qemu/hw/fdc.c
bellard caed880216 removable device support - io port API change
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@659 c046a42c-6fe2-441c-8c8c-71466251a162
2004-03-14 21:40:43 +00:00

1426 lines
46 KiB
C

/*
* QEMU Floppy disk emulator
*
* Copyright (c) 2003 Jocelyn Mayer
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <inttypes.h>
#include "vl.h"
/********************************************************/
/* debug Floppy devices */
//#define DEBUG_FLOPPY
#ifdef DEBUG_FLOPPY
#define FLOPPY_DPRINTF(fmt, args...) \
do { printf("FLOPPY: " fmt , ##args); } while (0)
#else
#define FLOPPY_DPRINTF(fmt, args...)
#endif
#define FLOPPY_ERROR(fmt, args...) \
do { printf("FLOPPY ERROR: %s: " fmt, __func__ , ##args); } while (0)
/********************************************************/
/* Floppy drive emulation */
/* Will always be a fixed parameter for us */
#define FD_SECTOR_LEN 512
#define FD_SECTOR_SC 2 /* Sector size code */
/* Floppy disk drive emulation */
typedef enum fdisk_type_t {
FDRIVE_DISK_288 = 0x01, /* 2.88 MB disk */
FDRIVE_DISK_144 = 0x02, /* 1.44 MB disk */
FDRIVE_DISK_720 = 0x03, /* 720 kB disk */
FDRIVE_DISK_NONE = 0x04, /* No disk */
} fdisk_type_t;
typedef enum fdrive_type_t {
FDRIVE_DRV_144 = 0x00, /* 1.44 MB 3"5 drive */
FDRIVE_DRV_288 = 0x01, /* 2.88 MB 3"5 drive */
FDRIVE_DRV_120 = 0x02, /* 1.2 MB 5"25 drive */
FDRIVE_DRV_NONE = 0x03, /* No drive connected */
} fdrive_type_t;
typedef struct fdrive_t {
BlockDriverState *bs;
/* Drive status */
fdrive_type_t drive;
uint8_t motor; /* on/off */
uint8_t perpendicular; /* 2.88 MB access mode */
uint8_t rv; /* Revalidated */
/* Position */
uint8_t head;
uint8_t track;
uint8_t sect;
/* Last operation status */
uint8_t dir; /* Direction */
uint8_t rw; /* Read/write */
/* Media */
fdisk_type_t disk; /* Disk type */
uint8_t last_sect; /* Nb sector per track */
uint8_t max_track; /* Nb of tracks */
uint8_t ro; /* Is read-only */
} fdrive_t;
static void fd_init (fdrive_t *drv, BlockDriverState *bs)
{
/* Drive */
drv->bs = bs;
if (bs)
drv->drive = FDRIVE_DRV_144;
else
drv->drive = FDRIVE_DRV_NONE;
drv->motor = 0;
drv->perpendicular = 0;
drv->rv = 0;
/* Disk */
drv->disk = FDRIVE_DISK_NONE;
drv->last_sect = 1;
drv->max_track = 0;
}
static int _fd_sector (uint8_t head, uint8_t track,
uint8_t sect, uint8_t last_sect)
{
return (((track * 2) + head) * last_sect) + sect - 1;
}
/* Returns current position, in sectors, for given drive */
static int fd_sector (fdrive_t *drv)
{
return _fd_sector(drv->head, drv->track, drv->sect, drv->last_sect);
}
static int fd_seek (fdrive_t *drv, uint8_t head, uint8_t track, uint8_t sect,
int enable_seek)
{
uint32_t sector;
if (track > drv->max_track) {
FLOPPY_ERROR("try to read %d %02x %02x (max=%d %02x %02x)\n",
head, track, sect, 1, drv->max_track, drv->last_sect);
return 2;
}
if (sect > drv->last_sect) {
FLOPPY_ERROR("try to read %d %02x %02x (max=%d %02x %02x)\n",
head, track, sect, 1, drv->max_track, drv->last_sect);
return 3;
}
sector = _fd_sector(head, track, sect, drv->last_sect);
if (sector != fd_sector(drv)) {
#if 0
if (!enable_seek) {
FLOPPY_ERROR("no implicit seek %d %02x %02x (max=%d %02x %02x)\n",
head, track, sect, 1, drv->max_track, drv->last_sect);
return 4;
}
#endif
drv->head = head;
drv->track = track;
drv->sect = sect;
return 1;
}
return 0;
}
/* Set drive back to track 0 */
static void fd_recalibrate (fdrive_t *drv)
{
FLOPPY_DPRINTF("recalibrate\n");
drv->head = 0;
drv->track = 0;
drv->sect = 1;
