f573ac059e
When determining the current vector length, the SMCR_EL2.LEN and SVCR_EL2.LEN settings should only be considered if EL2 is enabled (compare the pseudocode CurrentSVL and CurrentNSVL which call EL2Enabled()). We were checking against ARM_FEATURE_EL2 rather than calling arm_is_el2_enabled(), which meant that we would look at SMCR_EL2/SVCR_EL2 when in Secure EL1 or Secure EL0 even if Secure EL2 was not enabled. Use the correct check in sve_vqm1_for_el_sm(). Cc: qemu-stable@nongnu.org Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20240722172957.1041231-5-peter.maydell@linaro.org
12894 lines
459 KiB
C
12894 lines
459 KiB
C
/*
|
|
* ARM generic helpers.
|
|
*
|
|
* This code is licensed under the GNU GPL v2 or later.
|
|
*
|
|
* SPDX-License-Identifier: GPL-2.0-or-later
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qemu/log.h"
|
|
#include "trace.h"
|
|
#include "cpu.h"
|
|
#include "internals.h"
|
|
#include "cpu-features.h"
|
|
#include "exec/helper-proto.h"
|
|
#include "qemu/main-loop.h"
|
|
#include "qemu/timer.h"
|
|
#include "qemu/bitops.h"
|
|
#include "qemu/crc32c.h"
|
|
#include "qemu/qemu-print.h"
|
|
#include "exec/exec-all.h"
|
|
#include <zlib.h> /* For crc32 */
|
|
#include "hw/irq.h"
|
|
#include "sysemu/cpu-timers.h"
|
|
#include "sysemu/kvm.h"
|
|
#include "sysemu/tcg.h"
|
|
#include "qapi/error.h"
|
|
#include "qemu/guest-random.h"
|
|
#ifdef CONFIG_TCG
|
|
#include "semihosting/common-semi.h"
|
|
#endif
|
|
#include "cpregs.h"
|
|
#include "target/arm/gtimer.h"
|
|
|
|
#define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
|
|
|
|
static void switch_mode(CPUARMState *env, int mode);
|
|
|
|
static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
assert(ri->fieldoffset);
|
|
if (cpreg_field_is_64bit(ri)) {
|
|
return CPREG_FIELD64(env, ri);
|
|
} else {
|
|
return CPREG_FIELD32(env, ri);
|
|
}
|
|
}
|
|
|
|
void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
|
|
{
|
|
assert(ri->fieldoffset);
|
|
if (cpreg_field_is_64bit(ri)) {
|
|
CPREG_FIELD64(env, ri) = value;
|
|
} else {
|
|
CPREG_FIELD32(env, ri) = value;
|
|
}
|
|
}
|
|
|
|
static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return (char *)env + ri->fieldoffset;
|
|
}
|
|
|
|
uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
/* Raw read of a coprocessor register (as needed for migration, etc). */
|
|
if (ri->type & ARM_CP_CONST) {
|
|
return ri->resetvalue;
|
|
} else if (ri->raw_readfn) {
|
|
return ri->raw_readfn(env, ri);
|
|
} else if (ri->readfn) {
|
|
return ri->readfn(env, ri);
|
|
} else {
|
|
return raw_read(env, ri);
|
|
}
|
|
}
|
|
|
|
static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t v)
|
|
{
|
|
/*
|
|
* Raw write of a coprocessor register (as needed for migration, etc).
|
|
* Note that constant registers are treated as write-ignored; the
|
|
* caller should check for success by whether a readback gives the
|
|
* value written.
|
|
*/
|
|
if (ri->type & ARM_CP_CONST) {
|
|
return;
|
|
} else if (ri->raw_writefn) {
|
|
ri->raw_writefn(env, ri, v);
|
|
} else if (ri->writefn) {
|
|
ri->writefn(env, ri, v);
|
|
} else {
|
|
raw_write(env, ri, v);
|
|
}
|
|
}
|
|
|
|
static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
|
|
{
|
|
/*
|
|
* Return true if the regdef would cause an assertion if you called
|
|
* read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
|
|
* program bug for it not to have the NO_RAW flag).
|
|
* NB that returning false here doesn't necessarily mean that calling
|
|
* read/write_raw_cp_reg() is safe, because we can't distinguish "has
|
|
* read/write access functions which are safe for raw use" from "has
|
|
* read/write access functions which have side effects but has forgotten
|
|
* to provide raw access functions".
|
|
* The tests here line up with the conditions in read/write_raw_cp_reg()
|
|
* and assertions in raw_read()/raw_write().
|
|
*/
|
|
if ((ri->type & ARM_CP_CONST) ||
|
|
ri->fieldoffset ||
|
|
((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync)
|
|
{
|
|
/* Write the coprocessor state from cpu->env to the (index,value) list. */
|
|
int i;
|
|
bool ok = true;
|
|
|
|
for (i = 0; i < cpu->cpreg_array_len; i++) {
|
|
uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
|
|
const ARMCPRegInfo *ri;
|
|
uint64_t newval;
|
|
|
|
ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
|
|
if (!ri) {
|
|
ok = false;
|
|
continue;
|
|
}
|
|
if (ri->type & ARM_CP_NO_RAW) {
|
|
continue;
|
|
}
|
|
|
|
newval = read_raw_cp_reg(&cpu->env, ri);
|
|
if (kvm_sync) {
|
|
/*
|
|
* Only sync if the previous list->cpustate sync succeeded.
|
|
* Rather than tracking the success/failure state for every
|
|
* item in the list, we just recheck "does the raw write we must
|
|
* have made in write_list_to_cpustate() read back OK" here.
|
|
*/
|
|
uint64_t oldval = cpu->cpreg_values[i];
|
|
|
|
if (oldval == newval) {
|
|
continue;
|
|
}
|
|
|
|
write_raw_cp_reg(&cpu->env, ri, oldval);
|
|
if (read_raw_cp_reg(&cpu->env, ri) != oldval) {
|
|
continue;
|
|
}
|
|
|
|
write_raw_cp_reg(&cpu->env, ri, newval);
|
|
}
|
|
cpu->cpreg_values[i] = newval;
|
|
}
|
|
return ok;
|
|
}
|
|
|
|
bool write_list_to_cpustate(ARMCPU *cpu)
|
|
{
|
|
int i;
|
|
bool ok = true;
|
|
|
|
for (i = 0; i < cpu->cpreg_array_len; i++) {
|
|
uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
|
|
uint64_t v = cpu->cpreg_values[i];
|
|
const ARMCPRegInfo *ri;
|
|
|
|
ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
|
|
if (!ri) {
|
|
ok = false;
|
|
continue;
|
|
}
|
|
if (ri->type & ARM_CP_NO_RAW) {
|
|
continue;
|
|
}
|
|
/*
|
|
* Write value and confirm it reads back as written
|
|
* (to catch read-only registers and partially read-only
|
|
* registers where the incoming migration value doesn't match)
|
|
*/
|
|
write_raw_cp_reg(&cpu->env, ri, v);
|
|
if (read_raw_cp_reg(&cpu->env, ri) != v) {
|
|
ok = false;
|
|
}
|
|
}
|
|
return ok;
|
|
}
|
|
|
|
static void add_cpreg_to_list(gpointer key, gpointer opaque)
|
|
{
|
|
ARMCPU *cpu = opaque;
|
|
uint32_t regidx = (uintptr_t)key;
|
|
const ARMCPRegInfo *ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
|
|
|
|
if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
|
|
cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
|
|
/* The value array need not be initialized at this point */
|
|
cpu->cpreg_array_len++;
|
|
}
|
|
}
|
|
|
|
static void count_cpreg(gpointer key, gpointer opaque)
|
|
{
|
|
ARMCPU *cpu = opaque;
|
|
const ARMCPRegInfo *ri;
|
|
|
|
ri = g_hash_table_lookup(cpu->cp_regs, key);
|
|
|
|
if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_ALIAS))) {
|
|
cpu->cpreg_array_len++;
|
|
}
|
|
}
|
|
|
|
static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
|
|
{
|
|
uint64_t aidx = cpreg_to_kvm_id((uintptr_t)a);
|
|
uint64_t bidx = cpreg_to_kvm_id((uintptr_t)b);
|
|
|
|
if (aidx > bidx) {
|
|
return 1;
|
|
}
|
|
if (aidx < bidx) {
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void init_cpreg_list(ARMCPU *cpu)
|
|
{
|
|
/*
|
|
* Initialise the cpreg_tuples[] array based on the cp_regs hash.
|
|
* Note that we require cpreg_tuples[] to be sorted by key ID.
|
|
*/
|
|
GList *keys;
|
|
int arraylen;
|
|
|
|
keys = g_hash_table_get_keys(cpu->cp_regs);
|
|
keys = g_list_sort(keys, cpreg_key_compare);
|
|
|
|
cpu->cpreg_array_len = 0;
|
|
|
|
g_list_foreach(keys, count_cpreg, cpu);
|
|
|
|
arraylen = cpu->cpreg_array_len;
|
|
cpu->cpreg_indexes = g_new(uint64_t, arraylen);
|
|
cpu->cpreg_values = g_new(uint64_t, arraylen);
|
|
cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
|
|
cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
|
|
cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
|
|
cpu->cpreg_array_len = 0;
|
|
|
|
g_list_foreach(keys, add_cpreg_to_list, cpu);
|
|
|
|
assert(cpu->cpreg_array_len == arraylen);
|
|
|
|
g_list_free(keys);
|
|
}
|
|
|
|
static bool arm_pan_enabled(CPUARMState *env)
|
|
{
|
|
if (is_a64(env)) {
|
|
if ((arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1)) == (HCR_NV | HCR_NV1)) {
|
|
return false;
|
|
}
|
|
return env->pstate & PSTATE_PAN;
|
|
} else {
|
|
return env->uncached_cpsr & CPSR_PAN;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Some registers are not accessible from AArch32 EL3 if SCR.NS == 0.
|
|
*/
|
|
static CPAccessResult access_el3_aa32ns(CPUARMState *env,
|
|
const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (!is_a64(env) && arm_current_el(env) == 3 &&
|
|
arm_is_secure_below_el3(env)) {
|
|
return CP_ACCESS_TRAP_UNCATEGORIZED;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
/*
|
|
* Some secure-only AArch32 registers trap to EL3 if used from
|
|
* Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
|
|
* Note that an access from Secure EL1 can only happen if EL3 is AArch64.
|
|
* We assume that the .access field is set to PL1_RW.
|
|
*/
|
|
static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
|
|
const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (arm_current_el(env) == 3) {
|
|
return CP_ACCESS_OK;
|
|
}
|
|
if (arm_is_secure_below_el3(env)) {
|
|
if (env->cp15.scr_el3 & SCR_EEL2) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
return CP_ACCESS_TRAP_EL3;
|
|
}
|
|
/* This will be EL1 NS and EL2 NS, which just UNDEF */
|
|
return CP_ACCESS_TRAP_UNCATEGORIZED;
|
|
}
|
|
|
|
/*
|
|
* Check for traps to performance monitor registers, which are controlled
|
|
* by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
|
|
*/
|
|
static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
int el = arm_current_el(env);
|
|
uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
|
|
|
|
if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
|
|
return CP_ACCESS_TRAP_EL3;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
/* Check for traps from EL1 due to HCR_EL2.TVM and HCR_EL2.TRVM. */
|
|
CPAccessResult access_tvm_trvm(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (arm_current_el(env) == 1) {
|
|
uint64_t trap = isread ? HCR_TRVM : HCR_TVM;
|
|
if (arm_hcr_el2_eff(env) & trap) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
/* Check for traps from EL1 due to HCR_EL2.TSW. */
|
|
static CPAccessResult access_tsw(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TSW)) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
/* Check for traps from EL1 due to HCR_EL2.TACR. */
|
|
static CPAccessResult access_tacr(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TACR)) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
/* Check for traps from EL1 due to HCR_EL2.TTLB. */
|
|
static CPAccessResult access_ttlb(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TTLB)) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
/* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBIS. */
|
|
static CPAccessResult access_ttlbis(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (arm_current_el(env) == 1 &&
|
|
(arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBIS))) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
#ifdef TARGET_AARCH64
|
|
/* Check for traps from EL1 due to HCR_EL2.TTLB or TTLBOS. */
|
|
static CPAccessResult access_ttlbos(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (arm_current_el(env) == 1 &&
|
|
(arm_hcr_el2_eff(env) & (HCR_TTLB | HCR_TTLBOS))) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
#endif
|
|
|
|
static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
|
|
raw_write(env, ri, value);
|
|
tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
|
|
}
|
|
|
|
static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
|
|
if (raw_read(env, ri) != value) {
|
|
/*
|
|
* Unlike real hardware the qemu TLB uses virtual addresses,
|
|
* not modified virtual addresses, so this causes a TLB flush.
|
|
*/
|
|
tlb_flush(CPU(cpu));
|
|
raw_write(env, ri, value);
|
|
}
|
|
}
|
|
|
|
static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
|
|
if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
|
|
&& !extended_addresses_enabled(env)) {
|
|
/*
|
|
* For VMSA (when not using the LPAE long descriptor page table
|
|
* format) this register includes the ASID, so do a TLB flush.
|
|
* For PMSA it is purely a process ID and no action is needed.
|
|
*/
|
|
tlb_flush(CPU(cpu));
|
|
}
|
|
raw_write(env, ri, value);
|
|
}
|
|
|
|
static int alle1_tlbmask(CPUARMState *env)
|
|
{
|
|
/*
|
|
* Note that the 'ALL' scope must invalidate both stage 1 and
|
|
* stage 2 translations, whereas most other scopes only invalidate
|
|
* stage 1 translations.
|
|
*/
|
|
return (ARMMMUIdxBit_E10_1 |
|
|
ARMMMUIdxBit_E10_1_PAN |
|
|
ARMMMUIdxBit_E10_0 |
|
|
ARMMMUIdxBit_Stage2 |
|
|
ARMMMUIdxBit_Stage2_S);
|
|
}
|
|
|
|
|
|
/* IS variants of TLB operations must affect all cores */
|
|
static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
|
|
tlb_flush_all_cpus_synced(cs);
|
|
}
|
|
|
|
static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
|
|
tlb_flush_all_cpus_synced(cs);
|
|
}
|
|
|
|
static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
|
|
tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
|
|
}
|
|
|
|
static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
|
|
tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
|
|
}
|
|
|
|
/*
|
|
* Non-IS variants of TLB operations are upgraded to
|
|
* IS versions if we are at EL1 and HCR_EL2.FB is effectively set to
|
|
* force broadcast of these operations.
|
|
*/
|
|
static bool tlb_force_broadcast(CPUARMState *env)
|
|
{
|
|
return arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_FB);
|
|
}
|
|
|
|
static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/* Invalidate all (TLBIALL) */
|
|
CPUState *cs = env_cpu(env);
|
|
|
|
if (tlb_force_broadcast(env)) {
|
|
tlb_flush_all_cpus_synced(cs);
|
|
} else {
|
|
tlb_flush(cs);
|
|
}
|
|
}
|
|
|
|
static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
|
|
CPUState *cs = env_cpu(env);
|
|
|
|
value &= TARGET_PAGE_MASK;
|
|
if (tlb_force_broadcast(env)) {
|
|
tlb_flush_page_all_cpus_synced(cs, value);
|
|
} else {
|
|
tlb_flush_page(cs, value);
|
|
}
|
|
}
|
|
|
|
static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/* Invalidate by ASID (TLBIASID) */
|
|
CPUState *cs = env_cpu(env);
|
|
|
|
if (tlb_force_broadcast(env)) {
|
|
tlb_flush_all_cpus_synced(cs);
|
|
} else {
|
|
tlb_flush(cs);
|
|
}
|
|
}
|
|
|
|
static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
|
|
CPUState *cs = env_cpu(env);
|
|
|
|
value &= TARGET_PAGE_MASK;
|
|
if (tlb_force_broadcast(env)) {
|
|
tlb_flush_page_all_cpus_synced(cs, value);
|
|
} else {
|
|
tlb_flush_page(cs, value);
|
|
}
|
|
}
|
|
|
|
static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
|
|
tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
|
|
}
|
|
|
|
static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
|
|
tlb_flush_by_mmuidx_all_cpus_synced(cs, alle1_tlbmask(env));
|
|
}
|
|
|
|
|
|
static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
|
|
tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E2);
|
|
}
|
|
|
|
static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
|
|
tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E2);
|
|
}
|
|
|
|
static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
|
|
|
|
tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E2);
|
|
}
|
|
|
|
static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
|
|
|
|
tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
|
|
ARMMMUIdxBit_E2);
|
|
}
|
|
|
|
static void tlbiipas2_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
|
|
|
|
tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_Stage2);
|
|
}
|
|
|
|
static void tlbiipas2is_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
uint64_t pageaddr = (value & MAKE_64BIT_MASK(0, 28)) << 12;
|
|
|
|
tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, ARMMMUIdxBit_Stage2);
|
|
}
|
|
|
|
static const ARMCPRegInfo cp_reginfo[] = {
|
|
/*
|
|
* Define the secure and non-secure FCSE identifier CP registers
|
|
* separately because there is no secure bank in V8 (no _EL3). This allows
|
|
* the secure register to be properly reset and migrated. There is also no
|
|
* v8 EL1 version of the register so the non-secure instance stands alone.
|
|
*/
|
|
{ .name = "FCSEIDR",
|
|
.cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
|
|
.access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
|
|
.resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
|
|
{ .name = "FCSEIDR_S",
|
|
.cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
|
|
.access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
|
|
.resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
|
|
/*
|
|
* Define the secure and non-secure context identifier CP registers
|
|
* separately because there is no secure bank in V8 (no _EL3). This allows
|
|
* the secure register to be properly reset and migrated. In the
|
|
* non-secure case, the 32-bit register will have reset and migration
|
|
* disabled during registration as it is handled by the 64-bit instance.
|
|
*/
|
|
{ .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
|
|
.access = PL1_RW, .accessfn = access_tvm_trvm,
|
|
.fgt = FGT_CONTEXTIDR_EL1,
|
|
.nv2_redirect_offset = 0x108 | NV2_REDIR_NV1,
|
|
.secure = ARM_CP_SECSTATE_NS,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
|
|
.resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
|
|
{ .name = "CONTEXTIDR_S", .state = ARM_CP_STATE_AA32,
|
|
.cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
|
|
.access = PL1_RW, .accessfn = access_tvm_trvm,
|
|
.secure = ARM_CP_SECSTATE_S,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
|
|
.resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
|
|
};
|
|
|
|
static const ARMCPRegInfo not_v8_cp_reginfo[] = {
|
|
/*
|
|
* NB: Some of these registers exist in v8 but with more precise
|
|
* definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
|
|
*/
|
|
/* MMU Domain access control / MPU write buffer control */
|
|
{ .name = "DACR",
|
|
.cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
|
|
.access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
|
|
.writefn = dacr_write, .raw_writefn = raw_write,
|
|
.bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
|
|
offsetoflow32(CPUARMState, cp15.dacr_ns) } },
|
|
/*
|
|
* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
|
|
* For v6 and v5, these mappings are overly broad.
|
|
*/
|
|
{ .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
|
|
.opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
|
|
{ .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
|
|
.opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
|
|
{ .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
|
|
.opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
|
|
{ .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
|
|
.opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
|
|
/* Cache maintenance ops; some of this space may be overridden later. */
|
|
{ .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
|
|
.opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
|
|
.type = ARM_CP_NOP | ARM_CP_OVERRIDE },
|
|
};
|
|
|
|
static const ARMCPRegInfo not_v6_cp_reginfo[] = {
|
|
/*
|
|
* Not all pre-v6 cores implemented this WFI, so this is slightly
|
|
* over-broad.
|
|
*/
|
|
{ .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
|
|
.access = PL1_W, .type = ARM_CP_WFI },
|
|
};
|
|
|
|
static const ARMCPRegInfo not_v7_cp_reginfo[] = {
|
|
/*
|
|
* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
|
|
* is UNPREDICTABLE; we choose to NOP as most implementations do).
|
|
*/
|
|
{ .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
|
|
.access = PL1_W, .type = ARM_CP_WFI },
|
|
/*
|
|
* L1 cache lockdown. Not architectural in v6 and earlier but in practice
|
|
* implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
|
|
* OMAPCP will override this space.
|
|
*/
|
|
{ .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
|
|
.access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
|
|
.resetvalue = 0 },
|
|
{ .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
|
|
.access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
|
|
.resetvalue = 0 },
|
|
/* v6 doesn't have the cache ID registers but Linux reads them anyway */
|
|
{ .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
|
|
.access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
|
|
.resetvalue = 0 },
|
|
/*
|
|
* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
|
|
* implementing it as RAZ means the "debug architecture version" bits
|
|
* will read as a reserved value, which should cause Linux to not try
|
|
* to use the debug hardware.
|
|
*/
|
|
{ .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
|
|
.access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
|
|
/*
|
|
* MMU TLB control. Note that the wildcarding means we cover not just
|
|
* the unified TLB ops but also the dside/iside/inner-shareable variants.
|
|
*/
|
|
{ .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
|
|
.opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
|
|
.type = ARM_CP_NO_RAW },
|
|
{ .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
|
|
.opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
|
|
.type = ARM_CP_NO_RAW },
|
|
{ .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
|
|
.opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
|
|
.type = ARM_CP_NO_RAW },
|
|
{ .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
|
|
.opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
|
|
.type = ARM_CP_NO_RAW },
|
|
{ .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
|
|
.opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
|
|
{ .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
|
|
.opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
|
|
};
|
|
|
|
static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
uint32_t mask = 0;
|
|
|
|
/* In ARMv8 most bits of CPACR_EL1 are RES0. */
|
|
if (!arm_feature(env, ARM_FEATURE_V8)) {
|
|
/*
|
|
* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
|
|
* ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
|
|
* TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
|
|
*/
|
|
if (cpu_isar_feature(aa32_vfp_simd, env_archcpu(env))) {
|
|
/* VFP coprocessor: cp10 & cp11 [23:20] */
|
|
mask |= R_CPACR_ASEDIS_MASK |
|
|
R_CPACR_D32DIS_MASK |
|
|
R_CPACR_CP11_MASK |
|
|
R_CPACR_CP10_MASK;
|
|
|
|
if (!arm_feature(env, ARM_FEATURE_NEON)) {
|
|
/* ASEDIS [31] bit is RAO/WI */
|
|
value |= R_CPACR_ASEDIS_MASK;
|
|
}
|
|
|
|
/*
|
|
* VFPv3 and upwards with NEON implement 32 double precision
|
|
* registers (D0-D31).
|
|
*/
|
|
if (!cpu_isar_feature(aa32_simd_r32, env_archcpu(env))) {
|
|
/* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
|
|
value |= R_CPACR_D32DIS_MASK;
|
|
}
|
|
}
|
|
value &= mask;
|
|
}
|
|
|
|
/*
|
|
* For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
|
|
* is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
|
|
*/
|
|
if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
|
|
!arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
|
|
mask = R_CPACR_CP11_MASK | R_CPACR_CP10_MASK;
|
|
value = (value & ~mask) | (env->cp15.cpacr_el1 & mask);
|
|
}
|
|
|
|
env->cp15.cpacr_el1 = value;
|
|
}
|
|
|
|
static uint64_t cpacr_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
/*
|
|
* For A-profile AArch32 EL3 (but not M-profile secure mode), if NSACR.CP10
|
|
* is 0 then CPACR.{CP11,CP10} ignore writes and read as 0b00.
|
|
*/
|
|
uint64_t value = env->cp15.cpacr_el1;
|
|
|
|
if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
|
|
!arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
|
|
value = ~(R_CPACR_CP11_MASK | R_CPACR_CP10_MASK);
|
|
}
|
|
return value;
|
|
}
|
|
|
|
|
|
static void cpacr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
/*
|
|
* Call cpacr_write() so that we reset with the correct RAO bits set
|
|
* for our CPU features.
|
|
*/
|
|
cpacr_write(env, ri, 0);
|
|
}
|
|
|
|
static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (arm_feature(env, ARM_FEATURE_V8)) {
|
|
/* Check if CPACR accesses are to be trapped to EL2 */
|
|
if (arm_current_el(env) == 1 && arm_is_el2_enabled(env) &&
|
|
FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TCPAC)) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
/* Check if CPACR accesses are to be trapped to EL3 */
|
|
} else if (arm_current_el(env) < 3 &&
|
|
FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
|
|
return CP_ACCESS_TRAP_EL3;
|
|
}
|
|
}
|
|
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
/* Check if CPTR accesses are set to trap to EL3 */
|
|
if (arm_current_el(env) == 2 &&
|
|
FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TCPAC)) {
|
|
return CP_ACCESS_TRAP_EL3;
|
|
}
|
|
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static const ARMCPRegInfo v6_cp_reginfo[] = {
|
|
/* prefetch by MVA in v6, NOP in v7 */
|
|
{ .name = "MVA_prefetch",
|
|
.cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
|
|
.access = PL1_W, .type = ARM_CP_NOP },
|
|
/*
|
|
* We need to break the TB after ISB to execute self-modifying code
|
|
* correctly and also to take any pending interrupts immediately.
|
|
* So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
|
|
*/
|
|
{ .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
|
|
.access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
|
|
{ .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
|
|
.access = PL0_W, .type = ARM_CP_NOP },
|
|
{ .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
|
|
.access = PL0_W, .type = ARM_CP_NOP },
|
|
{ .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
|
|
.access = PL1_RW, .accessfn = access_tvm_trvm,
|
|
.bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
|
|
offsetof(CPUARMState, cp15.ifar_ns) },
|
|
.resetvalue = 0, },
|
|
/*
|
|
* Watchpoint Fault Address Register : should actually only be present
|
|
* for 1136, 1176, 11MPCore.
|
|
*/
|
|
{ .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
|
|
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
|
|
{ .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
|
|
.crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
|
|
.fgt = FGT_CPACR_EL1,
|
|
.nv2_redirect_offset = 0x100 | NV2_REDIR_NV1,
|
|
.access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
|
|
.resetfn = cpacr_reset, .writefn = cpacr_write, .readfn = cpacr_read },
|
|
};
|
|
|
|
typedef struct pm_event {
|
|
uint16_t number; /* PMEVTYPER.evtCount is 16 bits wide */
|
|
/* If the event is supported on this CPU (used to generate PMCEID[01]) */
|
|
bool (*supported)(CPUARMState *);
|
|
/*
|
|
* Retrieve the current count of the underlying event. The programmed
|
|
* counters hold a difference from the return value from this function
|
|
*/
|
|
uint64_t (*get_count)(CPUARMState *);
|
|
/*
|
|
* Return how many nanoseconds it will take (at a minimum) for count events
|
|
* to occur. A negative value indicates the counter will never overflow, or
|
|
* that the counter has otherwise arranged for the overflow bit to be set
|
|
* and the PMU interrupt to be raised on overflow.
|
|
*/
|
|
int64_t (*ns_per_count)(uint64_t);
|
|
} pm_event;
|
|
|
|
static bool event_always_supported(CPUARMState *env)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
static uint64_t swinc_get_count(CPUARMState *env)
|
|
{
|
|
/*
|
|
* SW_INCR events are written directly to the pmevcntr's by writes to
|
|
* PMSWINC, so there is no underlying count maintained by the PMU itself
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
static int64_t swinc_ns_per(uint64_t ignored)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Return the underlying cycle count for the PMU cycle counters. If we're in
|
|
* usermode, simply return 0.
|
|
*/
|
|
static uint64_t cycles_get_count(CPUARMState *env)
|
|
{
|
|
#ifndef CONFIG_USER_ONLY
|
|
return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
|
|
ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
|
|
#else
|
|
return cpu_get_host_ticks();
|
|
#endif
|
|
}
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
static int64_t cycles_ns_per(uint64_t cycles)
|
|
{
|
|
return (ARM_CPU_FREQ / NANOSECONDS_PER_SECOND) * cycles;
|
|
}
|
|
|
|
static bool instructions_supported(CPUARMState *env)
|
|
{
|
|
/* Precise instruction counting */
|
|
return icount_enabled() == ICOUNT_PRECISE;
|
|
}
|
|
|
|
static uint64_t instructions_get_count(CPUARMState *env)
|
|
{
|
|
assert(icount_enabled() == ICOUNT_PRECISE);
|
|
return (uint64_t)icount_get_raw();
|
|
}
|
|
|
|
static int64_t instructions_ns_per(uint64_t icount)
|
|
{
|
|
assert(icount_enabled() == ICOUNT_PRECISE);
|
|
return icount_to_ns((int64_t)icount);
|
|
}
|
|
#endif
|
|
|
|
static bool pmuv3p1_events_supported(CPUARMState *env)
|
|
{
|
|
/* For events which are supported in any v8.1 PMU */
|
|
return cpu_isar_feature(any_pmuv3p1, env_archcpu(env));
|
|
}
|
|
|
|
static bool pmuv3p4_events_supported(CPUARMState *env)
|
|
{
|
|
/* For events which are supported in any v8.1 PMU */
|
|
return cpu_isar_feature(any_pmuv3p4, env_archcpu(env));
|
|
}
|
|
|
|
static uint64_t zero_event_get_count(CPUARMState *env)
|
|
{
|
|
/* For events which on QEMU never fire, so their count is always zero */
|
|
return 0;
|
|
}
|
|
|
|
static int64_t zero_event_ns_per(uint64_t cycles)
|
|
{
|
|
/* An event which never fires can never overflow */
|
|
return -1;
|
|
}
|
|
|
|
static const pm_event pm_events[] = {
|
|
{ .number = 0x000, /* SW_INCR */
|
|
.supported = event_always_supported,
|
|
.get_count = swinc_get_count,
|
|
.ns_per_count = swinc_ns_per,
|
|
},
|
|
#ifndef CONFIG_USER_ONLY
|
|
{ .number = 0x008, /* INST_RETIRED, Instruction architecturally executed */
|
|
.supported = instructions_supported,
|
|
.get_count = instructions_get_count,
|
|
.ns_per_count = instructions_ns_per,
|
|
},
|
|
{ .number = 0x011, /* CPU_CYCLES, Cycle */
|
|
.supported = event_always_supported,
|
|
.get_count = cycles_get_count,
|
|
.ns_per_count = cycles_ns_per,
|
|
},
|
|
#endif
|
|
{ .number = 0x023, /* STALL_FRONTEND */
|
|
.supported = pmuv3p1_events_supported,
|
|
.get_count = zero_event_get_count,
|
|
.ns_per_count = zero_event_ns_per,
|
|
},
|
|
{ .number = 0x024, /* STALL_BACKEND */
|
|
.supported = pmuv3p1_events_supported,
|
|
.get_count = zero_event_get_count,
|
|
.ns_per_count = zero_event_ns_per,
|
|
},
|
|
{ .number = 0x03c, /* STALL */
|
|
.supported = pmuv3p4_events_supported,
|
|
.get_count = zero_event_get_count,
|
|
.ns_per_count = zero_event_ns_per,
|
|
},
|
|
};
|
|
|
|
/*
|
|
* Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
|
|
* events (i.e. the statistical profiling extension), this implementation
|
|
* should first be updated to something sparse instead of the current
|
|
* supported_event_map[] array.
|
|
*/
|
|
#define MAX_EVENT_ID 0x3c
|
|
#define UNSUPPORTED_EVENT UINT16_MAX
|
|
static uint16_t supported_event_map[MAX_EVENT_ID + 1];
|
|
|
|
/*
|
|
* Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
|
|
* of ARM event numbers to indices in our pm_events array.
|
|
*
|
|
* Note: Events in the 0x40XX range are not currently supported.
|
|
*/
|
|
void pmu_init(ARMCPU *cpu)
|
|
{
|
|
unsigned int i;
|
|
|
|
/*
|
|
* Empty supported_event_map and cpu->pmceid[01] before adding supported
|
|
* events to them
|
|
*/
|
|
for (i = 0; i < ARRAY_SIZE(supported_event_map); i++) {
|
|
supported_event_map[i] = UNSUPPORTED_EVENT;
|
|
}
|
|
cpu->pmceid0 = 0;
|
|
cpu->pmceid1 = 0;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(pm_events); i++) {
|
|
const pm_event *cnt = &pm_events[i];
|
|
assert(cnt->number <= MAX_EVENT_ID);
|
|
/* We do not currently support events in the 0x40xx range */
|
|
assert(cnt->number <= 0x3f);
|
|
|
|
if (cnt->supported(&cpu->env)) {
|
|
supported_event_map[cnt->number] = i;
|
|
uint64_t event_mask = 1ULL << (cnt->number & 0x1f);
|
|
if (cnt->number & 0x20) {
|
|
cpu->pmceid1 |= event_mask;
|
|
} else {
|
|
cpu->pmceid0 |= event_mask;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check at runtime whether a PMU event is supported for the current machine
|
|
*/
|
|
static bool event_supported(uint16_t number)
|
|
{
|
|
if (number > MAX_EVENT_ID) {
|
|
return false;
|
|
}
|
|
return supported_event_map[number] != UNSUPPORTED_EVENT;
|
|
}
|
|
|
|
static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
/*
|
|
* Performance monitor registers user accessibility is controlled
|
|
* by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
|
|
* trapping to EL2 or EL3 for other accesses.
|
|
*/
|
|
int el = arm_current_el(env);
|
|
uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
|
|
|
|
if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
|
|
return CP_ACCESS_TRAP;
|
|
}
|
|
if (el < 2 && (mdcr_el2 & MDCR_TPM)) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
|
|
return CP_ACCESS_TRAP_EL3;
|
|
}
|
|
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
|
|
const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
/* ER: event counter read trap control */
|
|
if (arm_feature(env, ARM_FEATURE_V8)
|
|
&& arm_current_el(env) == 0
|
|
&& (env->cp15.c9_pmuserenr & (1 << 3)) != 0
|
|
&& isread) {
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
return pmreg_access(env, ri, isread);
|
|
}
|
|
|
|
static CPAccessResult pmreg_access_swinc(CPUARMState *env,
|
|
const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
/* SW: software increment write trap control */
|
|
if (arm_feature(env, ARM_FEATURE_V8)
|
|
&& arm_current_el(env) == 0
|
|
&& (env->cp15.c9_pmuserenr & (1 << 1)) != 0
|
|
&& !isread) {
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
return pmreg_access(env, ri, isread);
|
|
}
|
|
|
|
static CPAccessResult pmreg_access_selr(CPUARMState *env,
|
|
const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
/* ER: event counter read trap control */
|
|
if (arm_feature(env, ARM_FEATURE_V8)
|
|
&& arm_current_el(env) == 0
|
|
&& (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
return pmreg_access(env, ri, isread);
|
|
}
|
|
|
|
static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
|
|
const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
/* CR: cycle counter read trap control */
|
|
if (arm_feature(env, ARM_FEATURE_V8)
|
|
&& arm_current_el(env) == 0
|
|
&& (env->cp15.c9_pmuserenr & (1 << 2)) != 0
|
|
&& isread) {
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
return pmreg_access(env, ri, isread);
|
|
}
|
|
|
|
/*
|
|
* Bits in MDCR_EL2 and MDCR_EL3 which pmu_counter_enabled() looks at.
|
|
* We use these to decide whether we need to wrap a write to MDCR_EL2
|
|
* or MDCR_EL3 in pmu_op_start()/pmu_op_finish() calls.
|
|
*/
|
|
#define MDCR_EL2_PMU_ENABLE_BITS \
|
|
(MDCR_HPME | MDCR_HPMD | MDCR_HPMN | MDCR_HCCD | MDCR_HLP)
|
|
#define MDCR_EL3_PMU_ENABLE_BITS (MDCR_SPME | MDCR_SCCD)
|
|
|
|
/*
|
|
* Returns true if the counter (pass 31 for PMCCNTR) should count events using
|
|
* the current EL, security state, and register configuration.
|
|
*/
|
|
static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
|
|
{
|
|
uint64_t filter;
|
|
bool e, p, u, nsk, nsu, nsh, m;
|
|
bool enabled, prohibited = false, filtered;
|
|
bool secure = arm_is_secure(env);
|
|
int el = arm_current_el(env);
|
|
uint64_t mdcr_el2;
|
|
uint8_t hpmn;
|
|
|
|
/*
|
|
* We might be called for M-profile cores where MDCR_EL2 doesn't
|
|
* exist and arm_mdcr_el2_eff() will assert, so this early-exit check
|
|
* must be before we read that value.
|
|
*/
|
|
if (!arm_feature(env, ARM_FEATURE_PMU)) {
|
|
return false;
|
|
}
|
|
|
|
mdcr_el2 = arm_mdcr_el2_eff(env);
|
|
hpmn = mdcr_el2 & MDCR_HPMN;
|
|
|
|
if (!arm_feature(env, ARM_FEATURE_EL2) ||
|
|
(counter < hpmn || counter == 31)) {
|
|
e = env->cp15.c9_pmcr & PMCRE;
|
|
} else {
|
|
e = mdcr_el2 & MDCR_HPME;
|
|
}
|
|
enabled = e && (env->cp15.c9_pmcnten & (1 << counter));
|
|
|
|
/* Is event counting prohibited? */
|
|
if (el == 2 && (counter < hpmn || counter == 31)) {
|
|
prohibited = mdcr_el2 & MDCR_HPMD;
|
|
}
|
|
if (secure) {
|
|
prohibited = prohibited || !(env->cp15.mdcr_el3 & MDCR_SPME);
|
|
}
|
|
|
|
if (counter == 31) {
|
|
/*
|
|
* The cycle counter defaults to running. PMCR.DP says "disable
|
|
* the cycle counter when event counting is prohibited".
|
|
* Some MDCR bits disable the cycle counter specifically.
|
|
*/
|
|
prohibited = prohibited && env->cp15.c9_pmcr & PMCRDP;
|
|
if (cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
|
|
if (secure) {
|
|
prohibited = prohibited || (env->cp15.mdcr_el3 & MDCR_SCCD);
|
|
}
|
|
if (el == 2) {
|
|
prohibited = prohibited || (mdcr_el2 & MDCR_HCCD);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (counter == 31) {
|
|
filter = env->cp15.pmccfiltr_el0;
|
|
} else {
|
|
filter = env->cp15.c14_pmevtyper[counter];
|
|
}
|
|
|
|
p = filter & PMXEVTYPER_P;
|
|
u = filter & PMXEVTYPER_U;
|
|
nsk = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSK);
|
|
nsu = arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_NSU);
|
|
nsh = arm_feature(env, ARM_FEATURE_EL2) && (filter & PMXEVTYPER_NSH);
|
|
m = arm_el_is_aa64(env, 1) &&
|
|
arm_feature(env, ARM_FEATURE_EL3) && (filter & PMXEVTYPER_M);
|
|
|
|
if (el == 0) {
|
|
filtered = secure ? u : u != nsu;
|
|
} else if (el == 1) {
|
|
filtered = secure ? p : p != nsk;
|
|
} else if (el == 2) {
|
|
filtered = !nsh;
|
|
} else { /* EL3 */
|
|
filtered = m != p;
|
|
}
|
|
|
|
if (counter != 31) {
|
|
/*
|
|
* If not checking PMCCNTR, ensure the counter is setup to an event we
|
|
* support
|
|
*/
|
|
uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
|
|
if (!event_supported(event)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return enabled && !prohibited && !filtered;
|
|
}
|
|
|
|
static void pmu_update_irq(CPUARMState *env)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
|
|
(env->cp15.c9_pminten & env->cp15.c9_pmovsr));
|
|
}
|
|
|
|
static bool pmccntr_clockdiv_enabled(CPUARMState *env)
|
|
{
|
|
/*
|
|
* Return true if the clock divider is enabled and the cycle counter
|
|
* is supposed to tick only once every 64 clock cycles. This is
|
|
* controlled by PMCR.D, but if PMCR.LC is set to enable the long
|
|
* (64-bit) cycle counter PMCR.D has no effect.
|
|
*/
|
|
return (env->cp15.c9_pmcr & (PMCRD | PMCRLC)) == PMCRD;
|
|
}
|
|
|
|
static bool pmevcntr_is_64_bit(CPUARMState *env, int counter)
|
|
{
|
|
/* Return true if the specified event counter is configured to be 64 bit */
|
|
|
|
/* This isn't intended to be used with the cycle counter */
|
|
assert(counter < 31);
|
|
|
|
if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
|
|
return false;
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_EL2)) {
|
|
/*
|
|
* MDCR_EL2.HLP still applies even when EL2 is disabled in the
|
|
* current security state, so we don't use arm_mdcr_el2_eff() here.
|
|
*/
|
|
bool hlp = env->cp15.mdcr_el2 & MDCR_HLP;
|
|
int hpmn = env->cp15.mdcr_el2 & MDCR_HPMN;
|
|
|
|
if (counter >= hpmn) {
|
|
return hlp;
|
|
}
|
|
}
|
|
return env->cp15.c9_pmcr & PMCRLP;
|
|
}
|
|
|
|
/*
|
|
* Ensure c15_ccnt is the guest-visible count so that operations such as
|
|
* enabling/disabling the counter or filtering, modifying the count itself,
|
|
* etc. can be done logically. This is essentially a no-op if the counter is
|
|
* not enabled at the time of the call.
|
|
*/
|
|
static void pmccntr_op_start(CPUARMState *env)
|
|
{
|
|
uint64_t cycles = cycles_get_count(env);
|
|
|
|
if (pmu_counter_enabled(env, 31)) {
|
|
uint64_t eff_cycles = cycles;
|
|
if (pmccntr_clockdiv_enabled(env)) {
|
|
eff_cycles /= 64;
|
|
}
|
|
|
|
uint64_t new_pmccntr = eff_cycles - env->cp15.c15_ccnt_delta;
|
|
|
|
uint64_t overflow_mask = env->cp15.c9_pmcr & PMCRLC ? \
|
|
1ull << 63 : 1ull << 31;
|
|
if (env->cp15.c15_ccnt & ~new_pmccntr & overflow_mask) {
|
|
env->cp15.c9_pmovsr |= (1ULL << 31);
|
|
pmu_update_irq(env);
|
|
}
|
|
|
|
env->cp15.c15_ccnt = new_pmccntr;
|
|
}
|
|
env->cp15.c15_ccnt_delta = cycles;
|
|
}
|
|
|
|
/*
|
|
* If PMCCNTR is enabled, recalculate the delta between the clock and the
|
|
* guest-visible count. A call to pmccntr_op_finish should follow every call to
|
|
* pmccntr_op_start.
|
|
*/
|
|
static void pmccntr_op_finish(CPUARMState *env)
|
|
{
|
|
if (pmu_counter_enabled(env, 31)) {
|
|
#ifndef CONFIG_USER_ONLY
|
|
/* Calculate when the counter will next overflow */
|
|
uint64_t remaining_cycles = -env->cp15.c15_ccnt;
|
|
if (!(env->cp15.c9_pmcr & PMCRLC)) {
|
|
remaining_cycles = (uint32_t)remaining_cycles;
|
|
}
|
|
int64_t overflow_in = cycles_ns_per(remaining_cycles);
|
|
|
|
if (overflow_in > 0) {
|
|
int64_t overflow_at;
|
|
|
|
if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
|
|
overflow_in, &overflow_at)) {
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
uint64_t prev_cycles = env->cp15.c15_ccnt_delta;
|
|
if (pmccntr_clockdiv_enabled(env)) {
|
|
prev_cycles /= 64;
|
|
}
|
|
env->cp15.c15_ccnt_delta = prev_cycles - env->cp15.c15_ccnt;
|
|
}
|
|
}
|
|
|
|
static void pmevcntr_op_start(CPUARMState *env, uint8_t counter)
|
|
{
|
|
|
|
uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
|
|
uint64_t count = 0;
|
|
if (event_supported(event)) {
|
|
uint16_t event_idx = supported_event_map[event];
|
|
count = pm_events[event_idx].get_count(env);
|
|
}
|
|
|
|
if (pmu_counter_enabled(env, counter)) {
|
|
uint64_t new_pmevcntr = count - env->cp15.c14_pmevcntr_delta[counter];
|
|
uint64_t overflow_mask = pmevcntr_is_64_bit(env, counter) ?
|
|
1ULL << 63 : 1ULL << 31;
|
|
|
|
if (env->cp15.c14_pmevcntr[counter] & ~new_pmevcntr & overflow_mask) {
|
|
env->cp15.c9_pmovsr |= (1 << counter);
|
|
pmu_update_irq(env);
|
|
}
|
|
env->cp15.c14_pmevcntr[counter] = new_pmevcntr;
|
|
}
|
|
env->cp15.c14_pmevcntr_delta[counter] = count;
|
|
}
|
|
|
|
static void pmevcntr_op_finish(CPUARMState *env, uint8_t counter)
|
|
{
|
|
if (pmu_counter_enabled(env, counter)) {
|
|
#ifndef CONFIG_USER_ONLY
|
|
uint16_t event = env->cp15.c14_pmevtyper[counter] & PMXEVTYPER_EVTCOUNT;
|
|
uint16_t event_idx = supported_event_map[event];
|
|
uint64_t delta = -(env->cp15.c14_pmevcntr[counter] + 1);
|
|
int64_t overflow_in;
|
|
|
|
if (!pmevcntr_is_64_bit(env, counter)) {
|
|
delta = (uint32_t)delta;
|
|
}
|
|
overflow_in = pm_events[event_idx].ns_per_count(delta);
|
|
|
|
if (overflow_in > 0) {
|
|
int64_t overflow_at;
|
|
|
|
if (!sadd64_overflow(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
|
|
overflow_in, &overflow_at)) {
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
env->cp15.c14_pmevcntr_delta[counter] -=
|
|
env->cp15.c14_pmevcntr[counter];
|
|
}
|
|
}
|
|
|
|
void pmu_op_start(CPUARMState *env)
|
|
{
|
|
unsigned int i;
|
|
pmccntr_op_start(env);
|
|
for (i = 0; i < pmu_num_counters(env); i++) {
|
|
pmevcntr_op_start(env, i);
|
|
}
|
|
}
|
|
|
|
void pmu_op_finish(CPUARMState *env)
|
|
{
|
|
unsigned int i;
|
|
pmccntr_op_finish(env);
|
|
for (i = 0; i < pmu_num_counters(env); i++) {
|
|
pmevcntr_op_finish(env, i);
|
|
}
|
|
}
|
|
|
|
void pmu_pre_el_change(ARMCPU *cpu, void *ignored)
|
|
{
|
|
pmu_op_start(&cpu->env);
|
|
}
|
|
|
|
void pmu_post_el_change(ARMCPU *cpu, void *ignored)
|
|
{
|
|
pmu_op_finish(&cpu->env);
|
|
}
|
|
|
|
void arm_pmu_timer_cb(void *opaque)
|
|
{
|
|
ARMCPU *cpu = opaque;
|
|
|
|
/*
|
|
* Update all the counter values based on the current underlying counts,
|
|
* triggering interrupts to be raised, if necessary. pmu_op_finish() also
|
|
* has the effect of setting the cpu->pmu_timer to the next earliest time a
|
|
* counter may expire.
|
|
*/
|
|
pmu_op_start(&cpu->env);
|
|
pmu_op_finish(&cpu->env);
|
|
}
|
|
|
|
static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
pmu_op_start(env);
|
|
|
|
if (value & PMCRC) {
|
|
/* The counter has been reset */
|
|
env->cp15.c15_ccnt = 0;
|
|
}
|
|
|
|
if (value & PMCRP) {
|
|
unsigned int i;
|
|
for (i = 0; i < pmu_num_counters(env); i++) {
|
|
env->cp15.c14_pmevcntr[i] = 0;
|
|
}
|
|
}
|
|
|
|
env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
|
|
env->cp15.c9_pmcr |= (value & PMCR_WRITABLE_MASK);
|
|
|
|
pmu_op_finish(env);
|
|
}
|
|
|
|
static uint64_t pmcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
uint64_t pmcr = env->cp15.c9_pmcr;
|
|
|
|
/*
|
|
* If EL2 is implemented and enabled for the current security state, reads
|
|
* of PMCR.N from EL1 or EL0 return the value of MDCR_EL2.HPMN or HDCR.HPMN.
|
|
*/
|
|
if (arm_current_el(env) <= 1 && arm_is_el2_enabled(env)) {
|
|
pmcr &= ~PMCRN_MASK;
|
|
pmcr |= (env->cp15.mdcr_el2 & MDCR_HPMN) << PMCRN_SHIFT;
|
|
}
|
|
|
|
return pmcr;
|
|
}
|
|
|
|
static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
unsigned int i;
|
|
uint64_t overflow_mask, new_pmswinc;
|
|
|
|
for (i = 0; i < pmu_num_counters(env); i++) {
|
|
/* Increment a counter's count iff: */
|
|
if ((value & (1 << i)) && /* counter's bit is set */
|
|
/* counter is enabled and not filtered */
|
|
pmu_counter_enabled(env, i) &&
|
|
/* counter is SW_INCR */
|
|
(env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
|
|
pmevcntr_op_start(env, i);
|
|
|
|
/*
|
|
* Detect if this write causes an overflow since we can't predict
|
|
* PMSWINC overflows like we can for other events
|
|
*/
|
|
new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;
|
|
|
|
overflow_mask = pmevcntr_is_64_bit(env, i) ?
|
|
1ULL << 63 : 1ULL << 31;
|
|
|
|
if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & overflow_mask) {
|
|
env->cp15.c9_pmovsr |= (1 << i);
|
|
pmu_update_irq(env);
|
|
}
|
|
|
|
env->cp15.c14_pmevcntr[i] = new_pmswinc;
|
|
|
|
pmevcntr_op_finish(env, i);
|
|
}
|
|
}
|
|
}
|
|
|
|
static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
uint64_t ret;
|
|
pmccntr_op_start(env);
|
|
ret = env->cp15.c15_ccnt;
|
|
pmccntr_op_finish(env);
|
|
return ret;
|
|
}
|
|
|
|
static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/*
|
|
* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
|
|
* PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
|
|
* meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
|
|
* accessed.
|
|
*/
|
|
env->cp15.c9_pmselr = value & 0x1f;
|
|
}
|
|
|
|
static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
pmccntr_op_start(env);
|
|
env->cp15.c15_ccnt = value;
|
|
pmccntr_op_finish(env);
|
|
}
|
|
|
|
static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
uint64_t cur_val = pmccntr_read(env, NULL);
|
|
|
|
pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
|
|
}
|
|
|
|
static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
pmccntr_op_start(env);
|
|
env->cp15.pmccfiltr_el0 = value & PMCCFILTR_EL0;
|
|
pmccntr_op_finish(env);
|
|
}
|
|
|
|
static void pmccfiltr_write_a32(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
pmccntr_op_start(env);
|
|
/* M is not accessible from AArch32 */
|
|
env->cp15.pmccfiltr_el0 = (env->cp15.pmccfiltr_el0 & PMCCFILTR_M) |
|
|
(value & PMCCFILTR);
|
|
pmccntr_op_finish(env);
|
|
}
|
|
|
|
static uint64_t pmccfiltr_read_a32(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
/* M is not visible in AArch32 */
|
|
return env->cp15.pmccfiltr_el0 & PMCCFILTR;
|
|
}
|
|
|
|
static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
pmu_op_start(env);
|
|
value &= pmu_counter_mask(env);
|
|
env->cp15.c9_pmcnten |= value;
|
|
pmu_op_finish(env);
|
|
}
|
|
|
|
static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
pmu_op_start(env);
|
|
value &= pmu_counter_mask(env);
|
|
env->cp15.c9_pmcnten &= ~value;
|
|
pmu_op_finish(env);
|
|
}
|
|
|
|
static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
value &= pmu_counter_mask(env);
|
|
env->cp15.c9_pmovsr &= ~value;
|
|
pmu_update_irq(env);
|
|
}
|
|
|
|
static void pmovsset_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
value &= pmu_counter_mask(env);
|
|
env->cp15.c9_pmovsr |= value;
|
|
pmu_update_irq(env);
|
|
}
|
|
|
|
static void pmevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value, const uint8_t counter)
|
|
{
|
|
if (counter == 31) {
|
|
pmccfiltr_write(env, ri, value);
|
|
} else if (counter < pmu_num_counters(env)) {
|
|
pmevcntr_op_start(env, counter);
|
|
|
|
/*
|
|
* If this counter's event type is changing, store the current
|
|
* underlying count for the new type in c14_pmevcntr_delta[counter] so
|
|
* pmevcntr_op_finish has the correct baseline when it converts back to
|
|
* a delta.
|
|
*/
|
|
uint16_t old_event = env->cp15.c14_pmevtyper[counter] &
|
|
PMXEVTYPER_EVTCOUNT;
|
|
uint16_t new_event = value & PMXEVTYPER_EVTCOUNT;
|
|
if (old_event != new_event) {
|
|
uint64_t count = 0;
|
|
if (event_supported(new_event)) {
|
|
uint16_t event_idx = supported_event_map[new_event];
|
|
count = pm_events[event_idx].get_count(env);
|
|
}
|
|
env->cp15.c14_pmevcntr_delta[counter] = count;
|
|
}
|
|
|
|
env->cp15.c14_pmevtyper[counter] = value & PMXEVTYPER_MASK;
|
|
pmevcntr_op_finish(env, counter);
|
|
}
|
|
/*
|
|
* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
|
|
* PMSELR value is equal to or greater than the number of implemented
|
|
* counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
|
|
*/
|
|
}
|
|
|
|
static uint64_t pmevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
const uint8_t counter)
|
|
{
|
|
if (counter == 31) {
|
|
return env->cp15.pmccfiltr_el0;
|
|
} else if (counter < pmu_num_counters(env)) {
|
|
return env->cp15.c14_pmevtyper[counter];
|
|
} else {
|
|
/*
|
|
* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
|
|
* are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
|
|
*/
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static void pmevtyper_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
|
|
pmevtyper_write(env, ri, value, counter);
|
|
}
|
|
|
|
static void pmevtyper_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
|
|
env->cp15.c14_pmevtyper[counter] = value;
|
|
|
|
/*
|
|
* pmevtyper_rawwrite is called between a pair of pmu_op_start and
|
|
* pmu_op_finish calls when loading saved state for a migration. Because
|
|
* we're potentially updating the type of event here, the value written to
|
|
* c14_pmevcntr_delta by the preceding pmu_op_start call may be for a
|
|
* different counter type. Therefore, we need to set this value to the
|
|
* current count for the counter type we're writing so that pmu_op_finish
|
|
* has the correct count for its calculation.
|
|
*/
|
|
uint16_t event = value & PMXEVTYPER_EVTCOUNT;
|
|
if (event_supported(event)) {
|
|
uint16_t event_idx = supported_event_map[event];
|
|
env->cp15.c14_pmevcntr_delta[counter] =
|
|
pm_events[event_idx].get_count(env);
|
|
}
|
|
}
|
|
|
|
static uint64_t pmevtyper_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
|
|
return pmevtyper_read(env, ri, counter);
|
|
}
|
|
|
|
static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
pmevtyper_write(env, ri, value, env->cp15.c9_pmselr & 31);
|
|
}
|
|
|
|
static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return pmevtyper_read(env, ri, env->cp15.c9_pmselr & 31);
|
|
}
|
|
|
|
static void pmevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value, uint8_t counter)
|
|
{
|
|
if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
|
|
/* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
|
|
value &= MAKE_64BIT_MASK(0, 32);
|
|
}
|
|
if (counter < pmu_num_counters(env)) {
|
|
pmevcntr_op_start(env, counter);
|
|
env->cp15.c14_pmevcntr[counter] = value;
|
|
pmevcntr_op_finish(env, counter);
|
|
}
|
|
/*
|
|
* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
|
|
* are CONSTRAINED UNPREDICTABLE.
|
|
*/
|
|
}
|
|
|
|
static uint64_t pmevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint8_t counter)
|
|
{
|
|
if (counter < pmu_num_counters(env)) {
|
|
uint64_t ret;
|
|
pmevcntr_op_start(env, counter);
|
|
ret = env->cp15.c14_pmevcntr[counter];
|
|
pmevcntr_op_finish(env, counter);
|
|
if (!cpu_isar_feature(any_pmuv3p5, env_archcpu(env))) {
|
|
/* Before FEAT_PMUv3p5, top 32 bits of event counters are RES0 */
|
|
ret &= MAKE_64BIT_MASK(0, 32);
|
|
}
|
|
return ret;
|
|
} else {
|
|
/*
|
|
* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
|
|
* are CONSTRAINED UNPREDICTABLE.
