qemu/hw/ppc/spapr_pci.c
Benjamin Herrenschmidt cc706a5305 ppc/xics: Make the ICSState a list
Instead of an array of fixed sized blocks, use a list, as we will need
to have sources with variable number of interrupts. SPAPR only uses
a single entry. Native will create more. If performance becomes an
issue we can add some hashed lookup but for now this will do fine.

Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
[ move the initialization of list to xics_common_initfn,
  restore xirr_owner after migration and move restoring to
  icp_post_load]
Signed-off-by: Nikunj A Dadhania <nikunj@linux.vnet.ibm.com>
[ clg: removed the icp_post_load() changes from nikunj patchset v3:
       http://patchwork.ozlabs.org/patch/646008/ ]
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2016-10-14 16:31:02 +11:00

1977 lines
64 KiB
C

/*
* QEMU sPAPR PCI host originated from Uninorth PCI host
*
* Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
* Copyright (C) 2011 David Gibson, IBM Corporation.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "qemu-common.h"
#include "cpu.h"
#include "hw/hw.h"
#include "hw/sysbus.h"
#include "hw/pci/pci.h"
#include "hw/pci/msi.h"
#include "hw/pci/msix.h"
#include "hw/pci/pci_host.h"
#include "hw/ppc/spapr.h"
#include "hw/pci-host/spapr.h"
#include "exec/address-spaces.h"
#include "exec/ram_addr.h"
#include <libfdt.h>
#include "trace.h"
#include "qemu/error-report.h"
#include "qapi/qmp/qerror.h"
#include "hw/pci/pci_bridge.h"
#include "hw/pci/pci_bus.h"
#include "hw/ppc/spapr_drc.h"
#include "sysemu/device_tree.h"
#include "sysemu/kvm.h"
#include "sysemu/hostmem.h"
#include "sysemu/numa.h"
#include "hw/vfio/vfio.h"
/* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */
#define RTAS_QUERY_FN 0
#define RTAS_CHANGE_FN 1
#define RTAS_RESET_FN 2
#define RTAS_CHANGE_MSI_FN 3
#define RTAS_CHANGE_MSIX_FN 4
/* Interrupt types to return on RTAS_CHANGE_* */
#define RTAS_TYPE_MSI 1
#define RTAS_TYPE_MSIX 2
#define FDT_NAME_MAX 128
#define _FDT(exp) \
do { \
int ret = (exp); \
if (ret < 0) { \
return ret; \
} \
} while (0)
sPAPRPHBState *spapr_pci_find_phb(sPAPRMachineState *spapr, uint64_t buid)
{
sPAPRPHBState *sphb;
QLIST_FOREACH(sphb, &spapr->phbs, list) {
if (sphb->buid != buid) {
continue;
}
return sphb;
}
return NULL;
}
PCIDevice *spapr_pci_find_dev(sPAPRMachineState *spapr, uint64_t buid,
uint32_t config_addr)
{
sPAPRPHBState *sphb = spapr_pci_find_phb(spapr, buid);
PCIHostState *phb = PCI_HOST_BRIDGE(sphb);
int bus_num = (config_addr >> 16) & 0xFF;
int devfn = (config_addr >> 8) & 0xFF;
if (!phb) {
return NULL;
}
return pci_find_device(phb->bus, bus_num, devfn);
}
static uint32_t rtas_pci_cfgaddr(uint32_t arg)
{
/* This handles the encoding of extended config space addresses */
return ((arg >> 20) & 0xf00) | (arg & 0xff);
}
static void finish_read_pci_config(sPAPRMachineState *spapr, uint64_t buid,
uint32_t addr, uint32_t size,
target_ulong rets)
{
PCIDevice *pci_dev;
uint32_t val;
if ((size != 1) && (size != 2) && (size != 4)) {
/* access must be 1, 2 or 4 bytes */
rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
return;
}
pci_dev = spapr_pci_find_dev(spapr, buid, addr);
addr = rtas_pci_cfgaddr(addr);
if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
/* Access must be to a valid device, within bounds and
* naturally aligned */
rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
return;
}
val = pci_host_config_read_common(pci_dev, addr,
pci_config_size(pci_dev), size);
rtas_st(rets, 0, RTAS_OUT_SUCCESS);
rtas_st(rets, 1, val);
}
static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
uint32_t token, uint32_t nargs,
target_ulong args,
uint32_t nret, target_ulong rets)
{
uint64_t buid;
uint32_t size, addr;
if ((nargs != 4) || (nret != 2)) {
rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
return;
}
buid = rtas_ldq(args, 1);
size = rtas_ld(args, 3);
addr = rtas_ld(args, 0);
finish_read_pci_config(spapr, buid, addr, size, rets);
}
static void rtas_read_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
uint32_t token, uint32_t nargs,
target_ulong args,
uint32_t nret, target_ulong rets)
{
uint32_t size, addr;
if ((nargs != 2) || (nret != 2)) {
rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
return;
}
size = rtas_ld(args, 1);
addr = rtas_ld(args, 0);
finish_read_pci_config(spapr, 0, addr, size, rets);
}
static void finish_write_pci_config(sPAPRMachineState *spapr, uint64_t buid,
uint32_t addr, uint32_t size,
uint32_t val, target_ulong rets)
{
PCIDevice *pci_dev;
if ((size != 1) && (size != 2) && (size != 4)) {
/* access must be 1, 2 or 4 bytes */
rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
return;
}
pci_dev = spapr_pci_find_dev(spapr, buid, addr);
addr = rtas_pci_cfgaddr(addr);
if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
/* Access must be to a valid device, within bounds and
* naturally aligned */
rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
return;
}
pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
val, size);
rtas_st(rets, 0, RTAS_OUT_SUCCESS);
}
static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
uint32_t token, uint32_t nargs,
target_ulong args,
uint32_t nret, target_ulong rets)
{
uint64_t buid;
uint32_t val, size, addr;
if ((nargs != 5) || (nret != 1)) {
rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
return;
}
buid = rtas_ldq(args, 1);
val = rtas_ld(args, 4);
size = rtas_ld(args, 3);
addr = rtas_ld(args, 0);
finish_write_pci_config(spapr, buid, addr, size, val, rets);
}
static void rtas_write_pci_config(PowerPCCPU *cpu, sPAPRMachineState *spapr,
uint32_t token, uint32_t nargs,
target_ulong args,
uint32_t nret, target_ulong rets)
{
uint32_t val, size, addr;
if ((nargs != 3) || (nret != 1)) {
rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
return;
}
val = rtas_ld(args, 2);
size = rtas_ld(args, 1);
addr = rtas_ld(args, 0);
finish_write_pci_config(spapr, 0, addr, size, val, rets);
}
/*
* Set MSI/MSIX message data.
* This is required for msi_notify()/msix_notify() which
* will write at the addresses via spapr_msi_write().
*
* If hwaddr == 0, all entries will have .data == first_irq i.e.
* table will be reset.