drv->dir = 1;
drv->rw = 0;
}
/* Revalidate a disk drive after a disk change */
static void fd_revalidate (fdrive_t *drv)
{
int64_t nb_sectors;
FLOPPY_DPRINTF("revalidate\n");
drv->rv = 0;
/* if no drive present, cannot do more */
if (!drv->bs)
return;
if (bdrv_is_inserted(drv->bs)) {
bdrv_get_geometry(drv->bs, &nb_sectors);
#if 1
if (nb_sectors > 2880)
#endif
{
/* Pretend we have a 2.88 MB disk */
drv->disk = FDRIVE_DISK_288;
drv->last_sect = 36;
drv->max_track = 80;
#if 1
} else if (nb_sectors > 1440) {
/* Pretend we have a 1.44 MB disk */
drv->disk = FDRIVE_DISK_144;
drv->last_sect = 18;
drv->max_track = 80;
} else {
/* Pretend we have a 720 kB disk */
drv->disk = FDRIVE_DISK_720;
drv->last_sect = 9;
drv->max_track = 80;
#endif
}
drv->ro = bdrv_is_read_only(drv->bs);
} else {
drv->disk = FDRIVE_DISK_NONE;
drv->last_sect = 1; /* Avoid eventual divide by 0 bugs */
drv->ro = 0;
}
drv->rv = 1;
}
static void fd_change_cb (void *opaque)
{
fdrive_t *drv = opaque;
fd_revalidate(drv);
}
/* Motor control */
static void fd_start (fdrive_t *drv)
{
drv->motor = 1;
}
static void fd_stop (fdrive_t *drv)
{
drv->motor = 0;
}
/* Re-initialise a drives (motor off, repositioned) */
static void fd_reset (fdrive_t *drv)
{
fd_stop(drv);
fd_recalibrate(drv);
}
/********************************************************/
/* Intel 82078 floppy disk controler emulation */
static void fdctrl_reset (int do_irq);
static void fdctrl_reset_fifo (void);
static int fdctrl_transfer_handler (void *opaque, target_ulong addr, int size);
static void fdctrl_raise_irq (uint8_t status);
static uint32_t fdctrl_read_statusB (void *opaque, uint32_t reg);
static uint32_t fdctrl_read_dor (void *opaque, uint32_t reg);
static void fdctrl_write_dor (void *opaque, uint32_t reg, uint32_t value);
static uint32_t fdctrl_read_tape (void *opaque, uint32_t reg);
static void fdctrl_write_tape (void *opaque, uint32_t reg, uint32_t value);
static uint32_t fdctrl_read_main_status (void *opaque, uint32_t reg);
static void fdctrl_write_rate (void *opaque, uint32_t reg, uint32_t value);
static uint32_t fdctrl_read_data (void *opaque, uint32_t reg);
static void fdctrl_write_data (void *opaque, uint32_t reg, uint32_t value);
static uint32_t fdctrl_read_dir (void *opaque, uint32_t reg);
enum {
FD_CTRL_ACTIVE = 0x01,
FD_CTRL_RESET = 0x02,
FD_CTRL_SLEEP = 0x04,
FD_CTRL_BUSY = 0x08,
FD_CTRL_INTR = 0x10,
};
enum {
FD_DIR_WRITE = 0,
FD_DIR_READ = 1,
FD_DIR_SCANE = 2,
FD_DIR_SCANL = 3,
FD_DIR_SCANH = 4,
};
enum {
FD_STATE_CMD = 0x00,
FD_STATE_STATUS = 0x01,
FD_STATE_DATA = 0x02,
FD_STATE_STATE = 0x03,
FD_STATE_MULTI = 0x10,
FD_STATE_SEEK = 0x20,
};
#define FD_STATE(state) ((state) & FD_STATE_STATE)
#define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI)
#define FD_DID_SEEK(state) ((state) & FD_STATE_SEEK)
typedef struct fdctrl_t {
/* Controler's identification */
uint8_t version;
/* HW */
int irq_lvl;
int dma_chann;
/* Controler state */
uint8_t state;
uint8_t dma_en;
uint8_t cur_drv;
uint8_t bootsel;
/* Command FIFO */
uint8_t fifo[FD_SECTOR_LEN];
uint32_t data_pos;
uint32_t data_len;
uint8_t data_state;
uint8_t data_dir;
uint8_t int_status;
/* States kept only to be returned back */
/* Timers state */
uint8_t timer0;
uint8_t timer1;
/* precompensation */
uint8_t precomp_trk;
uint8_t config;
uint8_t lock;
/* Power down config (also with status regB access mode */
uint8_t pwrd;
/* Floppy drives */
fdrive_t drives[2];
} fdctrl_t;
static fdctrl_t fdctrl;
