|
TCGv_i64 vd;
|
|
|
|
if (!dc_isar_feature(aa32_fp16_dpconv, s)) {
|
|
return false;
|
|
}
|
|
|
|
/* UNDEF accesses to D16-D31 if they don't exist. */
|
|
if (!dc_isar_feature(aa32_fp_d32, s) && (a->vd & 0x10)) {
|
|
return false;
|
|
}
|
|
|
|
if (!vfp_access_check(s)) {
|
|
return true;
|
|
}
|
|
|
|
fpst = get_fpstatus_ptr(false);
|
|
ahp_mode = get_ahp_flag();
|
|
tmp = tcg_temp_new_i32();
|
|
/* The T bit tells us if we want the low or high 16 bits of Vm */
|
|
tcg_gen_ld16u_i32(tmp, cpu_env, vfp_f16_offset(a->vm, a->t));
|
|
vd = tcg_temp_new_i64();
|
|
gen_helper_vfp_fcvt_f16_to_f64(vd, tmp, fpst, ahp_mode);
|
|
neon_store_reg64(vd, a->vd);
|
|
tcg_temp_free_i32(ahp_mode);
|
|
tcg_temp_free_ptr(fpst);
|
|
tcg_temp_free_i32(tmp);
|
|
tcg_temp_free_i64(vd);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_VCVT_f16_f32(DisasContext *s, arg_VCVT_f16_f32 *a)
|
|
{
|
|
TCGv_ptr fpst;
|
|
TCGv_i32 ahp_mode;
|
|
TCGv_i32 tmp;
|
|
|
|
if (!dc_isar_feature(aa32_fp16_spconv, s)) {
|
|
return false;
|
|
}
|
|
|
|
if (!vfp_access_check(s)) {
|
|
return true;
|
|
}
|
|
|
|
fpst = get_fpstatus_ptr(false);
|
|
ahp_mode = get_ahp_flag();
|
|
tmp = tcg_temp_new_i32();
|
|
|
|
neon_load_reg32(tmp, a->vm);
|
|
gen_helper_vfp_fcvt_f32_to_f16(tmp, tmp, fpst, ahp_mode);
|
|
tcg_gen_st16_i32(tmp, cpu_env, vfp_f16_offset(a->vd, a->t));
|
|
tcg_temp_free_i32(ahp_mode);
|
|
tcg_temp_free_ptr(fpst);
|
|
tcg_temp_free_i32(tmp);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_VCVT_f16_f64(DisasContext *s, arg_VCVT_f16_f64 *a)
|
|
{
|
|
TCGv_ptr fpst;
|
|
TCGv_i32 ahp_mode;
|
|
TCGv_i32 tmp;
|
|
TCGv_i64 vm;
|
|
|
|
if (!dc_isar_feature(aa32_fp16_dpconv, s)) {
|
|
return false;
|
|
}
|
|
|
|
/* UNDEF accesses to D16-D31 if they don't exist. */
|
|
if (!dc_isar_feature(aa32_fp_d32, s) && (a->vm & 0x10)) {
|
|
return false;
|
|
}
|
|
|
|
if (!vfp_access_check(s)) {
|
|
return true;
|
|
}
|
|
|
|
fpst = get_fpstatus_ptr(false);
|
|
ahp_mode = get_ahp_flag();
|
|
tmp = tcg_temp_new_i32();
|
|
vm = tcg_temp_new_i64();
|
|
|
|
neon_load_reg64(vm, a->vm);
|
|
gen_helper_vfp_fcvt_f64_to_f16(tmp, vm, fpst, ahp_mode);
|
|
tcg_temp_free_i64(vm);
|
|
tcg_gen_st16_i32(tmp, cpu_env, vfp_f16_offset(a->vd, a->t));
|
|
tcg_temp_free_i32(ahp_mode);
|
|
tcg_temp_free_ptr(fpst);
|
|
tcg_temp_free_i32(tmp);
|
|
return true;
|
|
}
|