*/
static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix,
unsigned first_irq, unsigned req_num)
{
unsigned i;
MSIMessage msg = { .address = addr, .data = first_irq };
if (!msix) {
msi_set_message(pdev, msg);
trace_spapr_pci_msi_setup(pdev->name, 0, msg.address);
return;
}
for (i = 0; i < req_num; ++i) {
msix_set_message(pdev, i, msg);
trace_spapr_pci_msi_setup(pdev->name, i, msg.address);
if (addr) {
++msg.data;
}
}
}
static void rtas_ibm_change_msi(PowerPCCPU *cpu, sPAPRMachineState *spapr,
uint32_t token, uint32_t nargs,
target_ulong args, uint32_t nret,
target_ulong rets)
{
uint32_t config_addr = rtas_ld(args, 0);
uint64_t buid = rtas_ldq(args, 1);
unsigned int func = rtas_ld(args, 3);
unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */
unsigned int seq_num = rtas_ld(args, 5);
unsigned int ret_intr_type;
unsigned int irq, max_irqs = 0;
sPAPRPHBState *phb = NULL;
PCIDevice *pdev = NULL;
spapr_pci_msi *msi;
int *config_addr_key;
Error *err = NULL;
switch (func) {
case RTAS_CHANGE_MSI_FN:
case RTAS_CHANGE_FN:
ret_intr_type = RTAS_TYPE_MSI;
break;
case RTAS_CHANGE_MSIX_FN:
ret_intr_type = RTAS_TYPE_MSIX;
break;
default:
error_report("rtas_ibm_change_msi(%u) is not implemented", func);
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
return;
}
/* Fins sPAPRPHBState */
phb = spapr_pci_find_phb(spapr, buid);
if (phb) {
pdev = spapr_pci_find_dev(spapr, buid, config_addr);
}
if (!phb || !pdev) {
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
return;
}
msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
/* Releasing MSIs */
if (!req_num) {
if (!msi) {
trace_spapr_pci_msi("Releasing wrong config", config_addr);
rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
return;
}
xics_spapr_free(spapr->xics, msi->first_irq, msi->num);
if (msi_present(pdev)) {
spapr_msi_setmsg(pdev, 0, false, 0, 0);
}
if (msix_present(pdev)) {
spapr_msi_setmsg(pdev, 0, true, 0, 0);
}
g_hash_table_remove(phb->msi, &config_addr);
trace_spapr_pci_msi("Released MSIs", config_addr);
rtas_st(rets, 0, RTAS_OUT_SUCCESS);
rtas_st(rets, 1, 0);
return;
}
/* Enabling MSI */
/* Check if the device supports as many IRQs as requested */
if (ret_intr_type == RTAS_TYPE_MSI) {
max_irqs = msi_nr_vectors_allocated(pdev);
} else if (ret_intr_type == RTAS_TYPE_MSIX) {
max_irqs = pdev->msix_entries_nr;
}
if (!max_irqs) {
error_report("Requested interrupt type %d is not enabled for device %x",
ret_intr_type, config_addr);
rtas_st(rets, 0, -1); /* Hardware error */
return;
}
/* Correct the number if the guest asked for too many */
if (req_num > max_irqs) {
trace_spapr_pci_msi_retry(config_addr, req_num, max_irqs);
req_num = max_irqs;
irq = 0; /* to avoid misleading trace */
goto out;
}
/* Allocate MSIs */
irq = xics_spapr_alloc_block(spapr->xics, req_num, false,
ret_intr_type == RTAS_TYPE_MSI, &err);
if (err) {
error_reportf_err(err, "Can't allocate MSIs for device %x: ",
config_addr);
rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
return;
}
/* Release previous MSIs */
if (msi) {
xics_spapr_free(spapr->xics, msi->first_irq, msi->num);
g_hash_table_remove(phb->msi, &config_addr);
}
/* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */
spapr_msi_setmsg(pdev, SPAPR_PCI_MSI_WINDOW, ret_intr_type == RTAS_TYPE_MSIX,
irq, req_num);
/* Add MSI device to cache */
msi = g_new(spapr_pci_msi, 1);
msi->first_irq = irq;
msi->num = req_num;
config_addr_key = g_new(int, 1);
*config_addr_key = config_addr;
g_hash_table_insert(phb->msi, config_addr_key, msi);
out:
rtas_st(rets, 0, RTAS_OUT_SUCCESS);
rtas_st(rets, 1, req_num);
rtas_st(rets, 2, ++seq_num);
if (nret > 3) {
rtas_st(rets, 3, ret_intr_type);
}
trace_spapr_pci_rtas_ibm_change_msi(config_addr, func, req_num, irq);
}
static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu,
sPAPRMachineState *spapr,
uint32_t token,
uint32_t nargs,
target_ulong args,
uint32_t nret,
target_ulong rets)
{
uint32_t config_addr = rtas_ld(args, 0);
uint64_t buid = rtas_ldq(args, 1);
unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3);
sPAPRPHBState *phb = NULL;
PCIDevice *pdev = NULL;
spapr_pci_msi *msi;
/* Find sPAPRPHBState */
phb = spapr_pci_find_phb(spapr, buid);
if (phb) {
pdev = spapr_pci_find_dev(spapr, buid, config_addr);
}
if (!phb || !pdev) {
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
return;
}
/* Find device descriptor and start IRQ */
msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
if (!msi || !msi->first_irq || !msi->num || (ioa_intr_num >= msi->num)) {
trace_spapr_pci_msi("Failed to return vector", config_addr);
rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
return;
}
intr_src_num = msi->first_irq + ioa_intr_num;
trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num,
intr_src_num);
rtas_st(rets, 0, RTAS_OUT_SUCCESS);
rtas_st(rets, 1, intr_src_num);
rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */
}
static void rtas_ibm_set_eeh_option(PowerPCCPU *cpu,
sPAPRMachineState *spapr,
uint32_t token, uint32_t nargs,
target_ulong args, uint32_t nret,
target_ulong rets)
{
sPAPRPHBState *sphb;
uint32_t addr, option;
uint64_t buid;
int ret;
if ((nargs != 4) || (nret != 1)) {
goto param_error_exit;
}
buid = rtas_ldq(args, 1);
addr = rtas_ld(args, 0);
option = rtas_ld(args, 3);
sphb = spapr_pci_find_phb(spapr, buid);
if (!sphb) {
goto param_error_exit;
}
if (!spapr_phb_eeh_available(sphb)) {
goto param_error_exit;
}
ret = spapr_phb_vfio_eeh_set_option(sphb, addr, option);
rtas_st(rets, 0, ret);
return;
param_error_exit:
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
}
static void rtas_ibm_get_config_addr_info2(PowerPCCPU *cpu,
sPAPRMachineState *spapr,
uint32_t token, uint32_t nargs,
target_ulong args, uint32_t nret,
target_ulong rets)
{
sPAPRPHBState *sphb;
PCIDevice *pdev;
uint32_t addr, option;
uint64_t buid;
if ((nargs != 4) || (nret != 2)) {
goto param_error_exit;
}
buid = rtas_ldq(args, 1);
sphb = spapr_pci_find_phb(spapr, buid);
if (!sphb) {
goto param_error_exit;
}
if (!spapr_phb_eeh_available(sphb)) {
goto param_error_exit;
}
/*
* We always have PE address of form "00BB0001". "BB"
* represents the bus number of PE's primary bus.