void fdctrl_init (int irq_lvl, int dma_chann, int mem_mapped, uint32_t base,
BlockDriverState **fds)
{
// int io_mem;
int i;
FLOPPY_DPRINTF("init controler\n");
memset(&fdctrl, 0, sizeof(fdctrl));
fdctrl.version = 0x90; /* Intel 82078 controler */
fdctrl.irq_lvl = irq_lvl;
fdctrl.dma_chann = dma_chann;
fdctrl.config = 0x40; /* Implicit seek, polling & FIFO enabled */
if (fdctrl.dma_chann != -1) {
fdctrl.dma_en = 1;
DMA_register_channel(dma_chann, fdctrl_transfer_handler, &fdctrl);
} else {
fdctrl.dma_en = 0;
}
for (i = 0; i < MAX_FD; i++) {
fd_init(&fdctrl.drives[i], fds[i]);
if (fds[i])
bdrv_set_change_cb(fds[i], fd_change_cb, &fdctrl.drives[i]);
}
fdctrl_reset(0);
fdctrl.state = FD_CTRL_ACTIVE;
if (mem_mapped) {
FLOPPY_ERROR("memory mapped floppy not supported by now !\n");
#if 0
io_mem = cpu_register_io_memory(0, fdctrl_mem_read, fdctrl_mem_write);
cpu_register_physical_memory(base, 0x08, io_mem);
#endif
} else {
register_ioport_read(base + 0x01, 1, 1, fdctrl_read_statusB, NULL);
register_ioport_read(base + 0x02, 1, 1, fdctrl_read_dor, NULL);
register_ioport_write(base + 0x02, 1, 1, fdctrl_write_dor, NULL);
register_ioport_read(base + 0x03, 1, 1, fdctrl_read_tape, NULL);
register_ioport_write(base + 0x03, 1, 1, fdctrl_write_tape, NULL);
register_ioport_read(base + 0x04, 1, 1, fdctrl_read_main_status, NULL);
register_ioport_write(base + 0x04, 1, 1, fdctrl_write_rate, NULL);
register_ioport_read(base + 0x05, 1, 1, fdctrl_read_data, NULL);
register_ioport_write(base + 0x05, 1, 1, fdctrl_write_data, NULL);
register_ioport_read(base + 0x07, 1, 1, fdctrl_read_dir, NULL);
}
fdctrl.bootsel = 0;
for (i = 0; i < MAX_FD; i++) {
fd_revalidate(&fdctrl.drives[i]);
}
}
int fdctrl_get_drive_type(int drive_num)
{
return fdctrl.drives[drive_num].drive;
}
/* Change IRQ state */
static void fdctrl_reset_irq (void)
{
if (fdctrl.state & FD_CTRL_INTR) {
pic_set_irq(fdctrl.irq_lvl, 0);
fdctrl.state &= ~(FD_CTRL_INTR | FD_CTRL_SLEEP | FD_CTRL_BUSY);
}
}
static void fdctrl_raise_irq (uint8_t status)
{
if (~(fdctrl.state & FD_CTRL_INTR)) {
pic_set_irq(fdctrl.irq_lvl, 1);
fdctrl.state |= FD_CTRL_INTR;
}
FLOPPY_DPRINTF("Set interrupt status to 0x%02x\n", status);
fdctrl.int_status = status;
}
/* Reset controler */
static void fdctrl_reset (int do_irq)
{
int i;
FLOPPY_DPRINTF("reset controler\n");
fdctrl_reset_irq();
/* Initialise controler */
fdctrl.cur_drv = 0;
/* FIFO state */
fdctrl.data_pos = 0;
fdctrl.data_len = 0;
fdctrl.data_state = FD_STATE_CMD;
fdctrl.data_dir = FD_DIR_WRITE;
for (i = 0; i < MAX_FD; i++)
fd_reset(&fdctrl.drives[i]);
fdctrl_reset_fifo();
if (do_irq)
fdctrl_raise_irq(0x20);
}
/* Status B register : 0x01 (read-only) */
static uint32_t fdctrl_read_statusB (void *opaque, uint32_t reg)
{
fdctrl_reset_irq();
FLOPPY_DPRINTF("status register: 0x00\n");
return 0;
}
/* Digital output register : 0x02 */
static uint32_t fdctrl_read_dor (void *opaque, uint32_t reg)
{
fdrive_t *cur_drv, *drv0, *drv1;
uint32_t retval = 0;
drv0 = &fdctrl.drives[fdctrl.bootsel];
drv1 = &fdctrl.drives[1 - fdctrl.bootsel];
cur_drv = fdctrl.cur_drv == 0 ? drv0 : drv1;
/* Drive motors state indicators */
retval |= drv1->motor << 5;
retval |= drv0->motor << 4;
/* DMA enable */
retval |= fdctrl.dma_en << 3;
/* Reset indicator */
retval |= (fdctrl.state & FD_CTRL_RESET) == 0 ? 0x04 : 0;
/* Selected drive */
retval |= fdctrl.cur_drv;
FLOPPY_DPRINTF("digital output register: 0x%02x\n", retval);
return retval;
}
static void fdctrl_write_dor (void *opaque, uint32_t reg, uint32_t value)
{
