d1c2fbc9c1
Fixes: 6c1b28e9e4
"memory-device: Support empty memory devices"
Reviewed-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: Michael Tokarev <mjt@tls.msk.ru>
552 lines
18 KiB
C
552 lines
18 KiB
C
/*
|
|
* Memory Device Interface
|
|
*
|
|
* Copyright ProfitBricks GmbH 2012
|
|
* Copyright (C) 2014 Red Hat Inc
|
|
* Copyright (c) 2018 Red Hat Inc
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2 or later.
|
|
* See the COPYING file in the top-level directory.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qemu/error-report.h"
|
|
#include "hw/mem/memory-device.h"
|
|
#include "qapi/error.h"
|
|
#include "hw/boards.h"
|
|
#include "qemu/range.h"
|
|
#include "hw/virtio/vhost.h"
|
|
#include "sysemu/kvm.h"
|
|
#include "exec/address-spaces.h"
|
|
#include "trace.h"
|
|
|
|
static bool memory_device_is_empty(const MemoryDeviceState *md)
|
|
{
|
|
const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md);
|
|
Error *local_err = NULL;
|
|
MemoryRegion *mr;
|
|
|
|
/* dropping const here is fine as we don't touch the memory region */
|
|
mr = mdc->get_memory_region((MemoryDeviceState *)md, &local_err);
|
|
if (local_err) {
|
|
/* Not empty, we'll report errors later when containing the MR again. */
|
|
error_free(local_err);
|
|
return false;
|
|
}
|
|
return !mr;
|
|
}
|
|
|
|
static gint memory_device_addr_sort(gconstpointer a, gconstpointer b)
|
|
{
|
|
const MemoryDeviceState *md_a = MEMORY_DEVICE(a);
|
|
const MemoryDeviceState *md_b = MEMORY_DEVICE(b);
|
|
const MemoryDeviceClass *mdc_a = MEMORY_DEVICE_GET_CLASS(a);
|
|
const MemoryDeviceClass *mdc_b = MEMORY_DEVICE_GET_CLASS(b);
|
|
const uint64_t addr_a = mdc_a->get_addr(md_a);
|
|
const uint64_t addr_b = mdc_b->get_addr(md_b);
|
|
|
|
if (addr_a > addr_b) {
|
|
return 1;
|
|
} else if (addr_a < addr_b) {
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int memory_device_build_list(Object *obj, void *opaque)
|
|
{
|
|
GSList **list = opaque;
|
|
|
|
if (object_dynamic_cast(obj, TYPE_MEMORY_DEVICE)) {
|
|
DeviceState *dev = DEVICE(obj);
|
|
if (dev->realized) { /* only realized memory devices matter */
|
|
*list = g_slist_insert_sorted(*list, dev, memory_device_addr_sort);
|
|
}
|
|
}
|
|
|
|
object_child_foreach(obj, memory_device_build_list, opaque);
|
|
return 0;
|
|
}
|
|
|
|
static unsigned int memory_device_get_memslots(MemoryDeviceState *md)
|
|
{
|
|
const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md);
|
|
|
|
if (mdc->get_memslots) {
|
|
return mdc->get_memslots(md);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Memslots that are reserved by memory devices (required but still reported
|
|
* as free from KVM / vhost).
|
|
*/
|
|
static unsigned int get_reserved_memslots(MachineState *ms)
|
|
{
|
|
if (ms->device_memory->used_memslots >
|
|
ms->device_memory->required_memslots) {
|
|
/* This is unexpected, and we warned already in the memory notifier. */
|
|
return 0;
|
|
}
|
|
return ms->device_memory->required_memslots -
|
|
ms->device_memory->used_memslots;
|
|
}
|
|
|
|
unsigned int memory_devices_get_reserved_memslots(void)
|
|
{
|
|
if (!current_machine->device_memory) {
|
|
return 0;
|
|
}
|
|
return get_reserved_memslots(current_machine);
|
|
}
|
|
|
|
bool memory_devices_memslot_auto_decision_active(void)
|
|
{
|
|
if (!current_machine->device_memory) {
|
|
return false;
|
|
}
|
|
|
|
return current_machine->device_memory->memslot_auto_decision_active;
|
|
}
|
|
|
|
static unsigned int memory_device_memslot_decision_limit(MachineState *ms,
|
|
MemoryRegion *mr)
|
|
{
|
|
const unsigned int reserved = get_reserved_memslots(ms);
|
|
const uint64_t size = memory_region_size(mr);
|
|
unsigned int max = vhost_get_max_memslots();
|
|
unsigned int free = vhost_get_free_memslots();
|
|
uint64_t available_space;
|
|
unsigned int memslots;
|
|
|
|
if (kvm_enabled()) {
|
|
max = MIN(max, kvm_get_max_memslots());
|
|
free = MIN(free, kvm_get_free_memslots());
|
|
}
|
|
|
|
/*
|
|
* If we only have less overall memslots than what we consider reasonable,
|
|
* just keep it to a minimum.
