qemu/hw/dma/xilinx_axidma.c
Peter Maydell e982ba0524 hw/dma/xilinx_axidma.c: Switch to transaction-based ptimer API
Switch the xilinx_axidma code away from bottom-half based ptimers to
the new transaction-based ptimer API.  This just requires adding
begin/commit calls around the various places that modify the ptimer
state, and using the new ptimer_init() function to create the timer.

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Message-id: 20191017132122.4402-4-peter.maydell@linaro.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2019-10-24 17:16:29 +01:00

662 lines
18 KiB
C

/*
* QEMU model of Xilinx AXI-DMA block.
*
* Copyright (c) 2011 Edgar E. Iglesias.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "hw/sysbus.h"
#include "qapi/error.h"
#include "qemu/timer.h"
#include "hw/hw.h"
#include "hw/irq.h"
#include "hw/ptimer.h"
#include "hw/qdev-properties.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "hw/stream.h"
#define D(x)
#define TYPE_XILINX_AXI_DMA "xlnx.axi-dma"
#define TYPE_XILINX_AXI_DMA_DATA_STREAM "xilinx-axi-dma-data-stream"
#define TYPE_XILINX_AXI_DMA_CONTROL_STREAM "xilinx-axi-dma-control-stream"
#define XILINX_AXI_DMA(obj) \
OBJECT_CHECK(XilinxAXIDMA, (obj), TYPE_XILINX_AXI_DMA)
#define XILINX_AXI_DMA_DATA_STREAM(obj) \
OBJECT_CHECK(XilinxAXIDMAStreamSlave, (obj),\
TYPE_XILINX_AXI_DMA_DATA_STREAM)
#define XILINX_AXI_DMA_CONTROL_STREAM(obj) \
OBJECT_CHECK(XilinxAXIDMAStreamSlave, (obj),\
TYPE_XILINX_AXI_DMA_CONTROL_STREAM)
#define R_DMACR (0x00 / 4)
#define R_DMASR (0x04 / 4)
#define R_CURDESC (0x08 / 4)
#define R_TAILDESC (0x10 / 4)
#define R_MAX (0x30 / 4)
#define CONTROL_PAYLOAD_WORDS 5
#define CONTROL_PAYLOAD_SIZE (CONTROL_PAYLOAD_WORDS * (sizeof(uint32_t)))
typedef struct XilinxAXIDMA XilinxAXIDMA;
typedef struct XilinxAXIDMAStreamSlave XilinxAXIDMAStreamSlave;
enum {
DMACR_RUNSTOP = 1,
DMACR_TAILPTR_MODE = 2,
DMACR_RESET = 4
};
enum {
DMASR_HALTED = 1,
DMASR_IDLE = 2,
DMASR_IOC_IRQ = 1 << 12,
DMASR_DLY_IRQ = 1 << 13,
DMASR_IRQ_MASK = 7 << 12
};
struct SDesc {
uint64_t nxtdesc;
uint64_t buffer_address;
uint64_t reserved;
uint32_t control;
uint32_t status;
uint8_t app[CONTROL_PAYLOAD_SIZE];
};
enum {
SDESC_CTRL_EOF = (1 << 26),
SDESC_CTRL_SOF = (1 << 27),
SDESC_CTRL_LEN_MASK = (1 << 23) - 1
};
enum {
SDESC_STATUS_EOF = (1 << 26),
SDESC_STATUS_SOF_BIT = 27,
SDESC_STATUS_SOF = (1 << SDESC_STATUS_SOF_BIT),
SDESC_STATUS_COMPLETE = (1 << 31)
};
struct Stream {
ptimer_state *ptimer;
qemu_irq irq;
int nr;
struct SDesc desc;
int pos;
unsigned int complete_cnt;
uint32_t regs[R_MAX];
uint8_t app[20];
unsigned char txbuf[16 * 1024];
};
struct XilinxAXIDMAStreamSlave {
Object parent;
struct XilinxAXIDMA *dma;
};
struct XilinxAXIDMA {
SysBusDevice busdev;
MemoryRegion iomem;
uint32_t freqhz;
StreamSlave *tx_data_dev;
StreamSlave *tx_control_dev;
XilinxAXIDMAStreamSlave rx_data_dev;
XilinxAXIDMAStreamSlave rx_control_dev;
struct Stream streams[2];
StreamCanPushNotifyFn notify;
void *notify_opaque;
};
/*
* Helper calls to extract info from descriptors and other trivial
* state from regs.