fdrive_t *drv0, *drv1;
fdctrl_reset_irq();
drv0 = &fdctrl.drives[fdctrl.bootsel];
drv1 = &fdctrl.drives[1 - fdctrl.bootsel];
/* Reset mode */
if (fdctrl.state & FD_CTRL_RESET) {
if (!(value & 0x04)) {
FLOPPY_DPRINTF("Floppy controler in RESET state !\n");
return;
}
}
FLOPPY_DPRINTF("digital output register set to 0x%02x\n", value);
/* Drive motors state indicators */
if (value & 0x20)
fd_start(drv1);
else
fd_stop(drv1);
if (value & 0x10)
fd_start(drv0);
else
fd_stop(drv0);
/* DMA enable */
#if 0
if (fdctrl.dma_chann != -1)
fdctrl.dma_en = 1 - ((value >> 3) & 1);
#endif
/* Reset */
if (!(value & 0x04)) {
if (!(fdctrl.state & FD_CTRL_RESET)) {
FLOPPY_DPRINTF("controler enter RESET state\n");
fdctrl.state |= FD_CTRL_RESET;
fdctrl_reset(1);
}
} else {
if (fdctrl.state & FD_CTRL_RESET) {
FLOPPY_DPRINTF("controler out of RESET state\n");
fdctrl.state &= ~(FD_CTRL_RESET | FD_CTRL_SLEEP);
}
}
/* Selected drive */
fdctrl.cur_drv = value & 1;
}
/* Tape drive register : 0x03 */
static uint32_t fdctrl_read_tape (void *opaque, uint32_t reg)
{
uint32_t retval = 0;
fdctrl_reset_irq();
/* Disk boot selection indicator */
retval |= fdctrl.bootsel << 2;
/* Tape indicators: never allowed */
FLOPPY_DPRINTF("tape drive register: 0x%02x\n", retval);
return retval;
}
static void fdctrl_write_tape (void *opaque, uint32_t reg, uint32_t value)
{
fdctrl_reset_irq();
/* Reset mode */
if (fdctrl.state & FD_CTRL_RESET) {
FLOPPY_DPRINTF("Floppy controler in RESET state !\n");
return;
}
FLOPPY_DPRINTF("tape drive register set to 0x%02x\n", value);
/* Disk boot selection indicator */
fdctrl.bootsel = (value >> 2) & 1;
/* Tape indicators: never allow */
}
/* Main status register : 0x04 (read) */
static uint32_t fdctrl_read_main_status (void *opaque, uint32_t reg)
{
uint32_t retval = 0;
fdctrl_reset_irq();
fdctrl.state &= ~(FD_CTRL_SLEEP | FD_CTRL_RESET);
if (!(fdctrl.state & FD_CTRL_BUSY)) {
/* Data transfer allowed */
retval |= 0x80;
/* Data transfer direction indicator */
if (fdctrl.data_dir == FD_DIR_READ)
retval |= 0x40;
}
/* Should handle 0x20 for SPECIFY command */
/* Command busy indicator */
if (FD_STATE(fdctrl.data_state) == FD_STATE_DATA ||
FD_STATE(fdctrl.data_state) == FD_STATE_STATUS)
retval |= 0x10;
FLOPPY_DPRINTF("main status register: 0x%02x\n", retval);
return retval;
}
/* Data select rate register : 0x04 (write) */
static void fdctrl_write_rate (void *opaque, uint32_t reg, uint32_t value)
{
fdctrl_reset_irq();
/* Reset mode */
if (fdctrl.state & FD_CTRL_RESET) {
if (reg != 0x2 || !(value & 0x04)) {
FLOPPY_DPRINTF("Floppy controler in RESET state !\n");
return;
}
}
FLOPPY_DPRINTF("select rate register set to 0x%02x\n", value);
/* Reset: autoclear */
if (value & 0x80) {
fdctrl.state |= FD_CTRL_RESET;
fdctrl_reset(1);
fdctrl.state &= ~FD_CTRL_RESET;
}
if (value & 0x40) {
fdctrl.state |= FD_CTRL_SLEEP;
fdctrl_reset(1);
}
// fdctrl.precomp = (value >> 2) & 0x07;
}
/* Digital input register : 0x07 (read-only) */
static uint32_t fdctrl_read_dir (void *opaque, uint32_t reg)
{
fdrive_t *drv0, *drv1;
uint32_t retval = 0;
fdctrl_reset_irq();
drv0 = &fdctrl.drives[fdctrl.bootsel];
drv1 = &fdctrl.drives[1 - fdctrl.bootsel];
if (drv0->rv || drv1->rv)
retval |= 0x80;
if (retval != 0)
FLOPPY_ERROR("Floppy digital input register: 0x%02x\n", retval);
drv0->rv = 0;
drv1->rv = 0;
return retval;
}
/* FIFO state control */
static void fdctrl_reset_fifo (void)
{
fdctrl.data_dir = FD_DIR_WRITE;
fdctrl.data_pos = 0;
fdctrl.data_state = FD_STATE_CMD;
}