|
|
*/
|
|
if (max < MEMORY_DEVICES_SAFE_MAX_MEMSLOTS) {
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Consider our soft-limit across all memory devices. We don't really
|
|
* expect to exceed this limit in reasonable configurations.
|
|
*/
|
|
if (MEMORY_DEVICES_SOFT_MEMSLOT_LIMIT <=
|
|
ms->device_memory->required_memslots) {
|
|
return 1;
|
|
}
|
|
memslots = MEMORY_DEVICES_SOFT_MEMSLOT_LIMIT -
|
|
ms->device_memory->required_memslots;
|
|
|
|
/*
|
|
* Consider the actually still free memslots. This is only relevant if
|
|
* other memslot consumers would consume *significantly* more memslots than
|
|
* what we prepared for (> 253). Unlikely, but let's just handle it
|
|
* cleanly.
|
|
*/
|
|
memslots = MIN(memslots, free - reserved);
|
|
if (memslots < 1 || unlikely(free < reserved)) {
|
|
return 1;
|
|
}
|
|
|
|
/* We cannot have any other memory devices? So give all to this device. */
|
|
if (size == ms->maxram_size - ms->ram_size) {
|
|
return memslots;
|
|
}
|
|
|
|
/*
|
|
* Simple heuristic: equally distribute the memslots over the space
|
|
* still available for memory devices.
|
|
*/
|
|
available_space = ms->maxram_size - ms->ram_size -
|
|
ms->device_memory->used_region_size;
|
|
memslots = (double)memslots * size / available_space;
|
|
return memslots < 1 ? 1 : memslots;
|
|
}
|
|
|
|
static void memory_device_check_addable(MachineState *ms, MemoryDeviceState *md,
|
|
MemoryRegion *mr, Error **errp)
|
|
{
|
|
const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md);
|
|
const uint64_t used_region_size = ms->device_memory->used_region_size;
|
|
const uint64_t size = memory_region_size(mr);
|
|
const unsigned int reserved_memslots = get_reserved_memslots(ms);
|
|
unsigned int required_memslots, memslot_limit;
|
|
|
|
/*
|
|
* Instruct the device to decide how many memslots to use, if applicable,
|
|
* before we query the number of required memslots the first time.
|
|
*/
|
|
if (mdc->decide_memslots) {
|
|
memslot_limit = memory_device_memslot_decision_limit(ms, mr);
|
|
mdc->decide_memslots(md, memslot_limit);
|
|
}
|
|
required_memslots = memory_device_get_memslots(md);
|
|
|
|
/* we will need memory slots for kvm and vhost */
|
|
if (kvm_enabled() &&
|
|
kvm_get_free_memslots() < required_memslots + reserved_memslots) {
|
|
error_setg(errp, "hypervisor has not enough free memory slots left");
|
|
return;
|
|
}
|
|
if (vhost_get_free_memslots() < required_memslots + reserved_memslots) {
|
|
error_setg(errp, "a used vhost backend has not enough free memory slots left");
|
|
return;
|
|
}
|
|
|
|
/* will we exceed the total amount of memory specified */
|
|
if (used_region_size + size < used_region_size ||
|
|
used_region_size + size > ms->maxram_size - ms->ram_size) {
|
|
error_setg(errp, "not enough space, currently 0x%" PRIx64
|
|
" in use of total space for memory devices 0x" RAM_ADDR_FMT,
|
|
used_region_size, ms->maxram_size - ms->ram_size);
|
|
return;
|
|
}
|
|
|
|
}
|
|
|
|
static uint64_t memory_device_get_free_addr(MachineState *ms,
|
|
const uint64_t *hint,
|
|
uint64_t align, uint64_t size,
|
|
Error **errp)
|
|
{
|
|
GSList *list = NULL, *item;
|
|
Range as, new = range_empty;
|
|
|
|
range_init_nofail(&as, ms->device_memory->base,
|
|
memory_region_size(&ms->device_memory->mr));