*/
static inline int stream_desc_sof(struct SDesc *d)
{
return d->control & SDESC_CTRL_SOF;
}
static inline int stream_desc_eof(struct SDesc *d)
{
return d->control & SDESC_CTRL_EOF;
}
static inline int stream_resetting(struct Stream *s)
{
return !!(s->regs[R_DMACR] & DMACR_RESET);
}
static inline int stream_running(struct Stream *s)
{
return s->regs[R_DMACR] & DMACR_RUNSTOP;
}
static inline int stream_idle(struct Stream *s)
{
return !!(s->regs[R_DMASR] & DMASR_IDLE);
}
static void stream_reset(struct Stream *s)
{
s->regs[R_DMASR] = DMASR_HALTED; /* starts up halted. */
s->regs[R_DMACR] = 1 << 16; /* Starts with one in compl threshold. */
}
/* Map an offset addr into a channel index. */
static inline int streamid_from_addr(hwaddr addr)
{
int sid;
sid = addr / (0x30);
sid &= 1;
return sid;
}
static void stream_desc_load(struct Stream *s, hwaddr addr)
{
struct SDesc *d = &s->desc;
cpu_physical_memory_read(addr, d, sizeof *d);
/* Convert from LE into host endianness. */
d->buffer_address = le64_to_cpu(d->buffer_address);
d->nxtdesc = le64_to_cpu(d->nxtdesc);
d->control = le32_to_cpu(d->control);
d->status = le32_to_cpu(d->status);
}
static void stream_desc_store(struct Stream *s, hwaddr addr)
{
struct SDesc *d = &s->desc;
/* Convert from host endianness into LE. */
d->buffer_address = cpu_to_le64(d->buffer_address);
d->nxtdesc = cpu_to_le64(d->nxtdesc);
d->control = cpu_to_le32(d->control);
d->status = cpu_to_le32(d->status);
cpu_physical_memory_write(addr, d, sizeof *d);
}
static void stream_update_irq(struct Stream *s)
{
unsigned int pending, mask, irq;
pending = s->regs[R_DMASR] & DMASR_IRQ_MASK;
mask = s->regs[R_DMACR] & DMASR_IRQ_MASK;
irq = pending & mask;
qemu_set_irq(s->irq, !!irq);
}
static void stream_reload_complete_cnt(struct Stream *s)
{
unsigned int comp_th;
comp_th = (s->regs[R_DMACR] >> 16) & 0xff;
s->complete_cnt = comp_th;
}
static void timer_hit(void *opaque)
{
struct Stream *s = opaque;
stream_reload_complete_cnt(s);
s->regs[R_DMASR] |= DMASR_DLY_IRQ;
stream_update_irq(s);
}
static void stream_complete(struct Stream *s)
{
unsigned int comp_delay;
/* Start the delayed timer. */
ptimer_transaction_begin(s->ptimer);
comp_delay = s->regs[R_DMACR] >> 24;
if (comp_delay) {
ptimer_stop(s->ptimer);
ptimer_set_count(s->ptimer, comp_delay);
ptimer_run(s->ptimer, 1);
}
s->complete_cnt--;
if (s->complete_cnt == 0) {
/* Raise the IOC irq. */
s->regs[R_DMASR] |= DMASR_IOC_IRQ;
stream_reload_complete_cnt(s);
}
ptimer_transaction_commit(s->ptimer);
}
static void stream_process_mem2s(struct Stream *s, StreamSlave *tx_data_dev,
StreamSlave *tx_control_dev)
{
uint32_t prev_d;
unsigned int txlen;
if (!stream_running(s) || stream_idle(s)) {
return;
}
while (1) {
stream_desc_load(s, s->regs[R_CURDESC]);
if (s->desc.status & SDESC_STATUS_COMPLETE) {
s->regs[R_DMASR] |= DMASR_HALTED;
break;
}
if (stream_desc_sof(&s->desc)) {
s->pos = 0;
stream_push(tx_control_dev, s->desc.app, sizeof(s->desc.app));