*/
option = rtas_ld(args, 3);
switch (option) {
case RTAS_GET_PE_ADDR:
addr = rtas_ld(args, 0);
pdev = spapr_pci_find_dev(spapr, buid, addr);
if (!pdev) {
goto param_error_exit;
}
rtas_st(rets, 1, (pci_bus_num(pdev->bus) << 16) + 1);
break;
case RTAS_GET_PE_MODE:
rtas_st(rets, 1, RTAS_PE_MODE_SHARED);
break;
default:
goto param_error_exit;
}
rtas_st(rets, 0, RTAS_OUT_SUCCESS);
return;
param_error_exit:
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
}
static void rtas_ibm_read_slot_reset_state2(PowerPCCPU *cpu,
sPAPRMachineState *spapr,
uint32_t token, uint32_t nargs,
target_ulong args, uint32_t nret,
target_ulong rets)
{
sPAPRPHBState *sphb;
uint64_t buid;
int state, ret;
if ((nargs != 3) || (nret != 4 && nret != 5)) {
goto param_error_exit;
}
buid = rtas_ldq(args, 1);
sphb = spapr_pci_find_phb(spapr, buid);
if (!sphb) {
goto param_error_exit;
}
if (!spapr_phb_eeh_available(sphb)) {
goto param_error_exit;
}
ret = spapr_phb_vfio_eeh_get_state(sphb, &state);
rtas_st(rets, 0, ret);
if (ret != RTAS_OUT_SUCCESS) {
return;
}
rtas_st(rets, 1, state);
rtas_st(rets, 2, RTAS_EEH_SUPPORT);
rtas_st(rets, 3, RTAS_EEH_PE_UNAVAIL_INFO);
if (nret >= 5) {
rtas_st(rets, 4, RTAS_EEH_PE_RECOVER_INFO);
}
return;
param_error_exit:
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
}
static void rtas_ibm_set_slot_reset(PowerPCCPU *cpu,
sPAPRMachineState *spapr,
uint32_t token, uint32_t nargs,
target_ulong args, uint32_t nret,
target_ulong rets)
{
sPAPRPHBState *sphb;
uint32_t option;
uint64_t buid;
int ret;
if ((nargs != 4) || (nret != 1)) {
goto param_error_exit;
}
buid = rtas_ldq(args, 1);
option = rtas_ld(args, 3);
sphb = spapr_pci_find_phb(spapr, buid);
if (!sphb) {
goto param_error_exit;
}
if (!spapr_phb_eeh_available(sphb)) {
goto param_error_exit;
}
ret = spapr_phb_vfio_eeh_reset(sphb, option);
rtas_st(rets, 0, ret);
return;
param_error_exit:
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
}
static void rtas_ibm_configure_pe(PowerPCCPU *cpu,
sPAPRMachineState *spapr,
uint32_t token, uint32_t nargs,
target_ulong args, uint32_t nret,
target_ulong rets)
{
sPAPRPHBState *sphb;
uint64_t buid;
int ret;
if ((nargs != 3) || (nret != 1)) {
goto param_error_exit;
}
buid = rtas_ldq(args, 1);
sphb = spapr_pci_find_phb(spapr, buid);
if (!sphb) {
goto param_error_exit;
}
if (!spapr_phb_eeh_available(sphb)) {
goto param_error_exit;
}
ret = spapr_phb_vfio_eeh_configure(sphb);
rtas_st(rets, 0, ret);
return;
param_error_exit:
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
}
/* To support it later */
static void rtas_ibm_slot_error_detail(PowerPCCPU *cpu,
sPAPRMachineState *spapr,
uint32_t token, uint32_t nargs,
target_ulong args, uint32_t nret,
target_ulong rets)
{
sPAPRPHBState *sphb;
int option;
uint64_t buid;
if ((nargs != 8) || (nret != 1)) {
goto param_error_exit;
}
buid = rtas_ldq(args, 1);
sphb = spapr_pci_find_phb(spapr, buid);
if (!sphb) {
goto param_error_exit;
}
if (!spapr_phb_eeh_available(sphb)) {
goto param_error_exit;
}
option = rtas_ld(args, 7);
switch (option) {
case RTAS_SLOT_TEMP_ERR_LOG:
case RTAS_SLOT_PERM_ERR_LOG:
break;
default:
goto param_error_exit;
}
/* We don't have error log yet */
rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND);
return;
param_error_exit:
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
}
static int pci_spapr_swizzle(int slot, int pin)
{
return (slot + pin) % PCI_NUM_PINS;
}
static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num)
{
/*
* Here we need to convert pci_dev + irq_num to some unique value
* which is less than number of IRQs on the specific bus (4). We
* use standard PCI swizzling, that is (slot number + pin number)
* % 4.
*/
return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num);
}
static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
{
/*
* Here we use the number returned by pci_spapr_map_irq to find a
* corresponding qemu_irq.
*/
sPAPRPHBState *phb = opaque;
trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq);
qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level);
}
static PCIINTxRoute spapr_route_intx_pin_to_irq(void *opaque, int pin)
{
sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(opaque);
PCIINTxRoute route;
route.mode = PCI_INTX_ENABLED;
route.irq = sphb->lsi_table[pin].irq;
return route;
}
/*
* MSI/MSIX memory region implementation.
* The handler handles both MSI and MSIX.
* For MSI-X, the vector number is encoded as a part of the address,
* data is set to 0.
* For MSI, the vector number is encoded in least bits in data.
*/
static void spapr_msi_write(void *opaque, hwaddr addr,
uint64_t data, unsigned size)
{
sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
uint32_t irq = data;
trace_spapr_pci_msi_write(addr, data, irq);
qemu_irq_pulse(xics_get_qirq(spapr->xics, irq));
}
static const MemoryRegionOps spapr_msi_ops = {
/* There is no .read as the read result is undefined by PCI spec */
.read = NULL,
.write = spapr_msi_write,
.endianness = DEVICE_LITTLE_ENDIAN
};
/*
* PHB PCI device
*/
static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn)
{
sPAPRPHBState *phb = opaque;
return &phb->iommu_as;
}
static char *spapr_phb_vfio_get_loc_code(sPAPRPHBState *sphb, PCIDevice *pdev)
{
char *path = NULL, *buf = NULL, *host = NULL;
/* Get the PCI VFIO host id */
host = object_property_get_str(OBJECT(pdev), "host", NULL);
if (!host) {
goto err_out;
}
/* Construct the path of the file that will give us the DT location */
path = g_strdup_printf("/sys/bus/pci/devices/%s/devspec", host);
g_free(host);
if (!path || !g_file_get_contents(path, &buf, NULL, NULL)) {
goto err_out;
}
g_free(path);
/* Construct and read from host device tree the loc-code */
path = g_strdup_printf("/proc/device-tree%s/ibm,loc-code", buf);
g_free(buf);
if (!path || !g_file_get_contents(path, &buf, NULL, NULL)) {
goto err_out;
}
return buf;
err_out:
g_free(path);
return NULL;
}
static char *spapr_phb_get_loc_code(sPAPRPHBState *sphb, PCIDevice *pdev)
{
char *buf;
const char *devtype = "qemu";
uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
if (object_dynamic_cast(OBJECT(pdev), "vfio-pci")) {
buf = spapr_phb_vfio_get_loc_code(sphb, pdev);
if (buf) {
return buf;
}
devtype = "vfio";
}
/*
* For emulated devices and VFIO-failure case, make up
* the loc-code.
*/
buf = g_strdup_printf("%s_%s:%04x:%02x:%02x.%x",
devtype, pdev->name, sphb->index, busnr,
PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
return buf;
}
/* Macros to operate with address in OF binding to PCI */
#define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p))
#define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */
#define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */
#define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */
#define b_ss(x) b_x((x), 24, 2) /* the space code */
#define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */
#define b_ddddd(x) b_x((x), 11, 5) /* device number */
#define b_fff(x) b_x((x), 8, 3) /* function number */
#define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */
/* for 'reg'/'assigned-addresses' OF properties */
#define RESOURCE_CELLS_SIZE 2
#define RESOURCE_CELLS_ADDRESS 3
typedef struct ResourceFields {
uint32_t phys_hi;
uint32_t phys_mid;
uint32_t phys_lo;
uint32_t size_hi;
uint32_t size_lo;
} QEMU_PACKED ResourceFields;
typedef struct ResourceProps {
ResourceFields reg[8];
ResourceFields assigned[7];
uint32_t reg_len;
uint32_t assigned_len;
} ResourceProps;
/* fill in the 'reg'/'assigned-resources' OF properties for
* a PCI device. 'reg' describes resource requirements for a
* device's IO/MEM regions, 'assigned-addresses' describes the
* actual resource assignments.
*
* the properties are arrays of ('phys-addr', 'size') pairs describing
* the addressable regions of the PCI device, where 'phys-addr' is a
* RESOURCE_CELLS_ADDRESS-tuple of 32-bit integers corresponding to
* (phys.hi, phys.mid, phys.lo), and 'size' is a
* RESOURCE_CELLS_SIZE-tuple corresponding to (size.hi, size.lo).