/* Set FIFO status for the host to read */
static void fdctrl_set_fifo (int fifo_len, int do_irq)
{
fdctrl.data_dir = FD_DIR_READ;
fdctrl.data_len = fifo_len;
fdctrl.data_pos = 0;
fdctrl.data_state = FD_STATE_STATUS;
if (do_irq)
fdctrl_raise_irq(0x00);
}
/* Set an error: unimplemented/unknown command */
static void fdctrl_unimplemented (void)
{
#if 0
fdrive_t *cur_drv, *drv0, *drv1;
drv0 = &fdctrl.drives[fdctrl.bootsel];
drv1 = &fdctrl.drives[1 - fdctrl.bootsel];
cur_drv = fdctrl.cur_drv == 0 ? drv0 : drv1;
fdctrl.fifo[0] = 0x60 | (cur_drv->head << 1) | fdctrl.cur_drv;
fdctrl.fifo[1] = 0x00;
fdctrl.fifo[2] = 0x00;
fdctrl_set_fifo(3, 1);
#else
fdctrl_reset_fifo();
#endif
}
/* Callback for transfer end (stop or abort) */
static void fdctrl_stop_transfer (uint8_t status0, uint8_t status1,
uint8_t status2)
{
fdrive_t *cur_drv, *drv0, *drv1;
drv0 = &fdctrl.drives[fdctrl.bootsel];
drv1 = &fdctrl.drives[1 - fdctrl.bootsel];
cur_drv = fdctrl.cur_drv == 0 ? drv0 : drv1;
FLOPPY_DPRINTF("transfer status: %02x %02x %02x (%02x)\n",
status0, status1, status2,
status0 | (cur_drv->head << 1) | fdctrl.cur_drv);
fdctrl.fifo[0] = status0 | (cur_drv->head << 1) | fdctrl.cur_drv;
fdctrl.fifo[1] = status1;
fdctrl.fifo[2] = status2;
fdctrl.fifo[3] = cur_drv->track;
fdctrl.fifo[4] = cur_drv->head;
fdctrl.fifo[5] = cur_drv->sect;
fdctrl.fifo[6] = FD_SECTOR_SC;
fdctrl.data_dir = FD_DIR_READ;
if (fdctrl.state & FD_CTRL_BUSY)
DMA_release_DREQ(fdctrl.dma_chann);
fdctrl_set_fifo(7, 1);
}
/* Prepare a data transfer (either DMA or FIFO) */
static void fdctrl_start_transfer (int direction)
{
fdrive_t *cur_drv, *drv0, *drv1;
uint8_t kh, kt, ks;
int did_seek;
drv0 = &fdctrl.drives[fdctrl.bootsel];
drv1 = &fdctrl.drives[1 - fdctrl.bootsel];
fdctrl.cur_drv = fdctrl.fifo[1] & 1;
cur_drv = fdctrl.cur_drv == 0 ? drv0 : drv1;
kt = fdctrl.fifo[2];
kh = fdctrl.fifo[3];
ks = fdctrl.fifo[4];
FLOPPY_DPRINTF("Start tranfert at %d %d %02x %02x (%d)\n",
fdctrl.cur_drv, kh, kt, ks,
_fd_sector(kh, kt, ks, cur_drv->last_sect));
did_seek = 0;
switch (fd_seek(cur_drv, kh, kt, ks, fdctrl.config & 0x40)) {
case 2:
/* sect too big */
fdctrl_stop_transfer(0x40, 0x00, 0x00);
fdctrl.fifo[3] = kt;
fdctrl.fifo[4] = kh;
fdctrl.fifo[5] = ks;
return;
case 3:
/* track too big */
fdctrl_stop_transfer(0x40, 0x80, 0x00);
fdctrl.fifo[3] = kt;
fdctrl.fifo[4] = kh;
fdctrl.fifo[5] = ks;
return;
case 4:
/* No seek enabled */
fdctrl_stop_transfer(0x40, 0x00, 0x00);
fdctrl.fifo[3] = kt;
fdctrl.fifo[4] = kh;
fdctrl.fifo[5] = ks;
return;
case 1:
did_seek = 1;
break;
default:
break;
}
/* Set the FIFO state */
fdctrl.data_dir = direction;
fdctrl.data_pos = 0;
fdctrl.data_state = FD_STATE_DATA; /* FIFO ready for data */
if (fdctrl.fifo[0] & 0x80)
fdctrl.data_state |= FD_STATE_MULTI;
if (did_seek)
fdctrl.data_state |= FD_STATE_SEEK;
if (fdctrl.dma_en) {
int dma_mode;
/* DMA transfer are enabled. Check if DMA channel is well programmed */
dma_mode = DMA_get_channel_mode(fdctrl.dma_chann);
dma_mode = (dma_mode >> 2) & 3;
FLOPPY_DPRINTF("dma_mode=%d direction=%d (%d)\n", dma_mode, direction,
(128 << fdctrl.fifo[5]) *
(cur_drv->last_sect - ks + 1));
if (((direction == FD_DIR_SCANE || direction == FD_DIR_SCANL ||
direction == FD_DIR_SCANH) && dma_mode == 0) ||
(direction == FD_DIR_WRITE && dma_mode == 2) ||
(direction == FD_DIR_READ && dma_mode == 1)) {
/* No access is allowed until DMA transfer has completed */
fdctrl.state |= FD_CTRL_BUSY;
/* Now, we just have to wait for the DMA controler to
* recall us...