|
|
|
|
/* start of address space indicates the maximum alignment we expect */
|
|
if (!QEMU_IS_ALIGNED(range_lob(&as), align)) {
|
|
warn_report("the alignment (0x%" PRIx64 ") exceeds the expected"
|
|
" maximum alignment, memory will get fragmented and not"
|
|
" all 'maxmem' might be usable for memory devices.",
|
|
align);
|
|
}
|
|
|
|
if (hint && !QEMU_IS_ALIGNED(*hint, align)) {
|
|
error_setg(errp, "address must be aligned to 0x%" PRIx64 " bytes",
|
|
align);
|
|
return 0;
|
|
}
|
|
|
|
if (hint) {
|
|
if (range_init(&new, *hint, size) || !range_contains_range(&as, &new)) {
|
|
error_setg(errp, "can't add memory device [0x%" PRIx64 ":0x%" PRIx64
|
|
"], usable range for memory devices [0x%" PRIx64 ":0x%"
|
|
PRIx64 "]", *hint, size, range_lob(&as),
|
|
range_size(&as));
|
|
return 0;
|
|
}
|
|
} else {
|
|
if (range_init(&new, QEMU_ALIGN_UP(range_lob(&as), align), size)) {
|
|
error_setg(errp, "can't add memory device, device too big");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* find address range that will fit new memory device */
|
|
object_child_foreach(OBJECT(ms), memory_device_build_list, &list);
|
|
for (item = list; item; item = g_slist_next(item)) {
|
|
const MemoryDeviceState *md = item->data;
|
|
const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(OBJECT(md));
|
|
uint64_t next_addr;
|
|
Range tmp;
|
|
|
|
if (memory_device_is_empty(md)) {
|
|
continue;
|
|
}
|
|
|
|
range_init_nofail(&tmp, mdc->get_addr(md),
|
|
memory_device_get_region_size(md, &error_abort));
|
|
|
|
if (range_overlaps_range(&tmp, &new)) {
|
|
if (hint) {
|
|
const DeviceState *d = DEVICE(md);
|
|
error_setg(errp, "address range conflicts with memory device"
|
|
" id='%s'", d->id ? d->id : "(unnamed)");
|
|
goto out;
|
|
}
|
|
|
|
next_addr = QEMU_ALIGN_UP(range_upb(&tmp) + 1, align);
|
|
if (!next_addr || range_init(&new, next_addr, range_size(&new))) {
|
|
range_make_empty(&new);
|
|
break;
|
|
}
|
|
} else if (range_lob(&tmp) > range_upb(&new)) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!range_contains_range(&as, &new)) {
|
|
error_setg(errp, "could not find position in guest address space for "
|
|
"memory device - memory fragmented due to alignments");
|
|
}
|
|
out:
|
|
g_slist_free(list);
|
|
return range_lob(&new);
|
|
}
|
|
|
|
MemoryDeviceInfoList *qmp_memory_device_list(void)
|
|
{
|
|
GSList *devices = NULL, *item;
|
|
MemoryDeviceInfoList *list = NULL, **tail = &list;
|
|
|
|
object_child_foreach(qdev_get_machine(), memory_device_build_list,
|
|
&devices);
|
|
|
|
for (item = devices; item; item = g_slist_next(item)) {
|
|
const MemoryDeviceState *md = MEMORY_DEVICE(item->data);
|
|
const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(item->data);
|
|
MemoryDeviceInfo *info = g_new0(MemoryDeviceInfo, 1);
|
|
|
|
/* Let's query infotmation even for empty memory devices. */
|
|
mdc->fill_device_info(md, info);
|
|
|
|
QAPI_LIST_APPEND(tail, info);
|
|
}
|
|
|
|
g_slist_free(devices);
|
|
|
|
return list;
|
|
}
|
|
|
|
static int memory_device_plugged_size(Object *obj, void *opaque)
|
|
{
|
|
uint64_t *size = opaque;
|
|
|
|
if (object_dynamic_cast(obj, TYPE_MEMORY_DEVICE)) {
|
|
const DeviceState *dev = DEVICE(obj);
|
|
const MemoryDeviceState *md = MEMORY_DEVICE(obj);
|
|