|
|
*/
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static void pmevcntr_writefn(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
|
|
pmevcntr_write(env, ri, value, counter);
|
|
}
|
|
|
|
static uint64_t pmevcntr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
|
|
return pmevcntr_read(env, ri, counter);
|
|
}
|
|
|
|
static void pmevcntr_rawwrite(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
|
|
assert(counter < pmu_num_counters(env));
|
|
env->cp15.c14_pmevcntr[counter] = value;
|
|
pmevcntr_write(env, ri, value, counter);
|
|
}
|
|
|
|
static uint64_t pmevcntr_rawread(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
uint8_t counter = ((ri->crm & 3) << 3) | (ri->opc2 & 7);
|
|
assert(counter < pmu_num_counters(env));
|
|
return env->cp15.c14_pmevcntr[counter];
|
|
}
|
|
|
|
static void pmxevcntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
pmevcntr_write(env, ri, value, env->cp15.c9_pmselr & 31);
|
|
}
|
|
|
|
static uint64_t pmxevcntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return pmevcntr_read(env, ri, env->cp15.c9_pmselr & 31);
|
|
}
|
|
|
|
static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
if (arm_feature(env, ARM_FEATURE_V8)) {
|
|
env->cp15.c9_pmuserenr = value & 0xf;
|
|
} else {
|
|
env->cp15.c9_pmuserenr = value & 1;
|
|
}
|
|
}
|
|
|
|
static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/* We have no event counters so only the C bit can be changed */
|
|
value &= pmu_counter_mask(env);
|
|
env->cp15.c9_pminten |= value;
|
|
pmu_update_irq(env);
|
|
}
|
|
|
|
static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
value &= pmu_counter_mask(env);
|
|
env->cp15.c9_pminten &= ~value;
|
|
pmu_update_irq(env);
|
|
}
|
|
|
|
static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/*
|
|
* Note that even though the AArch64 view of this register has bits
|
|
* [10:0] all RES0 we can only mask the bottom 5, to comply with the
|
|
* architectural requirements for bits which are RES0 only in some
|
|
* contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
|
|
* requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
|
|
*/
|
|
raw_write(env, ri, value & ~0x1FULL);
|
|
}
|
|
|
|
static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
|
|
{
|
|
/* Begin with base v8.0 state. */
|
|
uint64_t valid_mask = 0x3fff;
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
uint64_t changed;
|
|
|
|
/*
|
|
* Because SCR_EL3 is the "real" cpreg and SCR is the alias, reset always
|
|
* passes the reginfo for SCR_EL3, which has type ARM_CP_STATE_AA64.
|
|
* Instead, choose the format based on the mode of EL3.
|
|
*/
|
|
if (arm_el_is_aa64(env, 3)) {
|
|
value |= SCR_FW | SCR_AW; /* RES1 */
|
|
valid_mask &= ~SCR_NET; /* RES0 */
|
|
|
|
if (!cpu_isar_feature(aa64_aa32_el1, cpu) &&
|
|
!cpu_isar_feature(aa64_aa32_el2, cpu)) {
|
|
value |= SCR_RW; /* RAO/WI */
|
|
}
|
|
if (cpu_isar_feature(aa64_ras, cpu)) {
|
|
valid_mask |= SCR_TERR;
|
|
}
|
|
if (cpu_isar_feature(aa64_lor, cpu)) {
|
|
valid_mask |= SCR_TLOR;
|
|
}
|
|
if (cpu_isar_feature(aa64_pauth, cpu)) {
|
|
valid_mask |= SCR_API | SCR_APK;
|
|
}
|
|
if (cpu_isar_feature(aa64_sel2, cpu)) {
|
|
valid_mask |= SCR_EEL2;
|
|
} else if (cpu_isar_feature(aa64_rme, cpu)) {
|
|
/* With RME and without SEL2, NS is RES1 (R_GSWWH, I_DJJQJ). */
|
|
value |= SCR_NS;
|
|
}
|
|
if (cpu_isar_feature(aa64_mte, cpu)) {
|
|
valid_mask |= SCR_ATA;
|
|
}
|
|
if (cpu_isar_feature(aa64_scxtnum, cpu)) {
|
|
valid_mask |= SCR_ENSCXT;
|
|
}
|
|
if (cpu_isar_feature(aa64_doublefault, cpu)) {
|
|
valid_mask |= SCR_EASE | SCR_NMEA;
|
|
}
|
|
if (cpu_isar_feature(aa64_sme, cpu)) {
|
|
valid_mask |= SCR_ENTP2;
|
|
}
|
|
if (cpu_isar_feature(aa64_hcx, cpu)) {
|
|
valid_mask |= SCR_HXEN;
|
|
}
|
|
if (cpu_isar_feature(aa64_fgt, cpu)) {
|
|
valid_mask |= SCR_FGTEN;
|
|
}
|
|
if (cpu_isar_feature(aa64_rme, cpu)) {
|
|
valid_mask |= SCR_NSE | SCR_GPF;
|
|
}
|
|
if (cpu_isar_feature(aa64_ecv, cpu)) {
|
|
valid_mask |= SCR_ECVEN;
|
|
}
|
|
} else {
|
|
valid_mask &= ~(SCR_RW | SCR_ST);
|
|
if (cpu_isar_feature(aa32_ras, cpu)) {
|
|
valid_mask |= SCR_TERR;
|
|
}
|
|
}
|
|
|
|
if (!arm_feature(env, ARM_FEATURE_EL2)) {
|
|
valid_mask &= ~SCR_HCE;
|
|
|
|
/*
|
|
* On ARMv7, SMD (or SCD as it is called in v7) is only
|
|
* supported if EL2 exists. The bit is UNK/SBZP when
|
|
* EL2 is unavailable. In QEMU ARMv7, we force it to always zero
|
|
* when EL2 is unavailable.
|
|
* On ARMv8, this bit is always available.
|
|
*/
|
|
if (arm_feature(env, ARM_FEATURE_V7) &&
|
|
!arm_feature(env, ARM_FEATURE_V8)) {
|
|
valid_mask &= ~SCR_SMD;
|
|
}
|
|
}
|
|
|
|
/* Clear all-context RES0 bits. */
|
|
value &= valid_mask;
|
|
changed = env->cp15.scr_el3 ^ value;
|
|
env->cp15.scr_el3 = value;
|
|
|
|
/*
|
|
* If SCR_EL3.{NS,NSE} changes, i.e. change of security state,
|
|
* we must invalidate all TLBs below EL3.
|
|
*/
|
|
if (changed & (SCR_NS | SCR_NSE)) {
|
|
tlb_flush_by_mmuidx(env_cpu(env), (ARMMMUIdxBit_E10_0 |
|
|
ARMMMUIdxBit_E20_0 |
|
|
ARMMMUIdxBit_E10_1 |
|
|
ARMMMUIdxBit_E20_2 |
|
|
ARMMMUIdxBit_E10_1_PAN |
|
|
ARMMMUIdxBit_E20_2_PAN |
|
|
ARMMMUIdxBit_E2));
|
|
}
|
|
}
|
|
|
|
static void scr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
/*
|
|
* scr_write will set the RES1 bits on an AArch64-only CPU.
|
|
* The reset value will be 0x30 on an AArch64-only CPU and 0 otherwise.
|
|
*/
|
|
scr_write(env, ri, 0);
|
|
}
|
|
|
|
static CPAccessResult access_tid4(CPUARMState *env,
|
|
const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (arm_current_el(env) == 1 &&
|
|
(arm_hcr_el2_eff(env) & (HCR_TID2 | HCR_TID4))) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
|
|
/*
|
|
* Acquire the CSSELR index from the bank corresponding to the CCSIDR
|
|
* bank
|
|
*/
|
|
uint32_t index = A32_BANKED_REG_GET(env, csselr,
|
|
ri->secure & ARM_CP_SECSTATE_S);
|
|
|
|
return cpu->ccsidr[index];
|
|
}
|
|
|
|
static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
raw_write(env, ri, value & 0xf);
|
|
}
|
|
|
|
static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
bool el1 = arm_current_el(env) == 1;
|
|
uint64_t hcr_el2 = el1 ? arm_hcr_el2_eff(env) : 0;
|
|
uint64_t ret = 0;
|
|
|
|
if (hcr_el2 & HCR_IMO) {
|
|
if (cs->interrupt_request & CPU_INTERRUPT_VIRQ) {
|
|
ret |= CPSR_I;
|
|
}
|
|
if (cs->interrupt_request & CPU_INTERRUPT_VINMI) {
|
|
ret |= ISR_IS;
|
|
ret |= CPSR_I;
|
|
}
|
|
} else {
|
|
if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
|
|
ret |= CPSR_I;
|
|
}
|
|
|
|
if (cs->interrupt_request & CPU_INTERRUPT_NMI) {
|
|
ret |= ISR_IS;
|
|
ret |= CPSR_I;
|
|
}
|
|
}
|
|
|
|
if (hcr_el2 & HCR_FMO) {
|
|
if (cs->interrupt_request & CPU_INTERRUPT_VFIQ) {
|
|
ret |= CPSR_F;
|
|
}
|
|
if (cs->interrupt_request & CPU_INTERRUPT_VFNMI) {
|
|
ret |= ISR_FS;
|
|
ret |= CPSR_F;
|
|
}
|
|
} else {
|
|
if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
|
|
ret |= CPSR_F;
|
|
}
|
|
}
|
|
|
|
if (hcr_el2 & HCR_AMO) {
|
|
if (cs->interrupt_request & CPU_INTERRUPT_VSERR) {
|
|
ret |= CPSR_A;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static CPAccessResult access_aa64_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID1)) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static CPAccessResult access_aa32_tid1(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (arm_feature(env, ARM_FEATURE_V8)) {
|
|
return access_aa64_tid1(env, ri, isread);
|
|
}
|
|
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static const ARMCPRegInfo v7_cp_reginfo[] = {
|
|
/* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
|
|
{ .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
|
|
.access = PL1_W, .type = ARM_CP_NOP },
|
|
/*
|
|
* Performance monitors are implementation defined in v7,
|
|
* but with an ARM recommended set of registers, which we
|
|
* follow.
|
|
*
|
|
* Performance registers fall into three categories:
|
|
* (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
|
|
* (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
|
|
* (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
|
|
* For the cases controlled by PMUSERENR we must set .access to PL0_RW
|
|
* or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
|
|
*/
|
|
{ .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
|
|
.access = PL0_RW, .type = ARM_CP_ALIAS | ARM_CP_IO,
|
|
.fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
|
|
.writefn = pmcntenset_write,
|
|
.accessfn = pmreg_access,
|
|
.fgt = FGT_PMCNTEN,
|
|
.raw_writefn = raw_write },
|
|
{ .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64, .type = ARM_CP_IO,
|
|
.opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
|
|
.access = PL0_RW, .accessfn = pmreg_access,
|
|
.fgt = FGT_PMCNTEN,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
|
|
.writefn = pmcntenset_write, .raw_writefn = raw_write },
|
|
{ .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
|
|
.access = PL0_RW,
|
|
.fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
|
|
.accessfn = pmreg_access,
|
|
.fgt = FGT_PMCNTEN,
|
|
.writefn = pmcntenclr_write,
|
|
.type = ARM_CP_ALIAS | ARM_CP_IO },
|
|
{ .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
|
|
.access = PL0_RW, .accessfn = pmreg_access,
|
|
.fgt = FGT_PMCNTEN,
|
|
.type = ARM_CP_ALIAS | ARM_CP_IO,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
|
|
.writefn = pmcntenclr_write },
|
|
{ .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
|
|
.access = PL0_RW, .type = ARM_CP_IO,
|
|
.fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
|
|
.accessfn = pmreg_access,
|
|
.fgt = FGT_PMOVS,
|
|
.writefn = pmovsr_write,
|
|
.raw_writefn = raw_write },
|
|
{ .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
|
|
.access = PL0_RW, .accessfn = pmreg_access,
|
|
.fgt = FGT_PMOVS,
|
|
.type = ARM_CP_ALIAS | ARM_CP_IO,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
|
|
.writefn = pmovsr_write,
|
|
.raw_writefn = raw_write },
|
|
{ .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
|
|
.access = PL0_W, .accessfn = pmreg_access_swinc,
|
|
.fgt = FGT_PMSWINC_EL0,
|
|
.type = ARM_CP_NO_RAW | ARM_CP_IO,
|
|
.writefn = pmswinc_write },
|
|
{ .name = "PMSWINC_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 4,
|
|
.access = PL0_W, .accessfn = pmreg_access_swinc,
|
|
.fgt = FGT_PMSWINC_EL0,
|
|
.type = ARM_CP_NO_RAW | ARM_CP_IO,
|
|
.writefn = pmswinc_write },
|
|
{ .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
|
|
.access = PL0_RW, .type = ARM_CP_ALIAS,
|
|
.fgt = FGT_PMSELR_EL0,
|
|
.fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
|
|
.accessfn = pmreg_access_selr, .writefn = pmselr_write,
|
|
.raw_writefn = raw_write},
|
|
{ .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
|
|
.access = PL0_RW, .accessfn = pmreg_access_selr,
|
|
.fgt = FGT_PMSELR_EL0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
|
|
.writefn = pmselr_write, .raw_writefn = raw_write, },
|
|
{ .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
|
|
.access = PL0_RW, .resetvalue = 0, .type = ARM_CP_ALIAS | ARM_CP_IO,
|
|
.fgt = FGT_PMCCNTR_EL0,
|
|
.readfn = pmccntr_read, .writefn = pmccntr_write32,
|
|
.accessfn = pmreg_access_ccntr },
|
|
{ .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
|
|
.access = PL0_RW, .accessfn = pmreg_access_ccntr,
|
|
.fgt = FGT_PMCCNTR_EL0,
|
|
.type = ARM_CP_IO,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c15_ccnt),
|
|
.readfn = pmccntr_read, .writefn = pmccntr_write,
|
|
.raw_readfn = raw_read, .raw_writefn = raw_write, },
|
|
{ .name = "PMCCFILTR", .cp = 15, .opc1 = 0, .crn = 14, .crm = 15, .opc2 = 7,
|
|
.writefn = pmccfiltr_write_a32, .readfn = pmccfiltr_read_a32,
|
|
.access = PL0_RW, .accessfn = pmreg_access,
|
|
.fgt = FGT_PMCCFILTR_EL0,
|
|
.type = ARM_CP_ALIAS | ARM_CP_IO,
|
|
.resetvalue = 0, },
|
|
{ .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
|
|
.writefn = pmccfiltr_write, .raw_writefn = raw_write,
|
|
.access = PL0_RW, .accessfn = pmreg_access,
|
|
.fgt = FGT_PMCCFILTR_EL0,
|
|
.type = ARM_CP_IO,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
|
|
.resetvalue = 0, },
|
|
{ .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
|
|
.access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
|
|
.accessfn = pmreg_access,
|
|
.fgt = FGT_PMEVTYPERN_EL0,
|
|
.writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
|
|
{ .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
|
|
.access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
|
|
.accessfn = pmreg_access,
|
|
.fgt = FGT_PMEVTYPERN_EL0,
|
|
.writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
|
|
{ .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
|
|
.access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
|
|
.accessfn = pmreg_access_xevcntr,
|
|
.fgt = FGT_PMEVCNTRN_EL0,
|
|
.writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
|
|
{ .name = "PMXEVCNTR_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 2,
|
|
.access = PL0_RW, .type = ARM_CP_NO_RAW | ARM_CP_IO,
|
|
.accessfn = pmreg_access_xevcntr,
|
|
.fgt = FGT_PMEVCNTRN_EL0,
|
|
.writefn = pmxevcntr_write, .readfn = pmxevcntr_read },
|
|
{ .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
|
|
.access = PL0_R | PL1_RW, .accessfn = access_tpm,
|
|
.fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmuserenr),
|
|
.resetvalue = 0,
|
|
.writefn = pmuserenr_write, .raw_writefn = raw_write },
|
|
{ .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
|
|
.access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
|
|
.resetvalue = 0,
|
|
.writefn = pmuserenr_write, .raw_writefn = raw_write },
|
|
{ .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
|
|
.access = PL1_RW, .accessfn = access_tpm,
|
|
.fgt = FGT_PMINTEN,
|
|
.type = ARM_CP_ALIAS | ARM_CP_IO,
|
|
.fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
|
|
.resetvalue = 0,
|
|
.writefn = pmintenset_write, .raw_writefn = raw_write },
|
|
{ .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
|
|
.access = PL1_RW, .accessfn = access_tpm,
|
|
.fgt = FGT_PMINTEN,
|
|
.type = ARM_CP_IO,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
|
|
.writefn = pmintenset_write, .raw_writefn = raw_write,
|
|
.resetvalue = 0x0 },
|
|
{ .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
|
|
.access = PL1_RW, .accessfn = access_tpm,
|
|
.fgt = FGT_PMINTEN,
|
|
.type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
|
|
.writefn = pmintenclr_write, },
|
|
{ .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
|
|
.access = PL1_RW, .accessfn = access_tpm,
|
|
.fgt = FGT_PMINTEN,
|
|
.type = ARM_CP_ALIAS | ARM_CP_IO | ARM_CP_NO_RAW,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
|
|
.writefn = pmintenclr_write },
|
|
{ .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
|
|
.access = PL1_R,
|
|
.accessfn = access_tid4,
|
|
.fgt = FGT_CCSIDR_EL1,
|
|
.readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
|
|
{ .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
|
|
.access = PL1_RW,
|
|
.accessfn = access_tid4,
|
|
.fgt = FGT_CSSELR_EL1,
|
|
.writefn = csselr_write, .resetvalue = 0,
|
|
.bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
|
|
offsetof(CPUARMState, cp15.csselr_ns) } },
|
|
/*
|
|
* Auxiliary ID register: this actually has an IMPDEF value but for now
|
|
* just RAZ for all cores:
|
|
*/
|
|
{ .name = "AIDR", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid1,
|
|
.fgt = FGT_AIDR_EL1,
|
|
.resetvalue = 0 },
|
|
/*
|
|
* Auxiliary fault status registers: these also are IMPDEF, and we
|
|
* choose to RAZ/WI for all cores.
|
|
*/
|
|
{ .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
|
|
.access = PL1_RW, .accessfn = access_tvm_trvm,
|
|
.fgt = FGT_AFSR0_EL1,
|
|
.nv2_redirect_offset = 0x128 | NV2_REDIR_NV1,
|
|
.type = ARM_CP_CONST, .resetvalue = 0 },
|
|
{ .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
|
|
.access = PL1_RW, .accessfn = access_tvm_trvm,
|
|
.fgt = FGT_AFSR1_EL1,
|
|
.nv2_redirect_offset = 0x130 | NV2_REDIR_NV1,
|
|
.type = ARM_CP_CONST, .resetvalue = 0 },
|
|
/*
|
|
* MAIR can just read-as-written because we don't implement caches
|
|
* and so don't need to care about memory attributes.
|
|
*/
|
|
{ .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
|
|
.access = PL1_RW, .accessfn = access_tvm_trvm,
|
|
.fgt = FGT_MAIR_EL1,
|
|
.nv2_redirect_offset = 0x140 | NV2_REDIR_NV1,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
|
|
.resetvalue = 0 },
|
|
{ .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
|
|
.access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
|
|
.resetvalue = 0 },
|
|
/*
|
|
* For non-long-descriptor page tables these are PRRR and NMRR;
|
|
* regardless they still act as reads-as-written for QEMU.
|
|
*/
|
|
/*
|
|
* MAIR0/1 are defined separately from their 64-bit counterpart which
|
|
* allows them to assign the correct fieldoffset based on the endianness
|
|
* handled in the field definitions.
|
|
*/
|
|
{ .name = "MAIR0", .state = ARM_CP_STATE_AA32,
|
|
.cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
|
|
.access = PL1_RW, .accessfn = access_tvm_trvm,
|
|
.bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
|
|
offsetof(CPUARMState, cp15.mair0_ns) },
|
|
.resetfn = arm_cp_reset_ignore },
|
|
{ .name = "MAIR1", .state = ARM_CP_STATE_AA32,
|
|
.cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1,
|
|
.access = PL1_RW, .accessfn = access_tvm_trvm,
|
|
.bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
|
|
offsetof(CPUARMState, cp15.mair1_ns) },
|
|
.resetfn = arm_cp_reset_ignore },
|
|
{ .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
|
|
.fgt = FGT_ISR_EL1,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
|
|
/* 32 bit ITLB invalidates */
|
|
{ .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
|
|
.writefn = tlbiall_write },
|
|
{ .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
|
|
.writefn = tlbimva_write },
|
|
{ .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
|
|
.writefn = tlbiasid_write },
|
|
/* 32 bit DTLB invalidates */
|
|
{ .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
|
|
.writefn = tlbiall_write },
|
|
{ .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
|
|
.writefn = tlbimva_write },
|
|
{ .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
|
|
.writefn = tlbiasid_write },
|
|
/* 32 bit TLB invalidates */
|
|
{ .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
|
|
.writefn = tlbiall_write },
|
|
{ .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
|
|
.writefn = tlbimva_write },
|
|
{ .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
|
|
.writefn = tlbiasid_write },
|
|
{ .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
|
|
.writefn = tlbimvaa_write },
|
|
};
|
|
|
|
static const ARMCPRegInfo v7mp_cp_reginfo[] = {
|
|
/* 32 bit TLB invalidates, Inner Shareable */
|
|
{ .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
|
|
.writefn = tlbiall_is_write },
|
|
{ .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
|
|
.writefn = tlbimva_is_write },
|
|
{ .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
|
|
.writefn = tlbiasid_is_write },
|
|
{ .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
|
|
.writefn = tlbimvaa_is_write },
|
|
};
|
|
|
|
static const ARMCPRegInfo pmovsset_cp_reginfo[] = {
|
|
/* PMOVSSET is not implemented in v7 before v7ve */
|
|
{ .name = "PMOVSSET", .cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 3,
|
|
.access = PL0_RW, .accessfn = pmreg_access,
|
|
.fgt = FGT_PMOVS,
|
|
.type = ARM_CP_ALIAS | ARM_CP_IO,
|
|
.fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmovsr),
|
|
.writefn = pmovsset_write,
|
|
.raw_writefn = raw_write },
|
|
{ .name = "PMOVSSET_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 3,
|
|
.access = PL0_RW, .accessfn = pmreg_access,
|
|
.fgt = FGT_PMOVS,
|
|
.type = ARM_CP_ALIAS | ARM_CP_IO,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
|
|
.writefn = pmovsset_write,
|
|
.raw_writefn = raw_write },
|
|
};
|
|
|
|
static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
value &= 1;
|
|
env->teecr = value;
|
|
}
|
|
|
|
static CPAccessResult teecr_access(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
/*
|
|
* HSTR.TTEE only exists in v7A, not v8A, but v8A doesn't have T2EE
|
|
* at all, so we don't need to check whether we're v8A.
|
|
*/
|
|
if (arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
|
|
(env->cp15.hstr_el2 & HSTR_TTEE)) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (arm_current_el(env) == 0 && (env->teecr & 1)) {
|
|
return CP_ACCESS_TRAP;
|
|
}
|
|
return teecr_access(env, ri, isread);
|
|
}
|
|
|
|
static const ARMCPRegInfo t2ee_cp_reginfo[] = {
|
|
{ .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
|
|
.access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
|
|
.resetvalue = 0,
|
|
.writefn = teecr_write, .accessfn = teecr_access },
|
|
{ .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
|
|
.access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
|
|
.accessfn = teehbr_access, .resetvalue = 0 },
|
|
};
|
|
|
|
static const ARMCPRegInfo v6k_cp_reginfo[] = {
|
|
{ .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
|
|
.access = PL0_RW,
|
|
.fgt = FGT_TPIDR_EL0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
|
|
{ .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
|
|
.access = PL0_RW,
|
|
.fgt = FGT_TPIDR_EL0,
|
|
.bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
|
|
offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
|
|
.resetfn = arm_cp_reset_ignore },
|
|
{ .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
|
|
.access = PL0_R | PL1_W,
|
|
.fgt = FGT_TPIDRRO_EL0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
|
|
.resetvalue = 0},
|
|
{ .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
|
|
.access = PL0_R | PL1_W,
|
|
.fgt = FGT_TPIDRRO_EL0,
|
|
.bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
|
|
offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
|
|
.resetfn = arm_cp_reset_ignore },
|
|
{ .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
|
|
.access = PL1_RW,
|
|
.fgt = FGT_TPIDR_EL1,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
|
|
{ .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
|
|
.access = PL1_RW,
|
|
.bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
|
|
offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
|
|
.resetvalue = 0 },
|
|
};
|
|
|
|
static void arm_gt_cntfrq_reset(CPUARMState *env, const ARMCPRegInfo *opaque)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
|
|
cpu->env.cp15.c14_cntfrq = cpu->gt_cntfrq_hz;
|
|
}
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
|
|
static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
/*
|
|
* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
|
|
* Writable only at the highest implemented exception level.
|
|
*/
|
|
int el = arm_current_el(env);
|
|
uint64_t hcr;
|
|
uint32_t cntkctl;
|
|
|
|
switch (el) {
|
|
case 0:
|
|
hcr = arm_hcr_el2_eff(env);
|
|
if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
|
|
cntkctl = env->cp15.cnthctl_el2;
|
|
} else {
|
|
cntkctl = env->cp15.c14_cntkctl;
|
|
}
|
|
if (!extract32(cntkctl, 0, 2)) {
|
|
return CP_ACCESS_TRAP;
|
|
}
|
|
break;
|
|
case 1:
|
|
if (!isread && ri->state == ARM_CP_STATE_AA32 &&
|
|
arm_is_secure_below_el3(env)) {
|
|
/* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
|
|
return CP_ACCESS_TRAP_UNCATEGORIZED;
|
|
}
|
|
break;
|
|
case 2:
|
|
case 3:
|
|
break;
|
|
}
|
|
|
|
if (!isread && el < arm_highest_el(env)) {
|
|
return CP_ACCESS_TRAP_UNCATEGORIZED;
|
|
}
|
|
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
|
|
bool isread)
|
|
{
|
|
unsigned int cur_el = arm_current_el(env);
|
|
bool has_el2 = arm_is_el2_enabled(env);
|
|
uint64_t hcr = arm_hcr_el2_eff(env);
|
|
|
|
switch (cur_el) {
|
|
case 0:
|
|
/* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]CTEN. */
|
|
if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
|
|
return (extract32(env->cp15.cnthctl_el2, timeridx, 1)
|
|
? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
|
|
}
|
|
|
|
/* CNT[PV]CT: not visible from PL0 if EL0[PV]CTEN is zero */
|
|
if (!extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
|
|
return CP_ACCESS_TRAP;
|
|
}
|
|
/* fall through */
|
|
case 1:
|
|
/* Check CNTHCTL_EL2.EL1PCTEN, which changes location based on E2H. */
|
|
if (has_el2 && timeridx == GTIMER_PHYS &&
|
|
(hcr & HCR_E2H
|
|
? !extract32(env->cp15.cnthctl_el2, 10, 1)
|
|
: !extract32(env->cp15.cnthctl_el2, 0, 1))) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
if (has_el2 && timeridx == GTIMER_VIRT) {
|
|
if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1TVCT)) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
|
|
bool isread)
|
|
{
|
|
unsigned int cur_el = arm_current_el(env);
|
|
bool has_el2 = arm_is_el2_enabled(env);
|
|
uint64_t hcr = arm_hcr_el2_eff(env);
|
|
|
|
switch (cur_el) {
|
|
case 0:
|
|
if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
|
|
/* If HCR_EL2.<E2H,TGE> == '11': check CNTHCTL_EL2.EL0[PV]TEN. */
|
|
return (extract32(env->cp15.cnthctl_el2, 9 - timeridx, 1)
|
|
? CP_ACCESS_OK : CP_ACCESS_TRAP_EL2);
|
|
}
|
|
|
|
/*
|
|
* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from
|
|
* EL0 if EL0[PV]TEN is zero.
|
|
*/
|
|
if (!extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
|
|
return CP_ACCESS_TRAP;
|
|
}
|
|
/* fall through */
|
|
|
|
case 1:
|
|
if (has_el2 && timeridx == GTIMER_PHYS) {
|
|
if (hcr & HCR_E2H) {
|
|
/* If HCR_EL2.<E2H,TGE> == '10': check CNTHCTL_EL2.EL1PTEN. */
|
|
if (!extract32(env->cp15.cnthctl_el2, 11, 1)) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
} else {
|
|
/* If HCR_EL2.<E2H> == 0: check CNTHCTL_EL2.EL1PCEN. */
|
|
if (!extract32(env->cp15.cnthctl_el2, 1, 1)) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
}
|
|
}
|
|
if (has_el2 && timeridx == GTIMER_VIRT) {
|
|
if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1TVT)) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static CPAccessResult gt_pct_access(CPUARMState *env,
|
|
const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
return gt_counter_access(env, GTIMER_PHYS, isread);
|
|
}
|
|
|
|
static CPAccessResult gt_vct_access(CPUARMState *env,
|
|
const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
return gt_counter_access(env, GTIMER_VIRT, isread);
|
|
}
|
|
|
|
static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
return gt_timer_access(env, GTIMER_PHYS, isread);
|
|
}
|
|
|
|
static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
return gt_timer_access(env, GTIMER_VIRT, isread);
|
|
}
|
|
|
|
static CPAccessResult gt_stimer_access(CPUARMState *env,
|
|
const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
/*
|
|
* The AArch64 register view of the secure physical timer is
|
|
* always accessible from EL3, and configurably accessible from
|
|
* Secure EL1.
|
|
*/
|
|
switch (arm_current_el(env)) {
|
|
case 1:
|
|
if (!arm_is_secure(env)) {
|
|
return CP_ACCESS_TRAP;
|
|
}
|
|
if (!(env->cp15.scr_el3 & SCR_ST)) {
|
|
return CP_ACCESS_TRAP_EL3;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
case 0:
|
|
case 2:
|
|
return CP_ACCESS_TRAP;
|
|
case 3:
|
|
return CP_ACCESS_OK;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
uint64_t gt_get_countervalue(CPUARMState *env)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
|
|
return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / gt_cntfrq_period_ns(cpu);
|
|
}
|
|
|
|
static void gt_update_irq(ARMCPU *cpu, int timeridx)
|
|
{
|
|
CPUARMState *env = &cpu->env;
|
|
uint64_t cnthctl = env->cp15.cnthctl_el2;
|
|
ARMSecuritySpace ss = arm_security_space(env);
|
|
/* ISTATUS && !IMASK */
|
|
int irqstate = (env->cp15.c14_timer[timeridx].ctl & 6) == 4;
|
|
|
|
/*
|
|
* If bit CNTHCTL_EL2.CNT[VP]MASK is set, it overrides IMASK.
|
|
* It is RES0 in Secure and NonSecure state.
|
|
*/
|
|
if ((ss == ARMSS_Root || ss == ARMSS_Realm) &&
|
|
((timeridx == GTIMER_VIRT && (cnthctl & R_CNTHCTL_CNTVMASK_MASK)) ||
|
|
(timeridx == GTIMER_PHYS && (cnthctl & R_CNTHCTL_CNTPMASK_MASK)))) {
|
|
irqstate = 0;
|
|
}
|
|
|
|
qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
|
|
trace_arm_gt_update_irq(timeridx, irqstate);
|
|
}
|
|
|
|
void gt_rme_post_el_change(ARMCPU *cpu, void *ignored)
|
|
{
|
|
/*
|
|
* Changing security state between Root and Secure/NonSecure, which may
|
|
* happen when switching EL, can change the effective value of CNTHCTL_EL2
|
|
* mask bits. Update the IRQ state accordingly.
|
|
*/
|
|
gt_update_irq(cpu, GTIMER_VIRT);
|
|
gt_update_irq(cpu, GTIMER_PHYS);
|
|
}
|
|
|
|
static uint64_t gt_phys_raw_cnt_offset(CPUARMState *env)
|
|
{
|
|
if ((env->cp15.scr_el3 & SCR_ECVEN) &&
|
|
FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, ECV) &&
|
|
arm_is_el2_enabled(env) &&
|
|
(arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
|
|
return env->cp15.cntpoff_el2;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static uint64_t gt_phys_cnt_offset(CPUARMState *env)
|
|
{
|
|
if (arm_current_el(env) >= 2) {
|
|
return 0;
|
|
}
|
|
return gt_phys_raw_cnt_offset(env);
|
|
}
|
|
|
|
static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
|
|
{
|
|
ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
|
|
|
|
if (gt->ctl & 1) {
|
|
/*
|
|
* Timer enabled: calculate and set current ISTATUS, irq, and
|
|
* reset timer to when ISTATUS next has to change
|
|
*/
|
|
uint64_t offset = timeridx == GTIMER_VIRT ?
|
|
cpu->env.cp15.cntvoff_el2 : gt_phys_raw_cnt_offset(&cpu->env);
|
|
uint64_t count = gt_get_countervalue(&cpu->env);
|
|
/* Note that this must be unsigned 64 bit arithmetic: */
|
|
int istatus = count - offset >= gt->cval;
|
|
uint64_t nexttick;
|
|
|
|
gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
|
|
|
|
if (istatus) {
|
|
/*
|
|
* Next transition is when (count - offset) rolls back over to 0.
|
|
* If offset > count then this is when count == offset;
|
|
* if offset <= count then this is when count == offset + 2^64
|
|
* For the latter case we set nexttick to an "as far in future
|
|
* as possible" value and let the code below handle it.
|
|
*/
|
|
if (offset > count) {
|
|
nexttick = offset;
|
|
} else {
|
|
nexttick = UINT64_MAX;
|
|
}
|
|
} else {
|
|
/*
|
|
* Next transition is when (count - offset) == cval, i.e.
|
|
* when count == (cval + offset).
|
|
* If that would overflow, then again we set up the next interrupt
|
|
* for "as far in the future as possible" for the code below.
|
|
*/
|
|
if (uadd64_overflow(gt->cval, offset, &nexttick)) {
|
|
nexttick = UINT64_MAX;
|
|
}
|
|
}
|
|
/*
|
|
* Note that the desired next expiry time might be beyond the
|
|
* signed-64-bit range of a QEMUTimer -- in this case we just
|
|
* set the timer for as far in the future as possible. When the
|
|
* timer expires we will reset the timer for any remaining period.
|
|
*/
|
|
if (nexttick > INT64_MAX / gt_cntfrq_period_ns(cpu)) {
|
|
timer_mod_ns(cpu->gt_timer[timeridx], INT64_MAX);
|
|
} else {
|
|
timer_mod(cpu->gt_timer[timeridx], nexttick);
|
|
}
|
|
trace_arm_gt_recalc(timeridx, nexttick);
|
|
} else {
|
|
/* Timer disabled: ISTATUS and timer output always clear */
|
|
gt->ctl &= ~4;
|
|
timer_del(cpu->gt_timer[timeridx]);
|
|
trace_arm_gt_recalc_disabled(timeridx);
|
|
}
|
|
gt_update_irq(cpu, timeridx);
|
|
}
|
|
|
|
static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
int timeridx)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
|
|
timer_del(cpu->gt_timer[timeridx]);
|
|
}
|
|
|
|
static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return gt_get_countervalue(env) - gt_phys_cnt_offset(env);
|
|
}
|
|
|
|
uint64_t gt_virt_cnt_offset(CPUARMState *env)
|
|
{
|
|
uint64_t hcr;
|
|
|
|
switch (arm_current_el(env)) {
|
|
case 2:
|
|
hcr = arm_hcr_el2_eff(env);
|
|
if (hcr & HCR_E2H) {
|
|
return 0;
|
|
}
|
|
break;
|
|
case 0:
|
|
hcr = arm_hcr_el2_eff(env);
|
|
if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
|
|
return 0;
|
|
}
|
|
break;
|
|
}
|
|
|
|
return env->cp15.cntvoff_el2;
|
|
}
|
|
|
|
static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return gt_get_countervalue(env) - gt_virt_cnt_offset(env);
|
|
}
|
|
|
|
static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
int timeridx,
|
|
uint64_t value)
|
|
{
|
|
trace_arm_gt_cval_write(timeridx, value);
|
|
env->cp15.c14_timer[timeridx].cval = value;
|
|
gt_recalc_timer(env_archcpu(env), timeridx);
|
|
}
|
|
|
|
static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
int timeridx)
|
|
{
|
|
uint64_t offset = 0;
|
|
|
|
switch (timeridx) {
|
|
case GTIMER_VIRT:
|
|
case GTIMER_HYPVIRT:
|
|
offset = gt_virt_cnt_offset(env);
|
|
break;
|
|
case GTIMER_PHYS:
|
|
offset = gt_phys_cnt_offset(env);
|
|
break;
|
|
}
|
|
|
|
return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
|
|
(gt_get_countervalue(env) - offset));
|
|
}
|
|
|
|
static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
int timeridx,
|
|
uint64_t value)
|
|
{
|
|
uint64_t offset = 0;
|
|
|
|
switch (timeridx) {
|
|
case GTIMER_VIRT:
|
|
case GTIMER_HYPVIRT:
|
|
offset = gt_virt_cnt_offset(env);
|
|
break;
|
|
case GTIMER_PHYS:
|
|
offset = gt_phys_cnt_offset(env);
|
|
break;
|
|
}
|
|
|
|
trace_arm_gt_tval_write(timeridx, value);
|
|
env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
|
|
sextract64(value, 0, 32);
|
|
gt_recalc_timer(env_archcpu(env), timeridx);
|
|
}
|
|
|
|
static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
int timeridx,
|
|
uint64_t value)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
|
|
|
|
trace_arm_gt_ctl_write(timeridx, value);
|
|
env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
|
|
if ((oldval ^ value) & 1) {
|
|
/* Enable toggled */
|
|
gt_recalc_timer(cpu, timeridx);
|
|
} else if ((oldval ^ value) & 2) {
|
|
/*
|
|
* IMASK toggled: don't need to recalculate,
|
|
* just set the interrupt line based on ISTATUS
|
|
*/
|
|
trace_arm_gt_imask_toggle(timeridx);
|
|
gt_update_irq(cpu, timeridx);
|
|
}
|
|
}
|
|
|
|
static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
gt_timer_reset(env, ri, GTIMER_PHYS);
|
|
}
|
|
|
|
static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
gt_cval_write(env, ri, GTIMER_PHYS, value);
|
|
}
|
|
|
|
static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return gt_tval_read(env, ri, GTIMER_PHYS);
|
|
}
|
|
|
|
static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
gt_tval_write(env, ri, GTIMER_PHYS, value);
|
|
}
|
|
|
|
static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
gt_ctl_write(env, ri, GTIMER_PHYS, value);
|
|
}
|
|
|
|
static int gt_phys_redir_timeridx(CPUARMState *env)
|
|
{
|
|
switch (arm_mmu_idx(env)) {
|
|
case ARMMMUIdx_E20_0:
|
|
case ARMMMUIdx_E20_2:
|
|
case ARMMMUIdx_E20_2_PAN:
|
|
return GTIMER_HYP;
|
|
default:
|
|
return GTIMER_PHYS;
|
|
}
|
|
}
|
|
|
|
static int gt_virt_redir_timeridx(CPUARMState *env)
|
|
{
|
|
switch (arm_mmu_idx(env)) {
|
|
case ARMMMUIdx_E20_0:
|
|
case ARMMMUIdx_E20_2:
|
|
case ARMMMUIdx_E20_2_PAN:
|
|
return GTIMER_HYPVIRT;
|
|
default:
|
|
return GTIMER_VIRT;
|
|
}
|
|
}
|
|
|
|
static uint64_t gt_phys_redir_cval_read(CPUARMState *env,
|
|
const ARMCPRegInfo *ri)
|
|
{
|
|
int timeridx = gt_phys_redir_timeridx(env);
|
|
return env->cp15.c14_timer[timeridx].cval;
|
|
}
|
|
|
|
static void gt_phys_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
int timeridx = gt_phys_redir_timeridx(env);
|
|
gt_cval_write(env, ri, timeridx, value);
|
|
}
|
|
|
|
static uint64_t gt_phys_redir_tval_read(CPUARMState *env,
|
|
const ARMCPRegInfo *ri)
|
|
{
|
|
int timeridx = gt_phys_redir_timeridx(env);
|
|
return gt_tval_read(env, ri, timeridx);
|
|
}
|
|
|
|
static void gt_phys_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
int timeridx = gt_phys_redir_timeridx(env);
|
|
gt_tval_write(env, ri, timeridx, value);
|
|
}
|
|
|
|
static uint64_t gt_phys_redir_ctl_read(CPUARMState *env,
|
|
const ARMCPRegInfo *ri)
|
|
{
|
|
int timeridx = gt_phys_redir_timeridx(env);
|
|
return env->cp15.c14_timer[timeridx].ctl;
|
|
}
|
|
|
|
static void gt_phys_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
int timeridx = gt_phys_redir_timeridx(env);
|
|
gt_ctl_write(env, ri, timeridx, value);
|
|
}
|
|
|
|
static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
gt_timer_reset(env, ri, GTIMER_VIRT);
|
|
}
|
|
|
|
static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
gt_cval_write(env, ri, GTIMER_VIRT, value);
|
|
}
|
|
|
|
static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return gt_tval_read(env, ri, GTIMER_VIRT);
|
|
}
|
|
|
|
static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
gt_tval_write(env, ri, GTIMER_VIRT, value);
|
|
}
|
|
|
|
static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
gt_ctl_write(env, ri, GTIMER_VIRT, value);
|
|
}
|
|
|
|
static void gt_cnthctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
uint32_t oldval = env->cp15.cnthctl_el2;
|
|
uint32_t valid_mask =
|
|
R_CNTHCTL_EL0PCTEN_E2H1_MASK |
|
|
R_CNTHCTL_EL0VCTEN_E2H1_MASK |
|
|
R_CNTHCTL_EVNTEN_MASK |
|
|
R_CNTHCTL_EVNTDIR_MASK |
|
|
R_CNTHCTL_EVNTI_MASK |
|
|
R_CNTHCTL_EL0VTEN_MASK |
|
|
R_CNTHCTL_EL0PTEN_MASK |
|
|
R_CNTHCTL_EL1PCTEN_E2H1_MASK |
|
|
R_CNTHCTL_EL1PTEN_MASK;
|
|
|
|
if (cpu_isar_feature(aa64_rme, cpu)) {
|
|
valid_mask |= R_CNTHCTL_CNTVMASK_MASK | R_CNTHCTL_CNTPMASK_MASK;
|
|
}
|
|
if (cpu_isar_feature(aa64_ecv_traps, cpu)) {
|
|
valid_mask |=
|
|
R_CNTHCTL_EL1TVT_MASK |
|
|
R_CNTHCTL_EL1TVCT_MASK |
|
|
R_CNTHCTL_EL1NVPCT_MASK |
|
|
R_CNTHCTL_EL1NVVCT_MASK |
|
|
R_CNTHCTL_EVNTIS_MASK;
|
|
}
|
|
if (cpu_isar_feature(aa64_ecv, cpu)) {
|
|
valid_mask |= R_CNTHCTL_ECV_MASK;
|
|
}
|
|
|
|
/* Clear RES0 bits */
|
|
value &= valid_mask;
|
|
|
|
raw_write(env, ri, value);
|
|
|
|
if ((oldval ^ value) & R_CNTHCTL_CNTVMASK_MASK) {
|
|
gt_update_irq(cpu, GTIMER_VIRT);
|
|
} else if ((oldval ^ value) & R_CNTHCTL_CNTPMASK_MASK) {
|
|
gt_update_irq(cpu, GTIMER_PHYS);
|
|
}
|
|
}
|
|
|
|
static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
|
|
trace_arm_gt_cntvoff_write(value);
|
|
raw_write(env, ri, value);
|
|
gt_recalc_timer(cpu, GTIMER_VIRT);
|
|
}
|
|
|
|
static uint64_t gt_virt_redir_cval_read(CPUARMState *env,
|
|
const ARMCPRegInfo *ri)
|
|
{
|
|
int timeridx = gt_virt_redir_timeridx(env);
|
|
return env->cp15.c14_timer[timeridx].cval;
|
|
}
|
|
|
|
static void gt_virt_redir_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
int timeridx = gt_virt_redir_timeridx(env);
|
|
gt_cval_write(env, ri, timeridx, value);
|
|
}
|
|
|
|
static uint64_t gt_virt_redir_tval_read(CPUARMState *env,
|
|
const ARMCPRegInfo *ri)
|
|
{
|
|
int timeridx = gt_virt_redir_timeridx(env);
|
|
return gt_tval_read(env, ri, timeridx);
|
|
}
|
|
|
|
static void gt_virt_redir_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
int timeridx = gt_virt_redir_timeridx(env);
|
|
gt_tval_write(env, ri, timeridx, value);
|
|
}
|
|
|
|
static uint64_t gt_virt_redir_ctl_read(CPUARMState *env,
|
|
const ARMCPRegInfo *ri)
|
|
{
|
|
int timeridx = gt_virt_redir_timeridx(env);
|
|
return env->cp15.c14_timer[timeridx].ctl;
|
|
}
|
|
|
|
static void gt_virt_redir_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
int timeridx = gt_virt_redir_timeridx(env);
|
|
gt_ctl_write(env, ri, timeridx, value);
|
|
}
|
|
|
|
static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
gt_timer_reset(env, ri, GTIMER_HYP);
|
|
}
|
|
|
|
static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
gt_cval_write(env, ri, GTIMER_HYP, value);
|
|
}
|
|
|
|
static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return gt_tval_read(env, ri, GTIMER_HYP);
|
|
}
|
|
|
|
static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
gt_tval_write(env, ri, GTIMER_HYP, value);
|
|
}
|
|
|
|
static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
gt_ctl_write(env, ri, GTIMER_HYP, value);
|
|
}
|
|
|
|
static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
gt_timer_reset(env, ri, GTIMER_SEC);
|
|
}
|
|
|
|
static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
gt_cval_write(env, ri, GTIMER_SEC, value);
|
|
}
|
|
|
|
static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return gt_tval_read(env, ri, GTIMER_SEC);
|
|
}
|
|
|
|
static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
gt_tval_write(env, ri, GTIMER_SEC, value);
|
|
}
|
|
|
|
static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
gt_ctl_write(env, ri, GTIMER_SEC, value);
|
|
}
|
|
|
|
static void gt_hv_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
gt_timer_reset(env, ri, GTIMER_HYPVIRT);
|
|
}
|
|
|
|
static void gt_hv_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
gt_cval_write(env, ri, GTIMER_HYPVIRT, value);
|
|
}
|
|
|
|
static uint64_t gt_hv_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return gt_tval_read(env, ri, GTIMER_HYPVIRT);
|
|
}
|
|
|
|
static void gt_hv_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
gt_tval_write(env, ri, GTIMER_HYPVIRT, value);
|
|
}
|
|
|
|
static void gt_hv_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
gt_ctl_write(env, ri, GTIMER_HYPVIRT, value);
|
|
}
|
|
|
|
void arm_gt_ptimer_cb(void *opaque)
|
|
{
|
|
ARMCPU *cpu = opaque;
|
|
|
|
gt_recalc_timer(cpu, GTIMER_PHYS);
|
|
}
|
|
|
|
void arm_gt_vtimer_cb(void *opaque)
|
|
{
|
|
ARMCPU *cpu = opaque;
|
|
|
|
gt_recalc_timer(cpu, GTIMER_VIRT);
|
|
}
|
|
|
|
void arm_gt_htimer_cb(void *opaque)
|
|
{
|
|
ARMCPU *cpu = opaque;
|
|
|
|
gt_recalc_timer(cpu, GTIMER_HYP);
|
|
}
|
|
|
|
void arm_gt_stimer_cb(void *opaque)
|
|
{
|
|
ARMCPU *cpu = opaque;
|
|
|
|
gt_recalc_timer(cpu, GTIMER_SEC);
|
|
}
|
|
|
|
void arm_gt_hvtimer_cb(void *opaque)
|
|
{
|
|
ARMCPU *cpu = opaque;
|
|
|
|
gt_recalc_timer(cpu, GTIMER_HYPVIRT);
|
|
}
|
|
|
|
static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
|
|
/*
|
|
* Note that CNTFRQ is purely reads-as-written for the benefit
|
|
* of software; writing it doesn't actually change the timer frequency.
|
|
* Our reset value matches the fixed frequency we implement the timer at.
|
|
*/
|
|
{ .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
|
|
.type = ARM_CP_ALIAS,
|
|
.access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
|
|
.fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
|
|
},
|
|
{ .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
|
|
.access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
|
|
.resetfn = arm_gt_cntfrq_reset,
|
|
},
|
|
/* overall control: mostly access permissions */
|
|
{ .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
|
|
.access = PL1_RW,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
|
|
.resetvalue = 0,
|
|
},
|
|
/* per-timer control */
|
|
{ .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
|
|
.secure = ARM_CP_SECSTATE_NS,
|
|
.type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
|
|
.accessfn = gt_ptimer_access,
|
|
.fieldoffset = offsetoflow32(CPUARMState,
|
|
cp15.c14_timer[GTIMER_PHYS].ctl),
|
|
.readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
|
|
.writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
|
|
},
|
|
{ .name = "CNTP_CTL_S",
|
|
.cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
|
|
.secure = ARM_CP_SECSTATE_S,
|
|
.type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
|
|
.accessfn = gt_ptimer_access,
|
|
.fieldoffset = offsetoflow32(CPUARMState,
|
|
cp15.c14_timer[GTIMER_SEC].ctl),
|
|
.writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
|
|
},
|
|
{ .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
|
|
.type = ARM_CP_IO, .access = PL0_RW,
|
|
.accessfn = gt_ptimer_access,
|
|
.nv2_redirect_offset = 0x180 | NV2_REDIR_NV1,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
|
|
.resetvalue = 0,
|
|
.readfn = gt_phys_redir_ctl_read, .raw_readfn = raw_read,
|
|
.writefn = gt_phys_redir_ctl_write, .raw_writefn = raw_write,
|
|
},
|
|
{ .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
|
|
.type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL0_RW,
|
|
.accessfn = gt_vtimer_access,
|
|
.fieldoffset = offsetoflow32(CPUARMState,
|
|
cp15.c14_timer[GTIMER_VIRT].ctl),
|
|
.readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
|
|
.writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
|
|
},
|
|
{ .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
|
|
.type = ARM_CP_IO, .access = PL0_RW,
|
|
.accessfn = gt_vtimer_access,
|
|
.nv2_redirect_offset = 0x170 | NV2_REDIR_NV1,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
|
|
.resetvalue = 0,
|
|
.readfn = gt_virt_redir_ctl_read, .raw_readfn = raw_read,
|
|
.writefn = gt_virt_redir_ctl_write, .raw_writefn = raw_write,
|
|
},
|
|
/* TimerValue views: a 32 bit downcounting view of the underlying state */
|
|
{ .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
|
|
.secure = ARM_CP_SECSTATE_NS,
|
|
.type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
|
|
.accessfn = gt_ptimer_access,
|
|
.readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
|
|
},
|
|
{ .name = "CNTP_TVAL_S",
|
|
.cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
|
|
.secure = ARM_CP_SECSTATE_S,
|
|
.type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
|
|
.accessfn = gt_ptimer_access,
|
|
.readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
|
|
},
|
|
{ .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
|
|
.type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
|
|
.accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
|
|
.readfn = gt_phys_redir_tval_read, .writefn = gt_phys_redir_tval_write,
|
|
},
|
|
{ .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
|
|
.type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
|
|
.accessfn = gt_vtimer_access,
|
|
.readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
|
|
},
|
|
{ .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
|
|
.type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL0_RW,
|
|
.accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
|
|
.readfn = gt_virt_redir_tval_read, .writefn = gt_virt_redir_tval_write,
|
|
},
|
|
/* The counter itself */
|
|
{ .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
|
|
.access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
|
|
.accessfn = gt_pct_access,
|
|
.readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
|
|
},
|
|
{ .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
|
|
.access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
|
|
.accessfn = gt_pct_access, .readfn = gt_cnt_read,
|
|
},
|
|
{ .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
|
|
.access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
|
|
.accessfn = gt_vct_access,
|
|
.readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
|
|
},
|
|
{ .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
|
|
.access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
|
|
.accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
|
|
},
|
|
/* Comparison value, indicating when the timer goes off */
|
|
{ .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
|
|
.secure = ARM_CP_SECSTATE_NS,
|
|
.access = PL0_RW,
|
|
.type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
|
|
.accessfn = gt_ptimer_access,
|
|
.readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
|
|
.writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
|
|
},
|
|
{ .name = "CNTP_CVAL_S", .cp = 15, .crm = 14, .opc1 = 2,
|
|
.secure = ARM_CP_SECSTATE_S,
|
|
.access = PL0_RW,
|
|
.type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
|
|
.accessfn = gt_ptimer_access,
|
|
.writefn = gt_sec_cval_write, .raw_writefn = raw_write,
|
|
},
|
|
{ .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
|
|
.access = PL0_RW,
|
|
.type = ARM_CP_IO,
|
|
.nv2_redirect_offset = 0x178 | NV2_REDIR_NV1,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
|
|
.resetvalue = 0, .accessfn = gt_ptimer_access,
|
|
.readfn = gt_phys_redir_cval_read, .raw_readfn = raw_read,
|
|
.writefn = gt_phys_redir_cval_write, .raw_writefn = raw_write,
|
|
},
|
|
{ .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
|
|
.access = PL0_RW,
|
|
.type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
|
|
.accessfn = gt_vtimer_access,
|
|
.readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
|
|
.writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
|
|
},
|
|
{ .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
|
|
.access = PL0_RW,
|
|
.type = ARM_CP_IO,
|
|
.nv2_redirect_offset = 0x168 | NV2_REDIR_NV1,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
|
|
.resetvalue = 0, .accessfn = gt_vtimer_access,
|
|
.readfn = gt_virt_redir_cval_read, .raw_readfn = raw_read,
|
|
.writefn = gt_virt_redir_cval_write, .raw_writefn = raw_write,
|
|
},
|
|
/*
|
|
* Secure timer -- this is actually restricted to only EL3
|
|
* and configurably Secure-EL1 via the accessfn.
|
|
*/
|
|
{ .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
|
|
.type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
|
|
.accessfn = gt_stimer_access,
|
|
.readfn = gt_sec_tval_read,
|
|
.writefn = gt_sec_tval_write,
|
|
.resetfn = gt_sec_timer_reset,
|
|
},
|
|
{ .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
|
|
.type = ARM_CP_IO, .access = PL1_RW,
|
|
.accessfn = gt_stimer_access,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
|
|
.resetvalue = 0,
|
|
.writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
|
|
},
|
|
{ .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
|
|
.type = ARM_CP_IO, .access = PL1_RW,
|
|
.accessfn = gt_stimer_access,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
|
|
.writefn = gt_sec_cval_write, .raw_writefn = raw_write,
|
|
},
|
|
};
|
|
|
|
/*
|
|
* FEAT_ECV adds extra views of CNTVCT_EL0 and CNTPCT_EL0 which
|
|
* are "self-synchronizing". For QEMU all sysregs are self-synchronizing,
|
|
* so our implementations here are identical to the normal registers.
|
|
*/
|
|
static const ARMCPRegInfo gen_timer_ecv_cp_reginfo[] = {
|
|
{ .name = "CNTVCTSS", .cp = 15, .crm = 14, .opc1 = 9,
|
|
.access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
|
|
.accessfn = gt_vct_access,
|
|
.readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
|
|
},
|
|
{ .name = "CNTVCTSS_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 6,
|
|
.access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
|
|
.accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
|
|
},
|
|
{ .name = "CNTPCTSS", .cp = 15, .crm = 14, .opc1 = 8,
|
|
.access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
|
|
.accessfn = gt_pct_access,
|
|
.readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
|
|
},
|
|
{ .name = "CNTPCTSS_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 5,
|
|
.access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
|
|
.accessfn = gt_pct_access, .readfn = gt_cnt_read,
|
|
},
|
|
};
|
|
|
|
static CPAccessResult gt_cntpoff_access(CPUARMState *env,
|
|
const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (arm_current_el(env) == 2 && arm_feature(env, ARM_FEATURE_EL3) &&
|
|
!(env->cp15.scr_el3 & SCR_ECVEN)) {
|
|
return CP_ACCESS_TRAP_EL3;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static void gt_cntpoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
|
|
trace_arm_gt_cntpoff_write(value);
|
|
raw_write(env, ri, value);
|
|
gt_recalc_timer(cpu, GTIMER_PHYS);
|
|
}
|
|
|
|
static const ARMCPRegInfo gen_timer_cntpoff_reginfo = {
|
|
.name = "CNTPOFF_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 6,
|
|
.access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
|
|
.accessfn = gt_cntpoff_access, .writefn = gt_cntpoff_write,
|
|
.nv2_redirect_offset = 0x1a8,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.cntpoff_el2),
|
|
};
|
|
#else
|
|
|
|
/*
|
|
* In user-mode most of the generic timer registers are inaccessible
|
|
* however modern kernels (4.12+) allow access to cntvct_el0
|
|
*/
|
|
|
|
static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
|
|
/*
|
|
* Currently we have no support for QEMUTimer in linux-user so we
|
|
* can't call gt_get_countervalue(env), instead we directly
|
|
* call the lower level functions.