*/
DMA_hold_DREQ(fdctrl.dma_chann);
DMA_schedule(fdctrl.dma_chann);
return;
}
}
FLOPPY_DPRINTF("start non-DMA transfer\n");
/* IO based transfer: calculate len */
if (fdctrl.fifo[5] == 00) {
fdctrl.data_len = fdctrl.fifo[8];
} else {
fdctrl.data_len = 128 << fdctrl.fifo[5];
fdctrl.data_len *= (cur_drv->last_sect - ks + 1);
if (fdctrl.fifo[0] & 0x80)
fdctrl.data_len *= 2;
}
fdctrl_raise_irq(0x00);
return;
}
/* Prepare a transfer of deleted data */
static void fdctrl_start_transfer_del (int direction)
{
/* We don't handle deleted data,
* so we don't return *ANYTHING*
*/
fdctrl_stop_transfer(0x60, 0x00, 0x00);
}
/* handlers for DMA transfers */
/* XXX: the partial transfer logic seems to be broken */
static int fdctrl_transfer_handler (void *opaque, target_ulong addr, int size)
{
fdrive_t *cur_drv, *drv0, *drv1;
int len;
uint8_t status0 = 0x00, status1 = 0x00, status2 = 0x00;
uint8_t tmpbuf[FD_SECTOR_LEN];
fdctrl_reset_irq();
if (!(fdctrl.state & FD_CTRL_BUSY)) {
FLOPPY_DPRINTF("Not in DMA transfer mode !\n");
return 0;
}
drv0 = &fdctrl.drives[fdctrl.bootsel];
drv1 = &fdctrl.drives[1 - fdctrl.bootsel];
cur_drv = fdctrl.cur_drv == 0 ? drv0 : drv1;
if (fdctrl.data_dir == FD_DIR_SCANE || fdctrl.data_dir == FD_DIR_SCANL ||
fdctrl.data_dir == FD_DIR_SCANH)
status2 = 0x04;
for (fdctrl.data_len = size; fdctrl.data_pos < fdctrl.data_len;
fdctrl.data_pos += len) {
len = size - fdctrl.data_pos;
if (len > FD_SECTOR_LEN)
len = FD_SECTOR_LEN;
FLOPPY_DPRINTF("copy %d bytes (%d %d %d) %d pos %d %02x %02x "
"(%d-0x%08x)\n", len, size, fdctrl.data_pos,
fdctrl.data_len, fdctrl.cur_drv, cur_drv->head,
cur_drv->track, cur_drv->sect, fd_sector(cur_drv),
fd_sector(cur_drv) * 512);
if (fdctrl.data_dir != FD_DIR_WRITE) {
/* READ & SCAN commands */
if (cur_drv->bs == NULL) {
fdctrl_stop_transfer(0x40, 0x00, 0x00);
goto transfer_error;
}
if (bdrv_read(cur_drv->bs, fd_sector(cur_drv), tmpbuf, 1) < 0) {
FLOPPY_DPRINTF("Floppy: error getting sector %d\n",
fd_sector(cur_drv));
/* Sure, image size is too small... */
memset(tmpbuf, 0, FD_SECTOR_LEN);
}
if (fdctrl.data_dir == FD_DIR_READ) {
cpu_physical_memory_write(addr + fdctrl.data_pos,
tmpbuf, len);
if (len < FD_SECTOR_LEN) {
memcpy(&fdctrl.fifo[0], tmpbuf + len, FD_SECTOR_LEN - len);
memset(&fdctrl.fifo[FD_SECTOR_LEN - len], 0, len);
}
} else {
int ret;
/* XXX: what to do if not enough data ? */
cpu_physical_memory_read(addr + fdctrl.data_pos,
fdctrl.fifo, len);
if (len < FD_SECTOR_LEN) {
memset(&fdctrl.fifo[len], 0, FD_SECTOR_LEN - len);
}
ret = memcmp(tmpbuf, fdctrl.fifo, FD_SECTOR_LEN);
if (ret == 0) {
status2 = 0x08;
goto end_transfer;
}
if ((ret < 0 && fdctrl.data_dir == FD_DIR_SCANL) ||
(ret > 0 && fdctrl.data_dir == FD_DIR_SCANH)) {
status2 = 0x00;
goto end_transfer;
}
}
} else {
/* WRITE commands */
cpu_physical_memory_read(addr + fdctrl.data_pos, tmpbuf, len);
if (len < FD_SECTOR_LEN) {
memset(tmpbuf + len, 0, FD_SECTOR_LEN - len);
}
if (cur_drv->bs == NULL ||
bdrv_write(cur_drv->bs, fd_sector(cur_drv), tmpbuf, 1) < 0) {
FLOPPY_ERROR("writting sector %d\n", fd_sector(cur_drv));
fdctrl_stop_transfer(0x60, 0x00, 0x00);
goto transfer_error;
}
}
if (len == FD_SECTOR_LEN) {
/* Seek to next sector */
if (cur_drv->sect == cur_drv->last_sect) {
if (cur_drv->head == 0) {
cur_drv->head = 1;
} else {
cur_drv->track++;
