qemu/target/ppc/internal.h
Balamuruhan S a68a614673 target-ppc: implement load atomic instruction
lwat: Load Word Atomic
ldat: Load Doubleword Atomic

The instruction includes as function code (5 bits) which gives a detail
on the operation to be performed. The patch implements five such
functions.

Signed-off-by: Balamuruhan S <bala24@linux.vnet.ibm.com>
Signed-off-by: Harish S <harisrir@linux.vnet.ibm.com>
Signed-off-by: Athira Rajeev <atrajeev@linux.vnet.ibm.com>
[ combine both lwat/ldat implementation using macro ]
Signed-off-by: Nikunj A Dadhania <nikunj@linux.vnet.ibm.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2017-02-22 11:28:27 +11:00

256 lines
8.4 KiB
C

/*
* PowerPC interal definitions for qemu.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#ifndef PPC_INTERNAL_H
#define PPC_INTERNAL_H
#define FUNC_MASK(name, ret_type, size, max_val) \
static inline ret_type name(uint##size##_t start, \
uint##size##_t end) \
{ \
ret_type ret, max_bit = size - 1; \
\
if (likely(start == 0)) { \
ret = max_val << (max_bit - end); \
} else if (likely(end == max_bit)) { \
ret = max_val >> start; \
} else { \
ret = (((uint##size##_t)(-1ULL)) >> (start)) ^ \
(((uint##size##_t)(-1ULL) >> (end)) >> 1); \
if (unlikely(start > end)) { \
return ~ret; \
} \
} \
\
return ret; \
}
#if defined(TARGET_PPC64)
FUNC_MASK(MASK, target_ulong, 64, UINT64_MAX);
#else
FUNC_MASK(MASK, target_ulong, 32, UINT32_MAX);
#endif
FUNC_MASK(mask_u32, uint32_t, 32, UINT32_MAX);
FUNC_MASK(mask_u64, uint64_t, 64, UINT64_MAX);
/*****************************************************************************/
/*** Instruction decoding ***/
#define EXTRACT_HELPER(name, shift, nb) \
static inline uint32_t name(uint32_t opcode) \
{ \
return (opcode >> (shift)) & ((1 << (nb)) - 1); \
}
#define EXTRACT_SHELPER(name, shift, nb) \
static inline int32_t name(uint32_t opcode) \
{ \
return (int16_t)((opcode >> (shift)) & ((1 << (nb)) - 1)); \
}
#define EXTRACT_HELPER_SPLIT(name, shift1, nb1, shift2, nb2) \
static inline uint32_t name(uint32_t opcode) \
{ \
return (((opcode >> (shift1)) & ((1 << (nb1)) - 1)) << nb2) | \
((opcode >> (shift2)) & ((1 << (nb2)) - 1)); \
}
#define EXTRACT_HELPER_SPLIT_3(name, \
d0_bits, shift_op_d0, shift_d0, \
d1_bits, shift_op_d1, shift_d1, \
d2_bits, shift_op_d2, shift_d2) \
static inline int16_t name(uint32_t opcode) \
{ \
return \
(((opcode >> (shift_op_d0)) & ((1 << (d0_bits)) - 1)) << (shift_d0)) | \
(((opcode >> (shift_op_d1)) & ((1 << (d1_bits)) - 1)) << (shift_d1)) | \
(((opcode >> (shift_op_d2)) & ((1 << (d2_bits)) - 1)) << (shift_d2)); \
}
/* Opcode part 1 */
EXTRACT_HELPER(opc1, 26, 6);
/* Opcode part 2 */
EXTRACT_HELPER(opc2, 1, 5);
/* Opcode part 3 */
EXTRACT_HELPER(opc3, 6, 5);
/* Opcode part 4 */
EXTRACT_HELPER(opc4, 16, 5);
/* Update Cr0 flags */
EXTRACT_HELPER(Rc, 0, 1);
/* Update Cr6 flags (Altivec) */
EXTRACT_HELPER(Rc21, 10, 1);
/* Destination */
EXTRACT_HELPER(rD, 21, 5);
/* Source */
EXTRACT_HELPER(rS, 21, 5);
/* First operand */
EXTRACT_HELPER(rA, 16, 5);
/* Second operand */
EXTRACT_HELPER(rB, 11, 5);
/* Third operand */
EXTRACT_HELPER(rC, 6, 5);
/*** Get CRn ***/
EXTRACT_HELPER(crfD, 23, 3);
EXTRACT_HELPER(BF, 23, 3);
EXTRACT_HELPER(crfS, 18, 3);
EXTRACT_HELPER(crbD, 21, 5);
EXTRACT_HELPER(crbA, 16, 5);
EXTRACT_HELPER(crbB, 11, 5);