|
|
*/
|
|
return cpu_get_clock() / gt_cntfrq_period_ns(cpu);
|
|
}
|
|
|
|
static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
|
|
{ .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
|
|
.type = ARM_CP_CONST, .access = PL0_R /* no PL1_RW in linux-user */,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
|
|
.resetfn = arm_gt_cntfrq_reset,
|
|
},
|
|
{ .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
|
|
.access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
|
|
.readfn = gt_virt_cnt_read,
|
|
},
|
|
};
|
|
|
|
/*
|
|
* CNTVCTSS_EL0 has the same trap conditions as CNTVCT_EL0, so it also
|
|
* is exposed to userspace by Linux.
|
|
*/
|
|
static const ARMCPRegInfo gen_timer_ecv_cp_reginfo[] = {
|
|
{ .name = "CNTVCTSS_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 6,
|
|
.access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
|
|
.readfn = gt_virt_cnt_read,
|
|
},
|
|
};
|
|
|
|
#endif
|
|
|
|
static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
|
|
{
|
|
if (arm_feature(env, ARM_FEATURE_LPAE)) {
|
|
raw_write(env, ri, value);
|
|
} else if (arm_feature(env, ARM_FEATURE_V7)) {
|
|
raw_write(env, ri, value & 0xfffff6ff);
|
|
} else {
|
|
raw_write(env, ri, value & 0xfffff1ff);
|
|
}
|
|
}
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
/* get_phys_addr() isn't present for user-mode-only targets */
|
|
|
|
static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (ri->opc2 & 4) {
|
|
/*
|
|
* The ATS12NSO* operations must trap to EL3 or EL2 if executed in
|
|
* Secure EL1 (which can only happen if EL3 is AArch64).
|
|
* They are simply UNDEF if executed from NS EL1.
|
|
* They function normally from EL2 or EL3.
|
|
*/
|
|
if (arm_current_el(env) == 1) {
|
|
if (arm_is_secure_below_el3(env)) {
|
|
if (env->cp15.scr_el3 & SCR_EEL2) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
return CP_ACCESS_TRAP_EL3;
|
|
}
|
|
return CP_ACCESS_TRAP_UNCATEGORIZED;
|
|
}
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
#ifdef CONFIG_TCG
|
|
static int par_el1_shareability(GetPhysAddrResult *res)
|
|
{
|
|
/*
|
|
* The PAR_EL1.SH field must be 0b10 for Device or Normal-NC
|
|
* memory -- see pseudocode PAREncodeShareability().
|
|
*/
|
|
if (((res->cacheattrs.attrs & 0xf0) == 0) ||
|
|
res->cacheattrs.attrs == 0x44 || res->cacheattrs.attrs == 0x40) {
|
|
return 2;
|
|
}
|
|
return res->cacheattrs.shareability;
|
|
}
|
|
|
|
static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
|
|
MMUAccessType access_type, ARMMMUIdx mmu_idx,
|
|
ARMSecuritySpace ss)
|
|
{
|
|
bool ret;
|
|
uint64_t par64;
|
|
bool format64 = false;
|
|
ARMMMUFaultInfo fi = {};
|
|
GetPhysAddrResult res = {};
|
|
|
|
/*
|
|
* I_MXTJT: Granule protection checks are not performed on the final address
|
|
* of a successful translation.
|
|
*/
|
|
ret = get_phys_addr_with_space_nogpc(env, value, access_type, mmu_idx, ss,
|
|
&res, &fi);
|
|
|
|
/*
|
|
* ATS operations only do S1 or S1+S2 translations, so we never
|
|
* have to deal with the ARMCacheAttrs format for S2 only.
|
|
*/
|
|
assert(!res.cacheattrs.is_s2_format);
|
|
|
|
if (ret) {
|
|
/*
|
|
* Some kinds of translation fault must cause exceptions rather
|
|
* than being reported in the PAR.
|
|
*/
|
|
int current_el = arm_current_el(env);
|
|
int target_el;
|
|
uint32_t syn, fsr, fsc;
|
|
bool take_exc = false;
|
|
|
|
if (fi.s1ptw && current_el == 1
|
|
&& arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
|
|
/*
|
|
* Synchronous stage 2 fault on an access made as part of the
|
|
* translation table walk for AT S1E0* or AT S1E1* insn
|
|
* executed from NS EL1. If this is a synchronous external abort
|
|
* and SCR_EL3.EA == 1, then we take a synchronous external abort
|
|
* to EL3. Otherwise the fault is taken as an exception to EL2,
|
|
* and HPFAR_EL2 holds the faulting IPA.
|
|
*/
|
|
if (fi.type == ARMFault_SyncExternalOnWalk &&
|
|
(env->cp15.scr_el3 & SCR_EA)) {
|
|
target_el = 3;
|
|
} else {
|
|
env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
|
|
if (arm_is_secure_below_el3(env) && fi.s1ns) {
|
|
env->cp15.hpfar_el2 |= HPFAR_NS;
|
|
}
|
|
target_el = 2;
|
|
}
|
|
take_exc = true;
|
|
} else if (fi.type == ARMFault_SyncExternalOnWalk) {
|
|
/*
|
|
* Synchronous external aborts during a translation table walk
|
|
* are taken as Data Abort exceptions.
|
|
*/
|
|
if (fi.stage2) {
|
|
if (current_el == 3) {
|
|
target_el = 3;
|
|
} else {
|
|
target_el = 2;
|
|
}
|
|
} else {
|
|
target_el = exception_target_el(env);
|
|
}
|
|
take_exc = true;
|
|
}
|
|
|
|
if (take_exc) {
|
|
/* Construct FSR and FSC using same logic as arm_deliver_fault() */
|
|
if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
|
|
arm_s1_regime_using_lpae_format(env, mmu_idx)) {
|
|
fsr = arm_fi_to_lfsc(&fi);
|
|
fsc = extract32(fsr, 0, 6);
|
|
} else {
|
|
fsr = arm_fi_to_sfsc(&fi);
|
|
fsc = 0x3f;
|
|
}
|
|
/*
|
|
* Report exception with ESR indicating a fault due to a
|
|
* translation table walk for a cache maintenance instruction.
|
|
*/
|
|
syn = syn_data_abort_no_iss(current_el == target_el, 0,
|
|
fi.ea, 1, fi.s1ptw, 1, fsc);
|
|
env->exception.vaddress = value;
|
|
env->exception.fsr = fsr;
|
|
raise_exception(env, EXCP_DATA_ABORT, syn, target_el);
|
|
}
|
|
}
|
|
|
|
if (is_a64(env)) {
|
|
format64 = true;
|
|
} else if (arm_feature(env, ARM_FEATURE_LPAE)) {
|
|
/*
|
|
* ATS1Cxx:
|
|
* * TTBCR.EAE determines whether the result is returned using the
|
|
* 32-bit or the 64-bit PAR format
|
|
* * Instructions executed in Hyp mode always use the 64bit format
|
|
*
|
|
* ATS1S2NSOxx uses the 64bit format if any of the following is true:
|
|
* * The Non-secure TTBCR.EAE bit is set to 1
|
|
* * The implementation includes EL2, and the value of HCR.VM is 1
|
|
*
|
|
* (Note that HCR.DC makes HCR.VM behave as if it is 1.)
|
|
*
|
|
* ATS1Hx always uses the 64bit format.
|
|
*/
|
|
format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
|
|
|
|
if (arm_feature(env, ARM_FEATURE_EL2)) {
|
|
if (mmu_idx == ARMMMUIdx_E10_0 ||
|
|
mmu_idx == ARMMMUIdx_E10_1 ||
|
|
mmu_idx == ARMMMUIdx_E10_1_PAN) {
|
|
format64 |= env->cp15.hcr_el2 & (HCR_VM | HCR_DC);
|
|
} else {
|
|
format64 |= arm_current_el(env) == 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (format64) {
|
|
/* Create a 64-bit PAR */
|
|
par64 = (1 << 11); /* LPAE bit always set */
|
|
if (!ret) {
|
|
par64 |= res.f.phys_addr & ~0xfffULL;
|
|
if (!res.f.attrs.secure) {
|
|
par64 |= (1 << 9); /* NS */
|
|
}
|
|
par64 |= (uint64_t)res.cacheattrs.attrs << 56; /* ATTR */
|
|
par64 |= par_el1_shareability(&res) << 7; /* SH */
|
|
} else {
|
|
uint32_t fsr = arm_fi_to_lfsc(&fi);
|
|
|
|
par64 |= 1; /* F */
|
|
par64 |= (fsr & 0x3f) << 1; /* FS */
|
|
if (fi.stage2) {
|
|
par64 |= (1 << 9); /* S */
|
|
}
|
|
if (fi.s1ptw) {
|
|
par64 |= (1 << 8); /* PTW */
|
|
}
|
|
}
|
|
} else {
|
|
/*
|
|
* fsr is a DFSR/IFSR value for the short descriptor
|
|
* translation table format (with WnR always clear).
|
|
* Convert it to a 32-bit PAR.
|
|
*/
|
|
if (!ret) {
|
|
/* We do not set any attribute bits in the PAR */
|
|
if (res.f.lg_page_size == 24
|
|
&& arm_feature(env, ARM_FEATURE_V7)) {
|
|
par64 = (res.f.phys_addr & 0xff000000) | (1 << 1);
|
|
} else {
|
|
par64 = res.f.phys_addr & 0xfffff000;
|
|
}
|
|
if (!res.f.attrs.secure) {
|
|
par64 |= (1 << 9); /* NS */
|
|
}
|
|
} else {
|
|
uint32_t fsr = arm_fi_to_sfsc(&fi);
|
|
|
|
par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
|
|
((fsr & 0xf) << 1) | 1;
|
|
}
|
|
}
|
|
return par64;
|
|
}
|
|
#endif /* CONFIG_TCG */
|
|
|
|
static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
|
|
{
|
|
#ifdef CONFIG_TCG
|
|
MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
|
|
uint64_t par64;
|
|
ARMMMUIdx mmu_idx;
|
|
int el = arm_current_el(env);
|
|
ARMSecuritySpace ss = arm_security_space(env);
|
|
|
|
switch (ri->opc2 & 6) {
|
|
case 0:
|
|
/* stage 1 current state PL1: ATS1CPR, ATS1CPW, ATS1CPRP, ATS1CPWP */
|
|
switch (el) {
|
|
case 3:
|
|
mmu_idx = ARMMMUIdx_E3;
|
|
break;
|
|
case 2:
|
|
g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */
|
|
/* fall through */
|
|
case 1:
|
|
if (ri->crm == 9 && arm_pan_enabled(env)) {
|
|
mmu_idx = ARMMMUIdx_Stage1_E1_PAN;
|
|
} else {
|
|
mmu_idx = ARMMMUIdx_Stage1_E1;
|
|
}
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
break;
|
|
case 2:
|
|
/* stage 1 current state PL0: ATS1CUR, ATS1CUW */
|
|
switch (el) {
|
|
case 3:
|
|
mmu_idx = ARMMMUIdx_E10_0;
|
|
break;
|
|
case 2:
|
|
g_assert(ss != ARMSS_Secure); /* ARMv8.4-SecEL2 is 64-bit only */
|
|
mmu_idx = ARMMMUIdx_Stage1_E0;
|
|
break;
|
|
case 1:
|
|
mmu_idx = ARMMMUIdx_Stage1_E0;
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
break;
|
|
case 4:
|
|
/* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
|
|
mmu_idx = ARMMMUIdx_E10_1;
|
|
ss = ARMSS_NonSecure;
|
|
break;
|
|
case 6:
|
|
/* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
|
|
mmu_idx = ARMMMUIdx_E10_0;
|
|
ss = ARMSS_NonSecure;
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
par64 = do_ats_write(env, value, access_type, mmu_idx, ss);
|
|
|
|
A32_BANKED_CURRENT_REG_SET(env, par, par64);
|
|
#else
|
|
/* Handled by hardware accelerator. */
|
|
g_assert_not_reached();
|
|
#endif /* CONFIG_TCG */
|
|
}
|
|
|
|
static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
#ifdef CONFIG_TCG
|
|
MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
|
|
uint64_t par64;
|
|
|
|
/* There is no SecureEL2 for AArch32. */
|
|
par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2,
|
|
ARMSS_NonSecure);
|
|
|
|
A32_BANKED_CURRENT_REG_SET(env, par, par64);
|
|
#else
|
|
/* Handled by hardware accelerator. */
|
|
g_assert_not_reached();
|
|
#endif /* CONFIG_TCG */
|
|
}
|
|
|
|
static CPAccessResult at_e012_access(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
/*
|
|
* R_NYXTL: instruction is UNDEFINED if it applies to an Exception level
|
|
* lower than EL3 and the combination SCR_EL3.{NSE,NS} is reserved. This can
|
|
* only happen when executing at EL3 because that combination also causes an
|
|
* illegal exception return. We don't need to check FEAT_RME either, because
|
|
* scr_write() ensures that the NSE bit is not set otherwise.
|
|
*/
|
|
if ((env->cp15.scr_el3 & (SCR_NSE | SCR_NS)) == SCR_NSE) {
|
|
return CP_ACCESS_TRAP;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (arm_current_el(env) == 3 &&
|
|
!(env->cp15.scr_el3 & (SCR_NS | SCR_EEL2))) {
|
|
return CP_ACCESS_TRAP;
|
|
}
|
|
return at_e012_access(env, ri, isread);
|
|
}
|
|
|
|
static CPAccessResult at_s1e01_access(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_AT)) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
return at_e012_access(env, ri, isread);
|
|
}
|
|
|
|
static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
#ifdef CONFIG_TCG
|
|
MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
|
|
ARMMMUIdx mmu_idx;
|
|
uint64_t hcr_el2 = arm_hcr_el2_eff(env);
|
|
bool regime_e20 = (hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE);
|
|
bool for_el3 = false;
|
|
ARMSecuritySpace ss;
|
|
|
|
switch (ri->opc2 & 6) {
|
|
case 0:
|
|
switch (ri->opc1) {
|
|
case 0: /* AT S1E1R, AT S1E1W, AT S1E1RP, AT S1E1WP */
|
|
if (ri->crm == 9 && arm_pan_enabled(env)) {
|
|
mmu_idx = regime_e20 ?
|
|
ARMMMUIdx_E20_2_PAN : ARMMMUIdx_Stage1_E1_PAN;
|
|
} else {
|
|
mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_Stage1_E1;
|
|
}
|
|
break;
|
|
case 4: /* AT S1E2R, AT S1E2W */
|
|
mmu_idx = hcr_el2 & HCR_E2H ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
|
|
break;
|
|
case 6: /* AT S1E3R, AT S1E3W */
|
|
mmu_idx = ARMMMUIdx_E3;
|
|
for_el3 = true;
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
break;
|
|
case 2: /* AT S1E0R, AT S1E0W */
|
|
mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_Stage1_E0;
|
|
break;
|
|
case 4: /* AT S12E1R, AT S12E1W */
|
|
mmu_idx = regime_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E10_1;
|
|
break;
|
|
case 6: /* AT S12E0R, AT S12E0W */
|
|
mmu_idx = regime_e20 ? ARMMMUIdx_E20_0 : ARMMMUIdx_E10_0;
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
ss = for_el3 ? arm_security_space(env) : arm_security_space_below_el3(env);
|
|
env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx, ss);
|
|
#else
|
|
/* Handled by hardware accelerator. */
|
|
g_assert_not_reached();
|
|
#endif /* CONFIG_TCG */
|
|
}
|
|
#endif
|
|
|
|
/* Return basic MPU access permission bits. */
|
|
static uint32_t simple_mpu_ap_bits(uint32_t val)
|
|
{
|
|
uint32_t ret;
|
|
uint32_t mask;
|
|
int i;
|
|
ret = 0;
|
|
mask = 3;
|
|
for (i = 0; i < 16; i += 2) {
|
|
ret |= (val >> i) & mask;
|
|
mask <<= 2;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* Pad basic MPU access permission bits to extended format. */
|
|
static uint32_t extended_mpu_ap_bits(uint32_t val)
|
|
{
|
|
uint32_t ret;
|
|
uint32_t mask;
|
|
int i;
|
|
ret = 0;
|
|
mask = 3;
|
|
for (i = 0; i < 16; i += 2) {
|
|
ret |= (val & mask) << i;
|
|
mask <<= 2;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
|
|
}
|
|
|
|
static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
|
|
}
|
|
|
|
static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
|
|
}
|
|
|
|
static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
|
|
}
|
|
|
|
static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
|
|
|
|
if (!u32p) {
|
|
return 0;
|
|
}
|
|
|
|
u32p += env->pmsav7.rnr[M_REG_NS];
|
|
return *u32p;
|
|
}
|
|
|
|
static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
|
|
|
|
if (!u32p) {
|
|
return;
|
|
}
|
|
|
|
u32p += env->pmsav7.rnr[M_REG_NS];
|
|
tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
|
|
*u32p = value;
|
|
}
|
|
|
|
static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
uint32_t nrgs = cpu->pmsav7_dregion;
|
|
|
|
if (value >= nrgs) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"PMSAv7 RGNR write >= # supported regions, %" PRIu32
|
|
" > %" PRIu32 "\n", (uint32_t)value, nrgs);
|
|
return;
|
|
}
|
|
|
|
raw_write(env, ri, value);
|
|
}
|
|
|
|
static void prbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
|
|
tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
|
|
env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
|
|
}
|
|
|
|
static uint64_t prbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return env->pmsav8.rbar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
|
|
}
|
|
|
|
static void prlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
|
|
tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
|
|
env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]] = value;
|
|
}
|
|
|
|
static uint64_t prlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return env->pmsav8.rlar[M_REG_NS][env->pmsav7.rnr[M_REG_NS]];
|
|
}
|
|
|
|
static void prselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
|
|
/*
|
|
* Ignore writes that would select not implemented region.
|
|
* This is architecturally UNPREDICTABLE.
|
|
*/
|
|
if (value >= cpu->pmsav7_dregion) {
|
|
return;
|
|
}
|
|
|
|
env->pmsav7.rnr[M_REG_NS] = value;
|
|
}
|
|
|
|
static void hprbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
|
|
tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
|
|
env->pmsav8.hprbar[env->pmsav8.hprselr] = value;
|
|
}
|
|
|
|
static uint64_t hprbar_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return env->pmsav8.hprbar[env->pmsav8.hprselr];
|
|
}
|
|
|
|
static void hprlar_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
|
|
tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
|
|
env->pmsav8.hprlar[env->pmsav8.hprselr] = value;
|
|
}
|
|
|
|
static uint64_t hprlar_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return env->pmsav8.hprlar[env->pmsav8.hprselr];
|
|
}
|
|
|
|
static void hprenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
uint32_t n;
|
|
uint32_t bit;
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
|
|
/* Ignore writes to unimplemented regions */
|
|
int rmax = MIN(cpu->pmsav8r_hdregion, 32);
|
|
value &= MAKE_64BIT_MASK(0, rmax);
|
|
|
|
tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
|
|
|
|
/* Register alias is only valid for first 32 indexes */
|
|
for (n = 0; n < rmax; ++n) {
|
|
bit = extract32(value, n, 1);
|
|
env->pmsav8.hprlar[n] = deposit32(
|
|
env->pmsav8.hprlar[n], 0, 1, bit);
|
|
}
|
|
}
|
|
|
|
static uint64_t hprenr_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
uint32_t n;
|
|
uint32_t result = 0x0;
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
|
|
/* Register alias is only valid for first 32 indexes */
|
|
for (n = 0; n < MIN(cpu->pmsav8r_hdregion, 32); ++n) {
|
|
if (env->pmsav8.hprlar[n] & 0x1) {
|
|
result |= (0x1 << n);
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static void hprselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
|
|
/*
|
|
* Ignore writes that would select not implemented region.
|
|
* This is architecturally UNPREDICTABLE.
|
|
*/
|
|
if (value >= cpu->pmsav8r_hdregion) {
|
|
return;
|
|
}
|
|
|
|
env->pmsav8.hprselr = value;
|
|
}
|
|
|
|
static void pmsav8r_regn_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
|
|
(extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
|
|
|
|
tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
|
|
|
|
if (ri->opc1 & 4) {
|
|
if (index >= cpu->pmsav8r_hdregion) {
|
|
return;
|
|
}
|
|
if (ri->opc2 & 0x1) {
|
|
env->pmsav8.hprlar[index] = value;
|
|
} else {
|
|
env->pmsav8.hprbar[index] = value;
|
|
}
|
|
} else {
|
|
if (index >= cpu->pmsav7_dregion) {
|
|
return;
|
|
}
|
|
if (ri->opc2 & 0x1) {
|
|
env->pmsav8.rlar[M_REG_NS][index] = value;
|
|
} else {
|
|
env->pmsav8.rbar[M_REG_NS][index] = value;
|
|
}
|
|
}
|
|
}
|
|
|
|
static uint64_t pmsav8r_regn_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
uint8_t index = (extract32(ri->opc0, 0, 1) << 4) |
|
|
(extract32(ri->crm, 0, 3) << 1) | extract32(ri->opc2, 2, 1);
|
|
|
|
if (ri->opc1 & 4) {
|
|
if (index >= cpu->pmsav8r_hdregion) {
|
|
return 0x0;
|
|
}
|
|
if (ri->opc2 & 0x1) {
|
|
return env->pmsav8.hprlar[index];
|
|
} else {
|
|
return env->pmsav8.hprbar[index];
|
|
}
|
|
} else {
|
|
if (index >= cpu->pmsav7_dregion) {
|
|
return 0x0;
|
|
}
|
|
if (ri->opc2 & 0x1) {
|
|
return env->pmsav8.rlar[M_REG_NS][index];
|
|
} else {
|
|
return env->pmsav8.rbar[M_REG_NS][index];
|
|
}
|
|
}
|
|
}
|
|
|
|
static const ARMCPRegInfo pmsav8r_cp_reginfo[] = {
|
|
{ .name = "PRBAR",
|
|
.cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 0,
|
|
.access = PL1_RW, .type = ARM_CP_NO_RAW,
|
|
.accessfn = access_tvm_trvm,
|
|
.readfn = prbar_read, .writefn = prbar_write },
|
|
{ .name = "PRLAR",
|
|
.cp = 15, .opc1 = 0, .crn = 6, .crm = 3, .opc2 = 1,
|
|
.access = PL1_RW, .type = ARM_CP_NO_RAW,
|
|
.accessfn = access_tvm_trvm,
|
|
.readfn = prlar_read, .writefn = prlar_write },
|
|
{ .name = "PRSELR", .resetvalue = 0,
|
|
.cp = 15, .opc1 = 0, .crn = 6, .crm = 2, .opc2 = 1,
|
|
.access = PL1_RW, .accessfn = access_tvm_trvm,
|
|
.writefn = prselr_write,
|
|
.fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]) },
|
|
{ .name = "HPRBAR", .resetvalue = 0,
|
|
.cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 0,
|
|
.access = PL2_RW, .type = ARM_CP_NO_RAW,
|
|
.readfn = hprbar_read, .writefn = hprbar_write },
|
|
{ .name = "HPRLAR",
|
|
.cp = 15, .opc1 = 4, .crn = 6, .crm = 3, .opc2 = 1,
|
|
.access = PL2_RW, .type = ARM_CP_NO_RAW,
|
|
.readfn = hprlar_read, .writefn = hprlar_write },
|
|
{ .name = "HPRSELR", .resetvalue = 0,
|
|
.cp = 15, .opc1 = 4, .crn = 6, .crm = 2, .opc2 = 1,
|
|
.access = PL2_RW,
|
|
.writefn = hprselr_write,
|
|
.fieldoffset = offsetof(CPUARMState, pmsav8.hprselr) },
|
|
{ .name = "HPRENR",
|
|
.cp = 15, .opc1 = 4, .crn = 6, .crm = 1, .opc2 = 1,
|
|
.access = PL2_RW, .type = ARM_CP_NO_RAW,
|
|
.readfn = hprenr_read, .writefn = hprenr_write },
|
|
};
|
|
|
|
static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
|
|
/*
|
|
* Reset for all these registers is handled in arm_cpu_reset(),
|
|
* because the PMSAv7 is also used by M-profile CPUs, which do
|
|
* not register cpregs but still need the state to be reset.
|
|
*/
|
|
{ .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
|
|
.access = PL1_RW, .type = ARM_CP_NO_RAW,
|
|
.fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
|
|
.readfn = pmsav7_read, .writefn = pmsav7_write,
|
|
.resetfn = arm_cp_reset_ignore },
|
|
{ .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
|
|
.access = PL1_RW, .type = ARM_CP_NO_RAW,
|
|
.fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
|
|
.readfn = pmsav7_read, .writefn = pmsav7_write,
|
|
.resetfn = arm_cp_reset_ignore },
|
|
{ .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
|
|
.access = PL1_RW, .type = ARM_CP_NO_RAW,
|
|
.fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
|
|
.readfn = pmsav7_read, .writefn = pmsav7_write,
|
|
.resetfn = arm_cp_reset_ignore },
|
|
{ .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
|
|
.access = PL1_RW,
|
|
.fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
|
|
.writefn = pmsav7_rgnr_write,
|
|
.resetfn = arm_cp_reset_ignore },
|
|
};
|
|
|
|
static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
|
|
{ .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
|
|
.access = PL1_RW, .type = ARM_CP_ALIAS,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
|
|
.readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
|
|
{ .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
|
|
.access = PL1_RW, .type = ARM_CP_ALIAS,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
|
|
.readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
|
|
{ .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
|
|
.access = PL1_RW,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
|
|
.resetvalue = 0, },
|
|
{ .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
|
|
.access = PL1_RW,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
|
|
.resetvalue = 0, },
|
|
{ .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
|
|
.access = PL1_RW,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
|
|
{ .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
|
|
.access = PL1_RW,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
|
|
/* Protection region base and size registers */
|
|
{ .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
|
|
.opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
|
|
{ .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
|
|
.opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
|
|
{ .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
|
|
.opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
|
|
{ .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
|
|
.opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
|
|
{ .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
|
|
.opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
|
|
{ .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
|
|
.opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
|
|
{ .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
|
|
.opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
|
|
{ .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
|
|
.opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
|
|
};
|
|
|
|
static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
|
|
if (!arm_feature(env, ARM_FEATURE_V8)) {
|
|
if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
|
|
/*
|
|
* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
|
|
* using Long-descriptor translation table format
|
|
*/
|
|
value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
|
|
} else if (arm_feature(env, ARM_FEATURE_EL3)) {
|
|
/*
|
|
* In an implementation that includes the Security Extensions
|
|
* TTBCR has additional fields PD0 [4] and PD1 [5] for
|
|
* Short-descriptor translation table format.
|
|
*/
|
|
value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
|
|
} else {
|
|
value &= TTBCR_N;
|
|
}
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_LPAE)) {
|
|
/*
|
|
* With LPAE the TTBCR could result in a change of ASID
|
|
* via the TTBCR.A1 bit, so do a TLB flush.
|
|
*/
|
|
tlb_flush(CPU(cpu));
|
|
}
|
|
raw_write(env, ri, value);
|
|
}
|
|
|
|
static void vmsa_tcr_el12_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
|
|
/* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
|
|
tlb_flush(CPU(cpu));
|
|
raw_write(env, ri, value);
|
|
}
|
|
|
|
static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/* If the ASID changes (with a 64-bit write), we must flush the TLB. */
|
|
if (cpreg_field_is_64bit(ri) &&
|
|
extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
tlb_flush(CPU(cpu));
|
|
}
|
|
raw_write(env, ri, value);
|
|
}
|
|
|
|
static void vmsa_tcr_ttbr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/*
|
|
* If we are running with E2&0 regime, then an ASID is active.
|
|
* Flush if that might be changing. Note we're not checking
|
|
* TCR_EL2.A1 to know if this is really the TTBRx_EL2 that
|
|
* holds the active ASID, only checking the field that might.
|
|
*/
|
|
if (extract64(raw_read(env, ri) ^ value, 48, 16) &&
|
|
(arm_hcr_el2_eff(env) & HCR_E2H)) {
|
|
uint16_t mask = ARMMMUIdxBit_E20_2 |
|
|
ARMMMUIdxBit_E20_2_PAN |
|
|
ARMMMUIdxBit_E20_0;
|
|
tlb_flush_by_mmuidx(env_cpu(env), mask);
|
|
}
|
|
raw_write(env, ri, value);
|
|
}
|
|
|
|
static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
CPUState *cs = CPU(cpu);
|
|
|
|
/*
|
|
* A change in VMID to the stage2 page table (Stage2) invalidates
|
|
* the stage2 and combined stage 1&2 tlbs (EL10_1 and EL10_0).
|
|
*/
|
|
if (extract64(raw_read(env, ri) ^ value, 48, 16) != 0) {
|
|
tlb_flush_by_mmuidx(cs, alle1_tlbmask(env));
|
|
}
|
|
raw_write(env, ri, value);
|
|
}
|
|
|
|
static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
|
|
{ .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
|
|
.access = PL1_RW, .accessfn = access_tvm_trvm, .type = ARM_CP_ALIAS,
|
|
.bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
|
|
offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
|
|
{ .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
|
|
.access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
|
|
.bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
|
|
offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
|
|
{ .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
|
|
.access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
|
|
.bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
|
|
offsetof(CPUARMState, cp15.dfar_ns) } },
|
|
{ .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
|
|
.access = PL1_RW, .accessfn = access_tvm_trvm,
|
|
.fgt = FGT_FAR_EL1,
|
|
.nv2_redirect_offset = 0x220 | NV2_REDIR_NV1,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
|
|
.resetvalue = 0, },
|
|
};
|
|
|
|
static const ARMCPRegInfo vmsa_cp_reginfo[] = {
|
|
{ .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
|
|
.access = PL1_RW, .accessfn = access_tvm_trvm,
|
|
.fgt = FGT_ESR_EL1,
|
|
.nv2_redirect_offset = 0x138 | NV2_REDIR_NV1,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
|
|
{ .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
|
|
.access = PL1_RW, .accessfn = access_tvm_trvm,
|
|
.fgt = FGT_TTBR0_EL1,
|
|
.nv2_redirect_offset = 0x200 | NV2_REDIR_NV1,
|
|
.writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
|
|
.bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
|
|
offsetof(CPUARMState, cp15.ttbr0_ns) } },
|
|
{ .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
|
|
.access = PL1_RW, .accessfn = access_tvm_trvm,
|
|
.fgt = FGT_TTBR1_EL1,
|
|
.nv2_redirect_offset = 0x210 | NV2_REDIR_NV1,
|
|
.writefn = vmsa_ttbr_write, .resetvalue = 0, .raw_writefn = raw_write,
|
|
.bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
|
|
offsetof(CPUARMState, cp15.ttbr1_ns) } },
|
|
{ .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
|
|
.access = PL1_RW, .accessfn = access_tvm_trvm,
|
|
.fgt = FGT_TCR_EL1,
|
|
.nv2_redirect_offset = 0x120 | NV2_REDIR_NV1,
|
|
.writefn = vmsa_tcr_el12_write,
|
|
.raw_writefn = raw_write,
|
|
.resetvalue = 0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
|
|
{ .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
|
|
.access = PL1_RW, .accessfn = access_tvm_trvm,
|
|
.type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
|
|
.raw_writefn = raw_write,
|
|
.bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
|
|
offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
|
|
};
|
|
|
|
/*
|
|
* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
|
|
* qemu tlbs nor adjusting cached masks.
|
|
*/
|
|
static const ARMCPRegInfo ttbcr2_reginfo = {
|
|
.name = "TTBCR2", .cp = 15, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 3,
|
|
.access = PL1_RW, .accessfn = access_tvm_trvm,
|
|
.type = ARM_CP_ALIAS,
|
|
.bank_fieldoffsets = {
|
|
offsetofhigh32(CPUARMState, cp15.tcr_el[3]),
|
|
offsetofhigh32(CPUARMState, cp15.tcr_el[1]),
|
|
},
|
|
};
|
|
|
|
static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
env->cp15.c15_ticonfig = value & 0xe7;
|
|
/* The OS_TYPE bit in this register changes the reported CPUID! */
|
|
env->cp15.c0_cpuid = (value & (1 << 5)) ?
|
|
ARM_CPUID_TI915T : ARM_CPUID_TI925T;
|
|
}
|
|
|
|
static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
env->cp15.c15_threadid = value & 0xffff;
|
|
}
|
|
|
|
static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/* Wait-for-interrupt (deprecated) */
|
|
cpu_interrupt(env_cpu(env), CPU_INTERRUPT_HALT);
|
|
}
|
|
|
|
static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/*
|
|
* On OMAP there are registers indicating the max/min index of dcache lines
|
|
* containing a dirty line; cache flush operations have to reset these.
|
|
*/
|
|
env->cp15.c15_i_max = 0x000;
|
|
env->cp15.c15_i_min = 0xff0;
|
|
}
|
|
|
|
static const ARMCPRegInfo omap_cp_reginfo[] = {
|
|
{ .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
|
|
.opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
|
|
.fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
|
|
.resetvalue = 0, },
|
|
{ .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
|
|
.access = PL1_RW, .type = ARM_CP_NOP },
|
|
{ .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
|
|
.access = PL1_RW,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
|
|
.writefn = omap_ticonfig_write },
|
|
{ .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
|
|
.access = PL1_RW,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
|
|
{ .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
|
|
.access = PL1_RW, .resetvalue = 0xff0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
|
|
{ .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
|
|
.access = PL1_RW,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
|
|
.writefn = omap_threadid_write },
|
|
{ .name = "TI925T_STATUS", .cp = 15, .crn = 15,
|
|
.crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
|
|
.type = ARM_CP_NO_RAW,
|
|
.readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
|
|
/*
|
|
* TODO: Peripheral port remap register:
|
|
* On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
|
|
* base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
|
|
* when MMU is off.
|
|
*/
|
|
{ .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
|
|
.opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
|
|
.type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
|
|
.writefn = omap_cachemaint_write },
|
|
{ .name = "C9", .cp = 15, .crn = 9,
|
|
.crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
|
|
.type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
|
|
};
|
|
|
|
static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
env->cp15.c15_cpar = value & 0x3fff;
|
|
}
|
|
|
|
static const ARMCPRegInfo xscale_cp_reginfo[] = {
|
|
{ .name = "XSCALE_CPAR",
|
|
.cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
|
|
.writefn = xscale_cpar_write, },
|
|
{ .name = "XSCALE_AUXCR",
|
|
.cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
|
|
.resetvalue = 0, },
|
|
/*
|
|
* XScale specific cache-lockdown: since we have no cache we NOP these
|
|
* and hope the guest does not really rely on cache behaviour.
|
|
*/
|
|
{ .name = "XSCALE_LOCK_ICACHE_LINE",
|
|
.cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
|
|
.access = PL1_W, .type = ARM_CP_NOP },
|
|
{ .name = "XSCALE_UNLOCK_ICACHE",
|
|
.cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
|
|
.access = PL1_W, .type = ARM_CP_NOP },
|
|
{ .name = "XSCALE_DCACHE_LOCK",
|
|
.cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
|
|
.access = PL1_RW, .type = ARM_CP_NOP },
|
|
{ .name = "XSCALE_UNLOCK_DCACHE",
|
|
.cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
|
|
.access = PL1_W, .type = ARM_CP_NOP },
|
|
};
|
|
|
|
static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
|
|
/*
|
|
* RAZ/WI the whole crn=15 space, when we don't have a more specific
|
|
* implementation of this implementation-defined space.
|
|
* Ideally this should eventually disappear in favour of actually
|
|
* implementing the correct behaviour for all cores.
|
|
*/
|
|
{ .name = "C15_IMPDEF", .cp = 15, .crn = 15,
|
|
.crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
|
|
.access = PL1_RW,
|
|
.type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
|
|
.resetvalue = 0 },
|
|
};
|
|
|
|
static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
|
|
/* Cache status: RAZ because we have no cache so it's always clean */
|
|
{ .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
|
|
.access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
|
|
.resetvalue = 0 },
|
|
};
|
|
|
|
static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
|
|
/* We never have a block transfer operation in progress */
|
|
{ .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
|
|
.access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
|
|
.resetvalue = 0 },
|
|
/* The cache ops themselves: these all NOP for QEMU */
|
|
{ .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
|
|
.access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
|
|
{ .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
|
|
.access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
|
|
{ .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
|
|
.access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
|
|
{ .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
|
|
.access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
|
|
{ .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
|
|
.access = PL0_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
|
|
{ .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
|
|
.access = PL1_W, .type = ARM_CP_NOP | ARM_CP_64BIT },
|
|
};
|
|
|
|
static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
|
|
/*
|
|
* The cache test-and-clean instructions always return (1 << 30)
|
|
* to indicate that there are no dirty cache lines.
|
|
*/
|
|
{ .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
|
|
.access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
|
|
.resetvalue = (1 << 30) },
|
|
{ .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
|
|
.access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
|
|
.resetvalue = (1 << 30) },
|
|
};
|
|
|
|
static const ARMCPRegInfo strongarm_cp_reginfo[] = {
|
|
/* Ignore ReadBuffer accesses */
|
|
{ .name = "C9_READBUFFER", .cp = 15, .crn = 9,
|
|
.crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
|
|
.access = PL1_RW, .resetvalue = 0,
|
|
.type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
|
|
};
|
|
|
|
static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
unsigned int cur_el = arm_current_el(env);
|
|
|
|
if (arm_is_el2_enabled(env) && cur_el == 1) {
|
|
return env->cp15.vpidr_el2;
|
|
}
|
|
return raw_read(env, ri);
|
|
}
|
|
|
|
static uint64_t mpidr_read_val(CPUARMState *env)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
uint64_t mpidr = cpu->mp_affinity;
|
|
|
|
if (arm_feature(env, ARM_FEATURE_V7MP)) {
|
|
mpidr |= (1U << 31);
|
|
/*
|
|
* Cores which are uniprocessor (non-coherent)
|
|
* but still implement the MP extensions set
|
|
* bit 30. (For instance, Cortex-R5).
|
|
*/
|
|
if (cpu->mp_is_up) {
|
|
mpidr |= (1u << 30);
|
|
}
|
|
}
|
|
return mpidr;
|
|
}
|
|
|
|
static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
unsigned int cur_el = arm_current_el(env);
|
|
|
|
if (arm_is_el2_enabled(env) && cur_el == 1) {
|
|
return env->cp15.vmpidr_el2;
|
|
}
|
|
return mpidr_read_val(env);
|
|
}
|
|
|
|
static const ARMCPRegInfo lpae_cp_reginfo[] = {
|
|
/* NOP AMAIR0/1 */
|
|
{ .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
|
|
.access = PL1_RW, .accessfn = access_tvm_trvm,
|
|
.fgt = FGT_AMAIR_EL1,
|
|
.nv2_redirect_offset = 0x148 | NV2_REDIR_NV1,
|
|
.type = ARM_CP_CONST, .resetvalue = 0 },
|
|
/* AMAIR1 is mapped to AMAIR_EL1[63:32] */
|
|
{ .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
|
|
.access = PL1_RW, .accessfn = access_tvm_trvm,
|
|
.type = ARM_CP_CONST, .resetvalue = 0 },
|
|
{ .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
|
|
.access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
|
|
.bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
|
|
offsetof(CPUARMState, cp15.par_ns)} },
|
|
{ .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
|
|
.access = PL1_RW, .accessfn = access_tvm_trvm,
|
|
.type = ARM_CP_64BIT | ARM_CP_ALIAS,
|
|
.bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
|
|
offsetof(CPUARMState, cp15.ttbr0_ns) },
|
|
.writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
|
|
{ .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
|
|
.access = PL1_RW, .accessfn = access_tvm_trvm,
|
|
.type = ARM_CP_64BIT | ARM_CP_ALIAS,
|
|
.bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
|
|
offsetof(CPUARMState, cp15.ttbr1_ns) },
|
|
.writefn = vmsa_ttbr_write, .raw_writefn = raw_write },
|
|
};
|
|
|
|
static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return vfp_get_fpcr(env);
|
|
}
|
|
|
|
static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
vfp_set_fpcr(env, value);
|
|
}
|
|
|
|
static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return vfp_get_fpsr(env);
|
|
}
|
|
|
|
static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
vfp_set_fpsr(env, value);
|
|
}
|
|
|
|
static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
|
|
return CP_ACCESS_TRAP;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
env->daif = value & PSTATE_DAIF;
|
|
}
|
|
|
|
static uint64_t aa64_pan_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return env->pstate & PSTATE_PAN;
|
|
}
|
|
|
|
static void aa64_pan_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
env->pstate = (env->pstate & ~PSTATE_PAN) | (value & PSTATE_PAN);
|
|
}
|
|
|
|
static const ARMCPRegInfo pan_reginfo = {
|
|
.name = "PAN", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 3,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_RW,
|
|
.readfn = aa64_pan_read, .writefn = aa64_pan_write
|
|
};
|
|
|
|
static uint64_t aa64_uao_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return env->pstate & PSTATE_UAO;
|
|
}
|
|
|
|
static void aa64_uao_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
env->pstate = (env->pstate & ~PSTATE_UAO) | (value & PSTATE_UAO);
|
|
}
|
|
|
|
static const ARMCPRegInfo uao_reginfo = {
|
|
.name = "UAO", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 4,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_RW,
|
|
.readfn = aa64_uao_read, .writefn = aa64_uao_write
|
|
};
|
|
|
|
static uint64_t aa64_dit_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return env->pstate & PSTATE_DIT;
|
|
}
|
|
|
|
static void aa64_dit_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
env->pstate = (env->pstate & ~PSTATE_DIT) | (value & PSTATE_DIT);
|
|
}
|
|
|
|
static const ARMCPRegInfo dit_reginfo = {
|
|
.name = "DIT", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 5,
|
|
.type = ARM_CP_NO_RAW, .access = PL0_RW,
|
|
.readfn = aa64_dit_read, .writefn = aa64_dit_write
|
|
};
|
|
|
|
static uint64_t aa64_ssbs_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return env->pstate & PSTATE_SSBS;
|
|
}
|
|
|
|
static void aa64_ssbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
env->pstate = (env->pstate & ~PSTATE_SSBS) | (value & PSTATE_SSBS);
|
|
}
|
|
|
|
static const ARMCPRegInfo ssbs_reginfo = {
|
|
.name = "SSBS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 6,
|
|
.type = ARM_CP_NO_RAW, .access = PL0_RW,
|
|
.readfn = aa64_ssbs_read, .writefn = aa64_ssbs_write
|
|
};
|
|
|
|
static CPAccessResult aa64_cacheop_poc_access(CPUARMState *env,
|
|
const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
/* Cache invalidate/clean to Point of Coherency or Persistence... */
|
|
switch (arm_current_el(env)) {
|
|
case 0:
|
|
/* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
|
|
if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
|
|
return CP_ACCESS_TRAP;
|
|
}
|
|
/* fall through */
|
|
case 1:
|
|
/* ... EL1 must trap to EL2 if HCR_EL2.TPCP is set. */
|
|
if (arm_hcr_el2_eff(env) & HCR_TPCP) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
break;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static CPAccessResult do_cacheop_pou_access(CPUARMState *env, uint64_t hcrflags)
|
|
{
|
|
/* Cache invalidate/clean to Point of Unification... */
|
|
switch (arm_current_el(env)) {
|
|
case 0:
|
|
/* ... EL0 must UNDEF unless SCTLR_EL1.UCI is set. */
|
|
if (!(arm_sctlr(env, 0) & SCTLR_UCI)) {
|
|
return CP_ACCESS_TRAP;
|
|
}
|
|
/* fall through */
|
|
case 1:
|
|
/* ... EL1 must trap to EL2 if relevant HCR_EL2 flags are set. */
|
|
if (arm_hcr_el2_eff(env) & hcrflags) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
break;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static CPAccessResult access_ticab(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
return do_cacheop_pou_access(env, HCR_TICAB | HCR_TPU);
|
|
}
|
|
|
|
static CPAccessResult access_tocu(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
return do_cacheop_pou_access(env, HCR_TOCU | HCR_TPU);
|
|
}
|
|
|
|
/*
|
|
* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
|
|
* Page D4-1736 (DDI0487A.b)
|
|
*/
|
|
|
|
static int vae1_tlbmask(CPUARMState *env)
|
|
{
|
|
uint64_t hcr = arm_hcr_el2_eff(env);
|
|
uint16_t mask;
|
|
|
|
if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
|
|
mask = ARMMMUIdxBit_E20_2 |
|
|
ARMMMUIdxBit_E20_2_PAN |
|
|
ARMMMUIdxBit_E20_0;
|
|
} else {
|
|
mask = ARMMMUIdxBit_E10_1 |
|
|
ARMMMUIdxBit_E10_1_PAN |
|
|
ARMMMUIdxBit_E10_0;
|
|
}
|
|
return mask;
|
|
}
|
|
|
|
static int vae2_tlbmask(CPUARMState *env)
|
|
{
|
|
uint64_t hcr = arm_hcr_el2_eff(env);
|
|
uint16_t mask;
|
|
|
|
if (hcr & HCR_E2H) {
|
|
mask = ARMMMUIdxBit_E20_2 |
|
|
ARMMMUIdxBit_E20_2_PAN |
|
|
ARMMMUIdxBit_E20_0;
|
|
} else {
|
|
mask = ARMMMUIdxBit_E2;
|
|
}
|
|
return mask;
|
|
}
|
|
|
|
/* Return 56 if TBI is enabled, 64 otherwise. */
|
|
static int tlbbits_for_regime(CPUARMState *env, ARMMMUIdx mmu_idx,
|
|
uint64_t addr)
|
|
{
|
|
uint64_t tcr = regime_tcr(env, mmu_idx);
|
|
int tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
|
|
int select = extract64(addr, 55, 1);
|
|
|
|
return (tbi >> select) & 1 ? 56 : 64;
|
|
}
|
|
|
|
static int vae1_tlbbits(CPUARMState *env, uint64_t addr)
|
|
{
|
|
uint64_t hcr = arm_hcr_el2_eff(env);
|
|
ARMMMUIdx mmu_idx;
|
|
|
|
/* Only the regime of the mmu_idx below is significant. */
|
|
if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
|
|
mmu_idx = ARMMMUIdx_E20_0;
|
|
} else {
|
|
mmu_idx = ARMMMUIdx_E10_0;
|
|
}
|
|
|
|
return tlbbits_for_regime(env, mmu_idx, addr);
|
|
}
|
|
|
|
static int vae2_tlbbits(CPUARMState *env, uint64_t addr)
|
|
{
|
|
uint64_t hcr = arm_hcr_el2_eff(env);
|
|
ARMMMUIdx mmu_idx;
|
|
|
|
/*
|
|
* Only the regime of the mmu_idx below is significant.
|
|
* Regime EL2&0 has two ranges with separate TBI configuration, while EL2
|
|
* only has one.
|
|
*/
|
|
if (hcr & HCR_E2H) {
|
|
mmu_idx = ARMMMUIdx_E20_2;
|
|
} else {
|
|
mmu_idx = ARMMMUIdx_E2;
|
|
}
|
|
|
|
return tlbbits_for_regime(env, mmu_idx, addr);
|
|
}
|
|
|
|
static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
int mask = vae1_tlbmask(env);
|
|
|
|
tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
|
|
}
|
|
|
|
static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
int mask = vae1_tlbmask(env);
|
|
|
|
if (tlb_force_broadcast(env)) {
|
|
tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
|
|
} else {
|
|
tlb_flush_by_mmuidx(cs, mask);
|
|
}
|
|
}
|
|
|
|
static int e2_tlbmask(CPUARMState *env)
|
|
{
|
|
return (ARMMMUIdxBit_E20_0 |
|
|
ARMMMUIdxBit_E20_2 |
|
|
ARMMMUIdxBit_E20_2_PAN |
|
|
ARMMMUIdxBit_E2);
|
|
}
|
|
|
|
static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
int mask = alle1_tlbmask(env);
|
|
|
|
tlb_flush_by_mmuidx(cs, mask);
|
|
}
|
|
|
|
static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
int mask = e2_tlbmask(env);
|
|
|
|
tlb_flush_by_mmuidx(cs, mask);
|
|
}
|
|
|
|
static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
CPUState *cs = CPU(cpu);
|
|
|
|
tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_E3);
|
|
}
|
|
|
|
static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
int mask = alle1_tlbmask(env);
|
|
|
|
tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
|
|
}
|
|
|
|
static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
int mask = e2_tlbmask(env);
|
|
|
|
tlb_flush_by_mmuidx_all_cpus_synced(cs, mask);
|
|
}
|
|
|
|
static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
|
|
tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_E3);
|
|
}
|
|
|
|
static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/*
|
|
* Invalidate by VA, EL2
|
|
* Currently handles both VAE2 and VALE2, since we don't support
|
|
* flush-last-level-only.
|
|
*/
|
|
CPUState *cs = env_cpu(env);
|
|
int mask = vae2_tlbmask(env);
|
|
uint64_t pageaddr = sextract64(value << 12, 0, 56);
|
|
int bits = vae2_tlbbits(env, pageaddr);
|
|
|
|
tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
|
|
}
|
|
|
|
static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/*
|
|
* Invalidate by VA, EL3
|
|
* Currently handles both VAE3 and VALE3, since we don't support
|
|
* flush-last-level-only.
|
|
*/
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
CPUState *cs = CPU(cpu);
|
|
uint64_t pageaddr = sextract64(value << 12, 0, 56);
|
|
|
|
tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_E3);
|
|
}
|
|
|
|
static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
int mask = vae1_tlbmask(env);
|
|
uint64_t pageaddr = sextract64(value << 12, 0, 56);
|
|
int bits = vae1_tlbbits(env, pageaddr);
|
|
|
|
tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
|
|
}
|
|
|
|
static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/*
|
|
* Invalidate by VA, EL1&0 (AArch64 version).
|
|
* Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
|
|
* since we don't support flush-for-specific-ASID-only or
|
|
* flush-last-level-only.
|
|
*/
|
|
CPUState *cs = env_cpu(env);
|
|
int mask = vae1_tlbmask(env);
|
|
uint64_t pageaddr = sextract64(value << 12, 0, 56);
|
|
int bits = vae1_tlbbits(env, pageaddr);
|
|
|
|
if (tlb_force_broadcast(env)) {
|
|
tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
|
|
} else {
|
|
tlb_flush_page_bits_by_mmuidx(cs, pageaddr, mask, bits);
|
|
}
|
|
}
|
|
|
|
static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
int mask = vae2_tlbmask(env);
|
|
uint64_t pageaddr = sextract64(value << 12, 0, 56);
|
|
int bits = vae2_tlbbits(env, pageaddr);
|
|
|
|
tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr, mask, bits);
|
|
}
|
|
|
|
static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
uint64_t pageaddr = sextract64(value << 12, 0, 56);
|
|
int bits = tlbbits_for_regime(env, ARMMMUIdx_E3, pageaddr);
|
|
|
|
tlb_flush_page_bits_by_mmuidx_all_cpus_synced(cs, pageaddr,
|
|
ARMMMUIdxBit_E3, bits);
|
|
}
|
|
|
|
static int ipas2e1_tlbmask(CPUARMState *env, int64_t value)
|
|
{
|
|
/*
|
|
* The MSB of value is the NS field, which only applies if SEL2
|
|
* is implemented and SCR_EL3.NS is not set (i.e. in secure mode).
|
|
*/
|
|
return (value >= 0
|
|
&& cpu_isar_feature(aa64_sel2, env_archcpu(env))
|
|
&& arm_is_secure_below_el3(env)
|
|
? ARMMMUIdxBit_Stage2_S
|
|
: ARMMMUIdxBit_Stage2);
|
|
}
|
|
|
|
static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
int mask = ipas2e1_tlbmask(env, value);
|
|
uint64_t pageaddr = sextract64(value << 12, 0, 56);
|
|
|
|
if (tlb_force_broadcast(env)) {
|
|
tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
|
|
} else {
|
|
tlb_flush_page_by_mmuidx(cs, pageaddr, mask);
|
|
}
|
|
}
|
|
|
|
static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
int mask = ipas2e1_tlbmask(env, value);
|
|
uint64_t pageaddr = sextract64(value << 12, 0, 56);
|
|
|
|
tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr, mask);
|
|
}
|
|
|
|
#ifdef TARGET_AARCH64
|
|
typedef struct {
|
|
uint64_t base;
|
|
uint64_t length;
|
|
} TLBIRange;
|
|
|
|
static ARMGranuleSize tlbi_range_tg_to_gran_size(int tg)
|
|
{
|
|
/*
|
|
* Note that the TLBI range TG field encoding differs from both
|
|
* TG0 and TG1 encodings.
|
|
*/
|
|
switch (tg) {
|
|
case 1:
|
|
return Gran4K;
|
|
case 2:
|
|
return Gran16K;
|
|
case 3:
|
|
return Gran64K;
|
|
default:
|
|
return GranInvalid;
|
|
}
|
|
}
|
|
|
|
static TLBIRange tlbi_aa64_get_range(CPUARMState *env, ARMMMUIdx mmuidx,
|
|
uint64_t value)
|
|
{
|
|
unsigned int page_size_granule, page_shift, num, scale, exponent;
|
|
/* Extract one bit to represent the va selector in use. */
|
|
uint64_t select = sextract64(value, 36, 1);
|
|
ARMVAParameters param = aa64_va_parameters(env, select, mmuidx, true, false);
|
|
TLBIRange ret = { };
|
|
ARMGranuleSize gran;
|
|
|
|
page_size_granule = extract64(value, 46, 2);
|
|
gran = tlbi_range_tg_to_gran_size(page_size_granule);
|
|
|
|
/* The granule encoded in value must match the granule in use. */
|
|
if (gran != param.gran) {
|
|
qemu_log_mask(LOG_GUEST_ERROR, "Invalid tlbi page size granule %d\n",
|
|
page_size_granule);
|
|
return ret;
|
|
}
|
|
|
|
page_shift = arm_granule_bits(gran);
|
|
num = extract64(value, 39, 5);
|
|
scale = extract64(value, 44, 2);
|
|
exponent = (5 * scale) + 1;
|
|
|
|
ret.length = (num + 1) << (exponent + page_shift);
|
|
|
|
if (param.select) {
|
|
ret.base = sextract64(value, 0, 37);
|
|
} else {
|
|
ret.base = extract64(value, 0, 37);
|
|
}
|
|
if (param.ds) {
|
|
/*
|
|
* With DS=1, BaseADDR is always shifted 16 so that it is able
|
|
* to address all 52 va bits. The input address is perforce
|
|
* aligned on a 64k boundary regardless of translation granule.
|
|
*/
|
|
page_shift = 16;
|
|
}
|
|
ret.base <<= page_shift;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void do_rvae_write(CPUARMState *env, uint64_t value,
|
|
int idxmap, bool synced)
|
|
{
|
|
ARMMMUIdx one_idx = ARM_MMU_IDX_A | ctz32(idxmap);
|
|
TLBIRange range;
|
|
int bits;
|
|
|
|
range = tlbi_aa64_get_range(env, one_idx, value);
|
|
bits = tlbbits_for_regime(env, one_idx, range.base);
|
|
|
|
if (synced) {
|
|
tlb_flush_range_by_mmuidx_all_cpus_synced(env_cpu(env),
|
|
range.base,
|
|
range.length,
|
|
idxmap,
|
|
bits);
|
|
} else {
|
|
tlb_flush_range_by_mmuidx(env_cpu(env), range.base,
|
|
range.length, idxmap, bits);
|
|
}
|
|
}
|
|
|
|
static void tlbi_aa64_rvae1_write(CPUARMState *env,
|
|
const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/*
|
|
* Invalidate by VA range, EL1&0.
|
|
* Currently handles all of RVAE1, RVAAE1, RVAALE1 and RVALE1,
|
|
* since we don't support flush-for-specific-ASID-only or
|
|
* flush-last-level-only.