cur_drv->head = 0;
}
cur_drv->sect = 1;
FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d)\n",
cur_drv->head, cur_drv->track, cur_drv->sect,
fd_sector(cur_drv));
if (cur_drv->head == 0) {
FLOPPY_DPRINTF("end transfer\n");
goto end_transfer;
}
if (!FD_MULTI_TRACK(fdctrl.data_state)) {
/* Single track read */
FLOPPY_DPRINTF("single track transfert: end transfer\n");
// status1 |= 0x80;
goto end_transfer;
}
} else {
cur_drv->sect++;
FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d)\n",
cur_drv->head, cur_drv->track, cur_drv->sect,
fd_sector(cur_drv));
}
}
}
end_transfer:
if (fdctrl.data_dir == FD_DIR_SCANE ||
fdctrl.data_dir == FD_DIR_SCANL ||
fdctrl.data_dir == FD_DIR_SCANH)
status2 = 0x08;
if (FD_DID_SEEK(fdctrl.data_state))
status0 |= 0x20;
fdctrl_stop_transfer(status0, status1, status2);
transfer_error:
return fdctrl.data_pos;
}
/* Data register : 0x05 */
static uint32_t fdctrl_read_data (void *opaque, uint32_t reg)
{
fdrive_t *cur_drv, *drv0, *drv1;
uint32_t retval = 0;
int pos, len;
fdctrl_reset_irq();
drv0 = &fdctrl.drives[fdctrl.bootsel];
drv1 = &fdctrl.drives[1 - fdctrl.bootsel];
cur_drv = fdctrl.cur_drv == 0 ? drv0 : drv1;
fdctrl.state &= ~FD_CTRL_SLEEP;
if (FD_STATE(fdctrl.data_state) == FD_STATE_CMD) {
FLOPPY_ERROR("can't read data in CMD state\n");
return 0;
}
pos = fdctrl.data_pos;
if (FD_STATE(fdctrl.data_state) == FD_STATE_DATA) {
pos %= FD_SECTOR_LEN;
if (pos == 0) {
len = fdctrl.data_len - fdctrl.data_pos;
if (len > FD_SECTOR_LEN)
len = FD_SECTOR_LEN;
bdrv_read(cur_drv->bs, fd_sector(cur_drv),
fdctrl.fifo, len);
}
}
retval = fdctrl.fifo[pos];
if (++fdctrl.data_pos == fdctrl.data_len) {
fdctrl.data_pos = 0;
/* Switch from transfert mode to status mode
* then from status mode to command mode
*/
if (FD_STATE(fdctrl.data_state) == FD_STATE_DATA)
fdctrl_stop_transfer(0x20, 0x00, 0x00);
else
fdctrl_reset_fifo();
}
FLOPPY_DPRINTF("data register: 0x%02x\n", retval);
return retval;
}
static void fdctrl_write_data (void *opaque, uint32_t reg, uint32_t value)
{
fdrive_t *cur_drv, *drv0, *drv1;
fdctrl_reset_irq();
drv0 = &fdctrl.drives[fdctrl.bootsel];
drv1 = &fdctrl.drives[1 - fdctrl.bootsel];
cur_drv = fdctrl.cur_drv == 0 ? drv0 : drv1;
/* Reset mode */
if (fdctrl.state & FD_CTRL_RESET) {
FLOPPY_DPRINTF("Floppy controler in RESET state !\n");
return;
}
fdctrl.state &= ~FD_CTRL_SLEEP;
if ((fdctrl.data_state & FD_STATE_STATE) == FD_STATE_STATUS) {
FLOPPY_ERROR("can't write data in status mode\n");
return;
}
/* Is it write command time ? */
if (FD_STATE(fdctrl.data_state) == FD_STATE_DATA) {
/* FIFO data write */
fdctrl.fifo[fdctrl.data_pos++] = value;
if (fdctrl.data_pos % FD_SECTOR_LEN == (FD_SECTOR_LEN - 1) ||
fdctrl.data_pos == fdctrl.data_len) {
bdrv_write(cur_drv->bs, fd_sector(cur_drv),
fdctrl.fifo, FD_SECTOR_LEN);
}
/* Switch from transfert mode to status mode
* then from status mode to command mode
*/
if (FD_STATE(fdctrl.data_state) == FD_STATE_DATA)
fdctrl_stop_transfer(0x20, 0x00, 0x00);
return;
}
if (fdctrl.data_pos == 0) {
/* Command */
switch (value & 0x5F) {
case 0x46:
/* READ variants */
FLOPPY_DPRINTF("READ command\n");
/* 8 parameters cmd */
fdctrl.data_len = 9;
goto enqueue;
case 0x4C:
/* READ_DELETED variants */
FLOPPY_DPRINTF("READ_DELETED command\n");
/* 8 parameters cmd */
fdctrl.data_len = 9;
