qemu/linux-user/i386/cpu_loop.c
Helge Deller bd5ccd6108 linux-user: Add guest memory layout to exception dump
When the emulation stops with a hard exception it's very useful for
debugging purposes to dump the current guest memory layout (for an
example see /proc/self/maps) beside the CPU registers.

The open_self_maps() function provides such a memory dump, but since
it's located in the syscall.c file, various changes (add #includes, make
this function externally visible, ...) are needed to be able to call it
from the existing EXCP_DUMP() macro.

This patch takes another approach by re-defining EXCP_DUMP() to call
target_exception_dump(), which is in syscall.c, consolidates the log
print functions and allows to add the call to dump the memory layout.

Beside a reduced code footprint, this approach keeps the changes across
the various callers minimal, and keeps EXCP_DUMP() highlighted as
important macro/function.

Signed-off-by: Helge Deller <deller@gmx.de>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <Y1bzAWbw07WBKPxw@p100>
[lv: remove pc declaration and setting]
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
2022-10-25 09:20:40 +02:00

433 lines
13 KiB
C

/*
* qemu user cpu loop
*
* Copyright (c) 2003-2008 Fabrice Bellard
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu.h"
#include "qemu/timer.h"
#include "user-internals.h"
#include "cpu_loop-common.h"
#include "signal-common.h"
#include "user-mmap.h"
/***********************************************************/
/* CPUX86 core interface */
uint64_t cpu_get_tsc(CPUX86State *env)
{
return cpu_get_host_ticks();
}
static void write_dt(void *ptr, unsigned long addr, unsigned long limit,
int flags)
{
unsigned int e1, e2;
uint32_t *p;
e1 = (addr << 16) | (limit & 0xffff);
e2 = ((addr >> 16) & 0xff) | (addr & 0xff000000) | (limit & 0x000f0000);
e2 |= flags;
p = ptr;
p[0] = tswap32(e1);
p[1] = tswap32(e2);
}
static uint64_t *idt_table;
#ifdef TARGET_X86_64
static void set_gate64(void *ptr, unsigned int type, unsigned int dpl,
uint64_t addr, unsigned int sel)
{
uint32_t *p, e1, e2;
e1 = (addr & 0xffff) | (sel << 16);
e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
p = ptr;
p[0] = tswap32(e1);
p[1] = tswap32(e2);
p[2] = tswap32(addr >> 32);
p[3] = 0;
}
/* only dpl matters as we do only user space emulation */
static void set_idt(int n, unsigned int dpl)
{
set_gate64(idt_table + n * 2, 0, dpl, 0, 0);
}
#else
static void set_gate(void *ptr, unsigned int type, unsigned int dpl,
uint32_t addr, unsigned int sel)
{
uint32_t *p, e1, e2;
e1 = (addr & 0xffff) | (sel << 16);
e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
p = ptr;
p[0] = tswap32(e1);
p[1] = tswap32(e2);
}
/* only dpl matters as we do only user space emulation */
static void set_idt(int n, unsigned int dpl)
{
set_gate(idt_table + n, 0, dpl, 0, 0);
}
#endif
#ifdef TARGET_X86_64
static bool write_ok_or_segv(CPUX86State *env, abi_ptr addr, size_t len)
{
/*
* For all the vsyscalls, NULL means "don't write anything" not
* "write it at address 0".
*/
if (addr == 0 || access_ok(env_cpu(env), VERIFY_WRITE, addr, len)) {
return true;
}
env->error_code = PG_ERROR_W_MASK | PG_ERROR_U_MASK;
force_sig_fault(TARGET_SIGSEGV, TARGET_SEGV_MAPERR, addr);
return false;
}
/*
* Since v3.1, the kernel traps and emulates the vsyscall page.
* Entry points other than the official generate SIGSEGV.
*/
static void emulate_vsyscall(CPUX86State *env)
{
int syscall;
abi_ulong ret;
uint64_t caller;
/*
* Validate the entry point. We have already validated the page