|
|
*/
|
|
|
|
do_rvae_write(env, value, vae1_tlbmask(env),
|
|
tlb_force_broadcast(env));
|
|
}
|
|
|
|
static void tlbi_aa64_rvae1is_write(CPUARMState *env,
|
|
const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/*
|
|
* Invalidate by VA range, Inner/Outer Shareable EL1&0.
|
|
* Currently handles all of RVAE1IS, RVAE1OS, RVAAE1IS, RVAAE1OS,
|
|
* RVAALE1IS, RVAALE1OS, RVALE1IS and RVALE1OS, since we don't support
|
|
* flush-for-specific-ASID-only, flush-last-level-only or inner/outer
|
|
* shareable specific flushes.
|
|
*/
|
|
|
|
do_rvae_write(env, value, vae1_tlbmask(env), true);
|
|
}
|
|
|
|
static void tlbi_aa64_rvae2_write(CPUARMState *env,
|
|
const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/*
|
|
* Invalidate by VA range, EL2.
|
|
* Currently handles all of RVAE2 and RVALE2,
|
|
* since we don't support flush-for-specific-ASID-only or
|
|
* flush-last-level-only.
|
|
*/
|
|
|
|
do_rvae_write(env, value, vae2_tlbmask(env),
|
|
tlb_force_broadcast(env));
|
|
|
|
|
|
}
|
|
|
|
static void tlbi_aa64_rvae2is_write(CPUARMState *env,
|
|
const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/*
|
|
* Invalidate by VA range, Inner/Outer Shareable, EL2.
|
|
* Currently handles all of RVAE2IS, RVAE2OS, RVALE2IS and RVALE2OS,
|
|
* since we don't support flush-for-specific-ASID-only,
|
|
* flush-last-level-only or inner/outer shareable specific flushes.
|
|
*/
|
|
|
|
do_rvae_write(env, value, vae2_tlbmask(env), true);
|
|
|
|
}
|
|
|
|
static void tlbi_aa64_rvae3_write(CPUARMState *env,
|
|
const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/*
|
|
* Invalidate by VA range, EL3.
|
|
* Currently handles all of RVAE3 and RVALE3,
|
|
* since we don't support flush-for-specific-ASID-only or
|
|
* flush-last-level-only.
|
|
*/
|
|
|
|
do_rvae_write(env, value, ARMMMUIdxBit_E3, tlb_force_broadcast(env));
|
|
}
|
|
|
|
static void tlbi_aa64_rvae3is_write(CPUARMState *env,
|
|
const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/*
|
|
* Invalidate by VA range, EL3, Inner/Outer Shareable.
|
|
* Currently handles all of RVAE3IS, RVAE3OS, RVALE3IS and RVALE3OS,
|
|
* since we don't support flush-for-specific-ASID-only,
|
|
* flush-last-level-only or inner/outer specific flushes.
|
|
*/
|
|
|
|
do_rvae_write(env, value, ARMMMUIdxBit_E3, true);
|
|
}
|
|
|
|
static void tlbi_aa64_ripas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
do_rvae_write(env, value, ipas2e1_tlbmask(env, value),
|
|
tlb_force_broadcast(env));
|
|
}
|
|
|
|
static void tlbi_aa64_ripas2e1is_write(CPUARMState *env,
|
|
const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
do_rvae_write(env, value, ipas2e1_tlbmask(env, value), true);
|
|
}
|
|
#endif
|
|
|
|
static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
int cur_el = arm_current_el(env);
|
|
|
|
if (cur_el < 2) {
|
|
uint64_t hcr = arm_hcr_el2_eff(env);
|
|
|
|
if (cur_el == 0) {
|
|
if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
|
|
if (!(env->cp15.sctlr_el[2] & SCTLR_DZE)) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
} else {
|
|
if (!(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
|
|
return CP_ACCESS_TRAP;
|
|
}
|
|
if (hcr & HCR_TDZ) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
}
|
|
} else if (hcr & HCR_TDZ) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
int dzp_bit = 1 << 4;
|
|
|
|
/* DZP indicates whether DC ZVA access is allowed */
|
|
if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
|
|
dzp_bit = 0;
|
|
}
|
|
return cpu->dcz_blocksize | dzp_bit;
|
|
}
|
|
|
|
static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (!(env->pstate & PSTATE_SP)) {
|
|
/*
|
|
* Access to SP_EL0 is undefined if it's being used as
|
|
* the stack pointer.
|
|
*/
|
|
return CP_ACCESS_TRAP_UNCATEGORIZED;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return env->pstate & PSTATE_SP;
|
|
}
|
|
|
|
static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
|
|
{
|
|
update_spsel(env, val);
|
|
}
|
|
|
|
static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
|
|
if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
|
|
/* M bit is RAZ/WI for PMSA with no MPU implemented */
|
|
value &= ~SCTLR_M;
|
|
}
|
|
|
|
/* ??? Lots of these bits are not implemented. */
|
|
|
|
if (ri->state == ARM_CP_STATE_AA64 && !cpu_isar_feature(aa64_mte, cpu)) {
|
|
if (ri->opc1 == 6) { /* SCTLR_EL3 */
|
|
value &= ~(SCTLR_ITFSB | SCTLR_TCF | SCTLR_ATA);
|
|
} else {
|
|
value &= ~(SCTLR_ITFSB | SCTLR_TCF0 | SCTLR_TCF |
|
|
SCTLR_ATA0 | SCTLR_ATA);
|
|
}
|
|
}
|
|
|
|
if (raw_read(env, ri) == value) {
|
|
/*
|
|
* Skip the TLB flush if nothing actually changed; Linux likes
|
|
* to do a lot of pointless SCTLR writes.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
raw_write(env, ri, value);
|
|
|
|
/* This may enable/disable the MMU, so do a TLB flush. */
|
|
tlb_flush(CPU(cpu));
|
|
|
|
if (tcg_enabled() && ri->type & ARM_CP_SUPPRESS_TB_END) {
|
|
/*
|
|
* Normally we would always end the TB on an SCTLR write; see the
|
|
* comment in ARMCPRegInfo sctlr initialization below for why Xscale
|
|
* is special. Setting ARM_CP_SUPPRESS_TB_END also stops the rebuild
|
|
* of hflags from the translator, so do it here.
|
|
*/
|
|
arm_rebuild_hflags(env);
|
|
}
|
|
}
|
|
|
|
static void mdcr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/*
|
|
* Some MDCR_EL3 bits affect whether PMU counters are running:
|
|
* if we are trying to change any of those then we must
|
|
* bracket this update with PMU start/finish calls.
|
|
*/
|
|
bool pmu_op = (env->cp15.mdcr_el3 ^ value) & MDCR_EL3_PMU_ENABLE_BITS;
|
|
|
|
if (pmu_op) {
|
|
pmu_op_start(env);
|
|
}
|
|
env->cp15.mdcr_el3 = value;
|
|
if (pmu_op) {
|
|
pmu_op_finish(env);
|
|
}
|
|
}
|
|
|
|
static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/* Not all bits defined for MDCR_EL3 exist in the AArch32 SDCR */
|
|
mdcr_el3_write(env, ri, value & SDCR_VALID_MASK);
|
|
}
|
|
|
|
static void mdcr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/*
|
|
* Some MDCR_EL2 bits affect whether PMU counters are running:
|
|
* if we are trying to change any of those then we must
|
|
* bracket this update with PMU start/finish calls.
|
|
*/
|
|
bool pmu_op = (env->cp15.mdcr_el2 ^ value) & MDCR_EL2_PMU_ENABLE_BITS;
|
|
|
|
if (pmu_op) {
|
|
pmu_op_start(env);
|
|
}
|
|
env->cp15.mdcr_el2 = value;
|
|
if (pmu_op) {
|
|
pmu_op_finish(env);
|
|
}
|
|
}
|
|
|
|
static CPAccessResult access_nv1(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (arm_current_el(env) == 1) {
|
|
uint64_t hcr_nv = arm_hcr_el2_eff(env) & (HCR_NV | HCR_NV1 | HCR_NV2);
|
|
|
|
if (hcr_nv == (HCR_NV | HCR_NV1)) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
#ifdef CONFIG_USER_ONLY
|
|
/*
|
|
* `IC IVAU` is handled to improve compatibility with JITs that dual-map their
|
|
* code to get around W^X restrictions, where one region is writable and the
|
|
* other is executable.
|
|
*
|
|
* Since the executable region is never written to we cannot detect code
|
|
* changes when running in user mode, and rely on the emulated JIT telling us
|
|
* that the code has changed by executing this instruction.
|
|
*/
|
|
static void ic_ivau_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
uint64_t icache_line_mask, start_address, end_address;
|
|
const ARMCPU *cpu;
|
|
|
|
cpu = env_archcpu(env);
|
|
|
|
icache_line_mask = (4 << extract32(cpu->ctr, 0, 4)) - 1;
|
|
start_address = value & ~icache_line_mask;
|
|
end_address = value | icache_line_mask;
|
|
|
|
mmap_lock();
|
|
|
|
tb_invalidate_phys_range(start_address, end_address);
|
|
|
|
mmap_unlock();
|
|
}
|
|
#endif
|
|
|
|
static const ARMCPRegInfo v8_cp_reginfo[] = {
|
|
/*
|
|
* Minimal set of EL0-visible registers. This will need to be expanded
|
|
* significantly for system emulation of AArch64 CPUs.
|
|
*/
|
|
{ .name = "NZCV", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
|
|
.access = PL0_RW, .type = ARM_CP_NZCV },
|
|
{ .name = "DAIF", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
|
|
.type = ARM_CP_NO_RAW,
|
|
.access = PL0_RW, .accessfn = aa64_daif_access,
|
|
.fieldoffset = offsetof(CPUARMState, daif),
|
|
.writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
|
|
{ .name = "FPCR", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
|
|
.access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
|
|
.readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
|
|
{ .name = "FPSR", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
|
|
.access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
|
|
.readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
|
|
{ .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
|
|
.access = PL0_R, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_DCZID_EL0,
|
|
.readfn = aa64_dczid_read },
|
|
{ .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
|
|
.access = PL0_W, .type = ARM_CP_DC_ZVA,
|
|
#ifndef CONFIG_USER_ONLY
|
|
/* Avoid overhead of an access check that always passes in user-mode */
|
|
.accessfn = aa64_zva_access,
|
|
.fgt = FGT_DCZVA,
|
|
#endif
|
|
},
|
|
{ .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
|
|
.access = PL1_R, .type = ARM_CP_CURRENTEL },
|
|
/*
|
|
* Instruction cache ops. All of these except `IC IVAU` NOP because we
|
|
* don't emulate caches.
|
|
*/
|
|
{ .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
|
|
.access = PL1_W, .type = ARM_CP_NOP,
|
|
.fgt = FGT_ICIALLUIS,
|
|
.accessfn = access_ticab },
|
|
{ .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
|
|
.access = PL1_W, .type = ARM_CP_NOP,
|
|
.fgt = FGT_ICIALLU,
|
|
.accessfn = access_tocu },
|
|
{ .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
|
|
.access = PL0_W,
|
|
.fgt = FGT_ICIVAU,
|
|
.accessfn = access_tocu,
|
|
#ifdef CONFIG_USER_ONLY
|
|
.type = ARM_CP_NO_RAW,
|
|
.writefn = ic_ivau_write
|
|
#else
|
|
.type = ARM_CP_NOP
|
|
#endif
|
|
},
|
|
/* Cache ops: all NOPs since we don't emulate caches */
|
|
{ .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
|
|
.access = PL1_W, .accessfn = aa64_cacheop_poc_access,
|
|
.fgt = FGT_DCIVAC,
|
|
.type = ARM_CP_NOP },
|
|
{ .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
|
|
.fgt = FGT_DCISW,
|
|
.access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
|
|
{ .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
|
|
.access = PL0_W, .type = ARM_CP_NOP,
|
|
.fgt = FGT_DCCVAC,
|
|
.accessfn = aa64_cacheop_poc_access },
|
|
{ .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
|
|
.fgt = FGT_DCCSW,
|
|
.access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
|
|
{ .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
|
|
.access = PL0_W, .type = ARM_CP_NOP,
|
|
.fgt = FGT_DCCVAU,
|
|
.accessfn = access_tocu },
|
|
{ .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
|
|
.access = PL0_W, .type = ARM_CP_NOP,
|
|
.fgt = FGT_DCCIVAC,
|
|
.accessfn = aa64_cacheop_poc_access },
|
|
{ .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
|
|
.fgt = FGT_DCCISW,
|
|
.access = PL1_W, .accessfn = access_tsw, .type = ARM_CP_NOP },
|
|
/* TLBI operations */
|
|
{ .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
|
|
.access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_TLBIVMALLE1IS,
|
|
.writefn = tlbi_aa64_vmalle1is_write },
|
|
{ .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
|
|
.access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_TLBIVAE1IS,
|
|
.writefn = tlbi_aa64_vae1is_write },
|
|
{ .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
|
|
.access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_TLBIASIDE1IS,
|
|
.writefn = tlbi_aa64_vmalle1is_write },
|
|
{ .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
|
|
.access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_TLBIVAAE1IS,
|
|
.writefn = tlbi_aa64_vae1is_write },
|
|
{ .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
|
|
.access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_TLBIVALE1IS,
|
|
.writefn = tlbi_aa64_vae1is_write },
|
|
{ .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
|
|
.access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_TLBIVAALE1IS,
|
|
.writefn = tlbi_aa64_vae1is_write },
|
|
{ .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
|
|
.access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_TLBIVMALLE1,
|
|
.writefn = tlbi_aa64_vmalle1_write },
|
|
{ .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
|
|
.access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_TLBIVAE1,
|
|
.writefn = tlbi_aa64_vae1_write },
|
|
{ .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
|
|
.access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_TLBIASIDE1,
|
|
.writefn = tlbi_aa64_vmalle1_write },
|
|
{ .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
|
|
.access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_TLBIVAAE1,
|
|
.writefn = tlbi_aa64_vae1_write },
|
|
{ .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
|
|
.access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_TLBIVALE1,
|
|
.writefn = tlbi_aa64_vae1_write },
|
|
{ .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
|
|
.access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_TLBIVAALE1,
|
|
.writefn = tlbi_aa64_vae1_write },
|
|
{ .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_ipas2e1is_write },
|
|
{ .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_ipas2e1is_write },
|
|
{ .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_alle1is_write },
|
|
{ .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_alle1is_write },
|
|
{ .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_ipas2e1_write },
|
|
{ .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_ipas2e1_write },
|
|
{ .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_alle1_write },
|
|
{ .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_alle1is_write },
|
|
#ifndef CONFIG_USER_ONLY
|
|
/* 64 bit address translation operations */
|
|
{ .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
|
|
.access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
|
|
.fgt = FGT_ATS1E1R,
|
|
.accessfn = at_s1e01_access, .writefn = ats_write64 },
|
|
{ .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
|
|
.access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
|
|
.fgt = FGT_ATS1E1W,
|
|
.accessfn = at_s1e01_access, .writefn = ats_write64 },
|
|
{ .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
|
|
.access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
|
|
.fgt = FGT_ATS1E0R,
|
|
.accessfn = at_s1e01_access, .writefn = ats_write64 },
|
|
{ .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
|
|
.access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
|
|
.fgt = FGT_ATS1E0W,
|
|
.accessfn = at_s1e01_access, .writefn = ats_write64 },
|
|
{ .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
|
|
.accessfn = at_e012_access, .writefn = ats_write64 },
|
|
{ .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
|
|
.accessfn = at_e012_access, .writefn = ats_write64 },
|
|
{ .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
|
|
.accessfn = at_e012_access, .writefn = ats_write64 },
|
|
{ .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
|
|
.accessfn = at_e012_access, .writefn = ats_write64 },
|
|
/* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
|
|
{ .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
|
|
.access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
|
|
.writefn = ats_write64 },
|
|
{ .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
|
|
.access = PL3_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
|
|
.writefn = ats_write64 },
|
|
{ .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
|
|
.type = ARM_CP_ALIAS,
|
|
.opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
|
|
.access = PL1_RW, .resetvalue = 0,
|
|
.fgt = FGT_PAR_EL1,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
|
|
.writefn = par_write },
|
|
#endif
|
|
/* TLB invalidate last level of translation table walk */
|
|
{ .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
|
|
.writefn = tlbimva_is_write },
|
|
{ .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlbis,
|
|
.writefn = tlbimvaa_is_write },
|
|
{ .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
|
|
.writefn = tlbimva_write },
|
|
{ .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
|
|
.type = ARM_CP_NO_RAW, .access = PL1_W, .accessfn = access_ttlb,
|
|
.writefn = tlbimvaa_write },
|
|
{ .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
|
|
.type = ARM_CP_NO_RAW, .access = PL2_W,
|
|
.writefn = tlbimva_hyp_write },
|
|
{ .name = "TLBIMVALHIS",
|
|
.cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
|
|
.type = ARM_CP_NO_RAW, .access = PL2_W,
|
|
.writefn = tlbimva_hyp_is_write },
|
|
{ .name = "TLBIIPAS2",
|
|
.cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
|
|
.type = ARM_CP_NO_RAW, .access = PL2_W,
|
|
.writefn = tlbiipas2_hyp_write },
|
|
{ .name = "TLBIIPAS2IS",
|
|
.cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
|
|
.type = ARM_CP_NO_RAW, .access = PL2_W,
|
|
.writefn = tlbiipas2is_hyp_write },
|
|
{ .name = "TLBIIPAS2L",
|
|
.cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
|
|
.type = ARM_CP_NO_RAW, .access = PL2_W,
|
|
.writefn = tlbiipas2_hyp_write },
|
|
{ .name = "TLBIIPAS2LIS",
|
|
.cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
|
|
.type = ARM_CP_NO_RAW, .access = PL2_W,
|
|
.writefn = tlbiipas2is_hyp_write },
|
|
/* 32 bit cache operations */
|
|
{ .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
|
|
.type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_ticab },
|
|
{ .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
|
|
.type = ARM_CP_NOP, .access = PL1_W },
|
|
{ .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
|
|
.type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
|
|
{ .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
|
|
.type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
|
|
{ .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
|
|
.type = ARM_CP_NOP, .access = PL1_W },
|
|
{ .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
|
|
.type = ARM_CP_NOP, .access = PL1_W },
|
|
{ .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
|
|
.type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
|
|
{ .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
|
|
.type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
|
|
{ .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
|
|
.type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
|
|
{ .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
|
|
.type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
|
|
{ .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
|
|
.type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tocu },
|
|
{ .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
|
|
.type = ARM_CP_NOP, .access = PL1_W, .accessfn = aa64_cacheop_poc_access },
|
|
{ .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
|
|
.type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
|
|
/* MMU Domain access control / MPU write buffer control */
|
|
{ .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
|
|
.access = PL1_RW, .accessfn = access_tvm_trvm, .resetvalue = 0,
|
|
.writefn = dacr_write, .raw_writefn = raw_write,
|
|
.bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
|
|
offsetoflow32(CPUARMState, cp15.dacr_ns) } },
|
|
{ .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
|
|
.type = ARM_CP_ALIAS,
|
|
.opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
|
|
.access = PL1_RW, .accessfn = access_nv1,
|
|
.nv2_redirect_offset = 0x230 | NV2_REDIR_NV1,
|
|
.fieldoffset = offsetof(CPUARMState, elr_el[1]) },
|
|
{ .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
|
|
.type = ARM_CP_ALIAS,
|
|
.opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
|
|
.access = PL1_RW, .accessfn = access_nv1,
|
|
.nv2_redirect_offset = 0x160 | NV2_REDIR_NV1,
|
|
.fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
|
|
/*
|
|
* We rely on the access checks not allowing the guest to write to the
|
|
* state field when SPSel indicates that it's being used as the stack
|
|
* pointer.
|
|
*/
|
|
{ .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
|
|
.access = PL1_RW, .accessfn = sp_el0_access,
|
|
.type = ARM_CP_ALIAS,
|
|
.fieldoffset = offsetof(CPUARMState, sp_el[0]) },
|
|
{ .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
|
|
.nv2_redirect_offset = 0x240,
|
|
.access = PL2_RW, .type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_KEEP,
|
|
.fieldoffset = offsetof(CPUARMState, sp_el[1]) },
|
|
{ .name = "SPSel", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
|
|
.type = ARM_CP_NO_RAW,
|
|
.access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
|
|
{ .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
|
|
.type = ARM_CP_ALIAS,
|
|
.opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
|
|
.access = PL2_RW,
|
|
.fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
|
|
{ .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
|
|
.type = ARM_CP_ALIAS,
|
|
.opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
|
|
.access = PL2_RW,
|
|
.fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
|
|
{ .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
|
|
.type = ARM_CP_ALIAS,
|
|
.opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
|
|
.access = PL2_RW,
|
|
.fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
|
|
{ .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
|
|
.type = ARM_CP_ALIAS,
|
|
.opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
|
|
.access = PL2_RW,
|
|
.fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
|
|
{ .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
|
|
.type = ARM_CP_IO,
|
|
.opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
|
|
.resetvalue = 0,
|
|
.access = PL3_RW,
|
|
.writefn = mdcr_el3_write,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
|
|
{ .name = "SDCR", .type = ARM_CP_ALIAS | ARM_CP_IO,
|
|
.cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
|
|
.access = PL1_RW, .accessfn = access_trap_aa32s_el1,
|
|
.writefn = sdcr_write,
|
|
.fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
|
|
};
|
|
|
|
/* These are present only when EL1 supports AArch32 */
|
|
static const ARMCPRegInfo v8_aa32_el1_reginfo[] = {
|
|
{ .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
|
|
.access = PL2_RW,
|
|
.type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP,
|
|
.fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) },
|
|
{ .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
|
|
.access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
|
|
.writefn = dacr_write, .raw_writefn = raw_write,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
|
|
{ .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
|
|
.access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
|
|
};
|
|
|
|
static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
|
|
if (arm_feature(env, ARM_FEATURE_V8)) {
|
|
valid_mask |= MAKE_64BIT_MASK(0, 34); /* ARMv8.0 */
|
|
} else {
|
|
valid_mask |= MAKE_64BIT_MASK(0, 28); /* ARMv7VE */
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_EL3)) {
|
|
valid_mask &= ~HCR_HCD;
|
|
} else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
|
|
/*
|
|
* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
|
|
* However, if we're using the SMC PSCI conduit then QEMU is
|
|
* effectively acting like EL3 firmware and so the guest at
|
|
* EL2 should retain the ability to prevent EL1 from being
|
|
* able to make SMC calls into the ersatz firmware, so in
|
|
* that case HCR.TSC should be read/write.
|
|
*/
|
|
valid_mask &= ~HCR_TSC;
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_AARCH64)) {
|
|
if (cpu_isar_feature(aa64_vh, cpu)) {
|
|
valid_mask |= HCR_E2H;
|
|
}
|
|
if (cpu_isar_feature(aa64_ras, cpu)) {
|
|
valid_mask |= HCR_TERR | HCR_TEA;
|
|
}
|
|
if (cpu_isar_feature(aa64_lor, cpu)) {
|
|
valid_mask |= HCR_TLOR;
|
|
}
|
|
if (cpu_isar_feature(aa64_pauth, cpu)) {
|
|
valid_mask |= HCR_API | HCR_APK;
|
|
}
|
|
if (cpu_isar_feature(aa64_mte, cpu)) {
|
|
valid_mask |= HCR_ATA | HCR_DCT | HCR_TID5;
|
|
}
|
|
if (cpu_isar_feature(aa64_scxtnum, cpu)) {
|
|
valid_mask |= HCR_ENSCXT;
|
|
}
|
|
if (cpu_isar_feature(aa64_fwb, cpu)) {
|
|
valid_mask |= HCR_FWB;
|
|
}
|
|
if (cpu_isar_feature(aa64_rme, cpu)) {
|
|
valid_mask |= HCR_GPF;
|
|
}
|
|
if (cpu_isar_feature(aa64_nv, cpu)) {
|
|
valid_mask |= HCR_NV | HCR_NV1 | HCR_AT;
|
|
}
|
|
if (cpu_isar_feature(aa64_nv2, cpu)) {
|
|
valid_mask |= HCR_NV2;
|
|
}
|
|
}
|
|
|
|
if (cpu_isar_feature(any_evt, cpu)) {
|
|
valid_mask |= HCR_TTLBIS | HCR_TTLBOS | HCR_TICAB | HCR_TOCU | HCR_TID4;
|
|
} else if (cpu_isar_feature(any_half_evt, cpu)) {
|
|
valid_mask |= HCR_TICAB | HCR_TOCU | HCR_TID4;
|
|
}
|
|
|
|
/* Clear RES0 bits. */
|
|
value &= valid_mask;
|
|
|
|
/*
|
|
* These bits change the MMU setup:
|
|
* HCR_VM enables stage 2 translation
|
|
* HCR_PTW forbids certain page-table setups
|
|
* HCR_DC disables stage1 and enables stage2 translation
|
|
* HCR_DCT enables tagging on (disabled) stage1 translation
|
|
* HCR_FWB changes the interpretation of stage2 descriptor bits
|
|
* HCR_NV and HCR_NV1 affect interpretation of descriptor bits
|
|
*/
|
|
if ((env->cp15.hcr_el2 ^ value) &
|
|
(HCR_VM | HCR_PTW | HCR_DC | HCR_DCT | HCR_FWB | HCR_NV | HCR_NV1)) {
|
|
tlb_flush(CPU(cpu));
|
|
}
|
|
env->cp15.hcr_el2 = value;
|
|
|
|
/*
|
|
* Updates to VI and VF require us to update the status of
|
|
* virtual interrupts, which are the logical OR of these bits
|
|
* and the state of the input lines from the GIC. (This requires
|
|
* that we have the BQL, which is done by marking the
|
|
* reginfo structs as ARM_CP_IO.)
|
|
* Note that if a write to HCR pends a VIRQ or VFIQ or VINMI or
|
|
* VFNMI, it is never possible for it to be taken immediately
|
|
* because VIRQ, VFIQ, VINMI and VFNMI are masked unless running
|
|
* at EL0 or EL1, and HCR can only be written at EL2.
|
|
*/
|
|
g_assert(bql_locked());
|
|
arm_cpu_update_virq(cpu);
|
|
arm_cpu_update_vfiq(cpu);
|
|
arm_cpu_update_vserr(cpu);
|
|
if (cpu_isar_feature(aa64_nmi, cpu)) {
|
|
arm_cpu_update_vinmi(cpu);
|
|
arm_cpu_update_vfnmi(cpu);
|
|
}
|
|
}
|
|
|
|
static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
|
|
{
|
|
do_hcr_write(env, value, 0);
|
|
}
|
|
|
|
static void hcr_writehigh(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
|
|
value = deposit64(env->cp15.hcr_el2, 32, 32, value);
|
|
do_hcr_write(env, value, MAKE_64BIT_MASK(0, 32));
|
|
}
|
|
|
|
static void hcr_writelow(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/* Handle HCR write, i.e. write to low half of HCR_EL2 */
|
|
value = deposit64(env->cp15.hcr_el2, 0, 32, value);
|
|
do_hcr_write(env, value, MAKE_64BIT_MASK(32, 32));
|
|
}
|
|
|
|
/*
|
|
* Return the effective value of HCR_EL2, at the given security state.
|
|
* Bits that are not included here:
|
|
* RW (read from SCR_EL3.RW as needed)
|
|
*/
|
|
uint64_t arm_hcr_el2_eff_secstate(CPUARMState *env, ARMSecuritySpace space)
|
|
{
|
|
uint64_t ret = env->cp15.hcr_el2;
|
|
|
|
assert(space != ARMSS_Root);
|
|
|
|
if (!arm_is_el2_enabled_secstate(env, space)) {
|
|
/*
|
|
* "This register has no effect if EL2 is not enabled in the
|
|
* current Security state". This is ARMv8.4-SecEL2 speak for
|
|
* !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
|
|
*
|
|
* Prior to that, the language was "In an implementation that
|
|
* includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
|
|
* as if this field is 0 for all purposes other than a direct
|
|
* read or write access of HCR_EL2". With lots of enumeration
|
|
* on a per-field basis. In current QEMU, this is condition
|
|
* is arm_is_secure_below_el3.
|
|
*
|
|
* Since the v8.4 language applies to the entire register, and
|
|
* appears to be backward compatible, use that.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* For a cpu that supports both aarch64 and aarch32, we can set bits
|
|
* in HCR_EL2 (e.g. via EL3) that are RES0 when we enter EL2 as aa32.
|
|
* Ignore all of the bits in HCR+HCR2 that are not valid for aarch32.
|
|
*/
|
|
if (!arm_el_is_aa64(env, 2)) {
|
|
uint64_t aa32_valid;
|
|
|
|
/*
|
|
* These bits are up-to-date as of ARMv8.6.
|
|
* For HCR, it's easiest to list just the 2 bits that are invalid.
|
|
* For HCR2, list those that are valid.
|
|
*/
|
|
aa32_valid = MAKE_64BIT_MASK(0, 32) & ~(HCR_RW | HCR_TDZ);
|
|
aa32_valid |= (HCR_CD | HCR_ID | HCR_TERR | HCR_TEA | HCR_MIOCNCE |
|
|
HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_TTLBIS);
|
|
ret &= aa32_valid;
|
|
}
|
|
|
|
if (ret & HCR_TGE) {
|
|
/* These bits are up-to-date as of ARMv8.6. */
|
|
if (ret & HCR_E2H) {
|
|
ret &= ~(HCR_VM | HCR_FMO | HCR_IMO | HCR_AMO |
|
|
HCR_BSU_MASK | HCR_DC | HCR_TWI | HCR_TWE |
|
|
HCR_TID0 | HCR_TID2 | HCR_TPCP | HCR_TPU |
|
|
HCR_TDZ | HCR_CD | HCR_ID | HCR_MIOCNCE |
|
|
HCR_TID4 | HCR_TICAB | HCR_TOCU | HCR_ENSCXT |
|
|
HCR_TTLBIS | HCR_TTLBOS | HCR_TID5);
|
|
} else {
|
|
ret |= HCR_FMO | HCR_IMO | HCR_AMO;
|
|
}
|
|
ret &= ~(HCR_SWIO | HCR_PTW | HCR_VF | HCR_VI | HCR_VSE |
|
|
HCR_FB | HCR_TID1 | HCR_TID3 | HCR_TSC | HCR_TACR |
|
|
HCR_TSW | HCR_TTLB | HCR_TVM | HCR_HCD | HCR_TRVM |
|
|
HCR_TLOR);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
uint64_t arm_hcr_el2_eff(CPUARMState *env)
|
|
{
|
|
if (arm_feature(env, ARM_FEATURE_M)) {
|
|
return 0;
|
|
}
|
|
return arm_hcr_el2_eff_secstate(env, arm_security_space_below_el3(env));
|
|
}
|
|
|
|
/*
|
|
* Corresponds to ARM pseudocode function ELIsInHost().
|
|
*/
|
|
bool el_is_in_host(CPUARMState *env, int el)
|
|
{
|
|
uint64_t mask;
|
|
|
|
/*
|
|
* Since we only care about E2H and TGE, we can skip arm_hcr_el2_eff().
|
|
* Perform the simplest bit tests first, and validate EL2 afterward.
|
|
*/
|
|
if (el & 1) {
|
|
return false; /* EL1 or EL3 */
|
|
}
|
|
|
|
/*
|
|
* Note that hcr_write() checks isar_feature_aa64_vh(),
|
|
* aka HaveVirtHostExt(), in allowing HCR_E2H to be set.
|
|
*/
|
|
mask = el ? HCR_E2H : HCR_E2H | HCR_TGE;
|
|
if ((env->cp15.hcr_el2 & mask) != mask) {
|
|
return false;
|
|
}
|
|
|
|
/* TGE and/or E2H set: double check those bits are currently legal. */
|
|
return arm_is_el2_enabled(env) && arm_el_is_aa64(env, 2);
|
|
}
|
|
|
|
static void hcrx_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
uint64_t valid_mask = 0;
|
|
|
|
/* FEAT_MOPS adds MSCEn and MCE2 */
|
|
if (cpu_isar_feature(aa64_mops, cpu)) {
|
|
valid_mask |= HCRX_MSCEN | HCRX_MCE2;
|
|
}
|
|
|
|
/* FEAT_NMI adds TALLINT, VINMI and VFNMI */
|
|
if (cpu_isar_feature(aa64_nmi, cpu)) {
|
|
valid_mask |= HCRX_TALLINT | HCRX_VINMI | HCRX_VFNMI;
|
|
}
|
|
|
|
/* Clear RES0 bits. */
|
|
env->cp15.hcrx_el2 = value & valid_mask;
|
|
|
|
/*
|
|
* Updates to VINMI and VFNMI require us to update the status of
|
|
* virtual NMI, which are the logical OR of these bits
|
|
* and the state of the input lines from the GIC. (This requires
|
|
* that we have the BQL, which is done by marking the
|
|
* reginfo structs as ARM_CP_IO.)
|
|
* Note that if a write to HCRX pends a VINMI or VFNMI it is never
|
|
* possible for it to be taken immediately, because VINMI and
|
|
* VFNMI are masked unless running at EL0 or EL1, and HCRX
|
|
* can only be written at EL2.
|
|
*/
|
|
if (cpu_isar_feature(aa64_nmi, cpu)) {
|
|
g_assert(bql_locked());
|
|
arm_cpu_update_vinmi(cpu);
|
|
arm_cpu_update_vfnmi(cpu);
|
|
}
|
|
}
|
|
|
|
static CPAccessResult access_hxen(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (arm_current_el(env) == 2
|
|
&& arm_feature(env, ARM_FEATURE_EL3)
|
|
&& !(env->cp15.scr_el3 & SCR_HXEN)) {
|
|
return CP_ACCESS_TRAP_EL3;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static const ARMCPRegInfo hcrx_el2_reginfo = {
|
|
.name = "HCRX_EL2", .state = ARM_CP_STATE_AA64,
|
|
.type = ARM_CP_IO,
|
|
.opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 2,
|
|
.access = PL2_RW, .writefn = hcrx_write, .accessfn = access_hxen,
|
|
.nv2_redirect_offset = 0xa0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.hcrx_el2),
|
|
};
|
|
|
|
/* Return the effective value of HCRX_EL2. */
|
|
uint64_t arm_hcrx_el2_eff(CPUARMState *env)
|
|
{
|
|
/*
|
|
* The bits in this register behave as 0 for all purposes other than
|
|
* direct reads of the register if SCR_EL3.HXEn is 0.
|
|
* If EL2 is not enabled in the current security state, then the
|
|
* bit may behave as if 0, or as if 1, depending on the bit.
|
|
* For the moment, we treat the EL2-disabled case as taking
|
|
* priority over the HXEn-disabled case. This is true for the only
|
|
* bit for a feature which we implement where the answer is different
|
|
* for the two cases (MSCEn for FEAT_MOPS).
|
|
* This may need to be revisited for future bits.
|
|
*/
|
|
if (!arm_is_el2_enabled(env)) {
|
|
uint64_t hcrx = 0;
|
|
if (cpu_isar_feature(aa64_mops, env_archcpu(env))) {
|
|
/* MSCEn behaves as 1 if EL2 is not enabled */
|
|
hcrx |= HCRX_MSCEN;
|
|
}
|
|
return hcrx;
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_HXEN)) {
|
|
return 0;
|
|
}
|
|
return env->cp15.hcrx_el2;
|
|
}
|
|
|
|
static void cptr_el2_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/*
|
|
* For A-profile AArch32 EL3, if NSACR.CP10
|
|
* is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
|
|
*/
|
|
if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
|
|
!arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
|
|
uint64_t mask = R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
|
|
value = (value & ~mask) | (env->cp15.cptr_el[2] & mask);
|
|
}
|
|
env->cp15.cptr_el[2] = value;
|
|
}
|
|
|
|
static uint64_t cptr_el2_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
/*
|
|
* For A-profile AArch32 EL3, if NSACR.CP10
|
|
* is 0 then HCPTR.{TCP11,TCP10} ignore writes and read as 1.
|
|
*/
|
|
uint64_t value = env->cp15.cptr_el[2];
|
|
|
|
if (arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
|
|
!arm_is_secure(env) && !extract32(env->cp15.nsacr, 10, 1)) {
|
|
value |= R_HCPTR_TCP11_MASK | R_HCPTR_TCP10_MASK;
|
|
}
|
|
return value;
|
|
}
|
|
|
|
static const ARMCPRegInfo el2_cp_reginfo[] = {
|
|
{ .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
|
|
.type = ARM_CP_IO,
|
|
.opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
|
|
.access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
|
|
.nv2_redirect_offset = 0x78,
|
|
.writefn = hcr_write, .raw_writefn = raw_write },
|
|
{ .name = "HCR", .state = ARM_CP_STATE_AA32,
|
|
.type = ARM_CP_ALIAS | ARM_CP_IO,
|
|
.cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
|
|
.access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
|
|
.writefn = hcr_writelow },
|
|
{ .name = "HACR_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 7,
|
|
.access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
|
|
{ .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
|
|
.type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT,
|
|
.opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
|
|
.access = PL2_RW,
|
|
.fieldoffset = offsetof(CPUARMState, elr_el[2]) },
|
|
{ .name = "ESR_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.type = ARM_CP_NV2_REDIRECT,
|
|
.opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
|
|
.access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
|
|
{ .name = "FAR_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.type = ARM_CP_NV2_REDIRECT,
|
|
.opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
|
|
.access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
|
|
{ .name = "HIFAR", .state = ARM_CP_STATE_AA32,
|
|
.type = ARM_CP_ALIAS,
|
|
.cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 2,
|
|
.access = PL2_RW,
|
|
.fieldoffset = offsetofhigh32(CPUARMState, cp15.far_el[2]) },
|
|
{ .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
|
|
.type = ARM_CP_ALIAS | ARM_CP_NV2_REDIRECT,
|
|
.opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
|
|
.access = PL2_RW,
|
|
.fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
|
|
{ .name = "VBAR_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
|
|
.access = PL2_RW, .writefn = vbar_write,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
|
|
.resetvalue = 0 },
|
|
{ .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
|
|
.access = PL3_RW, .type = ARM_CP_ALIAS,
|
|
.fieldoffset = offsetof(CPUARMState, sp_el[2]) },
|
|
{ .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
|
|
.access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]),
|
|
.readfn = cptr_el2_read, .writefn = cptr_el2_write },
|
|
{ .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
|
|
.access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
|
|
.resetvalue = 0 },
|
|
{ .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
|
|
.cp = 15, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
|
|
.access = PL2_RW, .type = ARM_CP_ALIAS,
|
|
.fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
|
|
{ .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
|
|
.access = PL2_RW, .type = ARM_CP_CONST,
|
|
.resetvalue = 0 },
|
|
/* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
|
|
{ .name = "HAMAIR1", .state = ARM_CP_STATE_AA32,
|
|
.cp = 15, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
|
|
.access = PL2_RW, .type = ARM_CP_CONST,
|
|
.resetvalue = 0 },
|
|
{ .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
|
|
.access = PL2_RW, .type = ARM_CP_CONST,
|
|
.resetvalue = 0 },
|
|
{ .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
|
|
.access = PL2_RW, .type = ARM_CP_CONST,
|
|
.resetvalue = 0 },
|
|
{ .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
|
|
.access = PL2_RW, .writefn = vmsa_tcr_el12_write,
|
|
.raw_writefn = raw_write,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
|
|
{ .name = "VTCR", .state = ARM_CP_STATE_AA32,
|
|
.cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
|
|
.type = ARM_CP_ALIAS,
|
|
.access = PL2_RW, .accessfn = access_el3_aa32ns,
|
|
.fieldoffset = offsetoflow32(CPUARMState, cp15.vtcr_el2) },
|
|
{ .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
|
|
.access = PL2_RW,
|
|
.nv2_redirect_offset = 0x40,
|
|
/* no .writefn needed as this can't cause an ASID change */
|
|
.fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
|
|
{ .name = "VTTBR", .state = ARM_CP_STATE_AA32,
|
|
.cp = 15, .opc1 = 6, .crm = 2,
|
|
.type = ARM_CP_64BIT | ARM_CP_ALIAS,
|
|
.access = PL2_RW, .accessfn = access_el3_aa32ns,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
|
|
.writefn = vttbr_write, .raw_writefn = raw_write },
|
|
{ .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
|
|
.access = PL2_RW, .writefn = vttbr_write, .raw_writefn = raw_write,
|
|
.nv2_redirect_offset = 0x20,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
|
|
{ .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
|
|
.access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
|
|
{ .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
|
|
.access = PL2_RW, .resetvalue = 0,
|
|
.nv2_redirect_offset = 0x90,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
|
|
{ .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
|
|
.access = PL2_RW, .resetvalue = 0,
|
|
.writefn = vmsa_tcr_ttbr_el2_write, .raw_writefn = raw_write,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
|
|
{ .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
|
|
.access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
|
|
{ .name = "TLBIALLNSNH",
|
|
.cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
|
|
.type = ARM_CP_NO_RAW, .access = PL2_W,
|
|
.writefn = tlbiall_nsnh_write },
|
|
{ .name = "TLBIALLNSNHIS",
|
|
.cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
|
|
.type = ARM_CP_NO_RAW, .access = PL2_W,
|
|
.writefn = tlbiall_nsnh_is_write },
|
|
{ .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
|
|
.type = ARM_CP_NO_RAW, .access = PL2_W,
|
|
.writefn = tlbiall_hyp_write },
|
|
{ .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
|
|
.type = ARM_CP_NO_RAW, .access = PL2_W,
|
|
.writefn = tlbiall_hyp_is_write },
|
|
{ .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
|
|
.type = ARM_CP_NO_RAW, .access = PL2_W,
|
|
.writefn = tlbimva_hyp_write },
|
|
{ .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
|
|
.type = ARM_CP_NO_RAW, .access = PL2_W,
|
|
.writefn = tlbimva_hyp_is_write },
|
|
{ .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
|
|
.writefn = tlbi_aa64_alle2_write },
|
|
{ .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
|
|
.writefn = tlbi_aa64_vae2_write },
|
|
{ .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
|
|
.writefn = tlbi_aa64_vae2_write },
|
|
{ .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
|
|
.writefn = tlbi_aa64_alle2is_write },
|
|
{ .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
|
|
.writefn = tlbi_aa64_vae2is_write },
|
|
{ .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
|
|
.writefn = tlbi_aa64_vae2is_write },
|
|
#ifndef CONFIG_USER_ONLY
|
|
/*
|
|
* Unlike the other EL2-related AT operations, these must
|
|
* UNDEF from EL3 if EL2 is not implemented, which is why we
|
|
* define them here rather than with the rest of the AT ops.
|
|
*/
|
|
{ .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
|
|
.access = PL2_W, .accessfn = at_s1e2_access,
|
|
.type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
|
|
.writefn = ats_write64 },
|
|
{ .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
|
|
.access = PL2_W, .accessfn = at_s1e2_access,
|
|
.type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC | ARM_CP_EL3_NO_EL2_UNDEF,
|
|
.writefn = ats_write64 },
|
|
/*
|
|
* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
|
|
* if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
|
|
* with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
|
|
* to behave as if SCR.NS was 1.
|
|
*/
|
|
{ .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
|
|
.access = PL2_W,
|
|
.writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
|
|
{ .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
|
|
.access = PL2_W,
|
|
.writefn = ats1h_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
|
|
{ .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
|
|
/*
|
|
* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
|
|
* reset values as IMPDEF. We choose to reset to 3 to comply with
|
|
* both ARMv7 and ARMv8.
|
|
*/
|
|
.access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 3,
|
|
.writefn = gt_cnthctl_write, .raw_writefn = raw_write,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
|
|
{ .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
|
|
.access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
|
|
.writefn = gt_cntvoff_write,
|
|
.nv2_redirect_offset = 0x60,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
|
|
{ .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
|
|
.access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
|
|
.writefn = gt_cntvoff_write,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
|
|
{ .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
|
|
.type = ARM_CP_IO, .access = PL2_RW,
|
|
.writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
|
|
{ .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
|
|
.access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
|
|
.writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
|
|
{ .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
|
|
.type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
|
|
.resetfn = gt_hyp_timer_reset,
|
|
.readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
|
|
{ .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.type = ARM_CP_IO,
|
|
.opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
|
|
.access = PL2_RW,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
|
|
.resetvalue = 0,
|
|
.writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
|
|
#endif
|
|
{ .name = "HPFAR", .state = ARM_CP_STATE_AA32,
|
|
.cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
|
|
.access = PL2_RW, .accessfn = access_el3_aa32ns,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
|
|
{ .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
|
|
.access = PL2_RW,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
|
|
{ .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
|
|
.access = PL2_RW,
|
|
.nv2_redirect_offset = 0x80,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
|
|
};
|
|
|
|
static const ARMCPRegInfo el2_v8_cp_reginfo[] = {
|
|
{ .name = "HCR2", .state = ARM_CP_STATE_AA32,
|
|
.type = ARM_CP_ALIAS | ARM_CP_IO,
|
|
.cp = 15, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
|
|
.access = PL2_RW,
|
|
.fieldoffset = offsetofhigh32(CPUARMState, cp15.hcr_el2),
|
|
.writefn = hcr_writehigh },
|
|
};
|
|
|
|
static CPAccessResult sel2_access(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (arm_current_el(env) == 3 || arm_is_secure_below_el3(env)) {
|
|
return CP_ACCESS_OK;
|
|
}
|
|
return CP_ACCESS_TRAP_UNCATEGORIZED;
|
|
}
|
|
|
|
static const ARMCPRegInfo el2_sec_cp_reginfo[] = {
|
|
{ .name = "VSTTBR_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 0,
|
|
.access = PL2_RW, .accessfn = sel2_access,
|
|
.nv2_redirect_offset = 0x30,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.vsttbr_el2) },
|
|
{ .name = "VSTCR_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 2, .crm = 6, .opc2 = 2,
|
|
.access = PL2_RW, .accessfn = sel2_access,
|
|
.nv2_redirect_offset = 0x48,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.vstcr_el2) },
|
|
};
|
|
|
|
static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
/*
|
|
* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
|
|
* At Secure EL1 it traps to EL3 or EL2.
|
|
*/
|
|
if (arm_current_el(env) == 3) {
|
|
return CP_ACCESS_OK;
|
|
}
|
|
if (arm_is_secure_below_el3(env)) {
|
|
if (env->cp15.scr_el3 & SCR_EEL2) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
return CP_ACCESS_TRAP_EL3;
|
|
}
|
|
/* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
|
|
if (isread) {
|
|
return CP_ACCESS_OK;
|
|
}
|
|
return CP_ACCESS_TRAP_UNCATEGORIZED;
|
|
}
|
|
|
|
static const ARMCPRegInfo el3_cp_reginfo[] = {
|
|
{ .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
|
|
.access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
|
|
.resetfn = scr_reset, .writefn = scr_write, .raw_writefn = raw_write },
|
|
{ .name = "SCR", .type = ARM_CP_ALIAS | ARM_CP_NEWEL,
|
|
.cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
|
|
.access = PL1_RW, .accessfn = access_trap_aa32s_el1,
|
|
.fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
|
|
.writefn = scr_write, .raw_writefn = raw_write },
|
|
{ .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
|
|
.access = PL3_RW, .resetvalue = 0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.sder) },
|
|
{ .name = "SDER",
|
|
.cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
|
|
.access = PL3_RW, .resetvalue = 0,
|
|
.fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
|
|
{ .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
|
|
.access = PL1_RW, .accessfn = access_trap_aa32s_el1,
|
|
.writefn = vbar_write, .resetvalue = 0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
|
|
{ .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
|
|
.access = PL3_RW, .resetvalue = 0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
|
|
{ .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
|
|
.access = PL3_RW,
|
|
/* no .writefn needed as this can't cause an ASID change */
|
|
.resetvalue = 0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
|
|
{ .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
|
|
.type = ARM_CP_ALIAS,
|
|
.opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
|
|
.access = PL3_RW,
|
|
.fieldoffset = offsetof(CPUARMState, elr_el[3]) },
|
|
{ .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
|
|
.access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
|
|
{ .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
|
|
.access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
|
|
{ .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
|
|
.type = ARM_CP_ALIAS,
|
|
.opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
|
|
.access = PL3_RW,
|
|
.fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
|
|
{ .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
|
|
.access = PL3_RW, .writefn = vbar_write,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
|
|
.resetvalue = 0 },
|
|
{ .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
|
|
.access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
|
|
{ .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
|
|
.access = PL3_RW, .resetvalue = 0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
|
|
{ .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
|
|
.access = PL3_RW, .type = ARM_CP_CONST,
|
|
.resetvalue = 0 },
|
|
{ .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
|
|
.access = PL3_RW, .type = ARM_CP_CONST,
|
|
.resetvalue = 0 },
|
|
{ .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
|
|
.access = PL3_RW, .type = ARM_CP_CONST,
|
|
.resetvalue = 0 },
|
|
{ .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
|
|
.access = PL3_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_alle3is_write },
|
|
{ .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
|
|
.access = PL3_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_vae3is_write },
|
|
{ .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
|
|
.access = PL3_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_vae3is_write },
|
|
{ .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
|
|
.access = PL3_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_alle3_write },
|
|
{ .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
|
|
.access = PL3_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_vae3_write },
|
|
{ .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
|
|
.access = PL3_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_vae3_write },
|
|
};
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
|
|
static CPAccessResult e2h_access(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (arm_current_el(env) == 1) {
|
|
/* This must be a FEAT_NV access */
|
|
return CP_ACCESS_OK;
|
|
}
|
|
if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
|
|
return CP_ACCESS_TRAP_UNCATEGORIZED;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static CPAccessResult access_el1nvpct(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (arm_current_el(env) == 1) {
|
|
/* This must be a FEAT_NV access with NVx == 101 */
|
|
if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1NVPCT)) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
}
|
|
return e2h_access(env, ri, isread);
|
|
}
|
|
|
|
static CPAccessResult access_el1nvvct(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (arm_current_el(env) == 1) {
|
|
/* This must be a FEAT_NV access with NVx == 101 */
|
|
if (FIELD_EX64(env->cp15.cnthctl_el2, CNTHCTL, EL1NVVCT)) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
}
|
|
return e2h_access(env, ri, isread);
|
|
}
|
|
|
|
/* Test if system register redirection is to occur in the current state. */
|
|
static bool redirect_for_e2h(CPUARMState *env)
|
|
{
|
|
return arm_current_el(env) == 2 && (arm_hcr_el2_eff(env) & HCR_E2H);
|
|
}
|
|
|
|
static uint64_t el2_e2h_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
CPReadFn *readfn;
|
|
|
|
if (redirect_for_e2h(env)) {
|
|
/* Switch to the saved EL2 version of the register. */
|
|
ri = ri->opaque;
|
|
readfn = ri->readfn;
|
|
} else {
|
|
readfn = ri->orig_readfn;
|
|
}
|
|
if (readfn == NULL) {
|
|
readfn = raw_read;
|
|
}
|
|
return readfn(env, ri);
|
|
}
|
|
|
|
static void el2_e2h_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPWriteFn *writefn;
|
|
|
|
if (redirect_for_e2h(env)) {
|
|
/* Switch to the saved EL2 version of the register. */
|
|
ri = ri->opaque;
|
|
writefn = ri->writefn;
|
|
} else {
|
|
writefn = ri->orig_writefn;
|
|
}
|
|
if (writefn == NULL) {
|
|
writefn = raw_write;
|
|
}
|
|
writefn(env, ri, value);
|
|
}
|
|
|
|
static uint64_t el2_e2h_e12_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
/* Pass the EL1 register accessor its ri, not the EL12 alias ri */
|
|
return ri->orig_readfn(env, ri->opaque);
|
|
}
|
|
|
|
static void el2_e2h_e12_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/* Pass the EL1 register accessor its ri, not the EL12 alias ri */
|
|
return ri->orig_writefn(env, ri->opaque, value);
|
|
}
|
|
|
|
static CPAccessResult el2_e2h_e12_access(CPUARMState *env,
|
|
const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (arm_current_el(env) == 1) {
|
|
/*
|
|
* This must be a FEAT_NV access (will either trap or redirect
|
|
* to memory). None of the registers with _EL12 aliases want to
|
|
* apply their trap controls for this kind of access, so don't
|
|
* call the orig_accessfn or do the "UNDEF when E2H is 0" check.
|
|
*/
|
|
return CP_ACCESS_OK;
|
|
}
|
|
/* FOO_EL12 aliases only exist when E2H is 1; otherwise they UNDEF */
|
|
if (!(arm_hcr_el2_eff(env) & HCR_E2H)) {
|
|
return CP_ACCESS_TRAP_UNCATEGORIZED;
|
|
}
|
|
if (ri->orig_accessfn) {
|
|
return ri->orig_accessfn(env, ri->opaque, isread);
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static void define_arm_vh_e2h_redirects_aliases(ARMCPU *cpu)
|
|
{
|
|
struct E2HAlias {
|
|
uint32_t src_key, dst_key, new_key;
|
|
const char *src_name, *dst_name, *new_name;
|
|
bool (*feature)(const ARMISARegisters *id);
|
|
};
|
|
|
|
#define K(op0, op1, crn, crm, op2) \
|
|
ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)
|
|
|
|
static const struct E2HAlias aliases[] = {
|
|
{ K(3, 0, 1, 0, 0), K(3, 4, 1, 0, 0), K(3, 5, 1, 0, 0),
|
|
"SCTLR", "SCTLR_EL2", "SCTLR_EL12" },
|
|
{ K(3, 0, 1, 0, 2), K(3, 4, 1, 1, 2), K(3, 5, 1, 0, 2),
|
|
"CPACR", "CPTR_EL2", "CPACR_EL12" },
|
|
{ K(3, 0, 2, 0, 0), K(3, 4, 2, 0, 0), K(3, 5, 2, 0, 0),
|
|
"TTBR0_EL1", "TTBR0_EL2", "TTBR0_EL12" },
|
|
{ K(3, 0, 2, 0, 1), K(3, 4, 2, 0, 1), K(3, 5, 2, 0, 1),
|
|
"TTBR1_EL1", "TTBR1_EL2", "TTBR1_EL12" },
|
|
{ K(3, 0, 2, 0, 2), K(3, 4, 2, 0, 2), K(3, 5, 2, 0, 2),
|
|
"TCR_EL1", "TCR_EL2", "TCR_EL12" },
|
|
{ K(3, 0, 4, 0, 0), K(3, 4, 4, 0, 0), K(3, 5, 4, 0, 0),
|
|
"SPSR_EL1", "SPSR_EL2", "SPSR_EL12" },
|
|
{ K(3, 0, 4, 0, 1), K(3, 4, 4, 0, 1), K(3, 5, 4, 0, 1),
|
|
"ELR_EL1", "ELR_EL2", "ELR_EL12" },
|
|
{ K(3, 0, 5, 1, 0), K(3, 4, 5, 1, 0), K(3, 5, 5, 1, 0),
|
|
"AFSR0_EL1", "AFSR0_EL2", "AFSR0_EL12" },
|
|
{ K(3, 0, 5, 1, 1), K(3, 4, 5, 1, 1), K(3, 5, 5, 1, 1),
|
|
"AFSR1_EL1", "AFSR1_EL2", "AFSR1_EL12" },
|
|
{ K(3, 0, 5, 2, 0), K(3, 4, 5, 2, 0), K(3, 5, 5, 2, 0),
|
|
"ESR_EL1", "ESR_EL2", "ESR_EL12" },
|
|
{ K(3, 0, 6, 0, 0), K(3, 4, 6, 0, 0), K(3, 5, 6, 0, 0),
|
|
"FAR_EL1", "FAR_EL2", "FAR_EL12" },
|
|
{ K(3, 0, 10, 2, 0), K(3, 4, 10, 2, 0), K(3, 5, 10, 2, 0),
|
|
"MAIR_EL1", "MAIR_EL2", "MAIR_EL12" },
|
|
{ K(3, 0, 10, 3, 0), K(3, 4, 10, 3, 0), K(3, 5, 10, 3, 0),
|
|
"AMAIR0", "AMAIR_EL2", "AMAIR_EL12" },
|
|
{ K(3, 0, 12, 0, 0), K(3, 4, 12, 0, 0), K(3, 5, 12, 0, 0),
|
|
"VBAR", "VBAR_EL2", "VBAR_EL12" },
|
|
{ K(3, 0, 13, 0, 1), K(3, 4, 13, 0, 1), K(3, 5, 13, 0, 1),
|
|
"CONTEXTIDR_EL1", "CONTEXTIDR_EL2", "CONTEXTIDR_EL12" },
|
|
{ K(3, 0, 14, 1, 0), K(3, 4, 14, 1, 0), K(3, 5, 14, 1, 0),
|
|
"CNTKCTL", "CNTHCTL_EL2", "CNTKCTL_EL12" },
|
|
|
|
/*
|
|
* Note that redirection of ZCR is mentioned in the description
|
|
* of ZCR_EL2, and aliasing in the description of ZCR_EL1, but
|
|
* not in the summary table.