*
* phys.hi = 0xYYXXXXZZ, where:
* 0xYY = npt000ss
* ||| |
* ||| +-- space code
* ||| |
* ||| + 00 if configuration space
* ||| + 01 if IO region,
* ||| + 10 if 32-bit MEM region
* ||| + 11 if 64-bit MEM region
* |||
* ||+------ for non-relocatable IO: 1 if aliased
* || for relocatable IO: 1 if below 64KB
* || for MEM: 1 if below 1MB
* |+------- 1 if region is prefetchable
* +-------- 1 if region is non-relocatable
* 0xXXXX = bbbbbbbb dddddfff, encoding bus, slot, and function
* bits respectively
* 0xZZ = rrrrrrrr, the register number of the BAR corresponding
* to the region
*
* phys.mid and phys.lo correspond respectively to the hi/lo portions
* of the actual address of the region.
*
* how the phys-addr/size values are used differ slightly between
* 'reg' and 'assigned-addresses' properties. namely, 'reg' has
* an additional description for the config space region of the
* device, and in the case of QEMU has n=0 and phys.mid=phys.lo=0
* to describe the region as relocatable, with an address-mapping
* that corresponds directly to the PHB's address space for the
* resource. 'assigned-addresses' always has n=1 set with an absolute
* address assigned for the resource. in general, 'assigned-addresses'
* won't be populated, since addresses for PCI devices are generally
* unmapped initially and left to the guest to assign.
*
* note also that addresses defined in these properties are, at least
* for PAPR guests, relative to the PHBs IO/MEM windows, and
* correspond directly to the addresses in the BARs.
*
* in accordance with PCI Bus Binding to Open Firmware,
* IEEE Std 1275-1994, section 4.1.1, as implemented by PAPR+ v2.7,
* Appendix C.
*/
static void populate_resource_props(PCIDevice *d, ResourceProps *rp)
{
int bus_num = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(d))));
uint32_t dev_id = (b_bbbbbbbb(bus_num) |
b_ddddd(PCI_SLOT(d->devfn)) |
b_fff(PCI_FUNC(d->devfn)));
ResourceFields *reg, *assigned;
int i, reg_idx = 0, assigned_idx = 0;
/* config space region */
reg = &rp->reg[reg_idx++];
reg->phys_hi = cpu_to_be32(dev_id);
reg->phys_mid = 0;
reg->phys_lo = 0;
reg->size_hi = 0;
reg->size_lo = 0;
for (i = 0; i < PCI_NUM_REGIONS; i++) {
if (!d->io_regions[i].size) {
continue;
}
reg = &rp->reg[reg_idx++];
reg->phys_hi = cpu_to_be32(dev_id | b_rrrrrrrr(pci_bar(d, i)));
if (d->io_regions[i].type & PCI_BASE_ADDRESS_SPACE_IO) {
reg->phys_hi |= cpu_to_be32(b_ss(1));
} else if (d->io_regions[i].type & PCI_BASE_ADDRESS_MEM_TYPE_64) {
reg->phys_hi |= cpu_to_be32(b_ss(3));
} else {
reg->phys_hi |= cpu_to_be32(b_ss(2));
}
reg->phys_mid = 0;
reg->phys_lo = 0;
reg->size_hi = cpu_to_be32(d->io_regions[i].size >> 32);
reg->size_lo = cpu_to_be32(d->io_regions[i].size);
if (d->io_regions[i].addr == PCI_BAR_UNMAPPED) {
continue;
}
assigned = &rp->assigned[assigned_idx++];
assigned->phys_hi = cpu_to_be32(reg->phys_hi | b_n(1));
assigned->phys_mid = cpu_to_be32(d->io_regions[i].addr >> 32);
assigned->phys_lo = cpu_to_be32(d->io_regions[i].addr);
assigned->size_hi = reg->size_hi;
assigned->size_lo = reg->size_lo;
}
rp->reg_len = reg_idx * sizeof(ResourceFields);
rp->assigned_len = assigned_idx * sizeof(ResourceFields);
}
static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb,
PCIDevice *pdev);
static int spapr_populate_pci_child_dt(PCIDevice *dev, void *fdt, int offset,
sPAPRPHBState *sphb)
{
ResourceProps rp;
bool is_bridge = false;
int pci_status, err;
char *buf = NULL;
uint32_t drc_index = spapr_phb_get_pci_drc_index(sphb, dev);
uint32_t max_msi, max_msix;
if (pci_default_read_config(dev, PCI_HEADER_TYPE, 1) ==
PCI_HEADER_TYPE_BRIDGE) {
is_bridge = true;
}
/* in accordance with PAPR+ v2.7 13.6.3, Table 181 */
_FDT(fdt_setprop_cell(fdt, offset, "vendor-id",
pci_default_read_config(dev, PCI_VENDOR_ID, 2)));
_FDT(fdt_setprop_cell(fdt, offset, "device-id",
pci_default_read_config(dev, PCI_DEVICE_ID, 2)));
_FDT(fdt_setprop_cell(fdt, offset, "revision-id",
pci_default_read_config(dev, PCI_REVISION_ID, 1)));
_FDT(fdt_setprop_cell(fdt, offset, "class-code",
pci_default_read_config(dev, PCI_CLASS_PROG, 3)));
if (pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)) {
_FDT(fdt_setprop_cell(fdt, offset, "interrupts",
pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)));
}
if (!is_bridge) {
_FDT(fdt_setprop_cell(fdt, offset, "min-grant",
pci_default_read_config(dev, PCI_MIN_GNT, 1)));
_FDT(fdt_setprop_cell(fdt, offset, "max-latency",
pci_default_read_config(dev, PCI_MAX_LAT, 1)));
}
if (pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)) {
_FDT(fdt_setprop_cell(fdt, offset, "subsystem-id",
pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)));
}
if (pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)) {
_FDT(fdt_setprop_cell(fdt, offset, "subsystem-vendor-id",
pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)));
}
_FDT(fdt_setprop_cell(fdt, offset, "cache-line-size",
pci_default_read_config(dev, PCI_CACHE_LINE_SIZE, 1)));
/* the following fdt cells are masked off the pci status register */
pci_status = pci_default_read_config(dev, PCI_STATUS, 2);
_FDT(fdt_setprop_cell(fdt, offset, "devsel-speed",
PCI_STATUS_DEVSEL_MASK & pci_status));
if (pci_status & PCI_STATUS_FAST_BACK) {
_FDT(fdt_setprop(fdt, offset, "fast-back-to-back", NULL, 0));
}
if (pci_status & PCI_STATUS_66MHZ) {
_FDT(fdt_setprop(fdt, offset, "66mhz-capable", NULL, 0));
}
if (pci_status & PCI_STATUS_UDF) {
_FDT(fdt_setprop(fdt, offset, "udf-supported", NULL, 0));
}
/* NOTE: this is normally generated by firmware via path/unit name,
* but in our case we must set it manually since it does not get
* processed by OF beforehand
*/
_FDT(fdt_setprop_string(fdt, offset, "name", "pci"));
buf = spapr_phb_get_loc_code(sphb, dev);
if (!buf) {
error_report("Failed setting the ibm,loc-code");
return -1;
}
err = fdt_setprop_string(fdt, offset, "ibm,loc-code", buf);
g_free(buf);
if (err < 0) {
return err;
}
if (drc_index) {
_FDT(fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index));
}
_FDT(fdt_setprop_cell(fdt, offset, "#address-cells",
RESOURCE_CELLS_ADDRESS));
_FDT(fdt_setprop_cell(fdt, offset, "#size-cells",
RESOURCE_CELLS_SIZE));
max_msi = msi_nr_vectors_allocated(dev);
if (max_msi) {
_FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi", max_msi));
}
max_msix = dev->msix_entries_nr;
if (max_msix) {
_FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi-x", max_msix));
}
populate_resource_props(dev, &rp);
_FDT(fdt_setprop(fdt, offset, "reg", (uint8_t *)rp.reg, rp.reg_len));
_FDT(fdt_setprop(fdt, offset, "assigned-addresses",
(uint8_t *)rp.assigned, rp.assigned_len));
return 0;
}
/* create OF node for pci device and required OF DT properties */
static int spapr_create_pci_child_dt(sPAPRPHBState *phb, PCIDevice *dev,
void *fdt, int node_offset)
{
int offset, ret;
int slot = PCI_SLOT(dev->devfn);
int func = PCI_FUNC(dev->devfn);
char nodename[FDT_NAME_MAX];
if (func != 0) {
snprintf(nodename, FDT_NAME_MAX, "pci@%x,%x", slot, func);
} else {
snprintf(nodename, FDT_NAME_MAX, "pci@%x", slot);
}
offset = fdt_add_subnode(fdt, node_offset, nodename);
ret = spapr_populate_pci_child_dt(dev, fdt, offset, phb);
g_assert(!ret);
if (ret) {
return 0;
}
return offset;
}
static void spapr_phb_add_pci_device(sPAPRDRConnector *drc,
sPAPRPHBState *phb,
PCIDevice *pdev,
Error **errp)
{
sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
DeviceState *dev = DEVICE(pdev);
void *fdt = NULL;
int fdt_start_offset = 0, fdt_size;
fdt = create_device_tree(&fdt_size);
fdt_start_offset = spapr_create_pci_child_dt(phb, pdev, fdt, 0);
if (!fdt_start_offset) {
error_setg(errp, "Failed to create pci child device tree node");
goto out;
}
drck->attach(drc, DEVICE(pdev),
fdt, fdt_start_offset, !dev->hotplugged, errp);
out:
if (*errp) {
g_free(fdt);
}
}
static void spapr_phb_remove_pci_device_cb(DeviceState *dev, void *opaque)
{
/* some version guests do not wait for completion of a device
* cleanup (generally done asynchronously by the kernel) before
* signaling to QEMU that the device is safe, but instead sleep
* for some 'safe' period of time. unfortunately on a busy host
* this sleep isn't guaranteed to be long enough, resulting in
* bad things like IRQ lines being left asserted during final
* device removal. to deal with this we call reset just prior
* to finalizing the device, which will put the device back into
* an 'idle' state, as the device cleanup code expects.