/* SPR / TBL */
EXTRACT_HELPER(_SPR, 11, 10);
static inline uint32_t SPR(uint32_t opcode)
{
uint32_t sprn = _SPR(opcode);
return ((sprn >> 5) & 0x1F) | ((sprn & 0x1F) << 5);
}
/*** Get constants ***/
/* 16 bits signed immediate value */
EXTRACT_SHELPER(SIMM, 0, 16);
/* 16 bits unsigned immediate value */
EXTRACT_HELPER(UIMM, 0, 16);
/* 5 bits signed immediate value */
EXTRACT_HELPER(SIMM5, 16, 5);
/* 5 bits signed immediate value */
EXTRACT_HELPER(UIMM5, 16, 5);
/* 4 bits unsigned immediate value */
EXTRACT_HELPER(UIMM4, 16, 4);
/* Bit count */
EXTRACT_HELPER(NB, 11, 5);
/* Shift count */
EXTRACT_HELPER(SH, 11, 5);
/* lwat/stwat/ldat/lwat */
EXTRACT_HELPER(FC, 11, 5);
/* Vector shift count */
EXTRACT_HELPER(VSH, 6, 4);
/* Mask start */
EXTRACT_HELPER(MB, 6, 5);
/* Mask end */
EXTRACT_HELPER(ME, 1, 5);
/* Trap operand */
EXTRACT_HELPER(TO, 21, 5);
EXTRACT_HELPER(CRM, 12, 8);
#ifndef CONFIG_USER_ONLY
EXTRACT_HELPER(SR, 16, 4);
#endif
/* mtfsf/mtfsfi */
EXTRACT_HELPER(FPBF, 23, 3);
EXTRACT_HELPER(FPIMM, 12, 4);
EXTRACT_HELPER(FPL, 25, 1);
EXTRACT_HELPER(FPFLM, 17, 8);
EXTRACT_HELPER(FPW, 16, 1);
/* addpcis */
EXTRACT_HELPER_SPLIT_3(DX, 10, 6, 6, 5, 16, 1, 1, 0, 0)
#if defined(TARGET_PPC64)
/* darn */
EXTRACT_HELPER(L, 16, 2);
#endif
/*** Jump target decoding ***/
/* Immediate address */
static inline target_ulong LI(uint32_t opcode)
{
return (opcode >> 0) & 0x03FFFFFC;
}
static inline uint32_t BD(uint32_t opcode)
{
return (opcode >> 0) & 0xFFFC;
}
EXTRACT_HELPER(BO, 21, 5);
EXTRACT_HELPER(BI, 16, 5);
/* Absolute/relative address */
EXTRACT_HELPER(AA, 1, 1);
/* Link */
EXTRACT_HELPER(LK, 0, 1);
/* DFP Z22-form */
EXTRACT_HELPER(DCM, 10, 6)
/* DFP Z23-form */
EXTRACT_HELPER(RMC, 9, 2)
EXTRACT_HELPER(Rrm, 16, 1)
EXTRACT_HELPER_SPLIT(DQxT, 3, 1, 21, 5);
EXTRACT_HELPER_SPLIT(xT, 0, 1, 21, 5);
EXTRACT_HELPER_SPLIT(xS, 0, 1, 21, 5);
EXTRACT_HELPER_SPLIT(xA, 2, 1, 16, 5);
EXTRACT_HELPER_SPLIT(xB, 1, 1, 11, 5);
EXTRACT_HELPER_SPLIT(xC, 3, 1, 6, 5);
EXTRACT_HELPER(DM, 8, 2);
EXTRACT_HELPER(UIM, 16, 2);
EXTRACT_HELPER(SHW, 8, 2);
EXTRACT_HELPER(SP, 19, 2);
EXTRACT_HELPER(IMM8, 11, 8);
EXTRACT_HELPER(DCMX, 16, 7);
EXTRACT_HELPER_SPLIT_3(DCMX_XV, 5, 16, 0, 1, 2, 5, 1, 6, 6);
typedef union _ppc_vsr_t {
uint8_t u8[16];
uint16_t u16[8];
uint32_t u32[4];
uint64_t u64[2];
float32 f32[4];
float64 f64[2];
float128 f128;
Int128 s128;
} ppc_vsr_t;
#if defined(HOST_WORDS_BIGENDIAN)
#define VsrB(i) u8[i]
#define VsrH(i) u16[i]
#define VsrW(i) u32[i]
#define VsrD(i) u64[i]
#else
#define VsrB(i) u8[15 - (i)]
#define VsrH(i) u16[7 - (i)]
#define VsrW(i) u32[3 - (i)]
#define VsrD(i) u64[1 - (i)]
#endif
static inline void getVSR(int n, ppc_vsr_t *vsr, CPUPPCState *env)
{
if (n < 32) {
vsr->VsrD(0) = env->fpr[n];
vsr->VsrD(1) = env->vsr[n];
} else {
vsr->u64[0] = env->avr[n - 32].u64[0];
vsr->u64[1] = env->avr[n - 32].u64[1];
}
}
static inline void putVSR(int n, ppc_vsr_t *vsr, CPUPPCState *env)
{
if (n < 32) {
env->fpr[n] = vsr->VsrD(0);
env->vsr[n] = vsr->VsrD(1);
} else {
env->avr[n - 32].u64[0] = vsr->u64[0];
env->avr[n - 32].u64[1] = vsr->u64[1];
}
}
void helper_compute_fprf_float16(CPUPPCState *env, float16 arg);
void helper_compute_fprf_float32(CPUPPCState *env, float32 arg);
void helper_compute_fprf_float128(CPUPPCState *env, float128 arg);
#endif /* PPC_INTERNAL_H */