|
|
*/
|
|
{ K(3, 0, 1, 2, 0), K(3, 4, 1, 2, 0), K(3, 5, 1, 2, 0),
|
|
"ZCR_EL1", "ZCR_EL2", "ZCR_EL12", isar_feature_aa64_sve },
|
|
{ K(3, 0, 1, 2, 6), K(3, 4, 1, 2, 6), K(3, 5, 1, 2, 6),
|
|
"SMCR_EL1", "SMCR_EL2", "SMCR_EL12", isar_feature_aa64_sme },
|
|
|
|
{ K(3, 0, 5, 6, 0), K(3, 4, 5, 6, 0), K(3, 5, 5, 6, 0),
|
|
"TFSR_EL1", "TFSR_EL2", "TFSR_EL12", isar_feature_aa64_mte },
|
|
|
|
{ K(3, 0, 13, 0, 7), K(3, 4, 13, 0, 7), K(3, 5, 13, 0, 7),
|
|
"SCXTNUM_EL1", "SCXTNUM_EL2", "SCXTNUM_EL12",
|
|
isar_feature_aa64_scxtnum },
|
|
|
|
/* TODO: ARMv8.2-SPE -- PMSCR_EL2 */
|
|
/* TODO: ARMv8.4-Trace -- TRFCR_EL2 */
|
|
};
|
|
#undef K
|
|
|
|
size_t i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(aliases); i++) {
|
|
const struct E2HAlias *a = &aliases[i];
|
|
ARMCPRegInfo *src_reg, *dst_reg, *new_reg;
|
|
bool ok;
|
|
|
|
if (a->feature && !a->feature(&cpu->isar)) {
|
|
continue;
|
|
}
|
|
|
|
src_reg = g_hash_table_lookup(cpu->cp_regs,
|
|
(gpointer)(uintptr_t)a->src_key);
|
|
dst_reg = g_hash_table_lookup(cpu->cp_regs,
|
|
(gpointer)(uintptr_t)a->dst_key);
|
|
g_assert(src_reg != NULL);
|
|
g_assert(dst_reg != NULL);
|
|
|
|
/* Cross-compare names to detect typos in the keys. */
|
|
g_assert(strcmp(src_reg->name, a->src_name) == 0);
|
|
g_assert(strcmp(dst_reg->name, a->dst_name) == 0);
|
|
|
|
/* None of the core system registers use opaque; we will. */
|
|
g_assert(src_reg->opaque == NULL);
|
|
|
|
/* Create alias before redirection so we dup the right data. */
|
|
new_reg = g_memdup(src_reg, sizeof(ARMCPRegInfo));
|
|
|
|
new_reg->name = a->new_name;
|
|
new_reg->type |= ARM_CP_ALIAS;
|
|
/* Remove PL1/PL0 access, leaving PL2/PL3 R/W in place. */
|
|
new_reg->access &= PL2_RW | PL3_RW;
|
|
/* The new_reg op fields are as per new_key, not the target reg */
|
|
new_reg->crn = (a->new_key & CP_REG_ARM64_SYSREG_CRN_MASK)
|
|
>> CP_REG_ARM64_SYSREG_CRN_SHIFT;
|
|
new_reg->crm = (a->new_key & CP_REG_ARM64_SYSREG_CRM_MASK)
|
|
>> CP_REG_ARM64_SYSREG_CRM_SHIFT;
|
|
new_reg->opc0 = (a->new_key & CP_REG_ARM64_SYSREG_OP0_MASK)
|
|
>> CP_REG_ARM64_SYSREG_OP0_SHIFT;
|
|
new_reg->opc1 = (a->new_key & CP_REG_ARM64_SYSREG_OP1_MASK)
|
|
>> CP_REG_ARM64_SYSREG_OP1_SHIFT;
|
|
new_reg->opc2 = (a->new_key & CP_REG_ARM64_SYSREG_OP2_MASK)
|
|
>> CP_REG_ARM64_SYSREG_OP2_SHIFT;
|
|
new_reg->opaque = src_reg;
|
|
new_reg->orig_readfn = src_reg->readfn ?: raw_read;
|
|
new_reg->orig_writefn = src_reg->writefn ?: raw_write;
|
|
new_reg->orig_accessfn = src_reg->accessfn;
|
|
if (!new_reg->raw_readfn) {
|
|
new_reg->raw_readfn = raw_read;
|
|
}
|
|
if (!new_reg->raw_writefn) {
|
|
new_reg->raw_writefn = raw_write;
|
|
}
|
|
new_reg->readfn = el2_e2h_e12_read;
|
|
new_reg->writefn = el2_e2h_e12_write;
|
|
new_reg->accessfn = el2_e2h_e12_access;
|
|
|
|
/*
|
|
* If the _EL1 register is redirected to memory by FEAT_NV2,
|
|
* then it shares the offset with the _EL12 register,
|
|
* and which one is redirected depends on HCR_EL2.NV1.
|
|
*/
|
|
if (new_reg->nv2_redirect_offset) {
|
|
assert(new_reg->nv2_redirect_offset & NV2_REDIR_NV1);
|
|
new_reg->nv2_redirect_offset &= ~NV2_REDIR_NV1;
|
|
new_reg->nv2_redirect_offset |= NV2_REDIR_NO_NV1;
|
|
}
|
|
|
|
ok = g_hash_table_insert(cpu->cp_regs,
|
|
(gpointer)(uintptr_t)a->new_key, new_reg);
|
|
g_assert(ok);
|
|
|
|
src_reg->opaque = dst_reg;
|
|
src_reg->orig_readfn = src_reg->readfn ?: raw_read;
|
|
src_reg->orig_writefn = src_reg->writefn ?: raw_write;
|
|
if (!src_reg->raw_readfn) {
|
|
src_reg->raw_readfn = raw_read;
|
|
}
|
|
if (!src_reg->raw_writefn) {
|
|
src_reg->raw_writefn = raw_write;
|
|
}
|
|
src_reg->readfn = el2_e2h_read;
|
|
src_reg->writefn = el2_e2h_write;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
int cur_el = arm_current_el(env);
|
|
|
|
if (cur_el < 2) {
|
|
uint64_t hcr = arm_hcr_el2_eff(env);
|
|
|
|
if (cur_el == 0) {
|
|
if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
|
|
if (!(env->cp15.sctlr_el[2] & SCTLR_UCT)) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
} else {
|
|
if (!(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
|
|
return CP_ACCESS_TRAP;
|
|
}
|
|
if (hcr & HCR_TID2) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
}
|
|
} else if (hcr & HCR_TID2) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
}
|
|
|
|
if (arm_current_el(env) < 2 && arm_hcr_el2_eff(env) & HCR_TID2) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
/*
|
|
* Check for traps to RAS registers, which are controlled
|
|
* by HCR_EL2.TERR and SCR_EL3.TERR.
|
|
*/
|
|
static CPAccessResult access_terr(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
int el = arm_current_el(env);
|
|
|
|
if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TERR)) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
if (el < 3 && (env->cp15.scr_el3 & SCR_TERR)) {
|
|
return CP_ACCESS_TRAP_EL3;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static uint64_t disr_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
int el = arm_current_el(env);
|
|
|
|
if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
|
|
return env->cp15.vdisr_el2;
|
|
}
|
|
if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
|
|
return 0; /* RAZ/WI */
|
|
}
|
|
return env->cp15.disr_el1;
|
|
}
|
|
|
|
static void disr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
|
|
{
|
|
int el = arm_current_el(env);
|
|
|
|
if (el < 2 && (arm_hcr_el2_eff(env) & HCR_AMO)) {
|
|
env->cp15.vdisr_el2 = val;
|
|
return;
|
|
}
|
|
if (el < 3 && (env->cp15.scr_el3 & SCR_EA)) {
|
|
return; /* RAZ/WI */
|
|
}
|
|
env->cp15.disr_el1 = val;
|
|
}
|
|
|
|
/*
|
|
* Minimal RAS implementation with no Error Records.
|
|
* Which means that all of the Error Record registers:
|
|
* ERXADDR_EL1
|
|
* ERXCTLR_EL1
|
|
* ERXFR_EL1
|
|
* ERXMISC0_EL1
|
|
* ERXMISC1_EL1
|
|
* ERXMISC2_EL1
|
|
* ERXMISC3_EL1
|
|
* ERXPFGCDN_EL1 (RASv1p1)
|
|
* ERXPFGCTL_EL1 (RASv1p1)
|
|
* ERXPFGF_EL1 (RASv1p1)
|
|
* ERXSTATUS_EL1
|
|
* and
|
|
* ERRSELR_EL1
|
|
* may generate UNDEFINED, which is the effect we get by not
|
|
* listing them at all.
|
|
*
|
|
* These registers have fine-grained trap bits, but UNDEF-to-EL1
|
|
* is higher priority than FGT-to-EL2 so we do not need to list them
|
|
* in order to check for an FGT.
|
|
*/
|
|
static const ARMCPRegInfo minimal_ras_reginfo[] = {
|
|
{ .name = "DISR_EL1", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 1,
|
|
.access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.disr_el1),
|
|
.readfn = disr_read, .writefn = disr_write, .raw_writefn = raw_write },
|
|
{ .name = "ERRIDR_EL1", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 5, .crm = 3, .opc2 = 0,
|
|
.access = PL1_R, .accessfn = access_terr,
|
|
.fgt = FGT_ERRIDR_EL1,
|
|
.type = ARM_CP_CONST, .resetvalue = 0 },
|
|
{ .name = "VDISR_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 4, .crn = 12, .crm = 1, .opc2 = 1,
|
|
.nv2_redirect_offset = 0x500,
|
|
.access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vdisr_el2) },
|
|
{ .name = "VSESR_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 3,
|
|
.nv2_redirect_offset = 0x508,
|
|
.access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.vsesr_el2) },
|
|
};
|
|
|
|
/*
|
|
* Return the exception level to which exceptions should be taken
|
|
* via SVEAccessTrap. This excludes the check for whether the exception
|
|
* should be routed through AArch64.AdvSIMDFPAccessTrap. That can easily
|
|
* be found by testing 0 < fp_exception_el < sve_exception_el.
|
|
*
|
|
* C.f. the ARM pseudocode function CheckSVEEnabled. Note that the
|
|
* pseudocode does *not* separate out the FP trap checks, but has them
|
|
* all in one function.
|
|
*/
|
|
int sve_exception_el(CPUARMState *env, int el)
|
|
{
|
|
#ifndef CONFIG_USER_ONLY
|
|
if (el <= 1 && !el_is_in_host(env, el)) {
|
|
switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, ZEN)) {
|
|
case 1:
|
|
if (el != 0) {
|
|
break;
|
|
}
|
|
/* fall through */
|
|
case 0:
|
|
case 2:
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
if (el <= 2 && arm_is_el2_enabled(env)) {
|
|
/* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
|
|
if (env->cp15.hcr_el2 & HCR_E2H) {
|
|
switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, ZEN)) {
|
|
case 1:
|
|
if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
|
|
break;
|
|
}
|
|
/* fall through */
|
|
case 0:
|
|
case 2:
|
|
return 2;
|
|
}
|
|
} else {
|
|
if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TZ)) {
|
|
return 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* CPTR_EL3. Since EZ is negative we must check for EL3. */
|
|
if (arm_feature(env, ARM_FEATURE_EL3)
|
|
&& !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, EZ)) {
|
|
return 3;
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Return the exception level to which exceptions should be taken for SME.
|
|
* C.f. the ARM pseudocode function CheckSMEAccess.
|
|
*/
|
|
int sme_exception_el(CPUARMState *env, int el)
|
|
{
|
|
#ifndef CONFIG_USER_ONLY
|
|
if (el <= 1 && !el_is_in_host(env, el)) {
|
|
switch (FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, SMEN)) {
|
|
case 1:
|
|
if (el != 0) {
|
|
break;
|
|
}
|
|
/* fall through */
|
|
case 0:
|
|
case 2:
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
if (el <= 2 && arm_is_el2_enabled(env)) {
|
|
/* CPTR_EL2 changes format with HCR_EL2.E2H (regardless of TGE). */
|
|
if (env->cp15.hcr_el2 & HCR_E2H) {
|
|
switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, SMEN)) {
|
|
case 1:
|
|
if (el != 0 || !(env->cp15.hcr_el2 & HCR_TGE)) {
|
|
break;
|
|
}
|
|
/* fall through */
|
|
case 0:
|
|
case 2:
|
|
return 2;
|
|
}
|
|
} else {
|
|
if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TSM)) {
|
|
return 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* CPTR_EL3. Since ESM is negative we must check for EL3. */
|
|
if (arm_feature(env, ARM_FEATURE_EL3)
|
|
&& !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
|
|
return 3;
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Given that SVE is enabled, return the vector length for EL.
|
|
*/
|
|
uint32_t sve_vqm1_for_el_sm(CPUARMState *env, int el, bool sm)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
uint64_t *cr = env->vfp.zcr_el;
|
|
uint32_t map = cpu->sve_vq.map;
|
|
uint32_t len = ARM_MAX_VQ - 1;
|
|
|
|
if (sm) {
|
|
cr = env->vfp.smcr_el;
|
|
map = cpu->sme_vq.map;
|
|
}
|
|
|
|
if (el <= 1 && !el_is_in_host(env, el)) {
|
|
len = MIN(len, 0xf & (uint32_t)cr[1]);
|
|
}
|
|
if (el <= 2 && arm_is_el2_enabled(env)) {
|
|
len = MIN(len, 0xf & (uint32_t)cr[2]);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_EL3)) {
|
|
len = MIN(len, 0xf & (uint32_t)cr[3]);
|
|
}
|
|
|
|
map &= MAKE_64BIT_MASK(0, len + 1);
|
|
if (map != 0) {
|
|
return 31 - clz32(map);
|
|
}
|
|
|
|
/* Bit 0 is always set for Normal SVE -- not so for Streaming SVE. */
|
|
assert(sm);
|
|
return ctz32(cpu->sme_vq.map);
|
|
}
|
|
|
|
uint32_t sve_vqm1_for_el(CPUARMState *env, int el)
|
|
{
|
|
return sve_vqm1_for_el_sm(env, el, FIELD_EX64(env->svcr, SVCR, SM));
|
|
}
|
|
|
|
static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
int cur_el = arm_current_el(env);
|
|
int old_len = sve_vqm1_for_el(env, cur_el);
|
|
int new_len;
|
|
|
|
/* Bits other than [3:0] are RAZ/WI. */
|
|
QEMU_BUILD_BUG_ON(ARM_MAX_VQ > 16);
|
|
raw_write(env, ri, value & 0xf);
|
|
|
|
/*
|
|
* Because we arrived here, we know both FP and SVE are enabled;
|
|
* otherwise we would have trapped access to the ZCR_ELn register.
|
|
*/
|
|
new_len = sve_vqm1_for_el(env, cur_el);
|
|
if (new_len < old_len) {
|
|
aarch64_sve_narrow_vq(env, new_len + 1);
|
|
}
|
|
}
|
|
|
|
static const ARMCPRegInfo zcr_reginfo[] = {
|
|
{ .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
|
|
.nv2_redirect_offset = 0x1e0 | NV2_REDIR_NV1,
|
|
.access = PL1_RW, .type = ARM_CP_SVE,
|
|
.fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
|
|
.writefn = zcr_write, .raw_writefn = raw_write },
|
|
{ .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
|
|
.access = PL2_RW, .type = ARM_CP_SVE,
|
|
.fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
|
|
.writefn = zcr_write, .raw_writefn = raw_write },
|
|
{ .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
|
|
.access = PL3_RW, .type = ARM_CP_SVE,
|
|
.fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
|
|
.writefn = zcr_write, .raw_writefn = raw_write },
|
|
};
|
|
|
|
#ifdef TARGET_AARCH64
|
|
static CPAccessResult access_tpidr2(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
int el = arm_current_el(env);
|
|
|
|
if (el == 0) {
|
|
uint64_t sctlr = arm_sctlr(env, el);
|
|
if (!(sctlr & SCTLR_EnTP2)) {
|
|
return CP_ACCESS_TRAP;
|
|
}
|
|
}
|
|
/* TODO: FEAT_FGT */
|
|
if (el < 3
|
|
&& arm_feature(env, ARM_FEATURE_EL3)
|
|
&& !(env->cp15.scr_el3 & SCR_ENTP2)) {
|
|
return CP_ACCESS_TRAP_EL3;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static CPAccessResult access_smprimap(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
/* If EL1 this is a FEAT_NV access and CPTR_EL3.ESM doesn't apply */
|
|
if (arm_current_el(env) == 2
|
|
&& arm_feature(env, ARM_FEATURE_EL3)
|
|
&& !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
|
|
return CP_ACCESS_TRAP_EL3;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static CPAccessResult access_smpri(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (arm_current_el(env) < 3
|
|
&& arm_feature(env, ARM_FEATURE_EL3)
|
|
&& !FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, ESM)) {
|
|
return CP_ACCESS_TRAP_EL3;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
/* ResetSVEState */
|
|
static void arm_reset_sve_state(CPUARMState *env)
|
|
{
|
|
memset(env->vfp.zregs, 0, sizeof(env->vfp.zregs));
|
|
/* Recall that FFR is stored as pregs[16]. */
|
|
memset(env->vfp.pregs, 0, sizeof(env->vfp.pregs));
|
|
vfp_set_fpcr(env, 0x0800009f);
|
|
}
|
|
|
|
void aarch64_set_svcr(CPUARMState *env, uint64_t new, uint64_t mask)
|
|
{
|
|
uint64_t change = (env->svcr ^ new) & mask;
|
|
|
|
if (change == 0) {
|
|
return;
|
|
}
|
|
env->svcr ^= change;
|
|
|
|
if (change & R_SVCR_SM_MASK) {
|
|
arm_reset_sve_state(env);
|
|
}
|
|
|
|
/*
|
|
* ResetSMEState.
|
|
*
|
|
* SetPSTATE_ZA zeros on enable and disable. We can zero this only
|
|
* on enable: while disabled, the storage is inaccessible and the
|
|
* value does not matter. We're not saving the storage in vmstate
|
|
* when disabled either.
|
|
*/
|
|
if (change & new & R_SVCR_ZA_MASK) {
|
|
memset(env->zarray, 0, sizeof(env->zarray));
|
|
}
|
|
|
|
if (tcg_enabled()) {
|
|
arm_rebuild_hflags(env);
|
|
}
|
|
}
|
|
|
|
static void svcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
aarch64_set_svcr(env, value, -1);
|
|
}
|
|
|
|
static void smcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
int cur_el = arm_current_el(env);
|
|
int old_len = sve_vqm1_for_el(env, cur_el);
|
|
int new_len;
|
|
|
|
QEMU_BUILD_BUG_ON(ARM_MAX_VQ > R_SMCR_LEN_MASK + 1);
|
|
value &= R_SMCR_LEN_MASK | R_SMCR_FA64_MASK;
|
|
raw_write(env, ri, value);
|
|
|
|
/*
|
|
* Note that it is CONSTRAINED UNPREDICTABLE what happens to ZA storage
|
|
* when SVL is widened (old values kept, or zeros). Choose to keep the
|
|
* current values for simplicity. But for QEMU internals, we must still
|
|
* apply the narrower SVL to the Zregs and Pregs -- see the comment
|
|
* above aarch64_sve_narrow_vq.
|
|
*/
|
|
new_len = sve_vqm1_for_el(env, cur_el);
|
|
if (new_len < old_len) {
|
|
aarch64_sve_narrow_vq(env, new_len + 1);
|
|
}
|
|
}
|
|
|
|
static const ARMCPRegInfo sme_reginfo[] = {
|
|
{ .name = "TPIDR2_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 5,
|
|
.access = PL0_RW, .accessfn = access_tpidr2,
|
|
.fgt = FGT_NTPIDR2_EL0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.tpidr2_el0) },
|
|
{ .name = "SVCR", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 2,
|
|
.access = PL0_RW, .type = ARM_CP_SME,
|
|
.fieldoffset = offsetof(CPUARMState, svcr),
|
|
.writefn = svcr_write, .raw_writefn = raw_write },
|
|
{ .name = "SMCR_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 6,
|
|
.nv2_redirect_offset = 0x1f0 | NV2_REDIR_NV1,
|
|
.access = PL1_RW, .type = ARM_CP_SME,
|
|
.fieldoffset = offsetof(CPUARMState, vfp.smcr_el[1]),
|
|
.writefn = smcr_write, .raw_writefn = raw_write },
|
|
{ .name = "SMCR_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 6,
|
|
.access = PL2_RW, .type = ARM_CP_SME,
|
|
.fieldoffset = offsetof(CPUARMState, vfp.smcr_el[2]),
|
|
.writefn = smcr_write, .raw_writefn = raw_write },
|
|
{ .name = "SMCR_EL3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 6,
|
|
.access = PL3_RW, .type = ARM_CP_SME,
|
|
.fieldoffset = offsetof(CPUARMState, vfp.smcr_el[3]),
|
|
.writefn = smcr_write, .raw_writefn = raw_write },
|
|
{ .name = "SMIDR_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 6,
|
|
.access = PL1_R, .accessfn = access_aa64_tid1,
|
|
/*
|
|
* IMPLEMENTOR = 0 (software)
|
|
* REVISION = 0 (implementation defined)
|
|
* SMPS = 0 (no streaming execution priority in QEMU)
|
|
* AFFINITY = 0 (streaming sve mode not shared with other PEs)
|
|
*/
|
|
.type = ARM_CP_CONST, .resetvalue = 0, },
|
|
/*
|
|
* Because SMIDR_EL1.SMPS is 0, SMPRI_EL1 and SMPRIMAP_EL2 are RES 0.
|
|
*/
|
|
{ .name = "SMPRI_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 4,
|
|
.access = PL1_RW, .accessfn = access_smpri,
|
|
.fgt = FGT_NSMPRI_EL1,
|
|
.type = ARM_CP_CONST, .resetvalue = 0 },
|
|
{ .name = "SMPRIMAP_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 5,
|
|
.nv2_redirect_offset = 0x1f8,
|
|
.access = PL2_RW, .accessfn = access_smprimap,
|
|
.type = ARM_CP_CONST, .resetvalue = 0 },
|
|
};
|
|
|
|
static void tlbi_aa64_paall_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
|
|
tlb_flush(cs);
|
|
}
|
|
|
|
static void gpccr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/* L0GPTSZ is RO; other bits not mentioned are RES0. */
|
|
uint64_t rw_mask = R_GPCCR_PPS_MASK | R_GPCCR_IRGN_MASK |
|
|
R_GPCCR_ORGN_MASK | R_GPCCR_SH_MASK | R_GPCCR_PGS_MASK |
|
|
R_GPCCR_GPC_MASK | R_GPCCR_GPCP_MASK;
|
|
|
|
env->cp15.gpccr_el3 = (value & rw_mask) | (env->cp15.gpccr_el3 & ~rw_mask);
|
|
}
|
|
|
|
static void gpccr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
env->cp15.gpccr_el3 = FIELD_DP64(0, GPCCR, L0GPTSZ,
|
|
env_archcpu(env)->reset_l0gptsz);
|
|
}
|
|
|
|
static void tlbi_aa64_paallos_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
CPUState *cs = env_cpu(env);
|
|
|
|
tlb_flush_all_cpus_synced(cs);
|
|
}
|
|
|
|
static const ARMCPRegInfo rme_reginfo[] = {
|
|
{ .name = "GPCCR_EL3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 6,
|
|
.access = PL3_RW, .writefn = gpccr_write, .resetfn = gpccr_reset,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.gpccr_el3) },
|
|
{ .name = "GPTBR_EL3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 2, .crm = 1, .opc2 = 4,
|
|
.access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.gptbr_el3) },
|
|
{ .name = "MFAR_EL3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 5,
|
|
.access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mfar_el3) },
|
|
{ .name = "TLBI_PAALL", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 4,
|
|
.access = PL3_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_paall_write },
|
|
{ .name = "TLBI_PAALLOS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 4,
|
|
.access = PL3_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_paallos_write },
|
|
/*
|
|
* QEMU does not have a way to invalidate by physical address, thus
|
|
* invalidating a range of physical addresses is accomplished by
|
|
* flushing all tlb entries in the outer shareable domain,
|
|
* just like PAALLOS.
|
|
*/
|
|
{ .name = "TLBI_RPALOS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 7,
|
|
.access = PL3_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_paallos_write },
|
|
{ .name = "TLBI_RPAOS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 4, .opc2 = 3,
|
|
.access = PL3_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_paallos_write },
|
|
{ .name = "DC_CIPAPA", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 1,
|
|
.access = PL3_W, .type = ARM_CP_NOP },
|
|
};
|
|
|
|
static const ARMCPRegInfo rme_mte_reginfo[] = {
|
|
{ .name = "DC_CIGDPAPA", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 6, .crn = 7, .crm = 14, .opc2 = 5,
|
|
.access = PL3_W, .type = ARM_CP_NOP },
|
|
};
|
|
|
|
static void aa64_allint_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
env->pstate = (env->pstate & ~PSTATE_ALLINT) | (value & PSTATE_ALLINT);
|
|
}
|
|
|
|
static uint64_t aa64_allint_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return env->pstate & PSTATE_ALLINT;
|
|
}
|
|
|
|
static CPAccessResult aa64_allint_access(CPUARMState *env,
|
|
const ARMCPRegInfo *ri, bool isread)
|
|
{
|
|
if (!isread && arm_current_el(env) == 1 &&
|
|
(arm_hcrx_el2_eff(env) & HCRX_TALLINT)) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static const ARMCPRegInfo nmi_reginfo[] = {
|
|
{ .name = "ALLINT", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .opc2 = 0, .crn = 4, .crm = 3,
|
|
.type = ARM_CP_NO_RAW,
|
|
.access = PL1_RW, .accessfn = aa64_allint_access,
|
|
.fieldoffset = offsetof(CPUARMState, pstate),
|
|
.writefn = aa64_allint_write, .readfn = aa64_allint_read,
|
|
.resetfn = arm_cp_reset_ignore },
|
|
};
|
|
#endif /* TARGET_AARCH64 */
|
|
|
|
static void define_pmu_regs(ARMCPU *cpu)
|
|
{
|
|
/*
|
|
* v7 performance monitor control register: same implementor
|
|
* field as main ID register, and we implement four counters in
|
|
* addition to the cycle count register.
|
|
*/
|
|
unsigned int i, pmcrn = pmu_num_counters(&cpu->env);
|
|
ARMCPRegInfo pmcr = {
|
|
.name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
|
|
.access = PL0_RW,
|
|
.fgt = FGT_PMCR_EL0,
|
|
.type = ARM_CP_IO | ARM_CP_ALIAS,
|
|
.fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
|
|
.accessfn = pmreg_access,
|
|
.readfn = pmcr_read, .raw_readfn = raw_read,
|
|
.writefn = pmcr_write, .raw_writefn = raw_write,
|
|
};
|
|
ARMCPRegInfo pmcr64 = {
|
|
.name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
|
|
.access = PL0_RW, .accessfn = pmreg_access,
|
|
.fgt = FGT_PMCR_EL0,
|
|
.type = ARM_CP_IO,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
|
|
.resetvalue = cpu->isar.reset_pmcr_el0,
|
|
.readfn = pmcr_read, .raw_readfn = raw_read,
|
|
.writefn = pmcr_write, .raw_writefn = raw_write,
|
|
};
|
|
|
|
define_one_arm_cp_reg(cpu, &pmcr);
|
|
define_one_arm_cp_reg(cpu, &pmcr64);
|
|
for (i = 0; i < pmcrn; i++) {
|
|
char *pmevcntr_name = g_strdup_printf("PMEVCNTR%d", i);
|
|
char *pmevcntr_el0_name = g_strdup_printf("PMEVCNTR%d_EL0", i);
|
|
char *pmevtyper_name = g_strdup_printf("PMEVTYPER%d", i);
|
|
char *pmevtyper_el0_name = g_strdup_printf("PMEVTYPER%d_EL0", i);
|
|
ARMCPRegInfo pmev_regs[] = {
|
|
{ .name = pmevcntr_name, .cp = 15, .crn = 14,
|
|
.crm = 8 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
|
|
.access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
|
|
.fgt = FGT_PMEVCNTRN_EL0,
|
|
.readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
|
|
.accessfn = pmreg_access_xevcntr },
|
|
{ .name = pmevcntr_el0_name, .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 8 | (3 & (i >> 3)),
|
|
.opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access_xevcntr,
|
|
.type = ARM_CP_IO,
|
|
.fgt = FGT_PMEVCNTRN_EL0,
|
|
.readfn = pmevcntr_readfn, .writefn = pmevcntr_writefn,
|
|
.raw_readfn = pmevcntr_rawread,
|
|
.raw_writefn = pmevcntr_rawwrite },
|
|
{ .name = pmevtyper_name, .cp = 15, .crn = 14,
|
|
.crm = 12 | (3 & (i >> 3)), .opc1 = 0, .opc2 = i & 7,
|
|
.access = PL0_RW, .type = ARM_CP_IO | ARM_CP_ALIAS,
|
|
.fgt = FGT_PMEVTYPERN_EL0,
|
|
.readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
|
|
.accessfn = pmreg_access },
|
|
{ .name = pmevtyper_el0_name, .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 14, .crm = 12 | (3 & (i >> 3)),
|
|
.opc2 = i & 7, .access = PL0_RW, .accessfn = pmreg_access,
|
|
.fgt = FGT_PMEVTYPERN_EL0,
|
|
.type = ARM_CP_IO,
|
|
.readfn = pmevtyper_readfn, .writefn = pmevtyper_writefn,
|
|
.raw_writefn = pmevtyper_rawwrite },
|
|
};
|
|
define_arm_cp_regs(cpu, pmev_regs);
|
|
g_free(pmevcntr_name);
|
|
g_free(pmevcntr_el0_name);
|
|
g_free(pmevtyper_name);
|
|
g_free(pmevtyper_el0_name);
|
|
}
|
|
if (cpu_isar_feature(aa32_pmuv3p1, cpu)) {
|
|
ARMCPRegInfo v81_pmu_regs[] = {
|
|
{ .name = "PMCEID2", .state = ARM_CP_STATE_AA32,
|
|
.cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 4,
|
|
.access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
|
|
.fgt = FGT_PMCEIDN_EL0,
|
|
.resetvalue = extract64(cpu->pmceid0, 32, 32) },
|
|
{ .name = "PMCEID3", .state = ARM_CP_STATE_AA32,
|
|
.cp = 15, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 5,
|
|
.access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
|
|
.fgt = FGT_PMCEIDN_EL0,
|
|
.resetvalue = extract64(cpu->pmceid1, 32, 32) },
|
|
};
|
|
define_arm_cp_regs(cpu, v81_pmu_regs);
|
|
}
|
|
if (cpu_isar_feature(any_pmuv3p4, cpu)) {
|
|
static const ARMCPRegInfo v84_pmmir = {
|
|
.name = "PMMIR_EL1", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 6,
|
|
.access = PL1_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
|
|
.fgt = FGT_PMMIR_EL1,
|
|
.resetvalue = 0
|
|
};
|
|
define_one_arm_cp_reg(cpu, &v84_pmmir);
|
|
}
|
|
}
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
/*
|
|
* We don't know until after realize whether there's a GICv3
|
|
* attached, and that is what registers the gicv3 sysregs.
|
|
* So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
|
|
* at runtime.
|
|
*/
|
|
static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
uint64_t pfr1 = cpu->isar.id_pfr1;
|
|
|
|
if (env->gicv3state) {
|
|
pfr1 |= 1 << 28;
|
|
}
|
|
return pfr1;
|
|
}
|
|
|
|
static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
uint64_t pfr0 = cpu->isar.id_aa64pfr0;
|
|
|
|
if (env->gicv3state) {
|
|
pfr0 |= 1 << 24;
|
|
}
|
|
return pfr0;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Shared logic between LORID and the rest of the LOR* registers.
|
|
* Secure state exclusion has already been dealt with.
|
|
*/
|
|
static CPAccessResult access_lor_ns(CPUARMState *env,
|
|
const ARMCPRegInfo *ri, bool isread)
|
|
{
|
|
int el = arm_current_el(env);
|
|
|
|
if (el < 2 && (arm_hcr_el2_eff(env) & HCR_TLOR)) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
if (el < 3 && (env->cp15.scr_el3 & SCR_TLOR)) {
|
|
return CP_ACCESS_TRAP_EL3;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static CPAccessResult access_lor_other(CPUARMState *env,
|
|
const ARMCPRegInfo *ri, bool isread)
|
|
{
|
|
if (arm_is_secure_below_el3(env)) {
|
|
/* Access denied in secure mode. */
|
|
return CP_ACCESS_TRAP;
|
|
}
|
|
return access_lor_ns(env, ri, isread);
|
|
}
|
|
|
|
/*
|
|
* A trivial implementation of ARMv8.1-LOR leaves all of these
|
|
* registers fixed at 0, which indicates that there are zero
|
|
* supported Limited Ordering regions.
|
|
*/
|
|
static const ARMCPRegInfo lor_reginfo[] = {
|
|
{ .name = "LORSA_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 0,
|
|
.access = PL1_RW, .accessfn = access_lor_other,
|
|
.fgt = FGT_LORSA_EL1,
|
|
.type = ARM_CP_CONST, .resetvalue = 0 },
|
|
{ .name = "LOREA_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 1,
|
|
.access = PL1_RW, .accessfn = access_lor_other,
|
|
.fgt = FGT_LOREA_EL1,
|
|
.type = ARM_CP_CONST, .resetvalue = 0 },
|
|
{ .name = "LORN_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 2,
|
|
.access = PL1_RW, .accessfn = access_lor_other,
|
|
.fgt = FGT_LORN_EL1,
|
|
.type = ARM_CP_CONST, .resetvalue = 0 },
|
|
{ .name = "LORC_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 3,
|
|
.access = PL1_RW, .accessfn = access_lor_other,
|
|
.fgt = FGT_LORC_EL1,
|
|
.type = ARM_CP_CONST, .resetvalue = 0 },
|
|
{ .name = "LORID_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 10, .crm = 4, .opc2 = 7,
|
|
.access = PL1_R, .accessfn = access_lor_ns,
|
|
.fgt = FGT_LORID_EL1,
|
|
.type = ARM_CP_CONST, .resetvalue = 0 },
|
|
};
|
|
|
|
#ifdef TARGET_AARCH64
|
|
static CPAccessResult access_pauth(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
int el = arm_current_el(env);
|
|
|
|
if (el < 2 &&
|
|
arm_is_el2_enabled(env) &&
|
|
!(arm_hcr_el2_eff(env) & HCR_APK)) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
if (el < 3 &&
|
|
arm_feature(env, ARM_FEATURE_EL3) &&
|
|
!(env->cp15.scr_el3 & SCR_APK)) {
|
|
return CP_ACCESS_TRAP_EL3;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static const ARMCPRegInfo pauth_reginfo[] = {
|
|
{ .name = "APDAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 0,
|
|
.access = PL1_RW, .accessfn = access_pauth,
|
|
.fgt = FGT_APDAKEY,
|
|
.fieldoffset = offsetof(CPUARMState, keys.apda.lo) },
|
|
{ .name = "APDAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 1,
|
|
.access = PL1_RW, .accessfn = access_pauth,
|
|
.fgt = FGT_APDAKEY,
|
|
.fieldoffset = offsetof(CPUARMState, keys.apda.hi) },
|
|
{ .name = "APDBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 2,
|
|
.access = PL1_RW, .accessfn = access_pauth,
|
|
.fgt = FGT_APDBKEY,
|
|
.fieldoffset = offsetof(CPUARMState, keys.apdb.lo) },
|
|
{ .name = "APDBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 2, .crm = 2, .opc2 = 3,
|
|
.access = PL1_RW, .accessfn = access_pauth,
|
|
.fgt = FGT_APDBKEY,
|
|
.fieldoffset = offsetof(CPUARMState, keys.apdb.hi) },
|
|
{ .name = "APGAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 0,
|
|
.access = PL1_RW, .accessfn = access_pauth,
|
|
.fgt = FGT_APGAKEY,
|
|
.fieldoffset = offsetof(CPUARMState, keys.apga.lo) },
|
|
{ .name = "APGAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 2, .crm = 3, .opc2 = 1,
|
|
.access = PL1_RW, .accessfn = access_pauth,
|
|
.fgt = FGT_APGAKEY,
|
|
.fieldoffset = offsetof(CPUARMState, keys.apga.hi) },
|
|
{ .name = "APIAKEYLO_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 0,
|
|
.access = PL1_RW, .accessfn = access_pauth,
|
|
.fgt = FGT_APIAKEY,
|
|
.fieldoffset = offsetof(CPUARMState, keys.apia.lo) },
|
|
{ .name = "APIAKEYHI_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 1,
|
|
.access = PL1_RW, .accessfn = access_pauth,
|
|
.fgt = FGT_APIAKEY,
|
|
.fieldoffset = offsetof(CPUARMState, keys.apia.hi) },
|
|
{ .name = "APIBKEYLO_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 2,
|
|
.access = PL1_RW, .accessfn = access_pauth,
|
|
.fgt = FGT_APIBKEY,
|
|
.fieldoffset = offsetof(CPUARMState, keys.apib.lo) },
|
|
{ .name = "APIBKEYHI_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 2, .crm = 1, .opc2 = 3,
|
|
.access = PL1_RW, .accessfn = access_pauth,
|
|
.fgt = FGT_APIBKEY,
|
|
.fieldoffset = offsetof(CPUARMState, keys.apib.hi) },
|
|
};
|
|
|
|
static const ARMCPRegInfo tlbirange_reginfo[] = {
|
|
{ .name = "TLBI_RVAE1IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 1,
|
|
.access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_TLBIRVAE1IS,
|
|
.writefn = tlbi_aa64_rvae1is_write },
|
|
{ .name = "TLBI_RVAAE1IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 3,
|
|
.access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_TLBIRVAAE1IS,
|
|
.writefn = tlbi_aa64_rvae1is_write },
|
|
{ .name = "TLBI_RVALE1IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 5,
|
|
.access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_TLBIRVALE1IS,
|
|
.writefn = tlbi_aa64_rvae1is_write },
|
|
{ .name = "TLBI_RVAALE1IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 2, .opc2 = 7,
|
|
.access = PL1_W, .accessfn = access_ttlbis, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_TLBIRVAALE1IS,
|
|
.writefn = tlbi_aa64_rvae1is_write },
|
|
{ .name = "TLBI_RVAE1OS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
|
|
.access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_TLBIRVAE1OS,
|
|
.writefn = tlbi_aa64_rvae1is_write },
|
|
{ .name = "TLBI_RVAAE1OS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 3,
|
|
.access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_TLBIRVAAE1OS,
|
|
.writefn = tlbi_aa64_rvae1is_write },
|
|
{ .name = "TLBI_RVALE1OS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 5,
|
|
.access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_TLBIRVALE1OS,
|
|
.writefn = tlbi_aa64_rvae1is_write },
|
|
{ .name = "TLBI_RVAALE1OS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 7,
|
|
.access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_TLBIRVAALE1OS,
|
|
.writefn = tlbi_aa64_rvae1is_write },
|
|
{ .name = "TLBI_RVAE1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
|
|
.access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_TLBIRVAE1,
|
|
.writefn = tlbi_aa64_rvae1_write },
|
|
{ .name = "TLBI_RVAAE1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 3,
|
|
.access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_TLBIRVAAE1,
|
|
.writefn = tlbi_aa64_rvae1_write },
|
|
{ .name = "TLBI_RVALE1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 5,
|
|
.access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_TLBIRVALE1,
|
|
.writefn = tlbi_aa64_rvae1_write },
|
|
{ .name = "TLBI_RVAALE1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 7,
|
|
.access = PL1_W, .accessfn = access_ttlb, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_TLBIRVAALE1,
|
|
.writefn = tlbi_aa64_rvae1_write },
|
|
{ .name = "TLBI_RIPAS2E1IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 2,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_ripas2e1is_write },
|
|
{ .name = "TLBI_RIPAS2LE1IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 6,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_ripas2e1is_write },
|
|
{ .name = "TLBI_RVAE2IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 1,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
|
|
.writefn = tlbi_aa64_rvae2is_write },
|
|
{ .name = "TLBI_RVALE2IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 2, .opc2 = 5,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
|
|
.writefn = tlbi_aa64_rvae2is_write },
|
|
{ .name = "TLBI_RIPAS2E1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 2,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_ripas2e1_write },
|
|
{ .name = "TLBI_RIPAS2LE1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 6,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_ripas2e1_write },
|
|
{ .name = "TLBI_RVAE2OS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 1,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
|
|
.writefn = tlbi_aa64_rvae2is_write },
|
|
{ .name = "TLBI_RVALE2OS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 5, .opc2 = 5,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
|
|
.writefn = tlbi_aa64_rvae2is_write },
|
|
{ .name = "TLBI_RVAE2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 1,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
|
|
.writefn = tlbi_aa64_rvae2_write },
|
|
{ .name = "TLBI_RVALE2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 6, .opc2 = 5,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
|
|
.writefn = tlbi_aa64_rvae2_write },
|
|
{ .name = "TLBI_RVAE3IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 1,
|
|
.access = PL3_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_rvae3is_write },
|
|
{ .name = "TLBI_RVALE3IS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 2, .opc2 = 5,
|
|
.access = PL3_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_rvae3is_write },
|
|
{ .name = "TLBI_RVAE3OS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 1,
|
|
.access = PL3_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_rvae3is_write },
|
|
{ .name = "TLBI_RVALE3OS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 5, .opc2 = 5,
|
|
.access = PL3_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_rvae3is_write },
|
|
{ .name = "TLBI_RVAE3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 1,
|
|
.access = PL3_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_rvae3_write },
|
|
{ .name = "TLBI_RVALE3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 6, .opc2 = 5,
|
|
.access = PL3_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_rvae3_write },
|
|
};
|
|
|
|
static const ARMCPRegInfo tlbios_reginfo[] = {
|
|
{ .name = "TLBI_VMALLE1OS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 0,
|
|
.access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_TLBIVMALLE1OS,
|
|
.writefn = tlbi_aa64_vmalle1is_write },
|
|
{ .name = "TLBI_VAE1OS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 1,
|
|
.fgt = FGT_TLBIVAE1OS,
|
|
.access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_vae1is_write },
|
|
{ .name = "TLBI_ASIDE1OS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 2,
|
|
.access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_TLBIASIDE1OS,
|
|
.writefn = tlbi_aa64_vmalle1is_write },
|
|
{ .name = "TLBI_VAAE1OS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 3,
|
|
.access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_TLBIVAAE1OS,
|
|
.writefn = tlbi_aa64_vae1is_write },
|
|
{ .name = "TLBI_VALE1OS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 5,
|
|
.access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_TLBIVALE1OS,
|
|
.writefn = tlbi_aa64_vae1is_write },
|
|
{ .name = "TLBI_VAALE1OS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 8, .crm = 1, .opc2 = 7,
|
|
.access = PL1_W, .accessfn = access_ttlbos, .type = ARM_CP_NO_RAW,
|
|
.fgt = FGT_TLBIVAALE1OS,
|
|
.writefn = tlbi_aa64_vae1is_write },
|
|
{ .name = "TLBI_ALLE2OS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 0,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
|
|
.writefn = tlbi_aa64_alle2is_write },
|
|
{ .name = "TLBI_VAE2OS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 1,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
|
|
.writefn = tlbi_aa64_vae2is_write },
|
|
{ .name = "TLBI_ALLE1OS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 4,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_alle1is_write },
|
|
{ .name = "TLBI_VALE2OS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 5,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW | ARM_CP_EL3_NO_EL2_UNDEF,
|
|
.writefn = tlbi_aa64_vae2is_write },
|
|
{ .name = "TLBI_VMALLS12E1OS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 1, .opc2 = 6,
|
|
.access = PL2_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_alle1is_write },
|
|
{ .name = "TLBI_IPAS2E1OS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 0,
|
|
.access = PL2_W, .type = ARM_CP_NOP },
|
|
{ .name = "TLBI_RIPAS2E1OS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 3,
|
|
.access = PL2_W, .type = ARM_CP_NOP },
|
|
{ .name = "TLBI_IPAS2LE1OS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 4,
|
|
.access = PL2_W, .type = ARM_CP_NOP },
|
|
{ .name = "TLBI_RIPAS2LE1OS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 7,
|
|
.access = PL2_W, .type = ARM_CP_NOP },
|
|
{ .name = "TLBI_ALLE3OS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 0,
|
|
.access = PL3_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_alle3is_write },
|
|
{ .name = "TLBI_VAE3OS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 1,
|
|
.access = PL3_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_vae3is_write },
|
|
{ .name = "TLBI_VALE3OS", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 6, .crn = 8, .crm = 1, .opc2 = 5,
|
|
.access = PL3_W, .type = ARM_CP_NO_RAW,
|
|
.writefn = tlbi_aa64_vae3is_write },
|
|
};
|
|
|
|
static uint64_t rndr_readfn(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
Error *err = NULL;
|
|
uint64_t ret;
|
|
|
|
/* Success sets NZCV = 0000. */
|
|
env->NF = env->CF = env->VF = 0, env->ZF = 1;
|
|
|
|
if (qemu_guest_getrandom(&ret, sizeof(ret), &err) < 0) {
|
|
/*
|
|
* ??? Failed, for unknown reasons in the crypto subsystem.
|
|
* The best we can do is log the reason and return the
|
|
* timed-out indication to the guest. There is no reason
|
|
* we know to expect this failure to be transitory, so the
|
|
* guest may well hang retrying the operation.
|
|
*/
|
|
qemu_log_mask(LOG_UNIMP, "%s: Crypto failure: %s",
|
|
ri->name, error_get_pretty(err));
|
|
error_free(err);
|
|
|
|
env->ZF = 0; /* NZCF = 0100 */
|
|
return 0;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* We do not support re-seeding, so the two registers operate the same. */
|
|
static const ARMCPRegInfo rndr_reginfo[] = {
|
|
{ .name = "RNDR", .state = ARM_CP_STATE_AA64,
|
|
.type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
|
|
.opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 0,
|
|
.access = PL0_R, .readfn = rndr_readfn },
|
|
{ .name = "RNDRRS", .state = ARM_CP_STATE_AA64,
|
|
.type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END | ARM_CP_IO,
|
|
.opc0 = 3, .opc1 = 3, .crn = 2, .crm = 4, .opc2 = 1,
|
|
.access = PL0_R, .readfn = rndr_readfn },
|
|
};
|
|
|
|
static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
|
|
uint64_t value)
|
|
{
|
|
#ifdef CONFIG_TCG
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
/* CTR_EL0 System register -> DminLine, bits [19:16] */
|
|
uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
|
|
uint64_t vaddr_in = (uint64_t) value;
|
|
uint64_t vaddr = vaddr_in & ~(dline_size - 1);
|
|
void *haddr;
|
|
int mem_idx = arm_env_mmu_index(env);
|
|
|
|
/* This won't be crossing page boundaries */
|
|
haddr = probe_read(env, vaddr, dline_size, mem_idx, GETPC());
|
|
if (haddr) {
|
|
#ifndef CONFIG_USER_ONLY
|
|
|
|
ram_addr_t offset;
|
|
MemoryRegion *mr;
|
|
|
|
/* RCU lock is already being held */
|
|
mr = memory_region_from_host(haddr, &offset);
|
|
|
|
if (mr) {
|
|
memory_region_writeback(mr, offset, dline_size);
|
|
}
|
|
#endif /*CONFIG_USER_ONLY*/
|
|
}
|
|
#else
|
|
/* Handled by hardware accelerator. */
|
|
g_assert_not_reached();
|
|
#endif /* CONFIG_TCG */
|
|
}
|
|
|
|
static const ARMCPRegInfo dcpop_reg[] = {
|
|
{ .name = "DC_CVAP", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 1,
|
|
.access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
|
|
.fgt = FGT_DCCVAP,
|
|
.accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
|
|
};
|
|
|
|
static const ARMCPRegInfo dcpodp_reg[] = {
|
|
{ .name = "DC_CVADP", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 1,
|
|
.access = PL0_W, .type = ARM_CP_NO_RAW | ARM_CP_SUPPRESS_TB_END,
|
|
.fgt = FGT_DCCVADP,
|
|
.accessfn = aa64_cacheop_poc_access, .writefn = dccvap_writefn },
|
|
};
|
|
|
|
static CPAccessResult access_aa64_tid5(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID5)) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static CPAccessResult access_mte(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
int el = arm_current_el(env);
|
|
if (el < 2 && arm_is_el2_enabled(env)) {
|
|
uint64_t hcr = arm_hcr_el2_eff(env);
|
|
if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
}
|
|
if (el < 3 &&
|
|
arm_feature(env, ARM_FEATURE_EL3) &&
|
|
!(env->cp15.scr_el3 & SCR_ATA)) {
|
|
return CP_ACCESS_TRAP_EL3;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static CPAccessResult access_tfsr_el1(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
CPAccessResult nv1 = access_nv1(env, ri, isread);
|
|
|
|
if (nv1 != CP_ACCESS_OK) {
|
|
return nv1;
|
|
}
|
|
return access_mte(env, ri, isread);
|
|
}
|
|
|
|
static CPAccessResult access_tfsr_el2(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
/*
|
|
* TFSR_EL2: similar to generic access_mte(), but we need to
|
|
* account for FEAT_NV. At EL1 this must be a FEAT_NV access;
|
|
* if NV2 is enabled then we will redirect this to TFSR_EL1
|
|
* after doing the HCR and SCR ATA traps; otherwise this will
|
|
* be a trap to EL2 and the HCR/SCR traps do not apply.
|
|
*/
|
|
int el = arm_current_el(env);
|
|
|
|
if (el == 1 && (arm_hcr_el2_eff(env) & HCR_NV2)) {
|
|
return CP_ACCESS_OK;
|
|
}
|
|
if (el < 2 && arm_is_el2_enabled(env)) {
|
|
uint64_t hcr = arm_hcr_el2_eff(env);
|
|
if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
}
|
|
if (el < 3 &&
|
|
arm_feature(env, ARM_FEATURE_EL3) &&
|
|
!(env->cp15.scr_el3 & SCR_ATA)) {
|
|
return CP_ACCESS_TRAP_EL3;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static uint64_t tco_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
return env->pstate & PSTATE_TCO;
|
|
}
|
|
|
|
static void tco_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
|
|
{
|
|
env->pstate = (env->pstate & ~PSTATE_TCO) | (val & PSTATE_TCO);
|
|
}
|
|
|
|
static const ARMCPRegInfo mte_reginfo[] = {
|
|
{ .name = "TFSRE0_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 1,
|
|
.access = PL1_RW, .accessfn = access_mte,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[0]) },
|
|
{ .name = "TFSR_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 5, .crm = 6, .opc2 = 0,
|
|
.access = PL1_RW, .accessfn = access_tfsr_el1,
|
|
.nv2_redirect_offset = 0x190 | NV2_REDIR_NV1,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[1]) },
|
|
{ .name = "TFSR_EL2", .state = ARM_CP_STATE_AA64,
|
|
.type = ARM_CP_NV2_REDIRECT,
|
|
.opc0 = 3, .opc1 = 4, .crn = 5, .crm = 6, .opc2 = 0,
|
|
.access = PL2_RW, .accessfn = access_tfsr_el2,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[2]) },
|
|
{ .name = "TFSR_EL3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 5, .crm = 6, .opc2 = 0,
|
|
.access = PL3_RW,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.tfsr_el[3]) },
|
|
{ .name = "RGSR_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 5,
|
|
.access = PL1_RW, .accessfn = access_mte,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.rgsr_el1) },
|
|
{ .name = "GCR_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 6,
|
|
.access = PL1_RW, .accessfn = access_mte,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.gcr_el1) },
|
|
{ .name = "TCO", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
|
|
.type = ARM_CP_NO_RAW,
|
|
.access = PL0_RW, .readfn = tco_read, .writefn = tco_write },
|
|
{ .name = "DC_IGVAC", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 3,
|
|
.type = ARM_CP_NOP, .access = PL1_W,
|
|
.fgt = FGT_DCIVAC,
|
|
.accessfn = aa64_cacheop_poc_access },
|
|
{ .name = "DC_IGSW", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 4,
|
|
.fgt = FGT_DCISW,
|
|
.type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
|
|
{ .name = "DC_IGDVAC", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 5,
|
|
.type = ARM_CP_NOP, .access = PL1_W,
|
|
.fgt = FGT_DCIVAC,
|
|
.accessfn = aa64_cacheop_poc_access },
|
|
{ .name = "DC_IGDSW", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 6,
|
|
.fgt = FGT_DCISW,
|
|
.type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
|
|
{ .name = "DC_CGSW", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 4,
|
|
.fgt = FGT_DCCSW,
|
|
.type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
|
|
{ .name = "DC_CGDSW", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 6,
|
|
.fgt = FGT_DCCSW,
|
|
.type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
|
|
{ .name = "DC_CIGSW", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 4,
|
|
.fgt = FGT_DCCISW,
|
|
.type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
|
|
{ .name = "DC_CIGDSW", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 6,
|
|
.fgt = FGT_DCCISW,
|
|
.type = ARM_CP_NOP, .access = PL1_W, .accessfn = access_tsw },
|
|
};
|
|
|
|
static const ARMCPRegInfo mte_tco_ro_reginfo[] = {
|
|
{ .name = "TCO", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 4, .crm = 2, .opc2 = 7,
|
|
.type = ARM_CP_CONST, .access = PL0_RW, },
|
|
};
|
|
|
|
static const ARMCPRegInfo mte_el0_cacheop_reginfo[] = {
|
|
{ .name = "DC_CGVAC", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 3,
|
|
.type = ARM_CP_NOP, .access = PL0_W,
|
|
.fgt = FGT_DCCVAC,
|
|
.accessfn = aa64_cacheop_poc_access },
|
|
{ .name = "DC_CGDVAC", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 5,
|
|
.type = ARM_CP_NOP, .access = PL0_W,
|
|
.fgt = FGT_DCCVAC,
|
|
.accessfn = aa64_cacheop_poc_access },
|
|
{ .name = "DC_CGVAP", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 3,
|
|
.type = ARM_CP_NOP, .access = PL0_W,
|
|
.fgt = FGT_DCCVAP,
|
|
.accessfn = aa64_cacheop_poc_access },
|
|
{ .name = "DC_CGDVAP", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 12, .opc2 = 5,
|
|
.type = ARM_CP_NOP, .access = PL0_W,
|
|
.fgt = FGT_DCCVAP,
|
|
.accessfn = aa64_cacheop_poc_access },
|
|
{ .name = "DC_CGVADP", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 3,
|
|
.type = ARM_CP_NOP, .access = PL0_W,
|
|
.fgt = FGT_DCCVADP,
|
|
.accessfn = aa64_cacheop_poc_access },
|
|
{ .name = "DC_CGDVADP", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 13, .opc2 = 5,
|
|
.type = ARM_CP_NOP, .access = PL0_W,
|
|
.fgt = FGT_DCCVADP,
|
|
.accessfn = aa64_cacheop_poc_access },
|
|
{ .name = "DC_CIGVAC", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 3,
|
|
.type = ARM_CP_NOP, .access = PL0_W,
|
|
.fgt = FGT_DCCIVAC,
|
|
.accessfn = aa64_cacheop_poc_access },
|
|
{ .name = "DC_CIGDVAC", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 5,
|
|
.type = ARM_CP_NOP, .access = PL0_W,
|
|
.fgt = FGT_DCCIVAC,
|
|
.accessfn = aa64_cacheop_poc_access },
|
|
{ .name = "DC_GVA", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 3,
|
|
.access = PL0_W, .type = ARM_CP_DC_GVA,
|
|
#ifndef CONFIG_USER_ONLY
|
|
/* Avoid overhead of an access check that always passes in user-mode */
|
|
.accessfn = aa64_zva_access,
|
|
.fgt = FGT_DCZVA,
|
|
#endif
|
|
},
|
|
{ .name = "DC_GZVA", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 4,
|
|
.access = PL0_W, .type = ARM_CP_DC_GZVA,
|
|
#ifndef CONFIG_USER_ONLY
|
|
/* Avoid overhead of an access check that always passes in user-mode */
|
|
.accessfn = aa64_zva_access,
|
|
.fgt = FGT_DCZVA,
|
|
#endif
|
|
},
|
|
};
|
|
|
|
static CPAccessResult access_scxtnum(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
uint64_t hcr = arm_hcr_el2_eff(env);
|
|
int el = arm_current_el(env);
|
|
|
|
if (el == 0 && !((hcr & HCR_E2H) && (hcr & HCR_TGE))) {
|
|
if (env->cp15.sctlr_el[1] & SCTLR_TSCXT) {
|
|
if (hcr & HCR_TGE) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
return CP_ACCESS_TRAP;
|
|
}
|
|
} else if (el < 2 && (env->cp15.sctlr_el[2] & SCTLR_TSCXT)) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
if (el < 2 && arm_is_el2_enabled(env) && !(hcr & HCR_ENSCXT)) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
if (el < 3
|
|
&& arm_feature(env, ARM_FEATURE_EL3)
|
|
&& !(env->cp15.scr_el3 & SCR_ENSCXT)) {
|
|
return CP_ACCESS_TRAP_EL3;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static CPAccessResult access_scxtnum_el1(CPUARMState *env,
|
|
const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
CPAccessResult nv1 = access_nv1(env, ri, isread);
|
|
|
|
if (nv1 != CP_ACCESS_OK) {
|
|
return nv1;
|
|
}
|
|
return access_scxtnum(env, ri, isread);
|
|
}
|
|
|
|
static const ARMCPRegInfo scxtnum_reginfo[] = {
|
|
{ .name = "SCXTNUM_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 13, .crm = 0, .opc2 = 7,
|
|
.access = PL0_RW, .accessfn = access_scxtnum,
|
|
.fgt = FGT_SCXTNUM_EL0,
|
|
.fieldoffset = offsetof(CPUARMState, scxtnum_el[0]) },
|
|
{ .name = "SCXTNUM_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 7,
|
|
.access = PL1_RW, .accessfn = access_scxtnum_el1,
|
|
.fgt = FGT_SCXTNUM_EL1,
|
|
.nv2_redirect_offset = 0x188 | NV2_REDIR_NV1,
|
|
.fieldoffset = offsetof(CPUARMState, scxtnum_el[1]) },
|
|
{ .name = "SCXTNUM_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 7,
|
|
.access = PL2_RW, .accessfn = access_scxtnum,
|
|
.fieldoffset = offsetof(CPUARMState, scxtnum_el[2]) },
|
|
{ .name = "SCXTNUM_EL3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 7,
|
|
.access = PL3_RW,
|
|
.fieldoffset = offsetof(CPUARMState, scxtnum_el[3]) },
|
|
};
|
|
|
|
static CPAccessResult access_fgt(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (arm_current_el(env) == 2 &&
|
|
arm_feature(env, ARM_FEATURE_EL3) && !(env->cp15.scr_el3 & SCR_FGTEN)) {
|
|
return CP_ACCESS_TRAP_EL3;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static const ARMCPRegInfo fgt_reginfo[] = {
|
|
{ .name = "HFGRTR_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 4,
|
|
.nv2_redirect_offset = 0x1b8,
|
|
.access = PL2_RW, .accessfn = access_fgt,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HFGRTR]) },
|
|
{ .name = "HFGWTR_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 5,
|
|
.nv2_redirect_offset = 0x1c0,
|
|
.access = PL2_RW, .accessfn = access_fgt,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HFGWTR]) },
|
|
{ .name = "HDFGRTR_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 4,
|
|
.nv2_redirect_offset = 0x1d0,
|
|
.access = PL2_RW, .accessfn = access_fgt,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.fgt_read[FGTREG_HDFGRTR]) },
|
|
{ .name = "HDFGWTR_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 3, .crm = 1, .opc2 = 5,
|
|
.nv2_redirect_offset = 0x1d8,
|
|
.access = PL2_RW, .accessfn = access_fgt,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.fgt_write[FGTREG_HDFGWTR]) },
|
|
{ .name = "HFGITR_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 6,
|
|
.nv2_redirect_offset = 0x1c8,
|
|
.access = PL2_RW, .accessfn = access_fgt,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.fgt_exec[FGTREG_HFGITR]) },
|
|
};
|
|
|
|
static void vncr_write(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/*
|
|
* Clear the RES0 bottom 12 bits; this means at runtime we can guarantee
|
|
* that VNCR_EL2 + offset is 64-bit aligned. We don't need to do anything
|
|
* about the RESS bits at the top -- we choose the "generate an EL2
|
|
* translation abort on use" CONSTRAINED UNPREDICTABLE option (i.e. let
|
|
* the ptw.c code detect the resulting invalid address).