*/
pci_device_reset(PCI_DEVICE(dev));
object_unparent(OBJECT(dev));
}
static void spapr_phb_remove_pci_device(sPAPRDRConnector *drc,
sPAPRPHBState *phb,
PCIDevice *pdev,
Error **errp)
{
sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
drck->detach(drc, DEVICE(pdev), spapr_phb_remove_pci_device_cb, phb, errp);
}
static sPAPRDRConnector *spapr_phb_get_pci_func_drc(sPAPRPHBState *phb,
uint32_t busnr,
int32_t devfn)
{
return spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_PCI,
(phb->index << 16) |
(busnr << 8) |
devfn);
}
static sPAPRDRConnector *spapr_phb_get_pci_drc(sPAPRPHBState *phb,
PCIDevice *pdev)
{
uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
return spapr_phb_get_pci_func_drc(phb, busnr, pdev->devfn);
}
static uint32_t spapr_phb_get_pci_drc_index(sPAPRPHBState *phb,
PCIDevice *pdev)
{
sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
sPAPRDRConnectorClass *drck;
if (!drc) {
return 0;
}
drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
return drck->get_index(drc);
}
static void spapr_phb_hot_plug_child(HotplugHandler *plug_handler,
DeviceState *plugged_dev, Error **errp)
{
sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
PCIDevice *pdev = PCI_DEVICE(plugged_dev);
sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
Error *local_err = NULL;
PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)));
uint32_t slotnr = PCI_SLOT(pdev->devfn);
/* if DR is disabled we don't need to do anything in the case of
* hotplug or coldplug callbacks
*/
if (!phb->dr_enabled) {
/* if this is a hotplug operation initiated by the user
* we need to let them know it's not enabled
*/
if (plugged_dev->hotplugged) {
error_setg(errp, QERR_BUS_NO_HOTPLUG,
object_get_typename(OBJECT(phb)));
}
return;
}
g_assert(drc);
/* Following the QEMU convention used for PCIe multifunction
* hotplug, we do not allow functions to be hotplugged to a
* slot that already has function 0 present
*/
if (plugged_dev->hotplugged && bus->devices[PCI_DEVFN(slotnr, 0)] &&
PCI_FUNC(pdev->devfn) != 0) {
error_setg(errp, "PCI: slot %d function 0 already ocuppied by %s,"
" additional functions can no longer be exposed to guest.",
slotnr, bus->devices[PCI_DEVFN(slotnr, 0)]->name);
return;
}
spapr_phb_add_pci_device(drc, phb, pdev, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
/* If this is function 0, signal hotplug for all the device functions.
* Otherwise defer sending the hotplug event.
*/
if (plugged_dev->hotplugged && PCI_FUNC(pdev->devfn) == 0) {
int i;
for (i = 0; i < 8; i++) {
sPAPRDRConnector *func_drc;
sPAPRDRConnectorClass *func_drck;
sPAPRDREntitySense state;
func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
PCI_DEVFN(slotnr, i));
func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
func_drck->entity_sense(func_drc, &state);
if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) {
spapr_hotplug_req_add_by_index(func_drc);
}
}
}
}
static void spapr_phb_hot_unplug_child(HotplugHandler *plug_handler,
DeviceState *plugged_dev, Error **errp)
{
sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
PCIDevice *pdev = PCI_DEVICE(plugged_dev);
sPAPRDRConnectorClass *drck;
sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
Error *local_err = NULL;
if (!phb->dr_enabled) {
error_setg(errp, QERR_BUS_NO_HOTPLUG,
object_get_typename(OBJECT(phb)));
return;
}
g_assert(drc);
drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
if (!drck->release_pending(drc)) {
PCIBus *bus = PCI_BUS(qdev_get_parent_bus(DEVICE(pdev)));
uint32_t slotnr = PCI_SLOT(pdev->devfn);
sPAPRDRConnector *func_drc;
sPAPRDRConnectorClass *func_drck;
sPAPRDREntitySense state;
int i;
/* ensure any other present functions are pending unplug */
if (PCI_FUNC(pdev->devfn) == 0) {
for (i = 1; i < 8; i++) {
func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
PCI_DEVFN(slotnr, i));
func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
func_drck->entity_sense(func_drc, &state);
if (state == SPAPR_DR_ENTITY_SENSE_PRESENT
&& !func_drck->release_pending(func_drc)) {
error_setg(errp,
"PCI: slot %d, function %d still present. "
"Must unplug all non-0 functions first.",
slotnr, i);
return;
}
}
}
spapr_phb_remove_pci_device(drc, phb, pdev, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
/* if this isn't func 0, defer unplug event. otherwise signal removal
* for all present functions
*/
if (PCI_FUNC(pdev->devfn) == 0) {
for (i = 7; i >= 0; i--) {
func_drc = spapr_phb_get_pci_func_drc(phb, pci_bus_num(bus),
PCI_DEVFN(slotnr, i));
func_drck = SPAPR_DR_CONNECTOR_GET_CLASS(func_drc);
func_drck->entity_sense(func_drc, &state);
if (state == SPAPR_DR_ENTITY_SENSE_PRESENT) {
spapr_hotplug_req_remove_by_index(func_drc);
}
}
}
}
}
static void spapr_phb_realize(DeviceState *dev, Error **errp)
{
sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
SysBusDevice *s = SYS_BUS_DEVICE(dev);
sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s);
PCIHostState *phb = PCI_HOST_BRIDGE(s);
char *namebuf;
int i;
PCIBus *bus;
uint64_t msi_window_size = 4096;
sPAPRTCETable *tcet;
const unsigned windows_supported =
sphb->ddw_enabled ? SPAPR_PCI_DMA_MAX_WINDOWS : 1;
if (sphb->index != (uint32_t)-1) {
hwaddr windows_base;
if ((sphb->buid != (uint64_t)-1) || (sphb->dma_liobn[0] != (uint32_t)-1)
|| (sphb->dma_liobn[1] != (uint32_t)-1 && windows_supported == 2)
|| (sphb->mem_win_addr != (hwaddr)-1)
|| (sphb->io_win_addr != (hwaddr)-1)) {
error_setg(errp, "Either \"index\" or other parameters must"
" be specified for PAPR PHB, not both");
return;
}
if (sphb->index > SPAPR_PCI_MAX_INDEX) {
error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
SPAPR_PCI_MAX_INDEX);
return;
}
sphb->buid = SPAPR_PCI_BASE_BUID + sphb->index;
for (i = 0; i < windows_supported; ++i) {
sphb->dma_liobn[i] = SPAPR_PCI_LIOBN(sphb->index, i);
}
windows_base = SPAPR_PCI_WINDOW_BASE
+ sphb->index * SPAPR_PCI_WINDOW_SPACING;
sphb->mem_win_addr = windows_base + SPAPR_PCI_MMIO_WIN_OFF;