}
txlen = s->desc.control & SDESC_CTRL_LEN_MASK;
if ((txlen + s->pos) > sizeof s->txbuf) {
hw_error("%s: too small internal txbuf! %d\n", __func__,
txlen + s->pos);
}
cpu_physical_memory_read(s->desc.buffer_address,
s->txbuf + s->pos, txlen);
s->pos += txlen;
if (stream_desc_eof(&s->desc)) {
stream_push(tx_data_dev, s->txbuf, s->pos);
s->pos = 0;
stream_complete(s);
}
/* Update the descriptor. */
s->desc.status = txlen | SDESC_STATUS_COMPLETE;
stream_desc_store(s, s->regs[R_CURDESC]);
/* Advance. */
prev_d = s->regs[R_CURDESC];
s->regs[R_CURDESC] = s->desc.nxtdesc;
if (prev_d == s->regs[R_TAILDESC]) {
s->regs[R_DMASR] |= DMASR_IDLE;
break;
}
}
}
static size_t stream_process_s2mem(struct Stream *s, unsigned char *buf,
size_t len)
{
uint32_t prev_d;
unsigned int rxlen;
size_t pos = 0;
int sof = 1;
if (!stream_running(s) || stream_idle(s)) {
return 0;
}
while (len) {
stream_desc_load(s, s->regs[R_CURDESC]);
if (s->desc.status & SDESC_STATUS_COMPLETE) {
s->regs[R_DMASR] |= DMASR_HALTED;
break;
}
rxlen = s->desc.control & SDESC_CTRL_LEN_MASK;
if (rxlen > len) {
/* It fits. */
rxlen = len;
}
cpu_physical_memory_write(s->desc.buffer_address, buf + pos, rxlen);
len -= rxlen;
pos += rxlen;
/* Update the descriptor. */
if (!len) {
stream_complete(s);
memcpy(s->desc.app, s->app, sizeof(s->desc.app));
s->desc.status |= SDESC_STATUS_EOF;
}
s->desc.status |= sof << SDESC_STATUS_SOF_BIT;
s->desc.status |= SDESC_STATUS_COMPLETE;
stream_desc_store(s, s->regs[R_CURDESC]);
sof = 0;
/* Advance. */
prev_d = s->regs[R_CURDESC];
s->regs[R_CURDESC] = s->desc.nxtdesc;
if (prev_d == s->regs[R_TAILDESC]) {
s->regs[R_DMASR] |= DMASR_IDLE;
break;
}
}
return pos;
}
static void xilinx_axidma_reset(DeviceState *dev)
{
int i;
XilinxAXIDMA *s = XILINX_AXI_DMA(dev);
for (i = 0; i < 2; i++) {
stream_reset(&s->streams[i]);
}
}
static size_t
xilinx_axidma_control_stream_push(StreamSlave *obj, unsigned char *buf,
size_t len)
{
XilinxAXIDMAStreamSlave *cs = XILINX_AXI_DMA_CONTROL_STREAM(obj);
struct Stream *s = &cs->dma->streams[1];
if (len != CONTROL_PAYLOAD_SIZE) {
hw_error("AXI DMA requires %d byte control stream payload\n",
(int)CONTROL_PAYLOAD_SIZE);
}
memcpy(s->app, buf, len);
return len;
}
static bool
xilinx_axidma_data_stream_can_push(StreamSlave *obj,
StreamCanPushNotifyFn notify,
void *notify_opaque)
{
XilinxAXIDMAStreamSlave *ds = XILINX_AXI_DMA_DATA_STREAM(obj);
struct Stream *s = &ds->dma->streams[1];
if (!stream_running(s) || stream_idle(s)) {
ds->dma->notify = notify;
ds->dma->notify_opaque = notify_opaque;
return false;
}
return true;
}
static size_t
xilinx_axidma_data_stream_push(StreamSlave *obj, unsigned char *buf, size_t len)
{
XilinxAXIDMAStreamSlave *ds = XILINX_AXI_DMA_DATA_STREAM(obj);
struct Stream *s = &ds->dma->streams[1];
size_t ret;
ret = stream_process_s2mem(s, buf, len);
stream_update_irq(s);
return ret;
}
static uint64_t axidma_read(void *opaque, hwaddr addr,
unsigned size)
{
XilinxAXIDMA *d = opaque;