|
|
*/
|
|
env->cp15.vncr_el2 = value & ~0xfffULL;
|
|
}
|
|
|
|
static const ARMCPRegInfo nv2_reginfo[] = {
|
|
{ .name = "VNCR_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 2, .crm = 2, .opc2 = 0,
|
|
.access = PL2_RW,
|
|
.writefn = vncr_write,
|
|
.nv2_redirect_offset = 0xb0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.vncr_el2) },
|
|
};
|
|
|
|
#endif /* TARGET_AARCH64 */
|
|
|
|
static CPAccessResult access_predinv(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
int el = arm_current_el(env);
|
|
|
|
if (el == 0) {
|
|
uint64_t sctlr = arm_sctlr(env, el);
|
|
if (!(sctlr & SCTLR_EnRCTX)) {
|
|
return CP_ACCESS_TRAP;
|
|
}
|
|
} else if (el == 1) {
|
|
uint64_t hcr = arm_hcr_el2_eff(env);
|
|
if (hcr & HCR_NV) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static const ARMCPRegInfo predinv_reginfo[] = {
|
|
{ .name = "CFP_RCTX", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 4,
|
|
.fgt = FGT_CFPRCTX,
|
|
.type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
|
|
{ .name = "DVP_RCTX", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 5,
|
|
.fgt = FGT_DVPRCTX,
|
|
.type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
|
|
{ .name = "CPP_RCTX", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 3, .crn = 7, .crm = 3, .opc2 = 7,
|
|
.fgt = FGT_CPPRCTX,
|
|
.type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
|
|
/*
|
|
* Note the AArch32 opcodes have a different OPC1.
|
|
*/
|
|
{ .name = "CFPRCTX", .state = ARM_CP_STATE_AA32,
|
|
.cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 4,
|
|
.fgt = FGT_CFPRCTX,
|
|
.type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
|
|
{ .name = "DVPRCTX", .state = ARM_CP_STATE_AA32,
|
|
.cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 5,
|
|
.fgt = FGT_DVPRCTX,
|
|
.type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
|
|
{ .name = "CPPRCTX", .state = ARM_CP_STATE_AA32,
|
|
.cp = 15, .opc1 = 0, .crn = 7, .crm = 3, .opc2 = 7,
|
|
.fgt = FGT_CPPRCTX,
|
|
.type = ARM_CP_NOP, .access = PL0_W, .accessfn = access_predinv },
|
|
};
|
|
|
|
static uint64_t ccsidr2_read(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
/* Read the high 32 bits of the current CCSIDR */
|
|
return extract64(ccsidr_read(env, ri), 32, 32);
|
|
}
|
|
|
|
static const ARMCPRegInfo ccsidr2_reginfo[] = {
|
|
{ .name = "CCSIDR2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 2,
|
|
.access = PL1_R,
|
|
.accessfn = access_tid4,
|
|
.readfn = ccsidr2_read, .type = ARM_CP_NO_RAW },
|
|
};
|
|
|
|
static CPAccessResult access_aa64_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if ((arm_current_el(env) < 2) && (arm_hcr_el2_eff(env) & HCR_TID3)) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static CPAccessResult access_aa32_tid3(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (arm_feature(env, ARM_FEATURE_V8)) {
|
|
return access_aa64_tid3(env, ri, isread);
|
|
}
|
|
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static CPAccessResult access_jazelle(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
bool isread)
|
|
{
|
|
if (arm_current_el(env) == 1 && (arm_hcr_el2_eff(env) & HCR_TID0)) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static CPAccessResult access_joscr_jmcr(CPUARMState *env,
|
|
const ARMCPRegInfo *ri, bool isread)
|
|
{
|
|
/*
|
|
* HSTR.TJDBX traps JOSCR and JMCR accesses, but it exists only
|
|
* in v7A, not in v8A.
|
|
*/
|
|
if (!arm_feature(env, ARM_FEATURE_V8) &&
|
|
arm_current_el(env) < 2 && !arm_is_secure_below_el3(env) &&
|
|
(env->cp15.hstr_el2 & HSTR_TJDBX)) {
|
|
return CP_ACCESS_TRAP_EL2;
|
|
}
|
|
return CP_ACCESS_OK;
|
|
}
|
|
|
|
static const ARMCPRegInfo jazelle_regs[] = {
|
|
{ .name = "JIDR",
|
|
.cp = 14, .crn = 0, .crm = 0, .opc1 = 7, .opc2 = 0,
|
|
.access = PL1_R, .accessfn = access_jazelle,
|
|
.type = ARM_CP_CONST, .resetvalue = 0 },
|
|
{ .name = "JOSCR",
|
|
.cp = 14, .crn = 1, .crm = 0, .opc1 = 7, .opc2 = 0,
|
|
.accessfn = access_joscr_jmcr,
|
|
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
|
|
{ .name = "JMCR",
|
|
.cp = 14, .crn = 2, .crm = 0, .opc1 = 7, .opc2 = 0,
|
|
.accessfn = access_joscr_jmcr,
|
|
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
|
|
};
|
|
|
|
static const ARMCPRegInfo contextidr_el2 = {
|
|
.name = "CONTEXTIDR_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 1,
|
|
.access = PL2_RW,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[2])
|
|
};
|
|
|
|
static const ARMCPRegInfo vhe_reginfo[] = {
|
|
{ .name = "TTBR1_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 1,
|
|
.access = PL2_RW, .writefn = vmsa_tcr_ttbr_el2_write,
|
|
.raw_writefn = raw_write,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.ttbr1_el[2]) },
|
|
#ifndef CONFIG_USER_ONLY
|
|
{ .name = "CNTHV_CVAL_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 2,
|
|
.fieldoffset =
|
|
offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].cval),
|
|
.type = ARM_CP_IO, .access = PL2_RW,
|
|
.writefn = gt_hv_cval_write, .raw_writefn = raw_write },
|
|
{ .name = "CNTHV_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 0,
|
|
.type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
|
|
.resetfn = gt_hv_timer_reset,
|
|
.readfn = gt_hv_tval_read, .writefn = gt_hv_tval_write },
|
|
{ .name = "CNTHV_CTL_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.type = ARM_CP_IO,
|
|
.opc0 = 3, .opc1 = 4, .crn = 14, .crm = 3, .opc2 = 1,
|
|
.access = PL2_RW,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYPVIRT].ctl),
|
|
.writefn = gt_hv_ctl_write, .raw_writefn = raw_write },
|
|
{ .name = "CNTP_CTL_EL02", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 1,
|
|
.type = ARM_CP_IO | ARM_CP_ALIAS,
|
|
.access = PL2_RW, .accessfn = access_el1nvpct,
|
|
.nv2_redirect_offset = 0x180 | NV2_REDIR_NO_NV1,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
|
|
.writefn = gt_phys_ctl_write, .raw_writefn = raw_write },
|
|
{ .name = "CNTV_CTL_EL02", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 1,
|
|
.type = ARM_CP_IO | ARM_CP_ALIAS,
|
|
.access = PL2_RW, .accessfn = access_el1nvvct,
|
|
.nv2_redirect_offset = 0x170 | NV2_REDIR_NO_NV1,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
|
|
.writefn = gt_virt_ctl_write, .raw_writefn = raw_write },
|
|
{ .name = "CNTP_TVAL_EL02", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 0,
|
|
.type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
|
|
.access = PL2_RW, .accessfn = e2h_access,
|
|
.readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write },
|
|
{ .name = "CNTV_TVAL_EL02", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 0,
|
|
.type = ARM_CP_NO_RAW | ARM_CP_IO | ARM_CP_ALIAS,
|
|
.access = PL2_RW, .accessfn = e2h_access,
|
|
.readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write },
|
|
{ .name = "CNTP_CVAL_EL02", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 5, .crn = 14, .crm = 2, .opc2 = 2,
|
|
.type = ARM_CP_IO | ARM_CP_ALIAS,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
|
|
.nv2_redirect_offset = 0x178 | NV2_REDIR_NO_NV1,
|
|
.access = PL2_RW, .accessfn = access_el1nvpct,
|
|
.writefn = gt_phys_cval_write, .raw_writefn = raw_write },
|
|
{ .name = "CNTV_CVAL_EL02", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 5, .crn = 14, .crm = 3, .opc2 = 2,
|
|
.type = ARM_CP_IO | ARM_CP_ALIAS,
|
|
.nv2_redirect_offset = 0x168 | NV2_REDIR_NO_NV1,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
|
|
.access = PL2_RW, .accessfn = access_el1nvvct,
|
|
.writefn = gt_virt_cval_write, .raw_writefn = raw_write },
|
|
#endif
|
|
};
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
static const ARMCPRegInfo ats1e1_reginfo[] = {
|
|
{ .name = "AT_S1E1RP", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
|
|
.access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
|
|
.fgt = FGT_ATS1E1RP,
|
|
.accessfn = at_s1e01_access, .writefn = ats_write64 },
|
|
{ .name = "AT_S1E1WP", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 1, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
|
|
.access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
|
|
.fgt = FGT_ATS1E1WP,
|
|
.accessfn = at_s1e01_access, .writefn = ats_write64 },
|
|
};
|
|
|
|
static const ARMCPRegInfo ats1cp_reginfo[] = {
|
|
{ .name = "ATS1CPRP",
|
|
.cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 0,
|
|
.access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
|
|
.writefn = ats_write },
|
|
{ .name = "ATS1CPWP",
|
|
.cp = 15, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 1,
|
|
.access = PL1_W, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC,
|
|
.writefn = ats_write },
|
|
};
|
|
#endif
|
|
|
|
/*
|
|
* ACTLR2 and HACTLR2 map to ACTLR_EL1[63:32] and
|
|
* ACTLR_EL2[63:32]. They exist only if the ID_MMFR4.AC2 field
|
|
* is non-zero, which is never for ARMv7, optionally in ARMv8
|
|
* and mandatorily for ARMv8.2 and up.
|
|
* ACTLR2 is banked for S and NS if EL3 is AArch32. Since QEMU's
|
|
* implementation is RAZ/WI we can ignore this detail, as we
|
|
* do for ACTLR.
|
|
*/
|
|
static const ARMCPRegInfo actlr2_hactlr2_reginfo[] = {
|
|
{ .name = "ACTLR2", .state = ARM_CP_STATE_AA32,
|
|
.cp = 15, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 3,
|
|
.access = PL1_RW, .accessfn = access_tacr,
|
|
.type = ARM_CP_CONST, .resetvalue = 0 },
|
|
{ .name = "HACTLR2", .state = ARM_CP_STATE_AA32,
|
|
.cp = 15, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 3,
|
|
.access = PL2_RW, .type = ARM_CP_CONST,
|
|
.resetvalue = 0 },
|
|
};
|
|
|
|
void register_cp_regs_for_features(ARMCPU *cpu)
|
|
{
|
|
/* Register all the coprocessor registers based on feature bits */
|
|
CPUARMState *env = &cpu->env;
|
|
if (arm_feature(env, ARM_FEATURE_M)) {
|
|
/* M profile has no coprocessor registers */
|
|
return;
|
|
}
|
|
|
|
define_arm_cp_regs(cpu, cp_reginfo);
|
|
if (!arm_feature(env, ARM_FEATURE_V8)) {
|
|
/*
|
|
* Must go early as it is full of wildcards that may be
|
|
* overridden by later definitions.
|
|
*/
|
|
define_arm_cp_regs(cpu, not_v8_cp_reginfo);
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_V6)) {
|
|
/* The ID registers all have impdef reset values */
|
|
ARMCPRegInfo v6_idregs[] = {
|
|
{ .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa32_tid3,
|
|
.resetvalue = cpu->isar.id_pfr0 },
|
|
/*
|
|
* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
|
|
* the value of the GIC field until after we define these regs.
|
|
*/
|
|
{ .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
|
|
.access = PL1_R, .type = ARM_CP_NO_RAW,
|
|
.accessfn = access_aa32_tid3,
|
|
#ifdef CONFIG_USER_ONLY
|
|
.type = ARM_CP_CONST,
|
|
.resetvalue = cpu->isar.id_pfr1,
|
|
#else
|
|
.type = ARM_CP_NO_RAW,
|
|
.accessfn = access_aa32_tid3,
|
|
.readfn = id_pfr1_read,
|
|
.writefn = arm_cp_write_ignore
|
|
#endif
|
|
},
|
|
{ .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa32_tid3,
|
|
.resetvalue = cpu->isar.id_dfr0 },
|
|
{ .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa32_tid3,
|
|
.resetvalue = cpu->id_afr0 },
|
|
{ .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa32_tid3,
|
|
.resetvalue = cpu->isar.id_mmfr0 },
|
|
{ .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa32_tid3,
|
|
.resetvalue = cpu->isar.id_mmfr1 },
|
|
{ .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa32_tid3,
|
|
.resetvalue = cpu->isar.id_mmfr2 },
|
|
{ .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa32_tid3,
|
|
.resetvalue = cpu->isar.id_mmfr3 },
|
|
{ .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa32_tid3,
|
|
.resetvalue = cpu->isar.id_isar0 },
|
|
{ .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa32_tid3,
|
|
.resetvalue = cpu->isar.id_isar1 },
|
|
{ .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa32_tid3,
|
|
.resetvalue = cpu->isar.id_isar2 },
|
|
{ .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa32_tid3,
|
|
.resetvalue = cpu->isar.id_isar3 },
|
|
{ .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa32_tid3,
|
|
.resetvalue = cpu->isar.id_isar4 },
|
|
{ .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa32_tid3,
|
|
.resetvalue = cpu->isar.id_isar5 },
|
|
{ .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa32_tid3,
|
|
.resetvalue = cpu->isar.id_mmfr4 },
|
|
{ .name = "ID_ISAR6", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa32_tid3,
|
|
.resetvalue = cpu->isar.id_isar6 },
|
|
};
|
|
define_arm_cp_regs(cpu, v6_idregs);
|
|
define_arm_cp_regs(cpu, v6_cp_reginfo);
|
|
} else {
|
|
define_arm_cp_regs(cpu, not_v6_cp_reginfo);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_V6K)) {
|
|
define_arm_cp_regs(cpu, v6k_cp_reginfo);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_V7MP) &&
|
|
!arm_feature(env, ARM_FEATURE_PMSA)) {
|
|
define_arm_cp_regs(cpu, v7mp_cp_reginfo);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_V7VE)) {
|
|
define_arm_cp_regs(cpu, pmovsset_cp_reginfo);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_V7)) {
|
|
ARMCPRegInfo clidr = {
|
|
.name = "CLIDR", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_tid4,
|
|
.fgt = FGT_CLIDR_EL1,
|
|
.resetvalue = cpu->clidr
|
|
};
|
|
define_one_arm_cp_reg(cpu, &clidr);
|
|
define_arm_cp_regs(cpu, v7_cp_reginfo);
|
|
define_debug_regs(cpu);
|
|
define_pmu_regs(cpu);
|
|
} else {
|
|
define_arm_cp_regs(cpu, not_v7_cp_reginfo);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_V8)) {
|
|
/*
|
|
* v8 ID registers, which all have impdef reset values.
|
|
* Note that within the ID register ranges the unused slots
|
|
* must all RAZ, not UNDEF; future architecture versions may
|
|
* define new registers here.
|
|
* ID registers which are AArch64 views of the AArch32 ID registers
|
|
* which already existed in v6 and v7 are handled elsewhere,
|
|
* in v6_idregs[].
|
|
*/
|
|
int i;
|
|
ARMCPRegInfo v8_idregs[] = {
|
|
/*
|
|
* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST in system
|
|
* emulation because we don't know the right value for the
|
|
* GIC field until after we define these regs.
|
|
*/
|
|
{ .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
|
|
.access = PL1_R,
|
|
#ifdef CONFIG_USER_ONLY
|
|
.type = ARM_CP_CONST,
|
|
.resetvalue = cpu->isar.id_aa64pfr0
|
|
#else
|
|
.type = ARM_CP_NO_RAW,
|
|
.accessfn = access_aa64_tid3,
|
|
.readfn = id_aa64pfr0_read,
|
|
.writefn = arm_cp_write_ignore
|
|
#endif
|
|
},
|
|
{ .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = cpu->isar.id_aa64pfr1},
|
|
{ .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = 0 },
|
|
{ .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = 0 },
|
|
{ .name = "ID_AA64ZFR0_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = cpu->isar.id_aa64zfr0 },
|
|
{ .name = "ID_AA64SMFR0_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = cpu->isar.id_aa64smfr0 },
|
|
{ .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = 0 },
|
|
{ .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = 0 },
|
|
{ .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = cpu->isar.id_aa64dfr0 },
|
|
{ .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = cpu->isar.id_aa64dfr1 },
|
|
{ .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = 0 },
|
|
{ .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = 0 },
|
|
{ .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = cpu->id_aa64afr0 },
|
|
{ .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = cpu->id_aa64afr1 },
|
|
{ .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = 0 },
|
|
{ .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = 0 },
|
|
{ .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = cpu->isar.id_aa64isar0 },
|
|
{ .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = cpu->isar.id_aa64isar1 },
|
|
{ .name = "ID_AA64ISAR2_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = cpu->isar.id_aa64isar2 },
|
|
{ .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = 0 },
|
|
{ .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = 0 },
|
|
{ .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = 0 },
|
|
{ .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = 0 },
|
|
{ .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = 0 },
|
|
{ .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = cpu->isar.id_aa64mmfr0 },
|
|
{ .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = cpu->isar.id_aa64mmfr1 },
|
|
{ .name = "ID_AA64MMFR2_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = cpu->isar.id_aa64mmfr2 },
|
|
{ .name = "ID_AA64MMFR3_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = cpu->isar.id_aa64mmfr3 },
|
|
{ .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = 0 },
|
|
{ .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = 0 },
|
|
{ .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = 0 },
|
|
{ .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = 0 },
|
|
{ .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = cpu->isar.mvfr0 },
|
|
{ .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = cpu->isar.mvfr1 },
|
|
{ .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = cpu->isar.mvfr2 },
|
|
/*
|
|
* "0, c0, c3, {0,1,2}" are the encodings corresponding to
|
|
* AArch64 MVFR[012]_EL1. Define the STATE_AA32 encoding
|
|
* as RAZ, since it is in the "reserved for future ID
|
|
* registers, RAZ" part of the AArch32 encoding space.
|
|
*/
|
|
{ .name = "RES_0_C0_C3_0", .state = ARM_CP_STATE_AA32,
|
|
.cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = 0 },
|
|
{ .name = "RES_0_C0_C3_1", .state = ARM_CP_STATE_AA32,
|
|
.cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = 0 },
|
|
{ .name = "RES_0_C0_C3_2", .state = ARM_CP_STATE_AA32,
|
|
.cp = 15, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = 0 },
|
|
/*
|
|
* Other encodings in "0, c0, c3, ..." are STATE_BOTH because
|
|
* they're also RAZ for AArch64, and in v8 are gradually
|
|
* being filled with AArch64-view-of-AArch32-ID-register
|
|
* for new ID registers.
|
|
*/
|
|
{ .name = "RES_0_C0_C3_3", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = 0 },
|
|
{ .name = "ID_PFR2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = cpu->isar.id_pfr2 },
|
|
{ .name = "ID_DFR1", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = cpu->isar.id_dfr1 },
|
|
{ .name = "ID_MMFR5", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = cpu->isar.id_mmfr5 },
|
|
{ .name = "RES_0_C0_C3_7", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = 0 },
|
|
{ .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
|
|
.cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
|
|
.access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
|
|
.fgt = FGT_PMCEIDN_EL0,
|
|
.resetvalue = extract64(cpu->pmceid0, 0, 32) },
|
|
{ .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
|
|
.access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
|
|
.fgt = FGT_PMCEIDN_EL0,
|
|
.resetvalue = cpu->pmceid0 },
|
|
{ .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
|
|
.cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
|
|
.access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
|
|
.fgt = FGT_PMCEIDN_EL0,
|
|
.resetvalue = extract64(cpu->pmceid1, 0, 32) },
|
|
{ .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
|
|
.access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
|
|
.fgt = FGT_PMCEIDN_EL0,
|
|
.resetvalue = cpu->pmceid1 },
|
|
};
|
|
#ifdef CONFIG_USER_ONLY
|
|
static const ARMCPRegUserSpaceInfo v8_user_idregs[] = {
|
|
{ .name = "ID_AA64PFR0_EL1",
|
|
.exported_bits = R_ID_AA64PFR0_FP_MASK |
|
|
R_ID_AA64PFR0_ADVSIMD_MASK |
|
|
R_ID_AA64PFR0_SVE_MASK |
|
|
R_ID_AA64PFR0_DIT_MASK,
|
|
.fixed_bits = (0x1u << R_ID_AA64PFR0_EL0_SHIFT) |
|
|
(0x1u << R_ID_AA64PFR0_EL1_SHIFT) },
|
|
{ .name = "ID_AA64PFR1_EL1",
|
|
.exported_bits = R_ID_AA64PFR1_BT_MASK |
|
|
R_ID_AA64PFR1_SSBS_MASK |
|
|
R_ID_AA64PFR1_MTE_MASK |
|
|
R_ID_AA64PFR1_SME_MASK },
|
|
{ .name = "ID_AA64PFR*_EL1_RESERVED",
|
|
.is_glob = true },
|
|
{ .name = "ID_AA64ZFR0_EL1",
|
|
.exported_bits = R_ID_AA64ZFR0_SVEVER_MASK |
|
|
R_ID_AA64ZFR0_AES_MASK |
|
|
R_ID_AA64ZFR0_BITPERM_MASK |
|
|
R_ID_AA64ZFR0_BFLOAT16_MASK |
|
|
R_ID_AA64ZFR0_B16B16_MASK |
|
|
R_ID_AA64ZFR0_SHA3_MASK |
|
|
R_ID_AA64ZFR0_SM4_MASK |
|
|
R_ID_AA64ZFR0_I8MM_MASK |
|
|
R_ID_AA64ZFR0_F32MM_MASK |
|
|
R_ID_AA64ZFR0_F64MM_MASK },
|
|
{ .name = "ID_AA64SMFR0_EL1",
|
|
.exported_bits = R_ID_AA64SMFR0_F32F32_MASK |
|
|
R_ID_AA64SMFR0_BI32I32_MASK |
|
|
R_ID_AA64SMFR0_B16F32_MASK |
|
|
R_ID_AA64SMFR0_F16F32_MASK |
|
|
R_ID_AA64SMFR0_I8I32_MASK |
|
|
R_ID_AA64SMFR0_F16F16_MASK |
|
|
R_ID_AA64SMFR0_B16B16_MASK |
|
|
R_ID_AA64SMFR0_I16I32_MASK |
|
|
R_ID_AA64SMFR0_F64F64_MASK |
|
|
R_ID_AA64SMFR0_I16I64_MASK |
|
|
R_ID_AA64SMFR0_SMEVER_MASK |
|
|
R_ID_AA64SMFR0_FA64_MASK },
|
|
{ .name = "ID_AA64MMFR0_EL1",
|
|
.exported_bits = R_ID_AA64MMFR0_ECV_MASK,
|
|
.fixed_bits = (0xfu << R_ID_AA64MMFR0_TGRAN64_SHIFT) |
|
|
(0xfu << R_ID_AA64MMFR0_TGRAN4_SHIFT) },
|
|
{ .name = "ID_AA64MMFR1_EL1",
|
|
.exported_bits = R_ID_AA64MMFR1_AFP_MASK },
|
|
{ .name = "ID_AA64MMFR2_EL1",
|
|
.exported_bits = R_ID_AA64MMFR2_AT_MASK },
|
|
{ .name = "ID_AA64MMFR3_EL1",
|
|
.exported_bits = 0 },
|
|
{ .name = "ID_AA64MMFR*_EL1_RESERVED",
|
|
.is_glob = true },
|
|
{ .name = "ID_AA64DFR0_EL1",
|
|
.fixed_bits = (0x6u << R_ID_AA64DFR0_DEBUGVER_SHIFT) },
|
|
{ .name = "ID_AA64DFR1_EL1" },
|
|
{ .name = "ID_AA64DFR*_EL1_RESERVED",
|
|
.is_glob = true },
|
|
{ .name = "ID_AA64AFR*",
|
|
.is_glob = true },
|
|
{ .name = "ID_AA64ISAR0_EL1",
|
|
.exported_bits = R_ID_AA64ISAR0_AES_MASK |
|
|
R_ID_AA64ISAR0_SHA1_MASK |
|
|
R_ID_AA64ISAR0_SHA2_MASK |
|
|
R_ID_AA64ISAR0_CRC32_MASK |
|
|
R_ID_AA64ISAR0_ATOMIC_MASK |
|
|
R_ID_AA64ISAR0_RDM_MASK |
|
|
R_ID_AA64ISAR0_SHA3_MASK |
|
|
R_ID_AA64ISAR0_SM3_MASK |
|
|
R_ID_AA64ISAR0_SM4_MASK |
|
|
R_ID_AA64ISAR0_DP_MASK |
|
|
R_ID_AA64ISAR0_FHM_MASK |
|
|
R_ID_AA64ISAR0_TS_MASK |
|
|
R_ID_AA64ISAR0_RNDR_MASK },
|
|
{ .name = "ID_AA64ISAR1_EL1",
|
|
.exported_bits = R_ID_AA64ISAR1_DPB_MASK |
|
|
R_ID_AA64ISAR1_APA_MASK |
|
|
R_ID_AA64ISAR1_API_MASK |
|
|
R_ID_AA64ISAR1_JSCVT_MASK |
|
|
R_ID_AA64ISAR1_FCMA_MASK |
|
|
R_ID_AA64ISAR1_LRCPC_MASK |
|
|
R_ID_AA64ISAR1_GPA_MASK |
|
|
R_ID_AA64ISAR1_GPI_MASK |
|
|
R_ID_AA64ISAR1_FRINTTS_MASK |
|
|
R_ID_AA64ISAR1_SB_MASK |
|
|
R_ID_AA64ISAR1_BF16_MASK |
|
|
R_ID_AA64ISAR1_DGH_MASK |
|
|
R_ID_AA64ISAR1_I8MM_MASK },
|
|
{ .name = "ID_AA64ISAR2_EL1",
|
|
.exported_bits = R_ID_AA64ISAR2_WFXT_MASK |
|
|
R_ID_AA64ISAR2_RPRES_MASK |
|
|
R_ID_AA64ISAR2_GPA3_MASK |
|
|
R_ID_AA64ISAR2_APA3_MASK |
|
|
R_ID_AA64ISAR2_MOPS_MASK |
|
|
R_ID_AA64ISAR2_BC_MASK |
|
|
R_ID_AA64ISAR2_RPRFM_MASK |
|
|
R_ID_AA64ISAR2_CSSC_MASK },
|
|
{ .name = "ID_AA64ISAR*_EL1_RESERVED",
|
|
.is_glob = true },
|
|
};
|
|
modify_arm_cp_regs(v8_idregs, v8_user_idregs);
|
|
#endif
|
|
/*
|
|
* RVBAR_EL1 and RMR_EL1 only implemented if EL1 is the highest EL.
|
|
* TODO: For RMR, a write with bit 1 set should do something with
|
|
* cpu_reset(). In the meantime, "the bit is strictly a request",
|
|
* so we are in spec just ignoring writes.
|
|
*/
|
|
if (!arm_feature(env, ARM_FEATURE_EL3) &&
|
|
!arm_feature(env, ARM_FEATURE_EL2)) {
|
|
ARMCPRegInfo el1_reset_regs[] = {
|
|
{ .name = "RVBAR_EL1", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
|
|
.access = PL1_R,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
|
|
{ .name = "RMR_EL1", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
|
|
.access = PL1_RW, .type = ARM_CP_CONST,
|
|
.resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) }
|
|
};
|
|
define_arm_cp_regs(cpu, el1_reset_regs);
|
|
}
|
|
define_arm_cp_regs(cpu, v8_idregs);
|
|
define_arm_cp_regs(cpu, v8_cp_reginfo);
|
|
if (cpu_isar_feature(aa64_aa32_el1, cpu)) {
|
|
define_arm_cp_regs(cpu, v8_aa32_el1_reginfo);
|
|
}
|
|
|
|
for (i = 4; i < 16; i++) {
|
|
/*
|
|
* Encodings in "0, c0, {c4-c7}, {0-7}" are RAZ for AArch32.
|
|
* For pre-v8 cores there are RAZ patterns for these in
|
|
* id_pre_v8_midr_cp_reginfo[]; for v8 we do that here.
|
|
* v8 extends the "must RAZ" part of the ID register space
|
|
* to also cover c0, 0, c{8-15}, {0-7}.
|
|
* These are STATE_AA32 because in the AArch64 sysreg space
|
|
* c4-c7 is where the AArch64 ID registers live (and we've
|
|
* already defined those in v8_idregs[]), and c8-c15 are not
|
|
* "must RAZ" for AArch64.
|
|
*/
|
|
g_autofree char *name = g_strdup_printf("RES_0_C0_C%d_X", i);
|
|
ARMCPRegInfo v8_aa32_raz_idregs = {
|
|
.name = name,
|
|
.state = ARM_CP_STATE_AA32,
|
|
.cp = 15, .opc1 = 0, .crn = 0, .crm = i, .opc2 = CP_ANY,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.accessfn = access_aa64_tid3,
|
|
.resetvalue = 0 };
|
|
define_one_arm_cp_reg(cpu, &v8_aa32_raz_idregs);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Register the base EL2 cpregs.
|
|
* Pre v8, these registers are implemented only as part of the
|
|
* Virtualization Extensions (EL2 present). Beginning with v8,
|
|
* if EL2 is missing but EL3 is enabled, mostly these become
|
|
* RES0 from EL3, with some specific exceptions.
|
|
*/
|
|
if (arm_feature(env, ARM_FEATURE_EL2)
|
|
|| (arm_feature(env, ARM_FEATURE_EL3)
|
|
&& arm_feature(env, ARM_FEATURE_V8))) {
|
|
uint64_t vmpidr_def = mpidr_read_val(env);
|
|
ARMCPRegInfo vpidr_regs[] = {
|
|
{ .name = "VPIDR", .state = ARM_CP_STATE_AA32,
|
|
.cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
|
|
.access = PL2_RW, .accessfn = access_el3_aa32ns,
|
|
.resetvalue = cpu->midr,
|
|
.type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
|
|
.fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
|
|
{ .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
|
|
.access = PL2_RW, .resetvalue = cpu->midr,
|
|
.type = ARM_CP_EL3_NO_EL2_C_NZ,
|
|
.nv2_redirect_offset = 0x88,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
|
|
{ .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
|
|
.cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
|
|
.access = PL2_RW, .accessfn = access_el3_aa32ns,
|
|
.resetvalue = vmpidr_def,
|
|
.type = ARM_CP_ALIAS | ARM_CP_EL3_NO_EL2_C_NZ,
|
|
.fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
|
|
{ .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
|
|
.access = PL2_RW, .resetvalue = vmpidr_def,
|
|
.type = ARM_CP_EL3_NO_EL2_C_NZ,
|
|
.nv2_redirect_offset = 0x50,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
|
|
};
|
|
/*
|
|
* The only field of MDCR_EL2 that has a defined architectural reset
|
|
* value is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N.
|
|
*/
|
|
ARMCPRegInfo mdcr_el2 = {
|
|
.name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH, .type = ARM_CP_IO,
|
|
.opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
|
|
.writefn = mdcr_el2_write,
|
|
.access = PL2_RW, .resetvalue = pmu_num_counters(env),
|
|
.fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2),
|
|
};
|
|
define_one_arm_cp_reg(cpu, &mdcr_el2);
|
|
define_arm_cp_regs(cpu, vpidr_regs);
|
|
define_arm_cp_regs(cpu, el2_cp_reginfo);
|
|
if (arm_feature(env, ARM_FEATURE_V8)) {
|
|
define_arm_cp_regs(cpu, el2_v8_cp_reginfo);
|
|
}
|
|
if (cpu_isar_feature(aa64_sel2, cpu)) {
|
|
define_arm_cp_regs(cpu, el2_sec_cp_reginfo);
|
|
}
|
|
/*
|
|
* RVBAR_EL2 and RMR_EL2 only implemented if EL2 is the highest EL.
|
|
* See commentary near RMR_EL1.
|
|
*/
|
|
if (!arm_feature(env, ARM_FEATURE_EL3)) {
|
|
static const ARMCPRegInfo el2_reset_regs[] = {
|
|
{ .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
|
|
.access = PL2_R,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
|
|
{ .name = "RVBAR", .type = ARM_CP_ALIAS,
|
|
.cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
|
|
.access = PL2_R,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.rvbar) },
|
|
{ .name = "RMR_EL2", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 2,
|
|
.access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 1 },
|
|
};
|
|
define_arm_cp_regs(cpu, el2_reset_regs);
|
|
}
|
|
}
|
|
|
|
/* Register the base EL3 cpregs. */
|
|
if (arm_feature(env, ARM_FEATURE_EL3)) {
|
|
define_arm_cp_regs(cpu, el3_cp_reginfo);
|
|
ARMCPRegInfo el3_regs[] = {
|
|
{ .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
|
|
.access = PL3_R,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.rvbar), },
|
|
{ .name = "RMR_EL3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 2,
|
|
.access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 1 },
|
|
{ .name = "RMR", .state = ARM_CP_STATE_AA32,
|
|
.cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 2,
|
|
.access = PL3_RW, .type = ARM_CP_CONST,
|
|
.resetvalue = arm_feature(env, ARM_FEATURE_AARCH64) },
|
|
{ .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
|
|
.access = PL3_RW,
|
|
.raw_writefn = raw_write, .writefn = sctlr_write,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
|
|
.resetvalue = cpu->reset_sctlr },
|
|
};
|
|
|
|
define_arm_cp_regs(cpu, el3_regs);
|
|
}
|
|
/*
|
|
* The behaviour of NSACR is sufficiently various that we don't
|
|
* try to describe it in a single reginfo:
|
|
* if EL3 is 64 bit, then trap to EL3 from S EL1,
|
|
* reads as constant 0xc00 from NS EL1 and NS EL2
|
|
* if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
|
|
* if v7 without EL3, register doesn't exist
|
|
* if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
|
|
*/
|
|
if (arm_feature(env, ARM_FEATURE_EL3)) {
|
|
if (arm_feature(env, ARM_FEATURE_AARCH64)) {
|
|
static const ARMCPRegInfo nsacr = {
|
|
.name = "NSACR", .type = ARM_CP_CONST,
|
|
.cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
|
|
.access = PL1_RW, .accessfn = nsacr_access,
|
|
.resetvalue = 0xc00
|
|
};
|
|
define_one_arm_cp_reg(cpu, &nsacr);
|
|
} else {
|
|
static const ARMCPRegInfo nsacr = {
|
|
.name = "NSACR",
|
|
.cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
|
|
.access = PL3_RW | PL1_R,
|
|
.resetvalue = 0,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.nsacr)
|
|
};
|
|
define_one_arm_cp_reg(cpu, &nsacr);
|
|
}
|
|
} else {
|
|
if (arm_feature(env, ARM_FEATURE_V8)) {
|
|
static const ARMCPRegInfo nsacr = {
|
|
.name = "NSACR", .type = ARM_CP_CONST,
|
|
.cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
|
|
.access = PL1_R,
|
|
.resetvalue = 0xc00
|
|
};
|
|
define_one_arm_cp_reg(cpu, &nsacr);
|
|
}
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_PMSA)) {
|
|
if (arm_feature(env, ARM_FEATURE_V6)) {
|
|
/* PMSAv6 not implemented */
|
|
assert(arm_feature(env, ARM_FEATURE_V7));
|
|
define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
|
|
define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
|
|
} else {
|
|
define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
|
|
}
|
|
} else {
|
|
define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
|
|
define_arm_cp_regs(cpu, vmsa_cp_reginfo);
|
|
/* TTCBR2 is introduced with ARMv8.2-AA32HPD. */
|
|
if (cpu_isar_feature(aa32_hpd, cpu)) {
|
|
define_one_arm_cp_reg(cpu, &ttbcr2_reginfo);
|
|
}
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
|
|
define_arm_cp_regs(cpu, t2ee_cp_reginfo);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
|
|
define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
|
|
}
|
|
if (cpu_isar_feature(aa64_ecv_traps, cpu)) {
|
|
define_arm_cp_regs(cpu, gen_timer_ecv_cp_reginfo);
|
|
}
|
|
#ifndef CONFIG_USER_ONLY
|
|
if (cpu_isar_feature(aa64_ecv, cpu)) {
|
|
define_one_arm_cp_reg(cpu, &gen_timer_cntpoff_reginfo);
|
|
}
|
|
#endif
|
|
if (arm_feature(env, ARM_FEATURE_VAPA)) {
|
|
ARMCPRegInfo vapa_cp_reginfo[] = {
|
|
{ .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
|
|
.access = PL1_RW, .resetvalue = 0,
|
|
.bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
|
|
offsetoflow32(CPUARMState, cp15.par_ns) },
|
|
.writefn = par_write},
|
|
#ifndef CONFIG_USER_ONLY
|
|
/* This underdecoding is safe because the reginfo is NO_RAW. */
|
|
{ .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
|
|
.access = PL1_W, .accessfn = ats_access,
|
|
.writefn = ats_write, .type = ARM_CP_NO_RAW | ARM_CP_RAISES_EXC },
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
* When LPAE exists this 32-bit PAR register is an alias of the
|
|
* 64-bit AArch32 PAR register defined in lpae_cp_reginfo[]
|
|
*/
|
|
if (arm_feature(env, ARM_FEATURE_LPAE)) {
|
|
vapa_cp_reginfo[0].type = ARM_CP_ALIAS | ARM_CP_NO_GDB;
|
|
}
|
|
define_arm_cp_regs(cpu, vapa_cp_reginfo);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
|
|
define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
|
|
define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
|
|
define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
|
|
define_arm_cp_regs(cpu, omap_cp_reginfo);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
|
|
define_arm_cp_regs(cpu, strongarm_cp_reginfo);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_XSCALE)) {
|
|
define_arm_cp_regs(cpu, xscale_cp_reginfo);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
|
|
define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_LPAE)) {
|
|
define_arm_cp_regs(cpu, lpae_cp_reginfo);
|
|
}
|
|
if (cpu_isar_feature(aa32_jazelle, cpu)) {
|
|
define_arm_cp_regs(cpu, jazelle_regs);
|
|
}
|
|
/*
|
|
* Slightly awkwardly, the OMAP and StrongARM cores need all of
|
|
* cp15 crn=0 to be writes-ignored, whereas for other cores they should
|
|
* be read-only (ie write causes UNDEF exception).
|
|
*/
|
|
{
|
|
ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
|
|
/*
|
|
* Pre-v8 MIDR space.
|
|
* Note that the MIDR isn't a simple constant register because
|
|
* of the TI925 behaviour where writes to another register can
|
|
* cause the MIDR value to change.
|
|
*
|
|
* Unimplemented registers in the c15 0 0 0 space default to
|
|
* MIDR. Define MIDR first as this entire space, then CTR, TCMTR
|
|
* and friends override accordingly.
|
|
*/
|
|
{ .name = "MIDR",
|
|
.cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
|
|
.access = PL1_R, .resetvalue = cpu->midr,
|
|
.writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
|
|
.readfn = midr_read,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
|
|
.type = ARM_CP_OVERRIDE },
|
|
/* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
|
|
{ .name = "DUMMY",
|
|
.cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
|
|
.access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
|
|
{ .name = "DUMMY",
|
|
.cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
|
|
.access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
|
|
{ .name = "DUMMY",
|
|
.cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
|
|
.access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
|
|
{ .name = "DUMMY",
|
|
.cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
|
|
.access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
|
|
{ .name = "DUMMY",
|
|
.cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
|
|
.access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
|
|
};
|
|
ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
|
|
{ .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
|
|
.access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
|
|
.fgt = FGT_MIDR_EL1,
|
|
.fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
|
|
.readfn = midr_read },
|
|
/* crn = 0 op1 = 0 crm = 0 op2 = 7 : AArch32 aliases of MIDR */
|
|
{ .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
|
|
.cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
|
|
.access = PL1_R, .resetvalue = cpu->midr },
|
|
{ .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
|
|
.access = PL1_R,
|
|
.accessfn = access_aa64_tid1,
|
|
.fgt = FGT_REVIDR_EL1,
|
|
.type = ARM_CP_CONST, .resetvalue = cpu->revidr },
|
|
};
|
|
ARMCPRegInfo id_v8_midr_alias_cp_reginfo = {
|
|
.name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST | ARM_CP_NO_GDB,
|
|
.cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
|
|
.access = PL1_R, .resetvalue = cpu->midr
|
|
};
|
|
ARMCPRegInfo id_cp_reginfo[] = {
|
|
/* These are common to v8 and pre-v8 */
|
|
{ .name = "CTR",
|
|
.cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
|
|
.access = PL1_R, .accessfn = ctr_el0_access,
|
|
.type = ARM_CP_CONST, .resetvalue = cpu->ctr },
|
|
{ .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
|
|
.access = PL0_R, .accessfn = ctr_el0_access,
|
|
.fgt = FGT_CTR_EL0,
|
|
.type = ARM_CP_CONST, .resetvalue = cpu->ctr },
|
|
/* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
|
|
{ .name = "TCMTR",
|
|
.cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
|
|
.access = PL1_R,
|
|
.accessfn = access_aa32_tid1,
|
|
.type = ARM_CP_CONST, .resetvalue = 0 },
|
|
};
|
|
/* TLBTR is specific to VMSA */
|
|
ARMCPRegInfo id_tlbtr_reginfo = {
|
|
.name = "TLBTR",
|
|
.cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
|
|
.access = PL1_R,
|
|
.accessfn = access_aa32_tid1,
|
|
.type = ARM_CP_CONST, .resetvalue = 0,
|
|
};
|
|
/* MPUIR is specific to PMSA V6+ */
|
|
ARMCPRegInfo id_mpuir_reginfo = {
|
|
.name = "MPUIR",
|
|
.cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
|
|
.access = PL1_R, .type = ARM_CP_CONST,
|
|
.resetvalue = cpu->pmsav7_dregion << 8
|
|
};
|
|
/* HMPUIR is specific to PMSA V8 */
|
|
ARMCPRegInfo id_hmpuir_reginfo = {
|
|
.name = "HMPUIR",
|
|
.cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 4,
|
|
.access = PL2_R, .type = ARM_CP_CONST,
|
|
.resetvalue = cpu->pmsav8r_hdregion
|
|
};
|
|
static const ARMCPRegInfo crn0_wi_reginfo = {
|
|
.name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
|
|
.opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
|
|
.type = ARM_CP_NOP | ARM_CP_OVERRIDE
|
|
};
|
|
#ifdef CONFIG_USER_ONLY
|
|
static const ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo[] = {
|
|
{ .name = "MIDR_EL1",
|
|
.exported_bits = R_MIDR_EL1_REVISION_MASK |
|
|
R_MIDR_EL1_PARTNUM_MASK |
|
|
R_MIDR_EL1_ARCHITECTURE_MASK |
|
|
R_MIDR_EL1_VARIANT_MASK |
|
|
R_MIDR_EL1_IMPLEMENTER_MASK },
|
|
{ .name = "REVIDR_EL1" },
|
|
};
|
|
modify_arm_cp_regs(id_v8_midr_cp_reginfo, id_v8_user_midr_cp_reginfo);
|
|
#endif
|
|
if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
|
|
arm_feature(env, ARM_FEATURE_STRONGARM)) {
|
|
size_t i;
|
|
/*
|
|
* Register the blanket "writes ignored" value first to cover the
|
|
* whole space. Then update the specific ID registers to allow write
|
|
* access, so that they ignore writes rather than causing them to
|
|
* UNDEF.
|
|
*/
|
|
define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
|
|
for (i = 0; i < ARRAY_SIZE(id_pre_v8_midr_cp_reginfo); ++i) {
|
|
id_pre_v8_midr_cp_reginfo[i].access = PL1_RW;
|
|
}
|
|
for (i = 0; i < ARRAY_SIZE(id_cp_reginfo); ++i) {
|
|
id_cp_reginfo[i].access = PL1_RW;
|
|
}
|
|
id_mpuir_reginfo.access = PL1_RW;
|
|
id_tlbtr_reginfo.access = PL1_RW;
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_V8)) {
|
|
define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
|
|
if (!arm_feature(env, ARM_FEATURE_PMSA)) {
|
|
define_one_arm_cp_reg(cpu, &id_v8_midr_alias_cp_reginfo);
|
|
}
|
|
} else {
|
|
define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
|
|
}
|
|
define_arm_cp_regs(cpu, id_cp_reginfo);
|
|
if (!arm_feature(env, ARM_FEATURE_PMSA)) {
|
|
define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
|
|
} else if (arm_feature(env, ARM_FEATURE_PMSA) &&
|
|
arm_feature(env, ARM_FEATURE_V8)) {
|
|
uint32_t i = 0;
|
|
char *tmp_string;
|
|
|
|
define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
|
|
define_one_arm_cp_reg(cpu, &id_hmpuir_reginfo);
|
|
define_arm_cp_regs(cpu, pmsav8r_cp_reginfo);
|
|
|
|
/* Register alias is only valid for first 32 indexes */
|
|
for (i = 0; i < MIN(cpu->pmsav7_dregion, 32); ++i) {
|
|
uint8_t crm = 0b1000 | extract32(i, 1, 3);
|
|
uint8_t opc1 = extract32(i, 4, 1);
|
|
uint8_t opc2 = extract32(i, 0, 1) << 2;
|
|
|
|
tmp_string = g_strdup_printf("PRBAR%u", i);
|
|
ARMCPRegInfo tmp_prbarn_reginfo = {
|
|
.name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
|
|
.cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
|
|
.access = PL1_RW, .resetvalue = 0,
|
|
.accessfn = access_tvm_trvm,
|
|
.writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
|
|
};
|
|
define_one_arm_cp_reg(cpu, &tmp_prbarn_reginfo);
|
|
g_free(tmp_string);
|
|
|
|
opc2 = extract32(i, 0, 1) << 2 | 0x1;
|
|
tmp_string = g_strdup_printf("PRLAR%u", i);
|
|
ARMCPRegInfo tmp_prlarn_reginfo = {
|
|
.name = tmp_string, .type = ARM_CP_ALIAS | ARM_CP_NO_RAW,
|
|
.cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
|
|
.access = PL1_RW, .resetvalue = 0,
|
|
.accessfn = access_tvm_trvm,
|
|
.writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
|
|
};
|
|
define_one_arm_cp_reg(cpu, &tmp_prlarn_reginfo);
|
|
g_free(tmp_string);
|
|
}
|
|
|
|
/* Register alias is only valid for first 32 indexes */
|
|
for (i = 0; i < MIN(cpu->pmsav8r_hdregion, 32); ++i) {
|
|
uint8_t crm = 0b1000 | extract32(i, 1, 3);
|
|
uint8_t opc1 = 0b100 | extract32(i, 4, 1);
|
|
uint8_t opc2 = extract32(i, 0, 1) << 2;
|
|
|
|
tmp_string = g_strdup_printf("HPRBAR%u", i);
|
|
ARMCPRegInfo tmp_hprbarn_reginfo = {
|
|
.name = tmp_string,
|
|
.type = ARM_CP_NO_RAW,
|
|
.cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
|
|
.access = PL2_RW, .resetvalue = 0,
|
|
.writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
|
|
};
|
|
define_one_arm_cp_reg(cpu, &tmp_hprbarn_reginfo);
|
|
g_free(tmp_string);
|
|
|
|
opc2 = extract32(i, 0, 1) << 2 | 0x1;
|
|
tmp_string = g_strdup_printf("HPRLAR%u", i);
|
|
ARMCPRegInfo tmp_hprlarn_reginfo = {
|
|
.name = tmp_string,
|
|
.type = ARM_CP_NO_RAW,
|
|
.cp = 15, .opc1 = opc1, .crn = 6, .crm = crm, .opc2 = opc2,
|
|
.access = PL2_RW, .resetvalue = 0,
|
|
.writefn = pmsav8r_regn_write, .readfn = pmsav8r_regn_read
|
|
};
|
|
define_one_arm_cp_reg(cpu, &tmp_hprlarn_reginfo);
|
|
g_free(tmp_string);
|
|
}
|
|
} else if (arm_feature(env, ARM_FEATURE_V7)) {
|
|
define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
|
|
}
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_MPIDR)) {
|
|
ARMCPRegInfo mpidr_cp_reginfo[] = {
|
|
{ .name = "MPIDR_EL1", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
|
|
.fgt = FGT_MPIDR_EL1,
|
|
.access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
|
|
};
|
|
#ifdef CONFIG_USER_ONLY
|
|
static const ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo[] = {
|
|
{ .name = "MPIDR_EL1",
|
|
.fixed_bits = 0x0000000080000000 },
|
|
};
|
|
modify_arm_cp_regs(mpidr_cp_reginfo, mpidr_user_cp_reginfo);
|
|
#endif
|
|
define_arm_cp_regs(cpu, mpidr_cp_reginfo);
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_AUXCR)) {
|
|
ARMCPRegInfo auxcr_reginfo[] = {
|
|
{ .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
|
|
.access = PL1_RW, .accessfn = access_tacr,
|
|
.nv2_redirect_offset = 0x118,
|
|
.type = ARM_CP_CONST, .resetvalue = cpu->reset_auxcr },
|
|
{ .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
|
|
.access = PL2_RW, .type = ARM_CP_CONST,
|
|
.resetvalue = 0 },
|
|
{ .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
|
|
.access = PL3_RW, .type = ARM_CP_CONST,
|
|
.resetvalue = 0 },
|
|
};
|
|
define_arm_cp_regs(cpu, auxcr_reginfo);
|
|
if (cpu_isar_feature(aa32_ac2, cpu)) {
|
|
define_arm_cp_regs(cpu, actlr2_hactlr2_reginfo);
|
|
}
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_CBAR)) {
|
|
/*
|
|
* CBAR is IMPDEF, but common on Arm Cortex-A implementations.
|
|
* There are two flavours:
|
|
* (1) older 32-bit only cores have a simple 32-bit CBAR
|
|
* (2) 64-bit cores have a 64-bit CBAR visible to AArch64, plus a
|
|
* 32-bit register visible to AArch32 at a different encoding
|
|
* to the "flavour 1" register and with the bits rearranged to
|
|
* be able to squash a 64-bit address into the 32-bit view.
|
|
* We distinguish the two via the ARM_FEATURE_AARCH64 flag, but
|
|
* in future if we support AArch32-only configs of some of the
|
|
* AArch64 cores we might need to add a specific feature flag
|
|
* to indicate cores with "flavour 2" CBAR.