const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(obj);
|
|
|
|
if (dev->realized && !memory_device_is_empty(md)) {
|
|
*size += mdc->get_plugged_size(md, &error_abort);
|
|
}
|
|
}
|
|
|
|
object_child_foreach(obj, memory_device_plugged_size, opaque);
|
|
return 0;
|
|
}
|
|
|
|
uint64_t get_plugged_memory_size(void)
|
|
{
|
|
uint64_t size = 0;
|
|
|
|
memory_device_plugged_size(qdev_get_machine(), &size);
|
|
|
|
return size;
|
|
}
|
|
|
|
void memory_device_pre_plug(MemoryDeviceState *md, MachineState *ms,
|
|
const uint64_t *legacy_align, Error **errp)
|
|
{
|
|
const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md);
|
|
Error *local_err = NULL;
|
|
uint64_t addr, align = 0;
|
|
MemoryRegion *mr;
|
|
|
|
/* We support empty memory devices even without device memory. */
|
|
if (memory_device_is_empty(md)) {
|
|
return;
|
|
}
|
|
|
|
if (!ms->device_memory) {
|
|
error_setg(errp, "the configuration is not prepared for memory devices"
|
|
" (e.g., for memory hotplug), consider specifying the"
|
|
" maxmem option");
|
|
return;
|
|
}
|
|
|
|
mr = mdc->get_memory_region(md, &local_err);
|
|
if (local_err) {
|
|
goto out;
|
|
}
|
|
|
|
memory_device_check_addable(ms, md, mr, &local_err);
|
|
if (local_err) {
|
|
goto out;
|
|
}
|
|
|
|
if (legacy_align) {
|
|
align = *legacy_align;
|
|
} else {
|
|
if (mdc->get_min_alignment) {
|
|
align = mdc->get_min_alignment(md);
|
|
}
|
|
align = MAX(align, memory_region_get_alignment(mr));
|
|
}
|
|
addr = mdc->get_addr(md);
|
|
addr = memory_device_get_free_addr(ms, !addr ? NULL : &addr, align,
|
|
memory_region_size(mr), &local_err);
|
|
if (local_err) {
|
|
goto out;
|
|
}
|
|
mdc->set_addr(md, addr, &local_err);
|
|
if (!local_err) {
|
|
trace_memory_device_pre_plug(DEVICE(md)->id ? DEVICE(md)->id : "",
|
|
addr);
|
|
}
|
|
out:
|
|
error_propagate(errp, local_err);
|
|
}
|
|
|
|
void memory_device_plug(MemoryDeviceState *md, MachineState *ms)
|
|
{
|
|
const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md);
|
|
unsigned int memslots;
|
|
uint64_t addr;
|
|
MemoryRegion *mr;
|
|
|
|
if (memory_device_is_empty(md)) {
|
|
return;
|
|
}
|
|
|
|
memslots = memory_device_get_memslots(md);
|
|
addr = mdc->get_addr(md);
|
|
|
|
/*
|
|
* We expect that a previous call to memory_device_pre_plug() succeeded, so
|
|
* it can't fail at this point.
|
|
*/
|
|
mr = mdc->get_memory_region(md, &error_abort);
|
|
g_assert(ms->device_memory);
|
|
|
|
ms->device_memory->used_region_size += memory_region_size(mr);
|
|
ms->device_memory->required_memslots += memslots;
|
|
if (mdc->decide_memslots && memslots > 1) {
|
|
ms->device_memory->memslot_auto_decision_active++;
|
|
}
|
|
|
|
memory_region_add_subregion(&ms->device_memory->mr,
|
|
addr - ms->device_memory->base, mr);
|
|
trace_memory_device_plug(DEVICE(md)->id ? DEVICE(md)->id : "", addr);
|
|
}
|
|
|
|
void memory_device_unplug(MemoryDeviceState *md, MachineState *ms)
|
|
{
|
|
const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md);
|
|
const unsigned int memslots = memory_device_get_memslots(md);
|
|
MemoryRegion *mr;
|
|
|
|
if (memory_device_is_empty(md)) {
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* We expect that a previous call to memory_device_pre_plug() succeeded, so
|
|
* it can't fail at this point.