struct Stream *s;
uint32_t r = 0;
int sid;
sid = streamid_from_addr(addr);
s = &d->streams[sid];
addr = addr % 0x30;
addr >>= 2;
switch (addr) {
case R_DMACR:
/* Simulate one cycles reset delay. */
s->regs[addr] &= ~DMACR_RESET;
r = s->regs[addr];
break;
case R_DMASR:
s->regs[addr] &= 0xffff;
s->regs[addr] |= (s->complete_cnt & 0xff) << 16;
s->regs[addr] |= (ptimer_get_count(s->ptimer) & 0xff) << 24;
r = s->regs[addr];
break;
default:
r = s->regs[addr];
D(qemu_log("%s ch=%d addr=" TARGET_FMT_plx " v=%x\n",
__func__, sid, addr * 4, r));
break;
}
return r;
}
static void axidma_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size)
{
XilinxAXIDMA *d = opaque;
struct Stream *s;
int sid;
sid = streamid_from_addr(addr);
s = &d->streams[sid];
addr = addr % 0x30;
addr >>= 2;
switch (addr) {
case R_DMACR:
/* Tailptr mode is always on. */
value |= DMACR_TAILPTR_MODE;
/* Remember our previous reset state. */
value |= (s->regs[addr] & DMACR_RESET);
s->regs[addr] = value;
if (value & DMACR_RESET) {
stream_reset(s);
}
if ((value & 1) && !stream_resetting(s)) {
/* Start processing. */
s->regs[R_DMASR] &= ~(DMASR_HALTED | DMASR_IDLE);
}
stream_reload_complete_cnt(s);
break;
case R_DMASR:
/* Mask away write to clear irq lines. */
value &= ~(value & DMASR_IRQ_MASK);
s->regs[addr] = value;
break;
case R_TAILDESC:
s->regs[addr] = value;
s->regs[R_DMASR] &= ~DMASR_IDLE; /* Not idle. */
if (!sid) {
stream_process_mem2s(s, d->tx_data_dev, d->tx_control_dev);
}
break;
default:
D(qemu_log("%s: ch=%d addr=" TARGET_FMT_plx " v=%x\n",
__func__, sid, addr * 4, (unsigned)value));
s->regs[addr] = value;
break;
}
if (sid == 1 && d->notify) {
StreamCanPushNotifyFn notifytmp = d->notify;
d->notify = NULL;
notifytmp(d->notify_opaque);
}
stream_update_irq(s);
}
static const MemoryRegionOps axidma_ops = {
.read = axidma_read,
.write = axidma_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static void xilinx_axidma_realize(DeviceState *dev, Error **errp)
{
XilinxAXIDMA *s = XILINX_AXI_DMA(dev);
XilinxAXIDMAStreamSlave *ds = XILINX_AXI_DMA_DATA_STREAM(&s->rx_data_dev);
XilinxAXIDMAStreamSlave *cs = XILINX_AXI_DMA_CONTROL_STREAM(
&s->rx_control_dev);
Error *local_err = NULL;
object_property_add_link(OBJECT(ds), "dma", TYPE_XILINX_AXI_DMA,
(Object **)&ds->dma,
object_property_allow_set_link,
OBJ_PROP_LINK_STRONG,
&local_err);
object_property_add_link(OBJECT(cs), "dma", TYPE_XILINX_AXI_DMA,
(Object **)&cs->dma,
object_property_allow_set_link,
OBJ_PROP_LINK_STRONG,
&local_err);
if (local_err) {
goto xilinx_axidma_realize_fail;
}
object_property_set_link(OBJECT(ds), OBJECT(s), "dma", &local_err);
object_property_set_link(OBJECT(cs), OBJECT(s), "dma", &local_err);
if (local_err) {
goto xilinx_axidma_realize_fail;
}
int i;
for (i = 0; i < 2; i++) {
struct Stream *st = &s->streams[i];
st->nr = i;
st->ptimer = ptimer_init(timer_hit, st, PTIMER_POLICY_DEFAULT);
ptimer_transaction_begin(st->ptimer);
ptimer_set_freq(st->ptimer, s->freqhz);