|
|
*/
|
|
if (arm_feature(env, ARM_FEATURE_V8)) {
|
|
/* 32 bit view is [31:18] 0...0 [43:32]. */
|
|
uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
|
|
| extract64(cpu->reset_cbar, 32, 12);
|
|
ARMCPRegInfo cbar_reginfo[] = {
|
|
{ .name = "CBAR",
|
|
.type = ARM_CP_CONST,
|
|
.cp = 15, .crn = 15, .crm = 3, .opc1 = 1, .opc2 = 0,
|
|
.access = PL1_R, .resetvalue = cbar32 },
|
|
{ .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
|
|
.type = ARM_CP_CONST,
|
|
.opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
|
|
.access = PL1_R, .resetvalue = cpu->reset_cbar },
|
|
};
|
|
/* We don't implement a r/w 64 bit CBAR currently */
|
|
assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
|
|
define_arm_cp_regs(cpu, cbar_reginfo);
|
|
} else {
|
|
ARMCPRegInfo cbar = {
|
|
.name = "CBAR",
|
|
.cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
|
|
.access = PL1_R | PL3_W, .resetvalue = cpu->reset_cbar,
|
|
.fieldoffset = offsetof(CPUARMState,
|
|
cp15.c15_config_base_address)
|
|
};
|
|
if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
|
|
cbar.access = PL1_R;
|
|
cbar.fieldoffset = 0;
|
|
cbar.type = ARM_CP_CONST;
|
|
}
|
|
define_one_arm_cp_reg(cpu, &cbar);
|
|
}
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_VBAR)) {
|
|
static const ARMCPRegInfo vbar_cp_reginfo[] = {
|
|
{ .name = "VBAR", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
|
|
.access = PL1_RW, .writefn = vbar_write,
|
|
.accessfn = access_nv1,
|
|
.fgt = FGT_VBAR_EL1,
|
|
.nv2_redirect_offset = 0x250 | NV2_REDIR_NV1,
|
|
.bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
|
|
offsetof(CPUARMState, cp15.vbar_ns) },
|
|
.resetvalue = 0 },
|
|
};
|
|
define_arm_cp_regs(cpu, vbar_cp_reginfo);
|
|
}
|
|
|
|
/* Generic registers whose values depend on the implementation */
|
|
{
|
|
ARMCPRegInfo sctlr = {
|
|
.name = "SCTLR", .state = ARM_CP_STATE_BOTH,
|
|
.opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
|
|
.access = PL1_RW, .accessfn = access_tvm_trvm,
|
|
.fgt = FGT_SCTLR_EL1,
|
|
.nv2_redirect_offset = 0x110 | NV2_REDIR_NV1,
|
|
.bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
|
|
offsetof(CPUARMState, cp15.sctlr_ns) },
|
|
.writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
|
|
.raw_writefn = raw_write,
|
|
};
|
|
if (arm_feature(env, ARM_FEATURE_XSCALE)) {
|
|
/*
|
|
* Normally we would always end the TB on an SCTLR write, but Linux
|
|
* arch/arm/mach-pxa/sleep.S expects two instructions following
|
|
* an MMU enable to execute from cache. Imitate this behaviour.
|
|
*/
|
|
sctlr.type |= ARM_CP_SUPPRESS_TB_END;
|
|
}
|
|
define_one_arm_cp_reg(cpu, &sctlr);
|
|
|
|
if (arm_feature(env, ARM_FEATURE_PMSA) &&
|
|
arm_feature(env, ARM_FEATURE_V8)) {
|
|
ARMCPRegInfo vsctlr = {
|
|
.name = "VSCTLR", .state = ARM_CP_STATE_AA32,
|
|
.cp = 15, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
|
|
.access = PL2_RW, .resetvalue = 0x0,
|
|
.fieldoffset = offsetoflow32(CPUARMState, cp15.vsctlr),
|
|
};
|
|
define_one_arm_cp_reg(cpu, &vsctlr);
|
|
}
|
|
}
|
|
|
|
if (cpu_isar_feature(aa64_lor, cpu)) {
|
|
define_arm_cp_regs(cpu, lor_reginfo);
|
|
}
|
|
if (cpu_isar_feature(aa64_pan, cpu)) {
|
|
define_one_arm_cp_reg(cpu, &pan_reginfo);
|
|
}
|
|
#ifndef CONFIG_USER_ONLY
|
|
if (cpu_isar_feature(aa64_ats1e1, cpu)) {
|
|
define_arm_cp_regs(cpu, ats1e1_reginfo);
|
|
}
|
|
if (cpu_isar_feature(aa32_ats1e1, cpu)) {
|
|
define_arm_cp_regs(cpu, ats1cp_reginfo);
|
|
}
|
|
#endif
|
|
if (cpu_isar_feature(aa64_uao, cpu)) {
|
|
define_one_arm_cp_reg(cpu, &uao_reginfo);
|
|
}
|
|
|
|
if (cpu_isar_feature(aa64_dit, cpu)) {
|
|
define_one_arm_cp_reg(cpu, &dit_reginfo);
|
|
}
|
|
if (cpu_isar_feature(aa64_ssbs, cpu)) {
|
|
define_one_arm_cp_reg(cpu, &ssbs_reginfo);
|
|
}
|
|
if (cpu_isar_feature(any_ras, cpu)) {
|
|
define_arm_cp_regs(cpu, minimal_ras_reginfo);
|
|
}
|
|
|
|
if (cpu_isar_feature(aa64_vh, cpu) ||
|
|
cpu_isar_feature(aa64_debugv8p2, cpu)) {
|
|
define_one_arm_cp_reg(cpu, &contextidr_el2);
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
|
|
define_arm_cp_regs(cpu, vhe_reginfo);
|
|
}
|
|
|
|
if (cpu_isar_feature(aa64_sve, cpu)) {
|
|
define_arm_cp_regs(cpu, zcr_reginfo);
|
|
}
|
|
|
|
if (cpu_isar_feature(aa64_hcx, cpu)) {
|
|
define_one_arm_cp_reg(cpu, &hcrx_el2_reginfo);
|
|
}
|
|
|
|
#ifdef TARGET_AARCH64
|
|
if (cpu_isar_feature(aa64_sme, cpu)) {
|
|
define_arm_cp_regs(cpu, sme_reginfo);
|
|
}
|
|
if (cpu_isar_feature(aa64_pauth, cpu)) {
|
|
define_arm_cp_regs(cpu, pauth_reginfo);
|
|
}
|
|
if (cpu_isar_feature(aa64_rndr, cpu)) {
|
|
define_arm_cp_regs(cpu, rndr_reginfo);
|
|
}
|
|
if (cpu_isar_feature(aa64_tlbirange, cpu)) {
|
|
define_arm_cp_regs(cpu, tlbirange_reginfo);
|
|
}
|
|
if (cpu_isar_feature(aa64_tlbios, cpu)) {
|
|
define_arm_cp_regs(cpu, tlbios_reginfo);
|
|
}
|
|
/* Data Cache clean instructions up to PoP */
|
|
if (cpu_isar_feature(aa64_dcpop, cpu)) {
|
|
define_one_arm_cp_reg(cpu, dcpop_reg);
|
|
|
|
if (cpu_isar_feature(aa64_dcpodp, cpu)) {
|
|
define_one_arm_cp_reg(cpu, dcpodp_reg);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If full MTE is enabled, add all of the system registers.
|
|
* If only "instructions available at EL0" are enabled,
|
|
* then define only a RAZ/WI version of PSTATE.TCO.
|
|
*/
|
|
if (cpu_isar_feature(aa64_mte, cpu)) {
|
|
ARMCPRegInfo gmid_reginfo = {
|
|
.name = "GMID_EL1", .state = ARM_CP_STATE_AA64,
|
|
.opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 4,
|
|
.access = PL1_R, .accessfn = access_aa64_tid5,
|
|
.type = ARM_CP_CONST, .resetvalue = cpu->gm_blocksize,
|
|
};
|
|
define_one_arm_cp_reg(cpu, &gmid_reginfo);
|
|
define_arm_cp_regs(cpu, mte_reginfo);
|
|
define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
|
|
} else if (cpu_isar_feature(aa64_mte_insn_reg, cpu)) {
|
|
define_arm_cp_regs(cpu, mte_tco_ro_reginfo);
|
|
define_arm_cp_regs(cpu, mte_el0_cacheop_reginfo);
|
|
}
|
|
|
|
if (cpu_isar_feature(aa64_scxtnum, cpu)) {
|
|
define_arm_cp_regs(cpu, scxtnum_reginfo);
|
|
}
|
|
|
|
if (cpu_isar_feature(aa64_fgt, cpu)) {
|
|
define_arm_cp_regs(cpu, fgt_reginfo);
|
|
}
|
|
|
|
if (cpu_isar_feature(aa64_rme, cpu)) {
|
|
define_arm_cp_regs(cpu, rme_reginfo);
|
|
if (cpu_isar_feature(aa64_mte, cpu)) {
|
|
define_arm_cp_regs(cpu, rme_mte_reginfo);
|
|
}
|
|
}
|
|
|
|
if (cpu_isar_feature(aa64_nv2, cpu)) {
|
|
define_arm_cp_regs(cpu, nv2_reginfo);
|
|
}
|
|
|
|
if (cpu_isar_feature(aa64_nmi, cpu)) {
|
|
define_arm_cp_regs(cpu, nmi_reginfo);
|
|
}
|
|
#endif
|
|
|
|
if (cpu_isar_feature(any_predinv, cpu)) {
|
|
define_arm_cp_regs(cpu, predinv_reginfo);
|
|
}
|
|
|
|
if (cpu_isar_feature(any_ccidx, cpu)) {
|
|
define_arm_cp_regs(cpu, ccsidr2_reginfo);
|
|
}
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
/*
|
|
* Register redirections and aliases must be done last,
|
|
* after the registers from the other extensions have been defined.
|
|
*/
|
|
if (arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu)) {
|
|
define_arm_vh_e2h_redirects_aliases(cpu);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Private utility function for define_one_arm_cp_reg_with_opaque():
|
|
* add a single reginfo struct to the hash table.
|
|
*/
|
|
static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
|
|
void *opaque, CPState state,
|
|
CPSecureState secstate,
|
|
int crm, int opc1, int opc2,
|
|
const char *name)
|
|
{
|
|
CPUARMState *env = &cpu->env;
|
|
uint32_t key;
|
|
ARMCPRegInfo *r2;
|
|
bool is64 = r->type & ARM_CP_64BIT;
|
|
bool ns = secstate & ARM_CP_SECSTATE_NS;
|
|
int cp = r->cp;
|
|
size_t name_len;
|
|
bool make_const;
|
|
|
|
switch (state) {
|
|
case ARM_CP_STATE_AA32:
|
|
/* We assume it is a cp15 register if the .cp field is left unset. */
|
|
if (cp == 0 && r->state == ARM_CP_STATE_BOTH) {
|
|
cp = 15;
|
|
}
|
|
key = ENCODE_CP_REG(cp, is64, ns, r->crn, crm, opc1, opc2);
|
|
break;
|
|
case ARM_CP_STATE_AA64:
|
|
/*
|
|
* To allow abbreviation of ARMCPRegInfo definitions, we treat
|
|
* cp == 0 as equivalent to the value for "standard guest-visible
|
|
* sysreg". STATE_BOTH definitions are also always "standard sysreg"
|
|
* in their AArch64 view (the .cp value may be non-zero for the
|
|
* benefit of the AArch32 view).
|
|
*/
|
|
if (cp == 0 || r->state == ARM_CP_STATE_BOTH) {
|
|
cp = CP_REG_ARM64_SYSREG_CP;
|
|
}
|
|
key = ENCODE_AA64_CP_REG(cp, r->crn, crm, r->opc0, opc1, opc2);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
/* Overriding of an existing definition must be explicitly requested. */
|
|
if (!(r->type & ARM_CP_OVERRIDE)) {
|
|
const ARMCPRegInfo *oldreg = get_arm_cp_reginfo(cpu->cp_regs, key);
|
|
if (oldreg) {
|
|
assert(oldreg->type & ARM_CP_OVERRIDE);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Eliminate registers that are not present because the EL is missing.
|
|
* Doing this here makes it easier to put all registers for a given
|
|
* feature into the same ARMCPRegInfo array and define them all at once.
|
|
*/
|
|
make_const = false;
|
|
if (arm_feature(env, ARM_FEATURE_EL3)) {
|
|
/*
|
|
* An EL2 register without EL2 but with EL3 is (usually) RES0.
|
|
* See rule RJFFP in section D1.1.3 of DDI0487H.a.
|
|
*/
|
|
int min_el = ctz32(r->access) / 2;
|
|
if (min_el == 2 && !arm_feature(env, ARM_FEATURE_EL2)) {
|
|
if (r->type & ARM_CP_EL3_NO_EL2_UNDEF) {
|
|
return;
|
|
}
|
|
make_const = !(r->type & ARM_CP_EL3_NO_EL2_KEEP);
|
|
}
|
|
} else {
|
|
CPAccessRights max_el = (arm_feature(env, ARM_FEATURE_EL2)
|
|
? PL2_RW : PL1_RW);
|
|
if ((r->access & max_el) == 0) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Combine cpreg and name into one allocation. */
|
|
name_len = strlen(name) + 1;
|
|
r2 = g_malloc(sizeof(*r2) + name_len);
|
|
*r2 = *r;
|
|
r2->name = memcpy(r2 + 1, name, name_len);
|
|
|
|
/*
|
|
* Update fields to match the instantiation, overwiting wildcards
|
|
* such as CP_ANY, ARM_CP_STATE_BOTH, or ARM_CP_SECSTATE_BOTH.
|
|
*/
|
|
r2->cp = cp;
|
|
r2->crm = crm;
|
|
r2->opc1 = opc1;
|
|
r2->opc2 = opc2;
|
|
r2->state = state;
|
|
r2->secure = secstate;
|
|
if (opaque) {
|
|
r2->opaque = opaque;
|
|
}
|
|
|
|
if (make_const) {
|
|
/* This should not have been a very special register to begin. */
|
|
int old_special = r2->type & ARM_CP_SPECIAL_MASK;
|
|
assert(old_special == 0 || old_special == ARM_CP_NOP);
|
|
/*
|
|
* Set the special function to CONST, retaining the other flags.
|
|
* This is important for e.g. ARM_CP_SVE so that we still
|
|
* take the SVE trap if CPTR_EL3.EZ == 0.
|
|
*/
|
|
r2->type = (r2->type & ~ARM_CP_SPECIAL_MASK) | ARM_CP_CONST;
|
|
/*
|
|
* Usually, these registers become RES0, but there are a few
|
|
* special cases like VPIDR_EL2 which have a constant non-zero
|
|
* value with writes ignored.
|
|
*/
|
|
if (!(r->type & ARM_CP_EL3_NO_EL2_C_NZ)) {
|
|
r2->resetvalue = 0;
|
|
}
|
|
/*
|
|
* ARM_CP_CONST has precedence, so removing the callbacks and
|
|
* offsets are not strictly necessary, but it is potentially
|
|
* less confusing to debug later.
|
|
*/
|
|
r2->readfn = NULL;
|
|
r2->writefn = NULL;
|
|
r2->raw_readfn = NULL;
|
|
r2->raw_writefn = NULL;
|
|
r2->resetfn = NULL;
|
|
r2->fieldoffset = 0;
|
|
r2->bank_fieldoffsets[0] = 0;
|
|
r2->bank_fieldoffsets[1] = 0;
|
|
} else {
|
|
bool isbanked = r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1];
|
|
|
|
if (isbanked) {
|
|
/*
|
|
* Register is banked (using both entries in array).
|
|
* Overwriting fieldoffset as the array is only used to define
|
|
* banked registers but later only fieldoffset is used.
|
|
*/
|
|
r2->fieldoffset = r->bank_fieldoffsets[ns];
|
|
}
|
|
if (state == ARM_CP_STATE_AA32) {
|
|
if (isbanked) {
|
|
/*
|
|
* If the register is banked then we don't need to migrate or
|
|
* reset the 32-bit instance in certain cases:
|
|
*
|
|
* 1) If the register has both 32-bit and 64-bit instances
|
|
* then we can count on the 64-bit instance taking care
|
|
* of the non-secure bank.
|
|
* 2) If ARMv8 is enabled then we can count on a 64-bit
|
|
* version taking care of the secure bank. This requires
|
|
* that separate 32 and 64-bit definitions are provided.
|
|
*/
|
|
if ((r->state == ARM_CP_STATE_BOTH && ns) ||
|
|
(arm_feature(env, ARM_FEATURE_V8) && !ns)) {
|
|
r2->type |= ARM_CP_ALIAS;
|
|
}
|
|
} else if ((secstate != r->secure) && !ns) {
|
|
/*
|
|
* The register is not banked so we only want to allow
|
|
* migration of the non-secure instance.
|
|
*/
|
|
r2->type |= ARM_CP_ALIAS;
|
|
}
|
|
|
|
if (HOST_BIG_ENDIAN &&
|
|
r->state == ARM_CP_STATE_BOTH && r2->fieldoffset) {
|
|
r2->fieldoffset += sizeof(uint32_t);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* By convention, for wildcarded registers only the first
|
|
* entry is used for migration; the others are marked as
|
|
* ALIAS so we don't try to transfer the register
|
|
* multiple times. Special registers (ie NOP/WFI) are
|
|
* never migratable and not even raw-accessible.
|
|
*/
|
|
if (r2->type & ARM_CP_SPECIAL_MASK) {
|
|
r2->type |= ARM_CP_NO_RAW;
|
|
}
|
|
if (((r->crm == CP_ANY) && crm != 0) ||
|
|
((r->opc1 == CP_ANY) && opc1 != 0) ||
|
|
((r->opc2 == CP_ANY) && opc2 != 0)) {
|
|
r2->type |= ARM_CP_ALIAS | ARM_CP_NO_GDB;
|
|
}
|
|
|
|
/*
|
|
* Check that raw accesses are either forbidden or handled. Note that
|
|
* we can't assert this earlier because the setup of fieldoffset for
|
|
* banked registers has to be done first.
|
|
*/
|
|
if (!(r2->type & ARM_CP_NO_RAW)) {
|
|
assert(!raw_accessors_invalid(r2));
|
|
}
|
|
|
|
g_hash_table_insert(cpu->cp_regs, (gpointer)(uintptr_t)key, r2);
|
|
}
|
|
|
|
|
|
void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
|
|
const ARMCPRegInfo *r, void *opaque)
|
|
{
|
|
/*
|
|
* Define implementations of coprocessor registers.
|
|
* We store these in a hashtable because typically
|
|
* there are less than 150 registers in a space which
|
|
* is 16*16*16*8*8 = 262144 in size.
|
|
* Wildcarding is supported for the crm, opc1 and opc2 fields.
|
|
* If a register is defined twice then the second definition is
|
|
* used, so this can be used to define some generic registers and
|
|
* then override them with implementation specific variations.
|
|
* At least one of the original and the second definition should
|
|
* include ARM_CP_OVERRIDE in its type bits -- this is just a guard
|
|
* against accidental use.
|
|
*
|
|
* The state field defines whether the register is to be
|
|
* visible in the AArch32 or AArch64 execution state. If the
|
|
* state is set to ARM_CP_STATE_BOTH then we synthesise a
|
|
* reginfo structure for the AArch32 view, which sees the lower
|
|
* 32 bits of the 64 bit register.
|
|
*
|
|
* Only registers visible in AArch64 may set r->opc0; opc0 cannot
|
|
* be wildcarded. AArch64 registers are always considered to be 64
|
|
* bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
|
|
* the register, if any.
|
|
*/
|
|
int crm, opc1, opc2;
|
|
int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
|
|
int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
|
|
int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
|
|
int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
|
|
int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
|
|
int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
|
|
CPState state;
|
|
|
|
/* 64 bit registers have only CRm and Opc1 fields */
|
|
assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
|
|
/* op0 only exists in the AArch64 encodings */
|
|
assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
|
|
/* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
|
|
assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
|
|
/*
|
|
* This API is only for Arm's system coprocessors (14 and 15) or
|
|
* (M-profile or v7A-and-earlier only) for implementation defined
|
|
* coprocessors in the range 0..7. Our decode assumes this, since
|
|
* 8..13 can be used for other insns including VFP and Neon. See
|
|
* valid_cp() in translate.c. Assert here that we haven't tried
|
|
* to use an invalid coprocessor number.
|
|
*/
|
|
switch (r->state) {
|
|
case ARM_CP_STATE_BOTH:
|
|
/* 0 has a special meaning, but otherwise the same rules as AA32. */
|
|
if (r->cp == 0) {
|
|
break;
|
|
}
|
|
/* fall through */
|
|
case ARM_CP_STATE_AA32:
|
|
if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
|
|
!arm_feature(&cpu->env, ARM_FEATURE_M)) {
|
|
assert(r->cp >= 14 && r->cp <= 15);
|
|
} else {
|
|
assert(r->cp < 8 || (r->cp >= 14 && r->cp <= 15));
|
|
}
|
|
break;
|
|
case ARM_CP_STATE_AA64:
|
|
assert(r->cp == 0 || r->cp == CP_REG_ARM64_SYSREG_CP);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
/*
|
|
* The AArch64 pseudocode CheckSystemAccess() specifies that op1
|
|
* encodes a minimum access level for the register. We roll this
|
|
* runtime check into our general permission check code, so check
|
|
* here that the reginfo's specified permissions are strict enough
|
|
* to encompass the generic architectural permission check.
|
|
*/
|
|
if (r->state != ARM_CP_STATE_AA32) {
|
|
CPAccessRights mask;
|
|
switch (r->opc1) {
|
|
case 0:
|
|
/* min_EL EL1, but some accessible to EL0 via kernel ABI */
|
|
mask = PL0U_R | PL1_RW;
|
|
break;
|
|
case 1: case 2:
|
|
/* min_EL EL1 */
|
|
mask = PL1_RW;
|
|
break;
|
|
case 3:
|
|
/* min_EL EL0 */
|
|
mask = PL0_RW;
|
|
break;
|
|
case 4:
|
|
case 5:
|
|
/* min_EL EL2 */
|
|
mask = PL2_RW;
|
|
break;
|
|
case 6:
|
|
/* min_EL EL3 */
|
|
mask = PL3_RW;
|
|
break;
|
|
case 7:
|
|
/* min_EL EL1, secure mode only (we don't check the latter) */
|
|
mask = PL1_RW;
|
|
break;
|
|
default:
|
|
/* broken reginfo with out-of-range opc1 */
|
|
g_assert_not_reached();
|
|
}
|
|
/* assert our permissions are not too lax (stricter is fine) */
|
|
assert((r->access & ~mask) == 0);
|
|
}
|
|
|
|
/*
|
|
* Check that the register definition has enough info to handle
|
|
* reads and writes if they are permitted.
|
|
*/
|
|
if (!(r->type & (ARM_CP_SPECIAL_MASK | ARM_CP_CONST))) {
|
|
if (r->access & PL3_R) {
|
|
assert((r->fieldoffset ||
|
|
(r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
|
|
r->readfn);
|
|
}
|
|
if (r->access & PL3_W) {
|
|
assert((r->fieldoffset ||
|
|
(r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
|
|
r->writefn);
|
|
}
|
|
}
|
|
|
|
for (crm = crmmin; crm <= crmmax; crm++) {
|
|
for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
|
|
for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
|
|
for (state = ARM_CP_STATE_AA32;
|
|
state <= ARM_CP_STATE_AA64; state++) {
|
|
if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
|
|
continue;
|
|
}
|
|
if (state == ARM_CP_STATE_AA32) {
|
|
/*
|
|
* Under AArch32 CP registers can be common
|
|
* (same for secure and non-secure world) or banked.
|
|
*/
|
|
char *name;
|
|
|
|
switch (r->secure) {
|
|
case ARM_CP_SECSTATE_S:
|
|
case ARM_CP_SECSTATE_NS:
|
|
add_cpreg_to_hashtable(cpu, r, opaque, state,
|
|
r->secure, crm, opc1, opc2,
|
|
r->name);
|
|
break;
|
|
case ARM_CP_SECSTATE_BOTH:
|
|
name = g_strdup_printf("%s_S", r->name);
|
|
add_cpreg_to_hashtable(cpu, r, opaque, state,
|
|
ARM_CP_SECSTATE_S,
|
|
crm, opc1, opc2, name);
|
|
g_free(name);
|
|
add_cpreg_to_hashtable(cpu, r, opaque, state,
|
|
ARM_CP_SECSTATE_NS,
|
|
crm, opc1, opc2, r->name);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
} else {
|
|
/*
|
|
* AArch64 registers get mapped to non-secure instance
|
|
* of AArch32
|
|
*/
|
|
add_cpreg_to_hashtable(cpu, r, opaque, state,
|
|
ARM_CP_SECSTATE_NS,
|
|
crm, opc1, opc2, r->name);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Define a whole list of registers */
|
|
void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
|
|
void *opaque, size_t len)
|
|
{
|
|
size_t i;
|
|
for (i = 0; i < len; ++i) {
|
|
define_one_arm_cp_reg_with_opaque(cpu, regs + i, opaque);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Modify ARMCPRegInfo for access from userspace.
|
|
*
|
|
* This is a data driven modification directed by
|
|
* ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
|
|
* user-space cannot alter any values and dynamic values pertaining to
|
|
* execution state are hidden from user space view anyway.
|
|
*/
|
|
void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
|
|
const ARMCPRegUserSpaceInfo *mods,
|
|
size_t mods_len)
|
|
{
|
|
for (size_t mi = 0; mi < mods_len; ++mi) {
|
|
const ARMCPRegUserSpaceInfo *m = mods + mi;
|
|
GPatternSpec *pat = NULL;
|
|
|
|
if (m->is_glob) {
|
|
pat = g_pattern_spec_new(m->name);
|
|
}
|
|
for (size_t ri = 0; ri < regs_len; ++ri) {
|
|
ARMCPRegInfo *r = regs + ri;
|
|
|
|
if (pat && g_pattern_match_string(pat, r->name)) {
|
|
r->type = ARM_CP_CONST;
|
|
r->access = PL0U_R;
|
|
r->resetvalue = 0;
|
|
/* continue */
|
|
} else if (strcmp(r->name, m->name) == 0) {
|
|
r->type = ARM_CP_CONST;
|
|
r->access = PL0U_R;
|
|
r->resetvalue &= m->exported_bits;
|
|
r->resetvalue |= m->fixed_bits;
|
|
break;
|
|
}
|
|
}
|
|
if (pat) {
|
|
g_pattern_spec_free(pat);
|
|
}
|
|
}
|
|
}
|
|
|
|
const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
|
|
{
|
|
return g_hash_table_lookup(cpregs, (gpointer)(uintptr_t)encoded_cp);
|
|
}
|
|
|
|
void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value)
|
|
{
|
|
/* Helper coprocessor write function for write-ignore registers */
|
|
}
|
|
|
|
uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
|
|
{
|
|
/* Helper coprocessor write function for read-as-zero registers */
|
|
return 0;
|
|
}
|
|
|
|
void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
|
|
{
|
|
/* Helper coprocessor reset function for do-nothing-on-reset registers */
|
|
}
|
|
|
|
static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
|
|
{
|
|
/*
|
|
* Return true if it is not valid for us to switch to
|
|
* this CPU mode (ie all the UNPREDICTABLE cases in
|
|
* the ARM ARM CPSRWriteByInstr pseudocode).
|
|
*/
|
|
|
|
/* Changes to or from Hyp via MSR and CPS are illegal. */
|
|
if (write_type == CPSRWriteByInstr &&
|
|
((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
|
|
mode == ARM_CPU_MODE_HYP)) {
|
|
return 1;
|
|
}
|
|
|
|
switch (mode) {
|
|
case ARM_CPU_MODE_USR:
|
|
return 0;
|
|
case ARM_CPU_MODE_SYS:
|
|
case ARM_CPU_MODE_SVC:
|
|
case ARM_CPU_MODE_ABT:
|
|
case ARM_CPU_MODE_UND:
|
|
case ARM_CPU_MODE_IRQ:
|
|
case ARM_CPU_MODE_FIQ:
|
|
/*
|
|
* Note that we don't implement the IMPDEF NSACR.RFR which in v7
|
|
* allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
|
|
*/
|
|
/*
|
|
* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
|
|
* and CPS are treated as illegal mode changes.
|
|
*/
|
|
if (write_type == CPSRWriteByInstr &&
|
|
(env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
|
|
(arm_hcr_el2_eff(env) & HCR_TGE)) {
|
|
return 1;
|
|
}
|
|
return 0;
|
|
case ARM_CPU_MODE_HYP:
|
|
return !arm_is_el2_enabled(env) || arm_current_el(env) < 2;
|
|
case ARM_CPU_MODE_MON:
|
|
return arm_current_el(env) < 3;
|
|
default:
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
uint32_t cpsr_read(CPUARMState *env)
|
|
{
|
|
int ZF;
|
|
ZF = (env->ZF == 0);
|
|
return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
|
|
(env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
|
|
| (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
|
|
| ((env->condexec_bits & 0xfc) << 8)
|
|
| (env->GE << 16) | (env->daif & CPSR_AIF);
|
|
}
|
|
|
|
void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
|
|
CPSRWriteType write_type)
|
|
{
|
|
uint32_t changed_daif;
|
|
bool rebuild_hflags = (write_type != CPSRWriteRaw) &&
|
|
(mask & (CPSR_M | CPSR_E | CPSR_IL));
|
|
|
|
if (mask & CPSR_NZCV) {
|
|
env->ZF = (~val) & CPSR_Z;
|
|
env->NF = val;
|
|
env->CF = (val >> 29) & 1;
|
|
env->VF = (val << 3) & 0x80000000;
|
|
}
|
|
if (mask & CPSR_Q) {
|
|
env->QF = ((val & CPSR_Q) != 0);
|
|
}
|
|
if (mask & CPSR_T) {
|
|
env->thumb = ((val & CPSR_T) != 0);
|
|
}
|
|
if (mask & CPSR_IT_0_1) {
|
|
env->condexec_bits &= ~3;
|
|
env->condexec_bits |= (val >> 25) & 3;
|
|
}
|
|
if (mask & CPSR_IT_2_7) {
|
|
env->condexec_bits &= 3;
|
|
env->condexec_bits |= (val >> 8) & 0xfc;
|
|
}
|
|
if (mask & CPSR_GE) {
|
|
env->GE = (val >> 16) & 0xf;
|
|
}
|
|
|
|
/*
|
|
* In a V7 implementation that includes the security extensions but does
|
|
* not include Virtualization Extensions the SCR.FW and SCR.AW bits control
|
|
* whether non-secure software is allowed to change the CPSR_F and CPSR_A
|
|
* bits respectively.
|
|
*
|
|
* In a V8 implementation, it is permitted for privileged software to
|
|
* change the CPSR A/F bits regardless of the SCR.AW/FW bits.
|
|
*/
|
|
if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
|
|
arm_feature(env, ARM_FEATURE_EL3) &&
|
|
!arm_feature(env, ARM_FEATURE_EL2) &&
|
|
!arm_is_secure(env)) {
|
|
|
|
changed_daif = (env->daif ^ val) & mask;
|
|
|
|
if (changed_daif & CPSR_A) {
|
|
/*
|
|
* Check to see if we are allowed to change the masking of async
|
|
* abort exceptions from a non-secure state.
|
|
*/
|
|
if (!(env->cp15.scr_el3 & SCR_AW)) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"Ignoring attempt to switch CPSR_A flag from "
|
|
"non-secure world with SCR.AW bit clear\n");
|
|
mask &= ~CPSR_A;
|
|
}
|
|
}
|
|
|
|
if (changed_daif & CPSR_F) {
|
|
/*
|
|
* Check to see if we are allowed to change the masking of FIQ
|
|
* exceptions from a non-secure state.
|
|
*/
|
|
if (!(env->cp15.scr_el3 & SCR_FW)) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"Ignoring attempt to switch CPSR_F flag from "
|
|
"non-secure world with SCR.FW bit clear\n");
|
|
mask &= ~CPSR_F;
|
|
}
|
|
|
|
/*
|
|
* Check whether non-maskable FIQ (NMFI) support is enabled.
|
|
* If this bit is set software is not allowed to mask
|
|
* FIQs, but is allowed to set CPSR_F to 0.
|
|
*/
|
|
if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
|
|
(val & CPSR_F)) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"Ignoring attempt to enable CPSR_F flag "
|
|
"(non-maskable FIQ [NMFI] support enabled)\n");
|
|
mask &= ~CPSR_F;
|
|
}
|
|
}
|
|
}
|
|
|
|
env->daif &= ~(CPSR_AIF & mask);
|
|
env->daif |= val & CPSR_AIF & mask;
|
|
|
|
if (write_type != CPSRWriteRaw &&
|
|
((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
|
|
if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
|
|
/*
|
|
* Note that we can only get here in USR mode if this is a
|
|
* gdb stub write; for this case we follow the architectural
|
|
* behaviour for guest writes in USR mode of ignoring an attempt
|
|
* to switch mode. (Those are caught by translate.c for writes
|
|
* triggered by guest instructions.)
|
|
*/
|
|
mask &= ~CPSR_M;
|
|
} else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
|
|
/*
|
|
* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
|
|
* v7, and has defined behaviour in v8:
|
|
* + leave CPSR.M untouched
|
|
* + allow changes to the other CPSR fields
|
|
* + set PSTATE.IL
|
|
* For user changes via the GDB stub, we don't set PSTATE.IL,
|
|
* as this would be unnecessarily harsh for a user error.
|
|
*/
|
|
mask &= ~CPSR_M;
|
|
if (write_type != CPSRWriteByGDBStub &&
|
|
arm_feature(env, ARM_FEATURE_V8)) {
|
|
mask |= CPSR_IL;
|
|
val |= CPSR_IL;
|
|
}
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"Illegal AArch32 mode switch attempt from %s to %s\n",
|
|
aarch32_mode_name(env->uncached_cpsr),
|
|
aarch32_mode_name(val));
|
|
} else {
|
|
qemu_log_mask(CPU_LOG_INT, "%s %s to %s PC 0x%" PRIx32 "\n",
|
|
write_type == CPSRWriteExceptionReturn ?
|
|
"Exception return from AArch32" :
|
|
"AArch32 mode switch from",
|
|
aarch32_mode_name(env->uncached_cpsr),
|
|
aarch32_mode_name(val), env->regs[15]);
|
|
switch_mode(env, val & CPSR_M);
|
|
}
|
|
}
|
|
mask &= ~CACHED_CPSR_BITS;
|
|
env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
|
|
if (tcg_enabled() && rebuild_hflags) {
|
|
arm_rebuild_hflags(env);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_USER_ONLY
|
|
|
|
static void switch_mode(CPUARMState *env, int mode)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
|
|
if (mode != ARM_CPU_MODE_USR) {
|
|
cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
|
|
}
|
|
}
|
|
|
|
uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
|
|
uint32_t cur_el, bool secure)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
void aarch64_sync_64_to_32(CPUARMState *env)
|
|
{
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
#else
|
|
|
|
static void switch_mode(CPUARMState *env, int mode)
|
|
{
|
|
int old_mode;
|
|
int i;
|
|
|
|
old_mode = env->uncached_cpsr & CPSR_M;
|
|
if (mode == old_mode) {
|
|
return;
|
|
}
|
|
|
|
if (old_mode == ARM_CPU_MODE_FIQ) {
|
|
memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
|
|
memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
|
|
} else if (mode == ARM_CPU_MODE_FIQ) {
|
|
memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
|
|
memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
|
|
}
|
|
|
|
i = bank_number(old_mode);
|
|
env->banked_r13[i] = env->regs[13];
|
|
env->banked_spsr[i] = env->spsr;
|
|
|
|
i = bank_number(mode);
|
|
env->regs[13] = env->banked_r13[i];
|
|
env->spsr = env->banked_spsr[i];
|
|
|
|
env->banked_r14[r14_bank_number(old_mode)] = env->regs[14];
|
|
env->regs[14] = env->banked_r14[r14_bank_number(mode)];
|
|
}
|
|
|
|
/*
|
|
* Physical Interrupt Target EL Lookup Table
|
|
*
|
|
* [ From ARM ARM section G1.13.4 (Table G1-15) ]
|
|
*
|
|
* The below multi-dimensional table is used for looking up the target
|
|
* exception level given numerous condition criteria. Specifically, the
|
|
* target EL is based on SCR and HCR routing controls as well as the
|
|
* currently executing EL and secure state.
|
|
*
|
|
* Dimensions:
|
|
* target_el_table[2][2][2][2][2][4]
|
|
* | | | | | +--- Current EL
|
|
* | | | | +------ Non-secure(0)/Secure(1)
|
|
* | | | +--------- HCR mask override
|
|
* | | +------------ SCR exec state control
|
|
* | +--------------- SCR mask override
|
|
* +------------------ 32-bit(0)/64-bit(1) EL3
|
|
*
|
|
* The table values are as such:
|
|
* 0-3 = EL0-EL3
|
|
* -1 = Cannot occur
|
|
*
|
|
* The ARM ARM target EL table includes entries indicating that an "exception
|
|
* is not taken". The two cases where this is applicable are:
|
|
* 1) An exception is taken from EL3 but the SCR does not have the exception
|
|
* routed to EL3.
|
|
* 2) An exception is taken from EL2 but the HCR does not have the exception
|
|
* routed to EL2.
|
|
* In these two cases, the below table contain a target of EL1. This value is
|
|
* returned as it is expected that the consumer of the table data will check
|
|
* for "target EL >= current EL" to ensure the exception is not taken.
|
|
*
|
|
* SCR HCR
|
|
* 64 EA AMO From
|
|
* BIT IRQ IMO Non-secure Secure
|
|
* EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
|
|
*/
|
|
static const int8_t target_el_table[2][2][2][2][2][4] = {
|
|
{{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
|
|
{/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
|
|
{{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
|
|
{/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
|
|
{{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
|
|
{/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
|
|
{{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
|
|
{/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
|
|
{{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
|
|
{/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 2, 2, -1, 1 },},},
|
|
{{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, 1, 1 },},
|
|
{/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 2, 2, 2, 1 },},},},
|
|
{{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
|
|
{/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
|
|
{{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},
|
|
{/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, 3, 3 },},},},},
|
|
};
|
|
|
|
/*
|
|
* Determine the target EL for physical exceptions
|
|
*/
|
|
uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
|
|
uint32_t cur_el, bool secure)
|
|
{
|
|
CPUARMState *env = cpu_env(cs);
|
|
bool rw;
|
|
bool scr;
|
|
bool hcr;
|
|
int target_el;
|
|
/* Is the highest EL AArch64? */
|
|
bool is64 = arm_feature(env, ARM_FEATURE_AARCH64);
|
|
uint64_t hcr_el2;
|
|
|
|
if (arm_feature(env, ARM_FEATURE_EL3)) {
|
|
rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
|
|
} else {
|
|
/*
|
|
* Either EL2 is the highest EL (and so the EL2 register width
|
|
* is given by is64); or there is no EL2 or EL3, in which case
|
|
* the value of 'rw' does not affect the table lookup anyway.
|
|
*/
|
|
rw = is64;
|
|
}
|
|
|
|
hcr_el2 = arm_hcr_el2_eff(env);
|
|
switch (excp_idx) {
|
|
case EXCP_IRQ:
|
|
case EXCP_NMI:
|
|
scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
|
|
hcr = hcr_el2 & HCR_IMO;
|
|
break;
|
|
case EXCP_FIQ:
|
|
scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
|
|
hcr = hcr_el2 & HCR_FMO;
|
|
break;
|
|
default:
|
|
scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
|
|
hcr = hcr_el2 & HCR_AMO;
|
|
break;
|
|
};
|
|
|
|
/*
|
|
* For these purposes, TGE and AMO/IMO/FMO both force the
|
|
* interrupt to EL2. Fold TGE into the bit extracted above.
|
|
*/
|
|
hcr |= (hcr_el2 & HCR_TGE) != 0;
|
|
|
|
/* Perform a table-lookup for the target EL given the current state */
|
|
target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
|
|
|
|
assert(target_el > 0);
|
|
|
|
return target_el;
|
|
}
|
|
|
|
void arm_log_exception(CPUState *cs)
|
|
{
|
|
int idx = cs->exception_index;
|
|
|
|
if (qemu_loglevel_mask(CPU_LOG_INT)) {
|
|
const char *exc = NULL;
|
|
static const char * const excnames[] = {
|
|
[EXCP_UDEF] = "Undefined Instruction",
|
|
[EXCP_SWI] = "SVC",
|
|
[EXCP_PREFETCH_ABORT] = "Prefetch Abort",
|
|
[EXCP_DATA_ABORT] = "Data Abort",
|
|
[EXCP_IRQ] = "IRQ",
|
|
[EXCP_FIQ] = "FIQ",
|
|
[EXCP_BKPT] = "Breakpoint",
|
|
[EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
|
|
[EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
|
|
[EXCP_HVC] = "Hypervisor Call",
|
|
[EXCP_HYP_TRAP] = "Hypervisor Trap",
|
|
[EXCP_SMC] = "Secure Monitor Call",
|
|
[EXCP_VIRQ] = "Virtual IRQ",
|
|
[EXCP_VFIQ] = "Virtual FIQ",
|
|
[EXCP_SEMIHOST] = "Semihosting call",
|
|
[EXCP_NOCP] = "v7M NOCP UsageFault",
|
|
[EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
|
|
[EXCP_STKOF] = "v8M STKOF UsageFault",
|
|
[EXCP_LAZYFP] = "v7M exception during lazy FP stacking",
|
|
[EXCP_LSERR] = "v8M LSERR UsageFault",
|
|
[EXCP_UNALIGNED] = "v7M UNALIGNED UsageFault",
|
|
[EXCP_DIVBYZERO] = "v7M DIVBYZERO UsageFault",
|
|
[EXCP_VSERR] = "Virtual SERR",
|
|
[EXCP_GPC] = "Granule Protection Check",
|
|
[EXCP_NMI] = "NMI",
|
|
[EXCP_VINMI] = "Virtual IRQ NMI",
|
|
[EXCP_VFNMI] = "Virtual FIQ NMI",
|
|
};
|
|
|
|
if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
|
|
exc = excnames[idx];
|
|
}
|
|
if (!exc) {
|
|
exc = "unknown";
|
|
}
|
|
qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s] on CPU %d\n",
|
|
idx, exc, cs->cpu_index);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Function used to synchronize QEMU's AArch64 register set with AArch32
|
|
* register set. This is necessary when switching between AArch32 and AArch64
|
|
* execution state.
|
|
*/
|
|
void aarch64_sync_32_to_64(CPUARMState *env)
|
|
{
|
|
int i;
|
|
uint32_t mode = env->uncached_cpsr & CPSR_M;
|
|
|
|
/* We can blanket copy R[0:7] to X[0:7] */
|
|
for (i = 0; i < 8; i++) {
|
|
env->xregs[i] = env->regs[i];
|
|
}
|
|
|
|
/*
|
|
* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
|
|
* Otherwise, they come from the banked user regs.
|
|
*/
|
|
if (mode == ARM_CPU_MODE_FIQ) {
|
|
for (i = 8; i < 13; i++) {
|
|
env->xregs[i] = env->usr_regs[i - 8];
|
|
}
|
|
} else {
|
|
for (i = 8; i < 13; i++) {
|
|
env->xregs[i] = env->regs[i];
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Registers x13-x23 are the various mode SP and FP registers. Registers
|
|
* r13 and r14 are only copied if we are in that mode, otherwise we copy
|
|
* from the mode banked register.
|
|
*/
|
|
if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
|
|
env->xregs[13] = env->regs[13];
|
|
env->xregs[14] = env->regs[14];
|
|
} else {
|
|
env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
|
|
/* HYP is an exception in that it is copied from r14 */
|
|
if (mode == ARM_CPU_MODE_HYP) {
|
|
env->xregs[14] = env->regs[14];
|
|
} else {
|
|
env->xregs[14] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)];
|
|
}
|
|
}
|
|
|
|
if (mode == ARM_CPU_MODE_HYP) {
|
|
env->xregs[15] = env->regs[13];
|
|
} else {
|
|
env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
|
|
}
|
|
|
|
if (mode == ARM_CPU_MODE_IRQ) {
|
|
env->xregs[16] = env->regs[14];
|
|
env->xregs[17] = env->regs[13];
|
|
} else {
|
|
env->xregs[16] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)];
|
|
env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
|
|
}
|
|
|
|
if (mode == ARM_CPU_MODE_SVC) {
|
|
env->xregs[18] = env->regs[14];
|
|
env->xregs[19] = env->regs[13];
|
|
} else {
|
|
env->xregs[18] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)];
|
|
env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
|
|
}
|
|
|
|
if (mode == ARM_CPU_MODE_ABT) {
|
|
env->xregs[20] = env->regs[14];
|
|
env->xregs[21] = env->regs[13];
|
|
} else {
|
|
env->xregs[20] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)];
|
|
env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
|
|
}
|
|
|
|
if (mode == ARM_CPU_MODE_UND) {
|
|
env->xregs[22] = env->regs[14];
|
|
env->xregs[23] = env->regs[13];
|
|
} else {
|
|
env->xregs[22] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)];
|
|
env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
|
|
}
|
|
|
|
/*
|
|
* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
|
|
* mode, then we can copy from r8-r14. Otherwise, we copy from the
|
|
* FIQ bank for r8-r14.
|
|
*/
|
|
if (mode == ARM_CPU_MODE_FIQ) {
|
|
for (i = 24; i < 31; i++) {
|
|
env->xregs[i] = env->regs[i - 16]; /* X[24:30] <- R[8:14] */
|
|
}
|
|
} else {
|
|
for (i = 24; i < 29; i++) {
|
|
env->xregs[i] = env->fiq_regs[i - 24];
|
|
}
|
|
env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
|
|
env->xregs[30] = env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)];
|
|
}
|
|
|
|
env->pc = env->regs[15];
|
|
}
|
|
|
|
/*
|
|
* Function used to synchronize QEMU's AArch32 register set with AArch64
|
|
* register set. This is necessary when switching between AArch32 and AArch64
|
|
* execution state.
|
|
*/
|
|
void aarch64_sync_64_to_32(CPUARMState *env)
|
|
{
|
|
int i;
|
|
uint32_t mode = env->uncached_cpsr & CPSR_M;
|
|
|
|
/* We can blanket copy X[0:7] to R[0:7] */
|
|
for (i = 0; i < 8; i++) {
|
|
env->regs[i] = env->xregs[i];
|
|
}
|
|
|
|
/*
|
|
* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
|
|
* Otherwise, we copy x8-x12 into the banked user regs.
|
|
*/
|
|
if (mode == ARM_CPU_MODE_FIQ) {
|
|
for (i = 8; i < 13; i++) {
|
|
env->usr_regs[i - 8] = env->xregs[i];
|
|
}
|
|
} else {
|
|
for (i = 8; i < 13; i++) {
|
|
env->regs[i] = env->xregs[i];
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Registers r13 & r14 depend on the current mode.
|
|
* If we are in a given mode, we copy the corresponding x registers to r13
|
|
* and r14. Otherwise, we copy the x register to the banked r13 and r14
|
|
* for the mode.
|
|
*/
|
|
if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
|
|
env->regs[13] = env->xregs[13];
|
|
env->regs[14] = env->xregs[14];
|
|
} else {
|
|
env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
|
|
|
|
/*
|
|
* HYP is an exception in that it does not have its own banked r14 but
|
|
* shares the USR r14
|
|
*/
|
|
if (mode == ARM_CPU_MODE_HYP) {
|
|
env->regs[14] = env->xregs[14];
|
|
} else {
|
|
env->banked_r14[r14_bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
|
|
}
|
|
}
|
|
|
|
if (mode == ARM_CPU_MODE_HYP) {
|
|
env->regs[13] = env->xregs[15];
|
|
} else {
|
|
env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
|
|
}
|
|
|
|
if (mode == ARM_CPU_MODE_IRQ) {
|
|
env->regs[14] = env->xregs[16];
|
|
env->regs[13] = env->xregs[17];
|
|
} else {
|
|
env->banked_r14[r14_bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
|
|
env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
|
|
}
|
|
|
|
if (mode == ARM_CPU_MODE_SVC) {
|
|
env->regs[14] = env->xregs[18];
|
|
env->regs[13] = env->xregs[19];
|
|
} else {
|
|
env->banked_r14[r14_bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
|
|
env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
|
|
}
|
|
|
|
if (mode == ARM_CPU_MODE_ABT) {
|
|
env->regs[14] = env->xregs[20];
|
|
env->regs[13] = env->xregs[21];
|
|
} else {
|
|
env->banked_r14[r14_bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
|
|
env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
|
|
}
|
|
|
|
if (mode == ARM_CPU_MODE_UND) {
|
|
env->regs[14] = env->xregs[22];
|
|
env->regs[13] = env->xregs[23];
|
|
} else {
|
|
env->banked_r14[r14_bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
|
|
env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
|
|
}
|
|
|
|
/*
|
|
* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
|
|
* mode, then we can copy to r8-r14. Otherwise, we copy to the
|
|
* FIQ bank for r8-r14.
|
|
*/
|
|
if (mode == ARM_CPU_MODE_FIQ) {
|
|
for (i = 24; i < 31; i++) {
|
|
env->regs[i - 16] = env->xregs[i]; /* X[24:30] -> R[8:14] */
|
|
}
|
|
} else {
|
|
for (i = 24; i < 29; i++) {
|
|
env->fiq_regs[i - 24] = env->xregs[i];
|
|
}
|
|
env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
|
|
env->banked_r14[r14_bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
|
|
}
|
|
|
|
env->regs[15] = env->pc;
|
|
}
|
|
|
|
static void take_aarch32_exception(CPUARMState *env, int new_mode,
|
|
uint32_t mask, uint32_t offset,
|
|
uint32_t newpc)
|
|
{
|
|
int new_el;
|
|
|
|
/* Change the CPU state so as to actually take the exception. */
|
|
switch_mode(env, new_mode);
|
|
|
|
/*
|
|
* For exceptions taken to AArch32 we must clear the SS bit in both
|
|
* PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
|
|
*/
|
|
env->pstate &= ~PSTATE_SS;
|
|
env->spsr = cpsr_read(env);
|
|
/* Clear IT bits. */
|
|
env->condexec_bits = 0;
|
|
/* Switch to the new mode, and to the correct instruction set. */
|
|
env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
|
|
|
|
/* This must be after mode switching. */
|
|
new_el = arm_current_el(env);
|
|
|
|
/* Set new mode endianness */
|
|
env->uncached_cpsr &= ~CPSR_E;
|
|
if (env->cp15.sctlr_el[new_el] & SCTLR_EE) {
|
|
env->uncached_cpsr |= CPSR_E;
|
|
}
|
|
/* J and IL must always be cleared for exception entry */
|
|
env->uncached_cpsr &= ~(CPSR_IL | CPSR_J);
|
|
env->daif |= mask;
|
|
|
|
if (cpu_isar_feature(aa32_ssbs, env_archcpu(env))) {
|
|
if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_32) {
|
|
env->uncached_cpsr |= CPSR_SSBS;
|
|
} else {
|
|
env->uncached_cpsr &= ~CPSR_SSBS;
|
|
}
|
|
}
|
|
|
|
if (new_mode == ARM_CPU_MODE_HYP) {
|
|
env->thumb = (env->cp15.sctlr_el[2] & SCTLR_TE) != 0;
|
|
env->elr_el[2] = env->regs[15];
|
|
} else {
|
|
/* CPSR.PAN is normally preserved preserved unless... */
|
|
if (cpu_isar_feature(aa32_pan, env_archcpu(env))) {
|
|
switch (new_el) {
|
|
case 3:
|
|
if (!arm_is_secure_below_el3(env)) {
|
|
/* ... the target is EL3, from non-secure state. */
|
|
env->uncached_cpsr &= ~CPSR_PAN;
|
|
break;
|
|
}
|
|
/* ... the target is EL3, from secure state ... */
|
|
/* fall through */
|
|
case 1:
|
|
/* ... the target is EL1 and SCTLR.SPAN is 0. */
|
|
if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPAN)) {
|
|
env->uncached_cpsr |= CPSR_PAN;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
/*
|
|
* this is a lie, as there was no c1_sys on V4T/V5, but who cares
|
|
* and we should just guard the thumb mode on V4
|
|
*/
|
|
if (arm_feature(env, ARM_FEATURE_V4T)) {
|
|
env->thumb =
|
|
(A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
|
|
}
|
|
env->regs[14] = env->regs[15] + offset;
|
|
}
|
|
env->regs[15] = newpc;
|
|
|
|
if (tcg_enabled()) {
|
|
arm_rebuild_hflags(env);
|
|
}
|
|
}
|
|
|
|
static void arm_cpu_do_interrupt_aarch32_hyp(CPUState *cs)
|
|
{
|
|
/*
|
|
* Handle exception entry to Hyp mode; this is sufficiently
|
|
* different to entry to other AArch32 modes that we handle it
|
|
* separately here.
|
|
*
|
|
* The vector table entry used is always the 0x14 Hyp mode entry point,
|
|
* unless this is an UNDEF/SVC/HVC/abort taken from Hyp to Hyp.
|
|
* The offset applied to the preferred return address is always zero
|
|
* (see DDI0487C.a section G1.12.3).
|
|
* PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
|
|
*/
|
|
uint32_t addr, mask;
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
CPUARMState *env = &cpu->env;
|
|
|
|
switch (cs->exception_index) {
|
|
case EXCP_UDEF:
|
|
addr = 0x04;
|
|
break;
|
|
case EXCP_SWI:
|
|
addr = 0x08;
|
|
break;
|
|
case EXCP_BKPT:
|
|
/* Fall through to prefetch abort. */
|
|
case EXCP_PREFETCH_ABORT:
|
|
env->cp15.ifar_s = env->exception.vaddress;
|
|
qemu_log_mask(CPU_LOG_INT, "...with HIFAR 0x%x\n",
|
|
(uint32_t)env->exception.vaddress);
|
|
addr = 0x0c;
|
|
break;
|
|
case EXCP_DATA_ABORT:
|
|
env->cp15.dfar_s = env->exception.vaddress;
|
|
qemu_log_mask(CPU_LOG_INT, "...with HDFAR 0x%x\n",
|
|
(uint32_t)env->exception.vaddress);
|
|
addr = 0x10;
|
|
break;
|
|
case EXCP_IRQ:
|
|
addr = 0x18;
|
|
break;
|
|
case EXCP_FIQ:
|
|
addr = 0x1c;
|
|
break;
|
|
case EXCP_HVC:
|
|
addr = 0x08;
|
|
break;
|
|
case EXCP_HYP_TRAP:
|
|
addr = 0x14;
|
|
break;
|
|
default:
|
|
cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
|
|
}
|
|
|
|
if (cs->exception_index != EXCP_IRQ && cs->exception_index != EXCP_FIQ) {
|
|
if (!arm_feature(env, ARM_FEATURE_V8)) {
|
|
/*
|
|
* QEMU syndrome values are v8-style. v7 has the IL bit
|
|
* UNK/SBZP for "field not valid" cases, where v8 uses RES1.
|
|
* If this is a v7 CPU, squash the IL bit in those cases.