* during translation to get here; now verify the offset.
*/
switch (env->eip & ~TARGET_PAGE_MASK) {
case 0x000:
syscall = TARGET_NR_gettimeofday;
break;
case 0x400:
syscall = TARGET_NR_time;
break;
case 0x800:
syscall = TARGET_NR_getcpu;
break;
default:
goto sigsegv;
}
/*
* Validate the return address.
* Note that the kernel treats this the same as an invalid entry point.
*/
if (get_user_u64(caller, env->regs[R_ESP])) {
goto sigsegv;
}
/*
* Validate the pointer arguments.
*/
switch (syscall) {
case TARGET_NR_gettimeofday:
if (!write_ok_or_segv(env, env->regs[R_EDI],
sizeof(struct target_timeval)) ||
!write_ok_or_segv(env, env->regs[R_ESI],
sizeof(struct target_timezone))) {
return;
}
break;
case TARGET_NR_time:
if (!write_ok_or_segv(env, env->regs[R_EDI], sizeof(abi_long))) {
return;
}
break;
case TARGET_NR_getcpu:
if (!write_ok_or_segv(env, env->regs[R_EDI], sizeof(uint32_t)) ||
!write_ok_or_segv(env, env->regs[R_ESI], sizeof(uint32_t))) {
return;
}
break;
default:
g_assert_not_reached();
}
/*
* Perform the syscall. None of the vsyscalls should need restarting.
*/
ret = do_syscall(env, syscall, env->regs[R_EDI], env->regs[R_ESI],
env->regs[R_EDX], env->regs[10], env->regs[8],
env->regs[9], 0, 0);
g_assert(ret != -QEMU_ERESTARTSYS);
g_assert(ret != -QEMU_ESIGRETURN);
if (ret == -TARGET_EFAULT) {
goto sigsegv;
}
env->regs[R_EAX] = ret;
/* Emulate a ret instruction to leave the vsyscall page. */
env->eip = caller;
env->regs[R_ESP] += 8;
return;
sigsegv:
force_sig(TARGET_SIGSEGV);
}
#endif
static bool maybe_handle_vm86_trap(CPUX86State *env, int trapnr)
{
#ifndef TARGET_X86_64
if (env->eflags & VM_MASK) {
handle_vm86_trap(env, trapnr);
return true;
}
#endif
return false;
}
void cpu_loop(CPUX86State *env)
{
CPUState *cs = env_cpu(env);
int trapnr;
abi_ulong ret;
for(;;) {
cpu_exec_start(cs);
trapnr = cpu_exec(cs);
cpu_exec_end(cs);
process_queued_cpu_work(cs);
switch(trapnr) {
case 0x80:
/* linux syscall from int $0x80 */
ret = do_syscall(env,
env->regs[R_EAX],
env->regs[R_EBX],
env->regs[R_ECX],
env->regs[R_EDX],
env->regs[R_ESI],
env->regs[R_EDI],
env->regs[R_EBP],
0, 0);
if (ret == -QEMU_ERESTARTSYS) {
env->eip -= 2;
} else if (ret != -QEMU_ESIGRETURN) {
env->regs[R_EAX] = ret;
}
break;
#ifndef TARGET_ABI32
case EXCP_SYSCALL:
/* linux syscall from syscall instruction */
ret = do_syscall(env,
env->regs[R_EAX],
env->regs[R_EDI],
env->regs[R_ESI],
env->regs[R_EDX],
env->regs[10],
env->regs[8],
env->regs[9],
0, 0);
if (ret == -QEMU_ERESTARTSYS) {
env->eip -= 2;
} else if (ret != -QEMU_ESIGRETURN) {
env->regs[R_EAX] = ret;
}
break;
#endif
#ifdef TARGET_X86_64
case EXCP_VSYSCALL:
emulate_vsyscall(env);
break;
#endif
case EXCP0B_NOSEG:
case EXCP0C_STACK:
force_sig(TARGET_SIGBUS);
break;
case EXCP0D_GPF:
/* XXX: potential problem if ABI32 */
if (maybe_handle_vm86_trap(env, trapnr)) {
break;
}
force_sig(TARGET_SIGSEGV);
break;
case EXCP0E_PAGE:
force_sig_fault(TARGET_SIGSEGV,
(env->error_code & PG_ERROR_P_MASK ?
TARGET_SEGV_ACCERR : TARGET_SEGV_MAPERR),
env->cr[2]);
break;
case EXCP00_DIVZ:
if (maybe_handle_vm86_trap(env, trapnr)) {
break;
}
force_sig_fault(TARGET_SIGFPE, TARGET_FPE_INTDIV, env->eip);
break;
case EXCP01_DB:
if (maybe_handle_vm86_trap(env, trapnr)) {
break;
}
force_sig_fault(TARGET_SIGTRAP, TARGET_TRAP_BRKPT, env->eip);
break;
case EXCP03_INT3:
if (maybe_handle_vm86_trap(env, trapnr)) {
break;
}
force_sig(TARGET_SIGTRAP);
break;
case EXCP04_INTO:
case EXCP05_BOUND:
if (maybe_handle_vm86_trap(env, trapnr)) {
break;
}
force_sig(TARGET_SIGSEGV);
break;
case EXCP06_ILLOP:
force_sig_fault(TARGET_SIGILL, TARGET_ILL_ILLOPN, env->eip);
break;
case EXCP_INTERRUPT:
/* just indicate that signals should be handled asap */
break;
case EXCP_DEBUG:
force_sig_fault(TARGET_SIGTRAP, TARGET_TRAP_BRKPT, env->eip);
break;
case EXCP_ATOMIC:
cpu_exec_step_atomic(cs);
break;
default:
EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n",
trapnr);
abort();
}
process_pending_signals(env);
}
}
void target_cpu_copy_regs(CPUArchState *env, struct target_pt_regs *regs)
{
env->cr[0] = CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK;
env->hflags |= HF_PE_MASK | HF_CPL_MASK;
if (env->features[FEAT_1_EDX] & CPUID_SSE) {
env->cr[4] |= CR4_OSFXSR_MASK;
env->hflags |= HF_OSFXSR_MASK;
}
#ifndef TARGET_ABI32
/* enable 64 bit mode if possible */
if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM)) {
fprintf(stderr, "The selected x86 CPU does not support 64 bit mode\n");
exit(EXIT_FAILURE);
}
env->cr[4] |= CR4_PAE_MASK;
env->efer |= MSR_EFER_LMA | MSR_EFER_LME;
env->hflags |= HF_LMA_MASK;
#endif
/* flags setup : we activate the IRQs by default as in user mode */
env->eflags |= IF_MASK;
/* linux register setup */
#ifndef TARGET_ABI32
env->regs[R_EAX] = regs->rax;
env->regs[R_EBX] = regs->rbx;
env->regs[R_ECX] = regs->rcx;
env->regs[R_EDX] = regs->rdx;
env->regs[R_ESI] = regs->rsi;
env->regs[R_EDI] = regs->rdi;
env->regs[R_EBP] = regs->rbp;
env->regs[R_ESP] = regs->rsp;
env->eip = regs->rip;
#else
env->regs[R_EAX] = regs->eax;
env->regs[R_EBX] = regs->ebx;
env->regs[R_ECX] = regs->ecx;
env->regs[R_EDX] = regs->edx;
env->regs[R_ESI] = regs->esi;
env->regs[R_EDI] = regs->edi;
env->regs[R_EBP] = regs->ebp;
env->regs[R_ESP] = regs->esp;
env->eip = regs->eip;
#endif
/* linux interrupt setup */
#ifndef TARGET_ABI32
env->idt.limit = 511;
#else
env->idt.limit = 255;
#endif
env->idt.base = target_mmap(0, sizeof(uint64_t) * (env->idt.limit + 1),
PROT_READ|PROT_WRITE,
MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
idt_table = g2h_untagged(env->idt.base);
set_idt(0, 0);
set_idt(1, 0);
set_idt(2, 0);
set_idt(3, 3);
set_idt(4, 3);
set_idt(5, 0);
set_idt(6, 0);
set_idt(7, 0);
set_idt(8, 0);
set_idt(9, 0);
set_idt(10, 0);
set_idt(11, 0);
set_idt(12, 0);
set_idt(13, 0);
set_idt(14, 0);
set_idt(15, 0);
set_idt(16, 0);
set_idt(17, 0);
set_idt(18, 0);
set_idt(19, 0);
set_idt(0x80, 3);
/* linux segment setup */
{
uint64_t *gdt_table;
env->gdt.base = target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES,
PROT_READ|PROT_WRITE,
MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
env->gdt.limit = sizeof(uint64_t) * TARGET_GDT_ENTRIES - 1;
gdt_table = g2h_untagged(env->gdt.base);
#ifdef TARGET_ABI32
write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
(3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
#else
/* 64 bit code segment */
write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
DESC_L_MASK |
(3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
#endif
write_dt(&gdt_table[__USER_DS >> 3], 0, 0xfffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
(3 << DESC_DPL_SHIFT) | (0x2 << DESC_TYPE_SHIFT));
}
cpu_x86_load_seg(env, R_CS, __USER_CS);
cpu_x86_load_seg(env, R_SS, __USER_DS);
#ifdef TARGET_ABI32
cpu_x86_load_seg(env, R_DS, __USER_DS);
cpu_x86_load_seg(env, R_ES, __USER_DS);
cpu_x86_load_seg(env, R_FS, __USER_DS);
cpu_x86_load_seg(env, R_GS, __USER_DS);
/* This hack makes Wine work... */
env->segs[R_FS].selector = 0;
#else
cpu_x86_load_seg(env, R_DS, 0);
cpu_x86_load_seg(env, R_ES, 0);
cpu_x86_load_seg(env, R_FS, 0);
cpu_x86_load_seg(env, R_GS, 0);
#endif
}