ptimer_transaction_commit(st->ptimer);
}
return;
xilinx_axidma_realize_fail:
error_propagate(errp, local_err);
}
static void xilinx_axidma_init(Object *obj)
{
XilinxAXIDMA *s = XILINX_AXI_DMA(obj);
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
object_initialize_child(OBJECT(s), "axistream-connected-target",
&s->rx_data_dev, sizeof(s->rx_data_dev),
TYPE_XILINX_AXI_DMA_DATA_STREAM, &error_abort,
NULL);
object_initialize_child(OBJECT(s), "axistream-control-connected-target",
&s->rx_control_dev, sizeof(s->rx_control_dev),
TYPE_XILINX_AXI_DMA_CONTROL_STREAM, &error_abort,
NULL);
sysbus_init_irq(sbd, &s->streams[0].irq);
sysbus_init_irq(sbd, &s->streams[1].irq);
memory_region_init_io(&s->iomem, obj, &axidma_ops, s,
"xlnx.axi-dma", R_MAX * 4 * 2);
sysbus_init_mmio(sbd, &s->iomem);
}
static Property axidma_properties[] = {
DEFINE_PROP_UINT32("freqhz", XilinxAXIDMA, freqhz, 50000000),
DEFINE_PROP_LINK("axistream-connected", XilinxAXIDMA,
tx_data_dev, TYPE_STREAM_SLAVE, StreamSlave *),
DEFINE_PROP_LINK("axistream-control-connected", XilinxAXIDMA,
tx_control_dev, TYPE_STREAM_SLAVE, StreamSlave *),
DEFINE_PROP_END_OF_LIST(),
};
static void axidma_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = xilinx_axidma_realize,
dc->reset = xilinx_axidma_reset;
dc->props = axidma_properties;
}
static StreamSlaveClass xilinx_axidma_data_stream_class = {
.push = xilinx_axidma_data_stream_push,
.can_push = xilinx_axidma_data_stream_can_push,
};
static StreamSlaveClass xilinx_axidma_control_stream_class = {
.push = xilinx_axidma_control_stream_push,
};
static void xilinx_axidma_stream_class_init(ObjectClass *klass, void *data)
{
StreamSlaveClass *ssc = STREAM_SLAVE_CLASS(klass);
ssc->push = ((StreamSlaveClass *)data)->push;
ssc->can_push = ((StreamSlaveClass *)data)->can_push;
}
static const TypeInfo axidma_info = {
.name = TYPE_XILINX_AXI_DMA,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(XilinxAXIDMA),
.class_init = axidma_class_init,
.instance_init = xilinx_axidma_init,
};
static const TypeInfo xilinx_axidma_data_stream_info = {
.name = TYPE_XILINX_AXI_DMA_DATA_STREAM,
.parent = TYPE_OBJECT,
.instance_size = sizeof(struct XilinxAXIDMAStreamSlave),
.class_init = xilinx_axidma_stream_class_init,
.class_data = &xilinx_axidma_data_stream_class,
.interfaces = (InterfaceInfo[]) {
{ TYPE_STREAM_SLAVE },
{ }
}
};
static const TypeInfo xilinx_axidma_control_stream_info = {
.name = TYPE_XILINX_AXI_DMA_CONTROL_STREAM,
.parent = TYPE_OBJECT,
.instance_size = sizeof(struct XilinxAXIDMAStreamSlave),
.class_init = xilinx_axidma_stream_class_init,
.class_data = &xilinx_axidma_control_stream_class,
.interfaces = (InterfaceInfo[]) {
{ TYPE_STREAM_SLAVE },
{ }
}
};
static void xilinx_axidma_register_types(void)
{
type_register_static(&axidma_info);
type_register_static(&xilinx_axidma_data_stream_info);
type_register_static(&xilinx_axidma_control_stream_info);
}
type_init(xilinx_axidma_register_types)