|
|
*/
|
|
if (cs->exception_index == EXCP_PREFETCH_ABORT ||
|
|
(cs->exception_index == EXCP_DATA_ABORT &&
|
|
!(env->exception.syndrome & ARM_EL_ISV)) ||
|
|
syn_get_ec(env->exception.syndrome) == EC_UNCATEGORIZED) {
|
|
env->exception.syndrome &= ~ARM_EL_IL;
|
|
}
|
|
}
|
|
env->cp15.esr_el[2] = env->exception.syndrome;
|
|
}
|
|
|
|
if (arm_current_el(env) != 2 && addr < 0x14) {
|
|
addr = 0x14;
|
|
}
|
|
|
|
mask = 0;
|
|
if (!(env->cp15.scr_el3 & SCR_EA)) {
|
|
mask |= CPSR_A;
|
|
}
|
|
if (!(env->cp15.scr_el3 & SCR_IRQ)) {
|
|
mask |= CPSR_I;
|
|
}
|
|
if (!(env->cp15.scr_el3 & SCR_FIQ)) {
|
|
mask |= CPSR_F;
|
|
}
|
|
|
|
addr += env->cp15.hvbar;
|
|
|
|
take_aarch32_exception(env, ARM_CPU_MODE_HYP, mask, 0, addr);
|
|
}
|
|
|
|
static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
CPUARMState *env = &cpu->env;
|
|
uint32_t addr;
|
|
uint32_t mask;
|
|
int new_mode;
|
|
uint32_t offset;
|
|
uint32_t moe;
|
|
|
|
/* If this is a debug exception we must update the DBGDSCR.MOE bits */
|
|
switch (syn_get_ec(env->exception.syndrome)) {
|
|
case EC_BREAKPOINT:
|
|
case EC_BREAKPOINT_SAME_EL:
|
|
moe = 1;
|
|
break;
|
|
case EC_WATCHPOINT:
|
|
case EC_WATCHPOINT_SAME_EL:
|
|
moe = 10;
|
|
break;
|
|
case EC_AA32_BKPT:
|
|
moe = 3;
|
|
break;
|
|
case EC_VECTORCATCH:
|
|
moe = 5;
|
|
break;
|
|
default:
|
|
moe = 0;
|
|
break;
|
|
}
|
|
|
|
if (moe) {
|
|
env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
|
|
}
|
|
|
|
if (env->exception.target_el == 2) {
|
|
/* Debug exceptions are reported differently on AArch32 */
|
|
switch (syn_get_ec(env->exception.syndrome)) {
|
|
case EC_BREAKPOINT:
|
|
case EC_BREAKPOINT_SAME_EL:
|
|
case EC_AA32_BKPT:
|
|
case EC_VECTORCATCH:
|
|
env->exception.syndrome = syn_insn_abort(arm_current_el(env) == 2,
|
|
0, 0, 0x22);
|
|
break;
|
|
case EC_WATCHPOINT:
|
|
env->exception.syndrome = syn_set_ec(env->exception.syndrome,
|
|
EC_DATAABORT);
|
|
break;
|
|
case EC_WATCHPOINT_SAME_EL:
|
|
env->exception.syndrome = syn_set_ec(env->exception.syndrome,
|
|
EC_DATAABORT_SAME_EL);
|
|
break;
|
|
}
|
|
arm_cpu_do_interrupt_aarch32_hyp(cs);
|
|
return;
|
|
}
|
|
|
|
switch (cs->exception_index) {
|
|
case EXCP_UDEF:
|
|
new_mode = ARM_CPU_MODE_UND;
|
|
addr = 0x04;
|
|
mask = CPSR_I;
|
|
if (env->thumb) {
|
|
offset = 2;
|
|
} else {
|
|
offset = 4;
|
|
}
|
|
break;
|
|
case EXCP_SWI:
|
|
new_mode = ARM_CPU_MODE_SVC;
|
|
addr = 0x08;
|
|
mask = CPSR_I;
|
|
/* The PC already points to the next instruction. */
|
|
offset = 0;
|
|
break;
|
|
case EXCP_BKPT:
|
|
/* Fall through to prefetch abort. */
|
|
case EXCP_PREFETCH_ABORT:
|
|
A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
|
|
A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
|
|
qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
|
|
env->exception.fsr, (uint32_t)env->exception.vaddress);
|
|
new_mode = ARM_CPU_MODE_ABT;
|
|
addr = 0x0c;
|
|
mask = CPSR_A | CPSR_I;
|
|
offset = 4;
|
|
break;
|
|
case EXCP_DATA_ABORT:
|
|
A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
|
|
A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
|
|
qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
|
|
env->exception.fsr,
|
|
(uint32_t)env->exception.vaddress);
|
|
new_mode = ARM_CPU_MODE_ABT;
|
|
addr = 0x10;
|
|
mask = CPSR_A | CPSR_I;
|
|
offset = 8;
|
|
break;
|
|
case EXCP_IRQ:
|
|
new_mode = ARM_CPU_MODE_IRQ;
|
|
addr = 0x18;
|
|
/* Disable IRQ and imprecise data aborts. */
|
|
mask = CPSR_A | CPSR_I;
|
|
offset = 4;
|
|
if (env->cp15.scr_el3 & SCR_IRQ) {
|
|
/* IRQ routed to monitor mode */
|
|
new_mode = ARM_CPU_MODE_MON;
|
|
mask |= CPSR_F;
|
|
}
|
|
break;
|
|
case EXCP_FIQ:
|
|
new_mode = ARM_CPU_MODE_FIQ;
|
|
addr = 0x1c;
|
|
/* Disable FIQ, IRQ and imprecise data aborts. */
|
|
mask = CPSR_A | CPSR_I | CPSR_F;
|
|
if (env->cp15.scr_el3 & SCR_FIQ) {
|
|
/* FIQ routed to monitor mode */
|
|
new_mode = ARM_CPU_MODE_MON;
|
|
}
|
|
offset = 4;
|
|
break;
|
|
case EXCP_VIRQ:
|
|
new_mode = ARM_CPU_MODE_IRQ;
|
|
addr = 0x18;
|
|
/* Disable IRQ and imprecise data aborts. */
|
|
mask = CPSR_A | CPSR_I;
|
|
offset = 4;
|
|
break;
|
|
case EXCP_VFIQ:
|
|
new_mode = ARM_CPU_MODE_FIQ;
|
|
addr = 0x1c;
|
|
/* Disable FIQ, IRQ and imprecise data aborts. */
|
|
mask = CPSR_A | CPSR_I | CPSR_F;
|
|
offset = 4;
|
|
break;
|
|
case EXCP_VSERR:
|
|
{
|
|
/*
|
|
* Note that this is reported as a data abort, but the DFAR
|
|
* has an UNKNOWN value. Construct the SError syndrome from
|
|
* AET and ExT fields.
|
|
*/
|
|
ARMMMUFaultInfo fi = { .type = ARMFault_AsyncExternal, };
|
|
|
|
if (extended_addresses_enabled(env)) {
|
|
env->exception.fsr = arm_fi_to_lfsc(&fi);
|
|
} else {
|
|
env->exception.fsr = arm_fi_to_sfsc(&fi);
|
|
}
|
|
env->exception.fsr |= env->cp15.vsesr_el2 & 0xd000;
|
|
A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
|
|
qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x\n",
|
|
env->exception.fsr);
|
|
|
|
new_mode = ARM_CPU_MODE_ABT;
|
|
addr = 0x10;
|
|
mask = CPSR_A | CPSR_I;
|
|
offset = 8;
|
|
}
|
|
break;
|
|
case EXCP_SMC:
|
|
new_mode = ARM_CPU_MODE_MON;
|
|
addr = 0x08;
|
|
mask = CPSR_A | CPSR_I | CPSR_F;
|
|
offset = 0;
|
|
break;
|
|
default:
|
|
cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
|
|
return; /* Never happens. Keep compiler happy. */
|
|
}
|
|
|
|
if (new_mode == ARM_CPU_MODE_MON) {
|
|
addr += env->cp15.mvbar;
|
|
} else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
|
|
/* High vectors. When enabled, base address cannot be remapped. */
|
|
addr += 0xffff0000;
|
|
} else {
|
|
/*
|
|
* ARM v7 architectures provide a vector base address register to remap
|
|
* the interrupt vector table.
|
|
* This register is only followed in non-monitor mode, and is banked.
|
|
* Note: only bits 31:5 are valid.
|
|
*/
|
|
addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
|
|
}
|
|
|
|
if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
|
|
env->cp15.scr_el3 &= ~SCR_NS;
|
|
}
|
|
|
|
take_aarch32_exception(env, new_mode, mask, offset, addr);
|
|
}
|
|
|
|
static int aarch64_regnum(CPUARMState *env, int aarch32_reg)
|
|
{
|
|
/*
|
|
* Return the register number of the AArch64 view of the AArch32
|
|
* register @aarch32_reg. The CPUARMState CPSR is assumed to still
|
|
* be that of the AArch32 mode the exception came from.
|
|
*/
|
|
int mode = env->uncached_cpsr & CPSR_M;
|
|
|
|
switch (aarch32_reg) {
|
|
case 0 ... 7:
|
|
return aarch32_reg;
|
|
case 8 ... 12:
|
|
return mode == ARM_CPU_MODE_FIQ ? aarch32_reg + 16 : aarch32_reg;
|
|
case 13:
|
|
switch (mode) {
|
|
case ARM_CPU_MODE_USR:
|
|
case ARM_CPU_MODE_SYS:
|
|
return 13;
|
|
case ARM_CPU_MODE_HYP:
|
|
return 15;
|
|
case ARM_CPU_MODE_IRQ:
|
|
return 17;
|
|
case ARM_CPU_MODE_SVC:
|
|
return 19;
|
|
case ARM_CPU_MODE_ABT:
|
|
return 21;
|
|
case ARM_CPU_MODE_UND:
|
|
return 23;
|
|
case ARM_CPU_MODE_FIQ:
|
|
return 29;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
case 14:
|
|
switch (mode) {
|
|
case ARM_CPU_MODE_USR:
|
|
case ARM_CPU_MODE_SYS:
|
|
case ARM_CPU_MODE_HYP:
|
|
return 14;
|
|
case ARM_CPU_MODE_IRQ:
|
|
return 16;
|
|
case ARM_CPU_MODE_SVC:
|
|
return 18;
|
|
case ARM_CPU_MODE_ABT:
|
|
return 20;
|
|
case ARM_CPU_MODE_UND:
|
|
return 22;
|
|
case ARM_CPU_MODE_FIQ:
|
|
return 30;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
case 15:
|
|
return 31;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
static uint32_t cpsr_read_for_spsr_elx(CPUARMState *env)
|
|
{
|
|
uint32_t ret = cpsr_read(env);
|
|
|
|
/* Move DIT to the correct location for SPSR_ELx */
|
|
if (ret & CPSR_DIT) {
|
|
ret &= ~CPSR_DIT;
|
|
ret |= PSTATE_DIT;
|
|
}
|
|
/* Merge PSTATE.SS into SPSR_ELx */
|
|
ret |= env->pstate & PSTATE_SS;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static bool syndrome_is_sync_extabt(uint32_t syndrome)
|
|
{
|
|
/* Return true if this syndrome value is a synchronous external abort */
|
|
switch (syn_get_ec(syndrome)) {
|
|
case EC_INSNABORT:
|
|
case EC_INSNABORT_SAME_EL:
|
|
case EC_DATAABORT:
|
|
case EC_DATAABORT_SAME_EL:
|
|
/* Look at fault status code for all the synchronous ext abort cases */
|
|
switch (syndrome & 0x3f) {
|
|
case 0x10:
|
|
case 0x13:
|
|
case 0x14:
|
|
case 0x15:
|
|
case 0x16:
|
|
case 0x17:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Handle exception entry to a target EL which is using AArch64 */
|
|
static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
CPUARMState *env = &cpu->env;
|
|
unsigned int new_el = env->exception.target_el;
|
|
target_ulong addr = env->cp15.vbar_el[new_el];
|
|
unsigned int new_mode = aarch64_pstate_mode(new_el, true);
|
|
unsigned int old_mode;
|
|
unsigned int cur_el = arm_current_el(env);
|
|
int rt;
|
|
|
|
if (tcg_enabled()) {
|
|
/*
|
|
* Note that new_el can never be 0. If cur_el is 0, then
|
|
* el0_a64 is is_a64(), else el0_a64 is ignored.
|
|
*/
|
|
aarch64_sve_change_el(env, cur_el, new_el, is_a64(env));
|
|
}
|
|
|
|
if (cur_el < new_el) {
|
|
/*
|
|
* Entry vector offset depends on whether the implemented EL
|
|
* immediately lower than the target level is using AArch32 or AArch64
|
|
*/
|
|
bool is_aa64;
|
|
uint64_t hcr;
|
|
|
|
switch (new_el) {
|
|
case 3:
|
|
is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
|
|
break;
|
|
case 2:
|
|
hcr = arm_hcr_el2_eff(env);
|
|
if ((hcr & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
|
|
is_aa64 = (hcr & HCR_RW) != 0;
|
|
break;
|
|
}
|
|
/* fall through */
|
|
case 1:
|
|
is_aa64 = is_a64(env);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
if (is_aa64) {
|
|
addr += 0x400;
|
|
} else {
|
|
addr += 0x600;
|
|
}
|
|
} else if (pstate_read(env) & PSTATE_SP) {
|
|
addr += 0x200;
|
|
}
|
|
|
|
switch (cs->exception_index) {
|
|
case EXCP_GPC:
|
|
qemu_log_mask(CPU_LOG_INT, "...with MFAR 0x%" PRIx64 "\n",
|
|
env->cp15.mfar_el3);
|
|
/* fall through */
|
|
case EXCP_PREFETCH_ABORT:
|
|
case EXCP_DATA_ABORT:
|
|
/*
|
|
* FEAT_DoubleFault allows synchronous external aborts taken to EL3
|
|
* to be taken to the SError vector entrypoint.
|
|
*/
|
|
if (new_el == 3 && (env->cp15.scr_el3 & SCR_EASE) &&
|
|
syndrome_is_sync_extabt(env->exception.syndrome)) {
|
|
addr += 0x180;
|
|
}
|
|
env->cp15.far_el[new_el] = env->exception.vaddress;
|
|
qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
|
|
env->cp15.far_el[new_el]);
|
|
/* fall through */
|
|
case EXCP_BKPT:
|
|
case EXCP_UDEF:
|
|
case EXCP_SWI:
|
|
case EXCP_HVC:
|
|
case EXCP_HYP_TRAP:
|
|
case EXCP_SMC:
|
|
switch (syn_get_ec(env->exception.syndrome)) {
|
|
case EC_ADVSIMDFPACCESSTRAP:
|
|
/*
|
|
* QEMU internal FP/SIMD syndromes from AArch32 include the
|
|
* TA and coproc fields which are only exposed if the exception
|
|
* is taken to AArch32 Hyp mode. Mask them out to get a valid
|
|
* AArch64 format syndrome.
|
|
*/
|
|
env->exception.syndrome &= ~MAKE_64BIT_MASK(0, 20);
|
|
break;
|
|
case EC_CP14RTTRAP:
|
|
case EC_CP15RTTRAP:
|
|
case EC_CP14DTTRAP:
|
|
/*
|
|
* For a trap on AArch32 MRC/MCR/LDC/STC the Rt field is currently
|
|
* the raw register field from the insn; when taking this to
|
|
* AArch64 we must convert it to the AArch64 view of the register
|
|
* number. Notice that we read a 4-bit AArch32 register number and
|
|
* write back a 5-bit AArch64 one.
|
|
*/
|
|
rt = extract32(env->exception.syndrome, 5, 4);
|
|
rt = aarch64_regnum(env, rt);
|
|
env->exception.syndrome = deposit32(env->exception.syndrome,
|
|
5, 5, rt);
|
|
break;
|
|
case EC_CP15RRTTRAP:
|
|
case EC_CP14RRTTRAP:
|
|
/* Similarly for MRRC/MCRR traps for Rt and Rt2 fields */
|
|
rt = extract32(env->exception.syndrome, 5, 4);
|
|
rt = aarch64_regnum(env, rt);
|
|
env->exception.syndrome = deposit32(env->exception.syndrome,
|
|
5, 5, rt);
|
|
rt = extract32(env->exception.syndrome, 10, 4);
|
|
rt = aarch64_regnum(env, rt);
|
|
env->exception.syndrome = deposit32(env->exception.syndrome,
|
|
10, 5, rt);
|
|
break;
|
|
}
|
|
env->cp15.esr_el[new_el] = env->exception.syndrome;
|
|
break;
|
|
case EXCP_IRQ:
|
|
case EXCP_VIRQ:
|
|
case EXCP_NMI:
|
|
case EXCP_VINMI:
|
|
addr += 0x80;
|
|
break;
|
|
case EXCP_FIQ:
|
|
case EXCP_VFIQ:
|
|
case EXCP_VFNMI:
|
|
addr += 0x100;
|
|
break;
|
|
case EXCP_VSERR:
|
|
addr += 0x180;
|
|
/* Construct the SError syndrome from IDS and ISS fields. */
|
|
env->exception.syndrome = syn_serror(env->cp15.vsesr_el2 & 0x1ffffff);
|
|
env->cp15.esr_el[new_el] = env->exception.syndrome;
|
|
break;
|
|
default:
|
|
cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
|
|
}
|
|
|
|
if (is_a64(env)) {
|
|
old_mode = pstate_read(env);
|
|
aarch64_save_sp(env, arm_current_el(env));
|
|
env->elr_el[new_el] = env->pc;
|
|
|
|
if (cur_el == 1 && new_el == 1) {
|
|
uint64_t hcr = arm_hcr_el2_eff(env);
|
|
if ((hcr & (HCR_NV | HCR_NV1 | HCR_NV2)) == HCR_NV ||
|
|
(hcr & (HCR_NV | HCR_NV2)) == (HCR_NV | HCR_NV2)) {
|
|
/*
|
|
* FEAT_NV, FEAT_NV2 may need to report EL2 in the SPSR
|
|
* by setting M[3:2] to 0b10.
|
|
* If NV2 is disabled, change SPSR when NV,NV1 == 1,0 (I_ZJRNN)
|
|
* If NV2 is enabled, change SPSR when NV is 1 (I_DBTLM)
|
|
*/
|
|
old_mode = deposit32(old_mode, 2, 2, 2);
|
|
}
|
|
}
|
|
} else {
|
|
old_mode = cpsr_read_for_spsr_elx(env);
|
|
env->elr_el[new_el] = env->regs[15];
|
|
|
|
aarch64_sync_32_to_64(env);
|
|
|
|
env->condexec_bits = 0;
|
|
}
|
|
env->banked_spsr[aarch64_banked_spsr_index(new_el)] = old_mode;
|
|
|
|
qemu_log_mask(CPU_LOG_INT, "...with SPSR 0x%x\n", old_mode);
|
|
qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
|
|
env->elr_el[new_el]);
|
|
|
|
if (cpu_isar_feature(aa64_pan, cpu)) {
|
|
/* The value of PSTATE.PAN is normally preserved, except when ... */
|
|
new_mode |= old_mode & PSTATE_PAN;
|
|
switch (new_el) {
|
|
case 2:
|
|
/* ... the target is EL2 with HCR_EL2.{E2H,TGE} == '11' ... */
|
|
if ((arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE))
|
|
!= (HCR_E2H | HCR_TGE)) {
|
|
break;
|
|
}
|
|
/* fall through */
|
|
case 1:
|
|
/* ... the target is EL1 ... */
|
|
/* ... and SCTLR_ELx.SPAN == 0, then set to 1. */
|
|
if ((env->cp15.sctlr_el[new_el] & SCTLR_SPAN) == 0) {
|
|
new_mode |= PSTATE_PAN;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
if (cpu_isar_feature(aa64_mte, cpu)) {
|
|
new_mode |= PSTATE_TCO;
|
|
}
|
|
|
|
if (cpu_isar_feature(aa64_ssbs, cpu)) {
|
|
if (env->cp15.sctlr_el[new_el] & SCTLR_DSSBS_64) {
|
|
new_mode |= PSTATE_SSBS;
|
|
} else {
|
|
new_mode &= ~PSTATE_SSBS;
|
|
}
|
|
}
|
|
|
|
if (cpu_isar_feature(aa64_nmi, cpu)) {
|
|
if (!(env->cp15.sctlr_el[new_el] & SCTLR_SPINTMASK)) {
|
|
new_mode |= PSTATE_ALLINT;
|
|
} else {
|
|
new_mode &= ~PSTATE_ALLINT;
|
|
}
|
|
}
|
|
|
|
pstate_write(env, PSTATE_DAIF | new_mode);
|
|
env->aarch64 = true;
|
|
aarch64_restore_sp(env, new_el);
|
|
|
|
if (tcg_enabled()) {
|
|
helper_rebuild_hflags_a64(env, new_el);
|
|
}
|
|
|
|
env->pc = addr;
|
|
|
|
qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
|
|
new_el, env->pc, pstate_read(env));
|
|
}
|
|
|
|
/*
|
|
* Do semihosting call and set the appropriate return value. All the
|
|
* permission and validity checks have been done at translate time.
|
|
*
|
|
* We only see semihosting exceptions in TCG only as they are not
|
|
* trapped to the hypervisor in KVM.
|
|
*/
|
|
#ifdef CONFIG_TCG
|
|
static void tcg_handle_semihosting(CPUState *cs)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
CPUARMState *env = &cpu->env;
|
|
|
|
if (is_a64(env)) {
|
|
qemu_log_mask(CPU_LOG_INT,
|
|
"...handling as semihosting call 0x%" PRIx64 "\n",
|
|
env->xregs[0]);
|
|
do_common_semihosting(cs);
|
|
env->pc += 4;
|
|
} else {
|
|
qemu_log_mask(CPU_LOG_INT,
|
|
"...handling as semihosting call 0x%x\n",
|
|
env->regs[0]);
|
|
do_common_semihosting(cs);
|
|
env->regs[15] += env->thumb ? 2 : 4;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Handle a CPU exception for A and R profile CPUs.
|
|
* Do any appropriate logging, handle PSCI calls, and then hand off
|
|
* to the AArch64-entry or AArch32-entry function depending on the
|
|
* target exception level's register width.
|
|
*
|
|
* Note: this is used for both TCG (as the do_interrupt tcg op),
|
|
* and KVM to re-inject guest debug exceptions, and to
|
|
* inject a Synchronous-External-Abort.
|
|
*/
|
|
void arm_cpu_do_interrupt(CPUState *cs)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
CPUARMState *env = &cpu->env;
|
|
unsigned int new_el = env->exception.target_el;
|
|
|
|
assert(!arm_feature(env, ARM_FEATURE_M));
|
|
|
|
arm_log_exception(cs);
|
|
qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
|
|
new_el);
|
|
if (qemu_loglevel_mask(CPU_LOG_INT)
|
|
&& !excp_is_internal(cs->exception_index)) {
|
|
qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
|
|
syn_get_ec(env->exception.syndrome),
|
|
env->exception.syndrome);
|
|
}
|
|
|
|
if (tcg_enabled() && arm_is_psci_call(cpu, cs->exception_index)) {
|
|
arm_handle_psci_call(cpu);
|
|
qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Semihosting semantics depend on the register width of the code
|
|
* that caused the exception, not the target exception level, so
|
|
* must be handled here.
|
|
*/
|
|
#ifdef CONFIG_TCG
|
|
if (cs->exception_index == EXCP_SEMIHOST) {
|
|
tcg_handle_semihosting(cs);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Hooks may change global state so BQL should be held, also the
|
|
* BQL needs to be held for any modification of
|
|
* cs->interrupt_request.
|
|
*/
|
|
g_assert(bql_locked());
|
|
|
|
arm_call_pre_el_change_hook(cpu);
|
|
|
|
assert(!excp_is_internal(cs->exception_index));
|
|
if (arm_el_is_aa64(env, new_el)) {
|
|
arm_cpu_do_interrupt_aarch64(cs);
|
|
} else {
|
|
arm_cpu_do_interrupt_aarch32(cs);
|
|
}
|
|
|
|
arm_call_el_change_hook(cpu);
|
|
|
|
if (!kvm_enabled()) {
|
|
cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
|
|
}
|
|
}
|
|
#endif /* !CONFIG_USER_ONLY */
|
|
|
|
uint64_t arm_sctlr(CPUARMState *env, int el)
|
|
{
|
|
/* Only EL0 needs to be adjusted for EL1&0 or EL2&0. */
|
|
if (el == 0) {
|
|
ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, 0);
|
|
el = mmu_idx == ARMMMUIdx_E20_0 ? 2 : 1;
|
|
}
|
|
return env->cp15.sctlr_el[el];
|
|
}
|
|
|
|
int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx)
|
|
{
|
|
if (regime_has_2_ranges(mmu_idx)) {
|
|
return extract64(tcr, 37, 2);
|
|
} else if (regime_is_stage2(mmu_idx)) {
|
|
return 0; /* VTCR_EL2 */
|
|
} else {
|
|
/* Replicate the single TBI bit so we always have 2 bits. */
|
|
return extract32(tcr, 20, 1) * 3;
|
|
}
|
|
}
|
|
|
|
int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx)
|
|
{
|
|
if (regime_has_2_ranges(mmu_idx)) {
|
|
return extract64(tcr, 51, 2);
|
|
} else if (regime_is_stage2(mmu_idx)) {
|
|
return 0; /* VTCR_EL2 */
|
|
} else {
|
|
/* Replicate the single TBID bit so we always have 2 bits. */
|
|
return extract32(tcr, 29, 1) * 3;
|
|
}
|
|
}
|
|
|
|
int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx)
|
|
{
|
|
if (regime_has_2_ranges(mmu_idx)) {
|
|
return extract64(tcr, 57, 2);
|
|
} else {
|
|
/* Replicate the single TCMA bit so we always have 2 bits. */
|
|
return extract32(tcr, 30, 1) * 3;
|
|
}
|
|
}
|
|
|
|
static ARMGranuleSize tg0_to_gran_size(int tg)
|
|
{
|
|
switch (tg) {
|
|
case 0:
|
|
return Gran4K;
|
|
case 1:
|
|
return Gran64K;
|
|
case 2:
|
|
return Gran16K;
|
|
default:
|
|
return GranInvalid;
|
|
}
|
|
}
|
|
|
|
static ARMGranuleSize tg1_to_gran_size(int tg)
|
|
{
|
|
switch (tg) {
|
|
case 1:
|
|
return Gran16K;
|
|
case 2:
|
|
return Gran4K;
|
|
case 3:
|
|
return Gran64K;
|
|
default:
|
|
return GranInvalid;
|
|
}
|
|
}
|
|
|
|
static inline bool have4k(ARMCPU *cpu, bool stage2)
|
|
{
|
|
return stage2 ? cpu_isar_feature(aa64_tgran4_2, cpu)
|
|
: cpu_isar_feature(aa64_tgran4, cpu);
|
|
}
|
|
|
|
static inline bool have16k(ARMCPU *cpu, bool stage2)
|
|
{
|
|
return stage2 ? cpu_isar_feature(aa64_tgran16_2, cpu)
|
|
: cpu_isar_feature(aa64_tgran16, cpu);
|
|
}
|
|
|
|
static inline bool have64k(ARMCPU *cpu, bool stage2)
|
|
{
|
|
return stage2 ? cpu_isar_feature(aa64_tgran64_2, cpu)
|
|
: cpu_isar_feature(aa64_tgran64, cpu);
|
|
}
|
|
|
|
static ARMGranuleSize sanitize_gran_size(ARMCPU *cpu, ARMGranuleSize gran,
|
|
bool stage2)
|
|
{
|
|
switch (gran) {
|
|
case Gran4K:
|
|
if (have4k(cpu, stage2)) {
|
|
return gran;
|
|
}
|
|
break;
|
|
case Gran16K:
|
|
if (have16k(cpu, stage2)) {
|
|
return gran;
|
|
}
|
|
break;
|
|
case Gran64K:
|
|
if (have64k(cpu, stage2)) {
|
|
return gran;
|
|
}
|
|
break;
|
|
case GranInvalid:
|
|
break;
|
|
}
|
|
/*
|
|
* If the guest selects a granule size that isn't implemented,
|
|
* the architecture requires that we behave as if it selected one
|
|
* that is (with an IMPDEF choice of which one to pick). We choose
|
|
* to implement the smallest supported granule size.
|
|
*/
|
|
if (have4k(cpu, stage2)) {
|
|
return Gran4K;
|
|
}
|
|
if (have16k(cpu, stage2)) {
|
|
return Gran16K;
|
|
}
|
|
assert(have64k(cpu, stage2));
|
|
return Gran64K;
|
|
}
|
|
|
|
ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
|
|
ARMMMUIdx mmu_idx, bool data,
|
|
bool el1_is_aa32)
|
|
{
|
|
uint64_t tcr = regime_tcr(env, mmu_idx);
|
|
bool epd, hpd, tsz_oob, ds, ha, hd;
|
|
int select, tsz, tbi, max_tsz, min_tsz, ps, sh;
|
|
ARMGranuleSize gran;
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
bool stage2 = regime_is_stage2(mmu_idx);
|
|
|
|
if (!regime_has_2_ranges(mmu_idx)) {
|
|
select = 0;
|
|
tsz = extract32(tcr, 0, 6);
|
|
gran = tg0_to_gran_size(extract32(tcr, 14, 2));
|
|
if (stage2) {
|
|
/* VTCR_EL2 */
|
|
hpd = false;
|
|
} else {
|
|
hpd = extract32(tcr, 24, 1);
|
|
}
|
|
epd = false;
|
|
sh = extract32(tcr, 12, 2);
|
|
ps = extract32(tcr, 16, 3);
|
|
ha = extract32(tcr, 21, 1) && cpu_isar_feature(aa64_hafs, cpu);
|
|
hd = extract32(tcr, 22, 1) && cpu_isar_feature(aa64_hdbs, cpu);
|
|
ds = extract64(tcr, 32, 1);
|
|
} else {
|
|
bool e0pd;
|
|
|
|
/*
|
|
* Bit 55 is always between the two regions, and is canonical for
|
|
* determining if address tagging is enabled.
|
|
*/
|
|
select = extract64(va, 55, 1);
|
|
if (!select) {
|
|
tsz = extract32(tcr, 0, 6);
|
|
gran = tg0_to_gran_size(extract32(tcr, 14, 2));
|
|
epd = extract32(tcr, 7, 1);
|
|
sh = extract32(tcr, 12, 2);
|
|
hpd = extract64(tcr, 41, 1);
|
|
e0pd = extract64(tcr, 55, 1);
|
|
} else {
|
|
tsz = extract32(tcr, 16, 6);
|
|
gran = tg1_to_gran_size(extract32(tcr, 30, 2));
|
|
epd = extract32(tcr, 23, 1);
|
|
sh = extract32(tcr, 28, 2);
|
|
hpd = extract64(tcr, 42, 1);
|
|
e0pd = extract64(tcr, 56, 1);
|
|
}
|
|
ps = extract64(tcr, 32, 3);
|
|
ha = extract64(tcr, 39, 1) && cpu_isar_feature(aa64_hafs, cpu);
|
|
hd = extract64(tcr, 40, 1) && cpu_isar_feature(aa64_hdbs, cpu);
|
|
ds = extract64(tcr, 59, 1);
|
|
|
|
if (e0pd && cpu_isar_feature(aa64_e0pd, cpu) &&
|
|
regime_is_user(env, mmu_idx)) {
|
|
epd = true;
|
|
}
|
|
}
|
|
|
|
gran = sanitize_gran_size(cpu, gran, stage2);
|
|
|
|
if (cpu_isar_feature(aa64_st, cpu)) {
|
|
max_tsz = 48 - (gran == Gran64K);
|
|
} else {
|
|
max_tsz = 39;
|
|
}
|
|
|
|
/*
|
|
* DS is RES0 unless FEAT_LPA2 is supported for the given page size;
|
|
* adjust the effective value of DS, as documented.
|
|
*/
|
|
min_tsz = 16;
|
|
if (gran == Gran64K) {
|
|
if (cpu_isar_feature(aa64_lva, cpu)) {
|
|
min_tsz = 12;
|
|
}
|
|
ds = false;
|
|
} else if (ds) {
|
|
if (regime_is_stage2(mmu_idx)) {
|
|
if (gran == Gran16K) {
|
|
ds = cpu_isar_feature(aa64_tgran16_2_lpa2, cpu);
|
|
} else {
|
|
ds = cpu_isar_feature(aa64_tgran4_2_lpa2, cpu);
|
|
}
|
|
} else {
|
|
if (gran == Gran16K) {
|
|
ds = cpu_isar_feature(aa64_tgran16_lpa2, cpu);
|
|
} else {
|
|
ds = cpu_isar_feature(aa64_tgran4_lpa2, cpu);
|
|
}
|
|
}
|
|
if (ds) {
|
|
min_tsz = 12;
|
|
}
|
|
}
|
|
|
|
if (stage2 && el1_is_aa32) {
|
|
/*
|
|
* For AArch32 EL1 the min txsz (and thus max IPA size) requirements
|
|
* are loosened: a configured IPA of 40 bits is permitted even if
|
|
* the implemented PA is less than that (and so a 40 bit IPA would
|
|
* fault for an AArch64 EL1). See R_DTLMN.
|
|
*/
|
|
min_tsz = MIN(min_tsz, 24);
|
|
}
|
|
|
|
if (tsz > max_tsz) {
|
|
tsz = max_tsz;
|
|
tsz_oob = true;
|
|
} else if (tsz < min_tsz) {
|
|
tsz = min_tsz;
|
|
tsz_oob = true;
|
|
} else {
|
|
tsz_oob = false;
|
|
}
|
|
|
|
/* Present TBI as a composite with TBID. */
|
|
tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
|
|
if (!data) {
|
|
tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
|
|
}
|
|
tbi = (tbi >> select) & 1;
|
|
|
|
return (ARMVAParameters) {
|
|
.tsz = tsz,
|
|
.ps = ps,
|
|
.sh = sh,
|
|
.select = select,
|
|
.tbi = tbi,
|
|
.epd = epd,
|
|
.hpd = hpd,
|
|
.tsz_oob = tsz_oob,
|
|
.ds = ds,
|
|
.ha = ha,
|
|
.hd = ha && hd,
|
|
.gran = gran,
|
|
};
|
|
}
|
|
|
|
/*
|
|
* Note that signed overflow is undefined in C. The following routines are
|
|
* careful to use unsigned types where modulo arithmetic is required.
|
|
* Failure to do so _will_ break on newer gcc.
|
|
*/
|
|
|
|
/* Signed saturating arithmetic. */
|
|
|
|
/* Perform 16-bit signed saturating addition. */
|
|
static inline uint16_t add16_sat(uint16_t a, uint16_t b)
|
|
{
|
|
uint16_t res;
|
|
|
|
res = a + b;
|
|
if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
|
|
if (a & 0x8000) {
|
|
res = 0x8000;
|
|
} else {
|
|
res = 0x7fff;
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/* Perform 8-bit signed saturating addition. */
|
|
static inline uint8_t add8_sat(uint8_t a, uint8_t b)
|
|
{
|
|
uint8_t res;
|
|
|
|
res = a + b;
|
|
if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
|
|
if (a & 0x80) {
|
|
res = 0x80;
|
|
} else {
|
|
res = 0x7f;
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/* Perform 16-bit signed saturating subtraction. */
|
|
static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
|
|
{
|
|
uint16_t res;
|
|
|
|
res = a - b;
|
|
if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
|
|
if (a & 0x8000) {
|
|
res = 0x8000;
|
|
} else {
|
|
res = 0x7fff;
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/* Perform 8-bit signed saturating subtraction. */
|
|
static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
|
|
{
|
|
uint8_t res;
|
|
|
|
res = a - b;
|
|
if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
|
|
if (a & 0x80) {
|
|
res = 0x80;
|
|
} else {
|
|
res = 0x7f;
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
|
|
#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
|
|
#define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
|
|
#define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
|
|
#define PFX q
|
|
|
|
#include "op_addsub.h"
|
|
|
|
/* Unsigned saturating arithmetic. */
|
|
static inline uint16_t add16_usat(uint16_t a, uint16_t b)
|
|
{
|
|
uint16_t res;
|
|
res = a + b;
|
|
if (res < a) {
|
|
res = 0xffff;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
|
|
{
|
|
if (a > b) {
|
|
return a - b;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static inline uint8_t add8_usat(uint8_t a, uint8_t b)
|
|
{
|
|
uint8_t res;
|
|
res = a + b;
|
|
if (res < a) {
|
|
res = 0xff;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
|
|
{
|
|
if (a > b) {
|
|
return a - b;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
|
|
#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
|
|
#define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
|
|
#define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
|
|
#define PFX uq
|
|
|
|
#include "op_addsub.h"
|
|
|
|
/* Signed modulo arithmetic. */
|
|
#define SARITH16(a, b, n, op) do { \
|
|
int32_t sum; \
|
|
sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
|
|
RESULT(sum, n, 16); \
|
|
if (sum >= 0) \
|
|
ge |= 3 << (n * 2); \
|
|
} while (0)
|
|
|
|
#define SARITH8(a, b, n, op) do { \
|
|
int32_t sum; \
|
|
sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
|
|
RESULT(sum, n, 8); \
|
|
if (sum >= 0) \
|
|
ge |= 1 << n; \
|
|
} while (0)
|
|
|
|
|
|
#define ADD16(a, b, n) SARITH16(a, b, n, +)
|
|
#define SUB16(a, b, n) SARITH16(a, b, n, -)
|
|
#define ADD8(a, b, n) SARITH8(a, b, n, +)
|
|
#define SUB8(a, b, n) SARITH8(a, b, n, -)
|
|
#define PFX s
|
|
#define ARITH_GE
|
|
|
|
#include "op_addsub.h"
|
|
|
|
/* Unsigned modulo arithmetic. */
|
|
#define ADD16(a, b, n) do { \
|
|
uint32_t sum; \
|
|
sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
|
|
RESULT(sum, n, 16); \
|
|
if ((sum >> 16) == 1) \
|
|
ge |= 3 << (n * 2); \
|
|
} while (0)
|
|
|
|
#define ADD8(a, b, n) do { \
|
|
uint32_t sum; \
|
|
sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
|
|
RESULT(sum, n, 8); \
|
|
if ((sum >> 8) == 1) \
|
|
ge |= 1 << n; \
|
|
} while (0)
|
|
|
|
#define SUB16(a, b, n) do { \
|
|
uint32_t sum; \
|
|
sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
|
|
RESULT(sum, n, 16); \
|
|
if ((sum >> 16) == 0) \
|
|
ge |= 3 << (n * 2); \
|
|
} while (0)
|
|
|
|
#define SUB8(a, b, n) do { \
|
|
uint32_t sum; \
|
|
sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
|
|
RESULT(sum, n, 8); \
|
|
if ((sum >> 8) == 0) \
|
|
ge |= 1 << n; \
|
|
} while (0)
|
|
|
|
#define PFX u
|
|
#define ARITH_GE
|
|
|
|
#include "op_addsub.h"
|
|
|
|
/* Halved signed arithmetic. */
|
|
#define ADD16(a, b, n) \
|
|
RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
|
|
#define SUB16(a, b, n) \
|
|
RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
|
|
#define ADD8(a, b, n) \
|
|
RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
|
|
#define SUB8(a, b, n) \
|
|
RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
|
|
#define PFX sh
|
|
|
|
#include "op_addsub.h"
|
|
|
|
/* Halved unsigned arithmetic. */
|
|
#define ADD16(a, b, n) \
|
|
RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
|
|
#define SUB16(a, b, n) \
|
|
RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
|
|
#define ADD8(a, b, n) \
|
|
RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
|
|
#define SUB8(a, b, n) \
|
|
RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
|
|
#define PFX uh
|
|
|
|
#include "op_addsub.h"
|
|
|
|
static inline uint8_t do_usad(uint8_t a, uint8_t b)
|
|
{
|
|
if (a > b) {
|
|
return a - b;
|
|
} else {
|
|
return b - a;
|
|
}
|
|
}
|
|
|
|
/* Unsigned sum of absolute byte differences. */
|
|
uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
|
|
{
|
|
uint32_t sum;
|
|
sum = do_usad(a, b);
|
|
sum += do_usad(a >> 8, b >> 8);
|
|
sum += do_usad(a >> 16, b >> 16);
|
|
sum += do_usad(a >> 24, b >> 24);
|
|
return sum;
|
|
}
|
|
|
|
/* For ARMv6 SEL instruction. */
|
|
uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
|
|
{
|
|
uint32_t mask;
|
|
|
|
mask = 0;
|
|
if (flags & 1) {
|
|
mask |= 0xff;
|
|
}
|
|
if (flags & 2) {
|
|
mask |= 0xff00;
|
|
}
|
|
if (flags & 4) {
|
|
mask |= 0xff0000;
|
|
}
|
|
if (flags & 8) {
|
|
mask |= 0xff000000;
|
|
}
|
|
return (a & mask) | (b & ~mask);
|
|
}
|
|
|
|
/*
|
|
* CRC helpers.
|
|
* The upper bytes of val (above the number specified by 'bytes') must have
|
|
* been zeroed out by the caller.
|
|
*/
|
|
uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
|
|
{
|
|
uint8_t buf[4];
|
|
|
|
stl_le_p(buf, val);
|
|
|
|
/* zlib crc32 converts the accumulator and output to one's complement. */
|
|
return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
|
|
}
|
|
|
|
uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
|
|
{
|
|
uint8_t buf[4];
|
|
|
|
stl_le_p(buf, val);
|
|
|
|
/* Linux crc32c converts the output to one's complement. */
|
|
return crc32c(acc, buf, bytes) ^ 0xffffffff;
|
|
}
|
|
|
|
/*
|
|
* Return the exception level to which FP-disabled exceptions should
|
|
* be taken, or 0 if FP is enabled.
|
|
*/
|
|
int fp_exception_el(CPUARMState *env, int cur_el)
|
|
{
|
|
#ifndef CONFIG_USER_ONLY
|
|
uint64_t hcr_el2;
|
|
|
|
/*
|
|
* CPACR and the CPTR registers don't exist before v6, so FP is
|
|
* always accessible
|
|
*/
|
|
if (!arm_feature(env, ARM_FEATURE_V6)) {
|
|
return 0;
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_M)) {
|
|
/* CPACR can cause a NOCP UsageFault taken to current security state */
|
|
if (!v7m_cpacr_pass(env, env->v7m.secure, cur_el != 0)) {
|
|
return 1;
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_M_SECURITY) && !env->v7m.secure) {
|
|
if (!extract32(env->v7m.nsacr, 10, 1)) {
|
|
/* FP insns cause a NOCP UsageFault taken to Secure */
|
|
return 3;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
hcr_el2 = arm_hcr_el2_eff(env);
|
|
|
|
/*
|
|
* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
|
|
* 0, 2 : trap EL0 and EL1/PL1 accesses
|
|
* 1 : trap only EL0 accesses
|
|
* 3 : trap no accesses
|
|
* This register is ignored if E2H+TGE are both set.
|
|
*/
|
|
if ((hcr_el2 & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
|
|
int fpen = FIELD_EX64(env->cp15.cpacr_el1, CPACR_EL1, FPEN);
|
|
|
|
switch (fpen) {
|
|
case 1:
|
|
if (cur_el != 0) {
|
|
break;
|
|
}
|
|
/* fall through */
|
|
case 0:
|
|
case 2:
|
|
/* Trap from Secure PL0 or PL1 to Secure PL1. */
|
|
if (!arm_el_is_aa64(env, 3)
|
|
&& (cur_el == 3 || arm_is_secure_below_el3(env))) {
|
|
return 3;
|
|
}
|
|
if (cur_el <= 1) {
|
|
return 1;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The NSACR allows A-profile AArch32 EL3 and M-profile secure mode
|
|
* to control non-secure access to the FPU. It doesn't have any
|
|
* effect if EL3 is AArch64 or if EL3 doesn't exist at all.
|
|
*/
|
|
if ((arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3) &&
|
|
cur_el <= 2 && !arm_is_secure_below_el3(env))) {
|
|
if (!extract32(env->cp15.nsacr, 10, 1)) {
|
|
/* FP insns act as UNDEF */
|
|
return cur_el == 2 ? 2 : 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* CPTR_EL2 is present in v7VE or v8, and changes format
|
|
* with HCR_EL2.E2H (regardless of TGE).
|
|
*/
|
|
if (cur_el <= 2) {
|
|
if (hcr_el2 & HCR_E2H) {
|
|
switch (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, FPEN)) {
|
|
case 1:
|
|
if (cur_el != 0 || !(hcr_el2 & HCR_TGE)) {
|
|
break;
|
|
}
|
|
/* fall through */
|
|
case 0:
|
|
case 2:
|
|
return 2;
|
|
}
|
|
} else if (arm_is_el2_enabled(env)) {
|
|
if (FIELD_EX64(env->cp15.cptr_el[2], CPTR_EL2, TFP)) {
|
|
return 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* CPTR_EL3 : present in v8 */
|
|
if (FIELD_EX64(env->cp15.cptr_el[3], CPTR_EL3, TFP)) {
|
|
/* Trap all FP ops to EL3 */
|
|
return 3;
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/* Return the exception level we're running at if this is our mmu_idx */
|
|
int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
|
|
{
|
|
if (mmu_idx & ARM_MMU_IDX_M) {
|
|
return mmu_idx & ARM_MMU_IDX_M_PRIV;
|
|
}
|
|
|
|
switch (mmu_idx) {
|
|
case ARMMMUIdx_E10_0:
|
|
case ARMMMUIdx_E20_0:
|
|
return 0;
|
|
case ARMMMUIdx_E10_1:
|
|
case ARMMMUIdx_E10_1_PAN:
|
|
return 1;
|
|
case ARMMMUIdx_E2:
|
|
case ARMMMUIdx_E20_2:
|
|
case ARMMMUIdx_E20_2_PAN:
|
|
return 2;
|
|
case ARMMMUIdx_E3:
|
|
return 3;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
#ifndef CONFIG_TCG
|
|
ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate)
|
|
{
|
|
g_assert_not_reached();
|
|
}
|
|
#endif
|
|
|
|
ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el)
|
|
{
|
|
ARMMMUIdx idx;
|
|
uint64_t hcr;
|
|
|
|
if (arm_feature(env, ARM_FEATURE_M)) {
|
|
return arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
|
|
}
|
|
|
|
/* See ARM pseudo-function ELIsInHost. */
|
|
switch (el) {
|
|
case 0:
|
|
hcr = arm_hcr_el2_eff(env);
|
|
if ((hcr & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
|
|
idx = ARMMMUIdx_E20_0;
|
|
} else {
|
|
idx = ARMMMUIdx_E10_0;
|
|
}
|
|
break;
|
|
case 1:
|
|
if (arm_pan_enabled(env)) {
|
|
idx = ARMMMUIdx_E10_1_PAN;
|
|
} else {
|
|
idx = ARMMMUIdx_E10_1;
|
|
}
|
|
break;
|
|
case 2:
|
|
/* Note that TGE does not apply at EL2. */
|
|
if (arm_hcr_el2_eff(env) & HCR_E2H) {
|
|
if (arm_pan_enabled(env)) {
|
|
idx = ARMMMUIdx_E20_2_PAN;
|
|
} else {
|
|
idx = ARMMMUIdx_E20_2;
|
|
}
|
|
} else {
|
|
idx = ARMMMUIdx_E2;
|
|
}
|
|
break;
|
|
case 3:
|
|
return ARMMMUIdx_E3;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
return idx;
|
|
}
|
|
|
|
ARMMMUIdx arm_mmu_idx(CPUARMState *env)
|
|
{
|
|
return arm_mmu_idx_el(env, arm_current_el(env));
|
|
}
|
|
|
|
static bool mve_no_pred(CPUARMState *env)
|
|
{
|
|
/*
|
|
* Return true if there is definitely no predication of MVE
|
|
* instructions by VPR or LTPSIZE. (Returning false even if there
|
|
* isn't any predication is OK; generated code will just be
|
|
* a little worse.)
|
|
* If the CPU does not implement MVE then this TB flag is always 0.
|
|
*
|
|
* NOTE: if you change this logic, the "recalculate s->mve_no_pred"
|
|
* logic in gen_update_fp_context() needs to be updated to match.
|
|
*
|
|
* We do not include the effect of the ECI bits here -- they are
|
|
* tracked in other TB flags. This simplifies the logic for
|
|
* "when did we emit code that changes the MVE_NO_PRED TB flag
|
|
* and thus need to end the TB?".
|
|
*/
|
|
if (cpu_isar_feature(aa32_mve, env_archcpu(env))) {
|
|
return false;
|
|
}
|
|
if (env->v7m.vpr) {
|
|
return false;
|
|
}
|
|
if (env->v7m.ltpsize < 4) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void cpu_get_tb_cpu_state(CPUARMState *env, vaddr *pc,
|
|
uint64_t *cs_base, uint32_t *pflags)
|
|
{
|
|
CPUARMTBFlags flags;
|
|
|
|
assert_hflags_rebuild_correctly(env);
|
|
flags = env->hflags;
|
|
|
|
if (EX_TBFLAG_ANY(flags, AARCH64_STATE)) {
|
|
*pc = env->pc;
|
|
if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
|
|
DP_TBFLAG_A64(flags, BTYPE, env->btype);
|
|
}
|
|
} else {
|
|
*pc = env->regs[15];
|
|
|
|
if (arm_feature(env, ARM_FEATURE_M)) {
|
|
if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
|
|
FIELD_EX32(env->v7m.fpccr[M_REG_S], V7M_FPCCR, S)
|
|
!= env->v7m.secure) {
|
|
DP_TBFLAG_M32(flags, FPCCR_S_WRONG, 1);
|
|
}
|
|
|
|
if ((env->v7m.fpccr[env->v7m.secure] & R_V7M_FPCCR_ASPEN_MASK) &&
|
|
(!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_FPCA_MASK) ||
|
|
(env->v7m.secure &&
|
|
!(env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK)))) {
|
|
/*
|
|
* ASPEN is set, but FPCA/SFPA indicate that there is no
|
|
* active FP context; we must create a new FP context before
|
|
* executing any FP insn.
|
|
*/
|
|
DP_TBFLAG_M32(flags, NEW_FP_CTXT_NEEDED, 1);
|
|
}
|
|
|
|
bool is_secure = env->v7m.fpccr[M_REG_S] & R_V7M_FPCCR_S_MASK;
|
|
if (env->v7m.fpccr[is_secure] & R_V7M_FPCCR_LSPACT_MASK) {
|
|
DP_TBFLAG_M32(flags, LSPACT, 1);
|
|
}
|
|
|
|
if (mve_no_pred(env)) {
|
|
DP_TBFLAG_M32(flags, MVE_NO_PRED, 1);
|
|
}
|
|
} else {
|
|
/*
|
|
* Note that XSCALE_CPAR shares bits with VECSTRIDE.
|
|
* Note that VECLEN+VECSTRIDE are RES0 for M-profile.
|
|
*/
|
|
if (arm_feature(env, ARM_FEATURE_XSCALE)) {
|
|
DP_TBFLAG_A32(flags, XSCALE_CPAR, env->cp15.c15_cpar);
|
|
} else {
|
|
DP_TBFLAG_A32(flags, VECLEN, env->vfp.vec_len);
|
|
DP_TBFLAG_A32(flags, VECSTRIDE, env->vfp.vec_stride);
|
|
}
|
|
if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)) {
|
|
DP_TBFLAG_A32(flags, VFPEN, 1);
|
|
}
|
|
}
|
|
|
|
DP_TBFLAG_AM32(flags, THUMB, env->thumb);
|
|
DP_TBFLAG_AM32(flags, CONDEXEC, env->condexec_bits);
|
|
}
|
|
|
|
/*
|
|
* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
|
|
* states defined in the ARM ARM for software singlestep:
|
|
* SS_ACTIVE PSTATE.SS State
|
|
* 0 x Inactive (the TB flag for SS is always 0)
|
|
* 1 0 Active-pending
|
|
* 1 1 Active-not-pending
|
|
* SS_ACTIVE is set in hflags; PSTATE__SS is computed every TB.
|
|
*/
|
|
if (EX_TBFLAG_ANY(flags, SS_ACTIVE) && (env->pstate & PSTATE_SS)) {
|
|
DP_TBFLAG_ANY(flags, PSTATE__SS, 1);
|
|
}
|
|
|
|
*pflags = flags.flags;
|
|
*cs_base = flags.flags2;
|
|
}
|
|
|
|
#ifdef TARGET_AARCH64
|
|
/*
|
|
* The manual says that when SVE is enabled and VQ is widened the
|
|
* implementation is allowed to zero the previously inaccessible
|
|
* portion of the registers. The corollary to that is that when
|
|
* SVE is enabled and VQ is narrowed we are also allowed to zero
|
|
* the now inaccessible portion of the registers.
|
|
*
|
|
* The intent of this is that no predicate bit beyond VQ is ever set.
|
|
* Which means that some operations on predicate registers themselves
|
|
* may operate on full uint64_t or even unrolled across the maximum
|
|
* uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
|
|
* may well be cheaper than conditionals to restrict the operation
|
|
* to the relevant portion of a uint16_t[16].
|
|
*/
|
|
void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq)
|
|
{
|
|
int i, j;
|
|
uint64_t pmask;
|
|
|
|
assert(vq >= 1 && vq <= ARM_MAX_VQ);
|
|
assert(vq <= env_archcpu(env)->sve_max_vq);
|
|
|
|
/* Zap the high bits of the zregs. */
|
|
for (i = 0; i < 32; i++) {
|
|
memset(&env->vfp.zregs[i].d[2 * vq], 0, 16 * (ARM_MAX_VQ - vq));
|
|
}
|
|
|
|
/* Zap the high bits of the pregs and ffr. */
|
|
pmask = 0;
|
|
if (vq & 3) {
|
|
pmask = ~(-1ULL << (16 * (vq & 3)));
|
|
}
|
|
for (j = vq / 4; j < ARM_MAX_VQ / 4; j++) {
|
|
for (i = 0; i < 17; ++i) {
|
|
env->vfp.pregs[i].p[j] &= pmask;
|
|
}
|
|
pmask = 0;
|
|
}
|
|
}
|
|
|
|
static uint32_t sve_vqm1_for_el_sm_ena(CPUARMState *env, int el, bool sm)
|
|
{
|
|
int exc_el;
|
|
|
|
if (sm) {
|
|
exc_el = sme_exception_el(env, el);
|
|
} else {
|
|
exc_el = sve_exception_el(env, el);
|
|
}
|
|
if (exc_el) {
|
|
return 0; /* disabled */
|
|
}
|
|
return sve_vqm1_for_el_sm(env, el, sm);
|
|
}
|
|
|
|
/*
|
|
* Notice a change in SVE vector size when changing EL.
|
|
*/
|
|
void aarch64_sve_change_el(CPUARMState *env, int old_el,
|
|
int new_el, bool el0_a64)
|
|
{
|
|
ARMCPU *cpu = env_archcpu(env);
|
|
int old_len, new_len;
|
|
bool old_a64, new_a64, sm;
|
|
|
|
/* Nothing to do if no SVE. */
|
|
if (!cpu_isar_feature(aa64_sve, cpu)) {
|
|
return;
|
|
}
|
|
|
|
/* Nothing to do if FP is disabled in either EL. */
|
|
if (fp_exception_el(env, old_el) || fp_exception_el(env, new_el)) {
|
|
return;
|
|
}
|
|
|
|
old_a64 = old_el ? arm_el_is_aa64(env, old_el) : el0_a64;
|
|
new_a64 = new_el ? arm_el_is_aa64(env, new_el) : el0_a64;
|
|
|
|
/*
|
|
* Both AArch64.TakeException and AArch64.ExceptionReturn
|
|
* invoke ResetSVEState when taking an exception from, or
|
|
* returning to, AArch32 state when PSTATE.SM is enabled.
|
|
*/
|
|
sm = FIELD_EX64(env->svcr, SVCR, SM);
|
|
if (old_a64 != new_a64 && sm) {
|
|
arm_reset_sve_state(env);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
|
|
* at ELx, or not available because the EL is in AArch32 state, then
|
|
* for all purposes other than a direct read, the ZCR_ELx.LEN field
|
|
* has an effective value of 0".
|
|
*
|
|
* Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
|
|
* If we ignore aa32 state, we would fail to see the vq4->vq0 transition
|
|
* from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
|
|
* we already have the correct register contents when encountering the
|
|
* vq0->vq0 transition between EL0->EL1.
|
|
*/
|
|
old_len = new_len = 0;
|
|
if (old_a64) {
|
|
old_len = sve_vqm1_for_el_sm_ena(env, old_el, sm);
|
|
}
|
|
if (new_a64) {
|
|
new_len = sve_vqm1_for_el_sm_ena(env, new_el, sm);
|
|
}
|
|
|
|
/* When changing vector length, clear inaccessible state. */
|
|
if (new_len < old_len) {
|
|
aarch64_sve_narrow_vq(env, new_len + 1);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
ARMSecuritySpace arm_security_space(CPUARMState *env)
|
|
{
|
|
if (arm_feature(env, ARM_FEATURE_M)) {
|
|
return arm_secure_to_space(env->v7m.secure);
|
|
}
|
|
|
|
/*
|
|
* If EL3 is not supported then the secure state is implementation
|
|
* defined, in which case QEMU defaults to non-secure.
|
|
*/
|
|
if (!arm_feature(env, ARM_FEATURE_EL3)) {
|
|
return ARMSS_NonSecure;
|
|
}
|
|
|
|
/* Check for AArch64 EL3 or AArch32 Mon. */
|
|
if (is_a64(env)) {
|
|
if (extract32(env->pstate, 2, 2) == 3) {
|
|
if (cpu_isar_feature(aa64_rme, env_archcpu(env))) {
|
|
return ARMSS_Root;
|
|
} else {
|
|
return ARMSS_Secure;
|
|
}
|
|
}
|
|
} else {
|
|
if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
|
|
return ARMSS_Secure;
|
|
}
|
|
}
|
|
|
|
return arm_security_space_below_el3(env);
|
|
}
|
|
|
|
ARMSecuritySpace arm_security_space_below_el3(CPUARMState *env)
|
|
{
|
|
assert(!arm_feature(env, ARM_FEATURE_M));
|
|
|
|
/*
|
|
* If EL3 is not supported then the secure state is implementation
|
|
* defined, in which case QEMU defaults to non-secure.
|
|
*/
|
|
if (!arm_feature(env, ARM_FEATURE_EL3)) {
|
|
return ARMSS_NonSecure;
|
|
}
|
|
|
|
/*
|
|
* Note NSE cannot be set without RME, and NSE & !NS is Reserved.
|
|
* Ignoring NSE when !NS retains consistency without having to
|
|
* modify other predicates.
|
|
*/
|
|
if (!(env->cp15.scr_el3 & SCR_NS)) {
|
|
return ARMSS_Secure;
|
|
} else if (env->cp15.scr_el3 & SCR_NSE) {
|
|
return ARMSS_Realm;
|
|
} else {
|
|
return ARMSS_NonSecure;
|
|
}
|
|
}
|
|
#endif /* !CONFIG_USER_ONLY */
|