sphb->io_win_addr = windows_base + SPAPR_PCI_IO_WIN_OFF;
}
if (sphb->buid == (uint64_t)-1) {
error_setg(errp, "BUID not specified for PHB");
return;
}
if ((sphb->dma_liobn[0] == (uint32_t)-1) ||
((sphb->dma_liobn[1] == (uint32_t)-1) && (windows_supported > 1))) {
error_setg(errp, "LIOBN(s) not specified for PHB");
return;
}
if (sphb->mem_win_addr == (hwaddr)-1) {
error_setg(errp, "Memory window address not specified for PHB");
return;
}
if (sphb->io_win_addr == (hwaddr)-1) {
error_setg(errp, "IO window address not specified for PHB");
return;
}
if (spapr_pci_find_phb(spapr, sphb->buid)) {
error_setg(errp, "PCI host bridges must have unique BUIDs");
return;
}
sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid);
namebuf = alloca(strlen(sphb->dtbusname) + 32);
/* Initialize memory regions */
sprintf(namebuf, "%s.mmio", sphb->dtbusname);
memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, UINT64_MAX);
sprintf(namebuf, "%s.mmio-alias", sphb->dtbusname);
memory_region_init_alias(&sphb->memwindow, OBJECT(sphb),
namebuf, &sphb->memspace,
SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size);
memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr,
&sphb->memwindow);
/* Initialize IO regions */
sprintf(namebuf, "%s.io", sphb->dtbusname);
memory_region_init(&sphb->iospace, OBJECT(sphb),
namebuf, SPAPR_PCI_IO_WIN_SIZE);
sprintf(namebuf, "%s.io-alias", sphb->dtbusname);
memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf,
&sphb->iospace, 0, SPAPR_PCI_IO_WIN_SIZE);
memory_region_add_subregion(get_system_memory(), sphb->io_win_addr,
&sphb->iowindow);
bus = pci_register_bus(dev, NULL,
pci_spapr_set_irq, pci_spapr_map_irq, sphb,
&sphb->memspace, &sphb->iospace,
PCI_DEVFN(0, 0), PCI_NUM_PINS, TYPE_PCI_BUS);
phb->bus = bus;
qbus_set_hotplug_handler(BUS(phb->bus), DEVICE(sphb), NULL);
/*
* Initialize PHB address space.
* By default there will be at least one subregion for default
* 32bit DMA window.
* Later the guest might want to create another DMA window
* which will become another memory subregion.
*/
sprintf(namebuf, "%s.iommu-root", sphb->dtbusname);
memory_region_init(&sphb->iommu_root, OBJECT(sphb),
namebuf, UINT64_MAX);
address_space_init(&sphb->iommu_as, &sphb->iommu_root,
sphb->dtbusname);
/*
* As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors,
* we need to allocate some memory to catch those writes coming
* from msi_notify()/msix_notify().
* As MSIMessage:addr is going to be the same and MSIMessage:data
* is going to be a VIRQ number, 4 bytes of the MSI MR will only
* be used.
*
* For KVM we want to ensure that this memory is a full page so that
* our memory slot is of page size granularity.
*/
#ifdef CONFIG_KVM
if (kvm_enabled()) {
msi_window_size = getpagesize();
}
#endif
memory_region_init_io(&sphb->msiwindow, NULL, &spapr_msi_ops, spapr,
"msi", msi_window_size);
memory_region_add_subregion(&sphb->iommu_root, SPAPR_PCI_MSI_WINDOW,
&sphb->msiwindow);
pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb);
pci_bus_set_route_irq_fn(bus, spapr_route_intx_pin_to_irq);
QLIST_INSERT_HEAD(&spapr->phbs, sphb, list);
/* Initialize the LSI table */
for (i = 0; i < PCI_NUM_PINS; i++) {
uint32_t irq;
Error *local_err = NULL;
irq = xics_spapr_alloc_block(spapr->xics, 1, true, false, &local_err);
if (local_err) {
error_propagate(errp, local_err);
error_prepend(errp, "can't allocate LSIs: ");
return;
}
sphb->lsi_table[i].irq = irq;
}
/* allocate connectors for child PCI devices */
if (sphb->dr_enabled) {
for (i = 0; i < PCI_SLOT_MAX * 8; i++) {
spapr_dr_connector_new(OBJECT(phb),
SPAPR_DR_CONNECTOR_TYPE_PCI,
(sphb->index << 16) | i);
}
}
/* DMA setup */
for (i = 0; i < windows_supported; ++i) {
tcet = spapr_tce_new_table(DEVICE(sphb), sphb->dma_liobn[i]);
if (!tcet) {
error_setg(errp, "Creating window#%d failed for %s",
i, sphb->dtbusname);
return;
}
memory_region_add_subregion_overlap(&sphb->iommu_root, 0,
spapr_tce_get_iommu(tcet), 0);
}
sphb->msi = g_hash_table_new_full(g_int_hash, g_int_equal, g_free, g_free);
}
static int spapr_phb_children_reset(Object *child, void *opaque)
{
DeviceState *dev = (DeviceState *) object_dynamic_cast(child, TYPE_DEVICE);
if (dev) {
device_reset(dev);
}
return 0;
}
void spapr_phb_dma_reset(sPAPRPHBState *sphb)
{
int i;
sPAPRTCETable *tcet;
for (i = 0; i < SPAPR_PCI_DMA_MAX_WINDOWS; ++i) {
tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[i]);
if (tcet && tcet->nb_table) {
spapr_tce_table_disable(tcet);
}
}
/* Register default 32bit DMA window */
tcet = spapr_tce_find_by_liobn(sphb->dma_liobn[0]);
spapr_tce_table_enable(tcet, SPAPR_TCE_PAGE_SHIFT, sphb->dma_win_addr,
sphb->dma_win_size >> SPAPR_TCE_PAGE_SHIFT);
}
static void spapr_phb_reset(DeviceState *qdev)
{
sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(qdev);
spapr_phb_dma_reset(sphb);
/* Reset the IOMMU state */
object_child_foreach(OBJECT(qdev), spapr_phb_children_reset, NULL);
if (spapr_phb_eeh_available(SPAPR_PCI_HOST_BRIDGE(qdev))) {
spapr_phb_vfio_reset(qdev);
}
}
static Property spapr_phb_properties[] = {
DEFINE_PROP_UINT32("index", sPAPRPHBState, index, -1),
DEFINE_PROP_UINT64("buid", sPAPRPHBState, buid, -1),
DEFINE_PROP_UINT32("liobn", sPAPRPHBState, dma_liobn[0], -1),
DEFINE_PROP_UINT32("liobn64", sPAPRPHBState, dma_liobn[1], -1),
DEFINE_PROP_UINT64("mem_win_addr", sPAPRPHBState, mem_win_addr, -1),
DEFINE_PROP_UINT64("mem_win_size", sPAPRPHBState, mem_win_size,
SPAPR_PCI_MMIO_WIN_SIZE),
DEFINE_PROP_UINT64("io_win_addr", sPAPRPHBState, io_win_addr, -1),
DEFINE_PROP_UINT64("io_win_size", sPAPRPHBState, io_win_size,
SPAPR_PCI_IO_WIN_SIZE),
DEFINE_PROP_BOOL("dynamic-reconfiguration", sPAPRPHBState, dr_enabled,
true),
/* Default DMA window is 0..1GB */
DEFINE_PROP_UINT64("dma_win_addr", sPAPRPHBState, dma_win_addr, 0),
DEFINE_PROP_UINT64("dma_win_size", sPAPRPHBState, dma_win_size, 0x40000000),
DEFINE_PROP_UINT64("dma64_win_addr", sPAPRPHBState, dma64_win_addr,
0x800000000000000ULL),