|
|
*/
|
|
mr = mdc->get_memory_region(md, &error_abort);
|
|
g_assert(ms->device_memory);
|
|
|
|
memory_region_del_subregion(&ms->device_memory->mr, mr);
|
|
|
|
if (mdc->decide_memslots && memslots > 1) {
|
|
ms->device_memory->memslot_auto_decision_active--;
|
|
}
|
|
ms->device_memory->used_region_size -= memory_region_size(mr);
|
|
ms->device_memory->required_memslots -= memslots;
|
|
trace_memory_device_unplug(DEVICE(md)->id ? DEVICE(md)->id : "",
|
|
mdc->get_addr(md));
|
|
}
|
|
|
|
uint64_t memory_device_get_region_size(const MemoryDeviceState *md,
|
|
Error **errp)
|
|
{
|
|
const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md);
|
|
MemoryRegion *mr;
|
|
|
|
/* dropping const here is fine as we don't touch the memory region */
|
|
mr = mdc->get_memory_region((MemoryDeviceState *)md, errp);
|
|
if (!mr) {
|
|
return 0;
|
|
}
|
|
|
|
return memory_region_size(mr);
|
|
}
|
|
|
|
static void memory_devices_region_mod(MemoryListener *listener,
|
|
MemoryRegionSection *mrs, bool add)
|
|
{
|
|
DeviceMemoryState *dms = container_of(listener, DeviceMemoryState,
|
|
listener);
|
|
|
|
if (!memory_region_is_ram(mrs->mr)) {
|
|
warn_report("Unexpected memory region mapped into device memory region.");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* The expectation is that each distinct RAM memory region section in
|
|
* our region for memory devices consumes exactly one memslot in KVM
|
|
* and in vhost. For vhost, this is true, except:
|
|
* * ROM memory regions don't consume a memslot. These get used very
|
|
* rarely for memory devices (R/O NVDIMMs).
|
|
* * Memslots without a fd (memory-backend-ram) don't necessarily
|
|
* consume a memslot. Such setups are quite rare and possibly bogus:
|
|
* the memory would be inaccessible by such vhost devices.
|
|
*
|
|
* So for vhost, in corner cases we might over-estimate the number of
|
|
* memslots that are currently used or that might still be reserved
|
|
* (required - used).
|
|
*/
|
|
dms->used_memslots += add ? 1 : -1;
|
|
|
|
if (dms->used_memslots > dms->required_memslots) {
|
|
warn_report("Memory devices use more memory slots than indicated as required.");
|
|
}
|
|
}
|
|
|
|
static void memory_devices_region_add(MemoryListener *listener,
|
|
MemoryRegionSection *mrs)
|
|
{
|
|
return memory_devices_region_mod(listener, mrs, true);
|
|
}
|
|
|
|
static void memory_devices_region_del(MemoryListener *listener,
|
|
MemoryRegionSection *mrs)
|
|
{
|
|
return memory_devices_region_mod(listener, mrs, false);
|
|
}
|
|
|
|
void machine_memory_devices_init(MachineState *ms, hwaddr base, uint64_t size)
|
|
{
|
|
g_assert(size);
|
|
g_assert(!ms->device_memory);
|
|
ms->device_memory = g_new0(DeviceMemoryState, 1);
|
|
ms->device_memory->base = base;
|
|
|
|
memory_region_init(&ms->device_memory->mr, OBJECT(ms), "device-memory",
|
|
size);
|
|
address_space_init(&ms->device_memory->as, &ms->device_memory->mr,
|
|
"device-memory");
|
|
memory_region_add_subregion(get_system_memory(), ms->device_memory->base,
|
|
&ms->device_memory->mr);
|
|
|
|
/* Track the number of memslots used by memory devices. */
|
|
ms->device_memory->listener.region_add = memory_devices_region_add;
|
|
ms->device_memory->listener.region_del = memory_devices_region_del;
|
|
memory_listener_register(&ms->device_memory->listener,
|
|
&ms->device_memory->as);
|
|
}
|
|
|
|
static const TypeInfo memory_device_info = {
|
|
.name = TYPE_MEMORY_DEVICE,
|
|
.parent = TYPE_INTERFACE,
|
|
.class_size = sizeof(MemoryDeviceClass),
|
|
};
|
|
|
|
static void memory_device_register_types(void)
|
|
{
|
|
type_register_static(&memory_device_info);
|
|
}
|
|
|
|
type_init(memory_device_register_types)
|