DEFINE_PROP_BOOL("ddw", sPAPRPHBState, ddw_enabled, true),
DEFINE_PROP_UINT64("pgsz", sPAPRPHBState, page_size_mask,
(1ULL << 12) | (1ULL << 16)),
DEFINE_PROP_UINT32("numa_node", sPAPRPHBState, numa_node, -1),
DEFINE_PROP_END_OF_LIST(),
};
static const VMStateDescription vmstate_spapr_pci_lsi = {
.name = "spapr_pci/lsi",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32_EQUAL(irq, struct spapr_pci_lsi),
VMSTATE_END_OF_LIST()
},
};
static const VMStateDescription vmstate_spapr_pci_msi = {
.name = "spapr_pci/msi",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField []) {
VMSTATE_UINT32(key, spapr_pci_msi_mig),
VMSTATE_UINT32(value.first_irq, spapr_pci_msi_mig),
VMSTATE_UINT32(value.num, spapr_pci_msi_mig),
VMSTATE_END_OF_LIST()
},
};
static void spapr_pci_pre_save(void *opaque)
{
sPAPRPHBState *sphb = opaque;
GHashTableIter iter;
gpointer key, value;
int i;
g_free(sphb->msi_devs);
sphb->msi_devs = NULL;
sphb->msi_devs_num = g_hash_table_size(sphb->msi);
if (!sphb->msi_devs_num) {
return;
}
sphb->msi_devs = g_malloc(sphb->msi_devs_num * sizeof(spapr_pci_msi_mig));
g_hash_table_iter_init(&iter, sphb->msi);
for (i = 0; g_hash_table_iter_next(&iter, &key, &value); ++i) {
sphb->msi_devs[i].key = *(uint32_t *) key;
sphb->msi_devs[i].value = *(spapr_pci_msi *) value;
}
}
static int spapr_pci_post_load(void *opaque, int version_id)
{
sPAPRPHBState *sphb = opaque;
gpointer key, value;
int i;
for (i = 0; i < sphb->msi_devs_num; ++i) {
key = g_memdup(&sphb->msi_devs[i].key,
sizeof(sphb->msi_devs[i].key));
value = g_memdup(&sphb->msi_devs[i].value,
sizeof(sphb->msi_devs[i].value));
g_hash_table_insert(sphb->msi, key, value);
}
g_free(sphb->msi_devs);
sphb->msi_devs = NULL;
sphb->msi_devs_num = 0;
return 0;
}
static const VMStateDescription vmstate_spapr_pci = {
.name = "spapr_pci",
.version_id = 2,
.minimum_version_id = 2,
.pre_save = spapr_pci_pre_save,
.post_load = spapr_pci_post_load,
.fields = (VMStateField[]) {
VMSTATE_UINT64_EQUAL(buid, sPAPRPHBState),
VMSTATE_UINT32_EQUAL(dma_liobn[0], sPAPRPHBState),
VMSTATE_UINT64_EQUAL(mem_win_addr, sPAPRPHBState),
VMSTATE_UINT64_EQUAL(mem_win_size, sPAPRPHBState),
VMSTATE_UINT64_EQUAL(io_win_addr, sPAPRPHBState),
VMSTATE_UINT64_EQUAL(io_win_size, sPAPRPHBState),
VMSTATE_STRUCT_ARRAY(lsi_table, sPAPRPHBState, PCI_NUM_PINS, 0,
vmstate_spapr_pci_lsi, struct spapr_pci_lsi),
VMSTATE_INT32(msi_devs_num, sPAPRPHBState),
VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs, sPAPRPHBState, msi_devs_num, 0,
vmstate_spapr_pci_msi, spapr_pci_msi_mig),
VMSTATE_END_OF_LIST()
},
};
static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge,
PCIBus *rootbus)
{
sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge);
return sphb->dtbusname;
}
static void spapr_phb_class_init(ObjectClass *klass, void *data)
{
PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass);
DeviceClass *dc = DEVICE_CLASS(klass);
HotplugHandlerClass *hp = HOTPLUG_HANDLER_CLASS(klass);
hc->root_bus_path = spapr_phb_root_bus_path;
dc->realize = spapr_phb_realize;
dc->props = spapr_phb_properties;
dc->reset = spapr_phb_reset;
dc->vmsd = &vmstate_spapr_pci;
set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
hp->plug = spapr_phb_hot_plug_child;
hp->unplug = spapr_phb_hot_unplug_child;
}
static const TypeInfo spapr_phb_info = {
.name = TYPE_SPAPR_PCI_HOST_BRIDGE,
.parent = TYPE_PCI_HOST_BRIDGE,
.instance_size = sizeof(sPAPRPHBState),
.class_init = spapr_phb_class_init,
.interfaces = (InterfaceInfo[]) {
{ TYPE_HOTPLUG_HANDLER },
{ }
}
};
PCIHostState *spapr_create_phb(sPAPRMachineState *spapr, int index)
{
DeviceState *dev;
dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
qdev_prop_set_uint32(dev, "index", index);
qdev_init_nofail(dev);
return PCI_HOST_BRIDGE(dev);
}
typedef struct sPAPRFDT {
void *fdt;
int node_off;
sPAPRPHBState *sphb;
} sPAPRFDT;
static void spapr_populate_pci_devices_dt(PCIBus *bus, PCIDevice *pdev,
void *opaque)
{
PCIBus *sec_bus;
sPAPRFDT *p = opaque;
int offset;
sPAPRFDT s_fdt;
offset = spapr_create_pci_child_dt(p->sphb, pdev, p->fdt, p->node_off);
if (!offset) {
error_report("Failed to create pci child device tree node");
return;
}
if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) !=
PCI_HEADER_TYPE_BRIDGE)) {
return;
}
sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
if (!sec_bus) {
return;
}
s_fdt.fdt = p->fdt;
s_fdt.node_off = offset;
s_fdt.sphb = p->sphb;
pci_for_each_device(sec_bus, pci_bus_num(sec_bus),
spapr_populate_pci_devices_dt,
&s_fdt);
}
static void spapr_phb_pci_enumerate_bridge(PCIBus *bus, PCIDevice *pdev,
void *opaque)
{
unsigned int *bus_no = opaque;
unsigned int primary = *bus_no;
unsigned int subordinate = 0xff;
PCIBus *sec_bus = NULL;
if ((pci_default_read_config(pdev, PCI_HEADER_TYPE, 1) !=
PCI_HEADER_TYPE_BRIDGE)) {
return;
}
(*bus_no)++;
pci_default_write_config(pdev, PCI_PRIMARY_BUS, primary, 1);
pci_default_write_config(pdev, PCI_SECONDARY_BUS, *bus_no, 1);
pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
sec_bus = pci_bridge_get_sec_bus(PCI_BRIDGE(pdev));
if (!sec_bus) {
return;
}
pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, subordinate, 1);
pci_for_each_device(sec_bus, pci_bus_num(sec_bus),
spapr_phb_pci_enumerate_bridge, bus_no);
pci_default_write_config(pdev, PCI_SUBORDINATE_BUS, *bus_no, 1);
}
static void spapr_phb_pci_enumerate(sPAPRPHBState *phb)
{
PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus;
unsigned int bus_no = 0;
pci_for_each_device(bus, pci_bus_num(bus),
spapr_phb_pci_enumerate_bridge,
&bus_no);
}
int spapr_populate_pci_dt(sPAPRPHBState *phb,
uint32_t xics_phandle,
void *fdt)
{
int bus_off, i, j, ret;
char nodename[FDT_NAME_MAX];
uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
const uint64_t mmiosize = memory_region_size(&phb->memwindow);
const uint64_t w32max = (1ULL << 32) - SPAPR_PCI_MEM_WIN_BUS_OFFSET;
const uint64_t w32size = MIN(w32max, mmiosize);
const uint64_t w64size = (mmiosize > w32size) ? (mmiosize - w32size) : 0;
struct {
uint32_t hi;
uint64_t child;
uint64_t parent;
uint64_t size;
} QEMU_PACKED ranges[] = {
{
cpu_to_be32(b_ss(1)), cpu_to_be64(0),
cpu_to_be64(phb->io_win_addr),
cpu_to_be64(memory_region_size(&phb->iospace)),
},
{
cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
cpu_to_be64(phb->mem_win_addr),
cpu_to_be64(w32size),
},
{
cpu_to_be32(b_ss(3)), cpu_to_be64(1ULL << 32),
cpu_to_be64(phb->mem_win_addr + w32size),
cpu_to_be64(w64size)
},
};
const unsigned sizeof_ranges = (w64size ? 3 : 2) * sizeof(ranges[0]);
uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
uint32_t interrupt_map_mask[] = {
cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];
uint32_t ddw_applicable[] = {
cpu_to_be32(RTAS_IBM_QUERY_PE_DMA_WINDOW),
cpu_to_be32(RTAS_IBM_CREATE_PE_DMA_WINDOW),
cpu_to_be32(RTAS_IBM_REMOVE_PE_DMA_WINDOW)
};
uint32_t ddw_extensions[] = {
cpu_to_be32(1),
cpu_to_be32(RTAS_IBM_RESET_PE_DMA_WINDOW)
};
uint32_t associativity[] = {cpu_to_be32(0x4),
cpu_to_be32(0x0),
cpu_to_be32(0x0),
cpu_to_be32(0x0),
cpu_to_be32(phb->numa_node)};
sPAPRTCETable *tcet;
PCIBus *bus = PCI_HOST_BRIDGE(phb)->bus;
sPAPRFDT s_fdt;
/* Start populating the FDT */
snprintf(nodename, FDT_NAME_MAX, "pci@%" PRIx64, phb->buid);
bus_off = fdt_add_subnode(fdt, 0, nodename);
if (bus_off < 0) {
return bus_off;
}
/* Write PHB properties */
_FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
_FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
_FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3));
_FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2));
_FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
_FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
_FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
_FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof_ranges));
_FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
_FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
_FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pe-total-#msi", XICS_IRQS_SPAPR));
/* Dynamic DMA window */
if (phb->ddw_enabled) {
_FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-applicable", &ddw_applicable,
sizeof(ddw_applicable)));
_FDT(fdt_setprop(fdt, bus_off, "ibm,ddw-extensions",
&ddw_extensions, sizeof(ddw_extensions)));
}
/* Advertise NUMA via ibm,associativity */
if (nb_numa_nodes > 1) {
_FDT(fdt_setprop(fdt, bus_off, "ibm,associativity", associativity,
sizeof(associativity)));
}
/* Build the interrupt-map, this must matches what is done
* in pci_spapr_map_irq
*/
_FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
&interrupt_map_mask, sizeof(interrupt_map_mask)));
for (i = 0; i < PCI_SLOT_MAX; i++) {
for (j = 0; j < PCI_NUM_PINS; j++) {
uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
int lsi_num = pci_spapr_swizzle(i, j);
irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
irqmap[1] = 0;
irqmap[2] = 0;
irqmap[3] = cpu_to_be32(j+1);
irqmap[4] = cpu_to_be32(xics_phandle);
irqmap[5] = cpu_to_be32(phb->lsi_table[lsi_num].irq);
irqmap[6] = cpu_to_be32(0x8);
}
}
/* Write interrupt map */
_FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
sizeof(interrupt_map)));
tcet = spapr_tce_find_by_liobn(phb->dma_liobn[0]);
if (!tcet) {
return -1;
}
spapr_dma_dt(fdt, bus_off, "ibm,dma-window",
tcet->liobn, tcet->bus_offset,
tcet->nb_table << tcet->page_shift);
/* Walk the bridges and program the bus numbers*/
spapr_phb_pci_enumerate(phb);
_FDT(fdt_setprop_cell(fdt, bus_off, "qemu,phb-enumerated", 0x1));
/* Populate tree nodes with PCI devices attached */
s_fdt.fdt = fdt;
s_fdt.node_off = bus_off;
s_fdt.sphb = phb;
pci_for_each_device(bus, pci_bus_num(bus),
spapr_populate_pci_devices_dt,
&s_fdt);
ret = spapr_drc_populate_dt(fdt, bus_off, OBJECT(phb),
SPAPR_DR_CONNECTOR_TYPE_PCI);
if (ret) {
return ret;
}
return 0;
}
void spapr_pci_rtas_init(void)
{
spapr_rtas_register(RTAS_READ_PCI_CONFIG, "read-pci-config",
rtas_read_pci_config);
spapr_rtas_register(RTAS_WRITE_PCI_CONFIG, "write-pci-config",
rtas_write_pci_config);
spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG, "ibm,read-pci-config",
rtas_ibm_read_pci_config);
spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG, "ibm,write-pci-config",
rtas_ibm_write_pci_config);
if (msi_nonbroken) {
spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER,
"ibm,query-interrupt-source-number",
rtas_ibm_query_interrupt_source_number);
spapr_rtas_register(RTAS_IBM_CHANGE_MSI, "ibm,change-msi",
rtas_ibm_change_msi);
}
spapr_rtas_register(RTAS_IBM_SET_EEH_OPTION,
"ibm,set-eeh-option",
rtas_ibm_set_eeh_option);
spapr_rtas_register(RTAS_IBM_GET_CONFIG_ADDR_INFO2,
"ibm,get-config-addr-info2",
rtas_ibm_get_config_addr_info2);
spapr_rtas_register(RTAS_IBM_READ_SLOT_RESET_STATE2,
"ibm,read-slot-reset-state2",
rtas_ibm_read_slot_reset_state2);
spapr_rtas_register(RTAS_IBM_SET_SLOT_RESET,
"ibm,set-slot-reset",
rtas_ibm_set_slot_reset);
spapr_rtas_register(RTAS_IBM_CONFIGURE_PE,
"ibm,configure-pe",
rtas_ibm_configure_pe);
spapr_rtas_register(RTAS_IBM_SLOT_ERROR_DETAIL,
"ibm,slot-error-detail",
rtas_ibm_slot_error_detail);
}
static void spapr_pci_register_types(void)
{
type_register_static(&spapr_phb_info);
}
type_init(spapr_pci_register_types)
static int spapr_switch_one_vga(DeviceState *dev, void *opaque)
{
bool be = *(bool *)opaque;
if (object_dynamic_cast(OBJECT(dev), "VGA")
|| object_dynamic_cast(OBJECT(dev), "secondary-vga")) {
object_property_set_bool(OBJECT(dev), be, "big-endian-framebuffer",
&error_abort);
}
return 0;
}
void spapr_pci_switch_vga(bool big_endian)
{
sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
sPAPRPHBState *sphb;
/*
* For backward compatibility with existing guests, we switch
* the endianness of the VGA controller when changing the guest
* interrupt mode
*/
QLIST_FOREACH(sphb, &spapr->phbs, list) {
BusState *bus = &PCI_HOST_BRIDGE(sphb)->bus->qbus;
qbus_walk_children(bus, spapr_switch_one_vga, NULL, NULL, NULL,
&big_endian);
}
}