goto enqueue;
case 0x50:
/* SCAN_EQUAL variants */
FLOPPY_DPRINTF("SCAN_EQUAL command\n");
/* 8 parameters cmd */
fdctrl.data_len = 9;
goto enqueue;
case 0x56:
/* VERIFY variants */
FLOPPY_DPRINTF("VERIFY command\n");
/* 8 parameters cmd */
fdctrl.data_len = 9;
goto enqueue;
case 0x59:
/* SCAN_LOW_OR_EQUAL variants */
FLOPPY_DPRINTF("SCAN_LOW_OR_EQUAL command\n");
/* 8 parameters cmd */
fdctrl.data_len = 9;
goto enqueue;
case 0x5D:
/* SCAN_HIGH_OR_EQUAL variants */
FLOPPY_DPRINTF("SCAN_HIGH_OR_EQUAL command\n");
/* 8 parameters cmd */
fdctrl.data_len = 9;
goto enqueue;
default:
break;
}
switch (value & 0x7F) {
case 0x45:
/* WRITE variants */
FLOPPY_DPRINTF("WRITE command\n");
/* 8 parameters cmd */
fdctrl.data_len = 9;
goto enqueue;
case 0x49:
/* WRITE_DELETED variants */
FLOPPY_DPRINTF("WRITE_DELETED command\n");
/* 8 parameters cmd */
fdctrl.data_len = 9;
goto enqueue;
default:
break;
}
switch (value) {
case 0x03:
/* SPECIFY */
FLOPPY_DPRINTF("SPECIFY command\n");
/* 1 parameter cmd */
fdctrl.data_len = 3;
goto enqueue;
case 0x04:
/* SENSE_DRIVE_STATUS */
FLOPPY_DPRINTF("SENSE_DRIVE_STATUS command\n");
/* 1 parameter cmd */
fdctrl.data_len = 2;
goto enqueue;
case 0x07:
/* RECALIBRATE */
FLOPPY_DPRINTF("RECALIBRATE command\n");
/* 1 parameter cmd */
fdctrl.data_len = 2;
goto enqueue;
case 0x08:
/* SENSE_INTERRUPT_STATUS */
FLOPPY_DPRINTF("SENSE_INTERRUPT_STATUS command (%02x)\n",
fdctrl.int_status);
/* No parameters cmd: returns status if no interrupt */
fdctrl.fifo[0] =
fdctrl.int_status | (cur_drv->head << 2) | fdctrl.cur_drv;
fdctrl.fifo[1] = cur_drv->track;
fdctrl_set_fifo(2, 0);
return;
case 0x0E:
/* DUMPREG */
FLOPPY_DPRINTF("DUMPREG command\n");
/* Drives position */
fdctrl.fifo[0] = drv0->track;
fdctrl.fifo[1] = drv1->track;
fdctrl.fifo[2] = 0;
fdctrl.fifo[3] = 0;
/* timers */
fdctrl.fifo[4] = fdctrl.timer0;
fdctrl.fifo[5] = (fdctrl.timer1 << 1) | fdctrl.dma_en;
fdctrl.fifo[6] = cur_drv->last_sect;
fdctrl.fifo[7] = (fdctrl.lock << 7) |
(cur_drv->perpendicular << 2);
fdctrl.fifo[8] = fdctrl.config;
fdctrl.fifo[9] = fdctrl.precomp_trk;
fdctrl_set_fifo(10, 0);
return;
case 0x0F:
/* SEEK */
FLOPPY_DPRINTF("SEEK command\n");
/* 2 parameters cmd */
fdctrl.data_len = 3;
goto enqueue;
case 0x10:
/* VERSION */
FLOPPY_DPRINTF("VERSION command\n");
/* No parameters cmd */
/* Controler's version */
fdctrl.fifo[0] = fdctrl.version;
fdctrl_set_fifo(1, 1);
return;
case 0x12:
/* PERPENDICULAR_MODE */
FLOPPY_DPRINTF("PERPENDICULAR_MODE command\n");
/* 1 parameter cmd */
fdctrl.data_len = 2;
goto enqueue;
case 0x13:
/* CONFIGURE */
FLOPPY_DPRINTF("CONFIGURE command\n");
/* 3 parameters cmd */
fdctrl.data_len = 4;
goto enqueue;
case 0x14:
/* UNLOCK */
FLOPPY_DPRINTF("UNLOCK command\n");
/* No parameters cmd */
fdctrl.lock = 0;
fdctrl.fifo[0] = 0;
fdctrl_set_fifo(1, 0);
return;
case 0x17:
/* POWERDOWN_MODE */
FLOPPY_DPRINTF("POWERDOWN_MODE command\n");
/* 2 parameters cmd */
fdctrl.data_len = 3;
goto enqueue;
case 0x18:
/* PART_ID */
FLOPPY_DPRINTF("PART_ID command\n");
/* No parameters cmd */
fdctrl.fifo[0] = 0x41; /* Stepping 1 */
fdctrl_set_fifo(1, 0);
return;
case 0x2C:
/* SAVE */
FLOPPY_DPRINTF("SAVE command\n");
/* No parameters cmd */
fdctrl.fifo[0] = 0;
fdctrl.fifo[1] = 0;
/* Drives position */
fdctrl.fifo[2] = drv0->track;
fdctrl.fifo[3] = drv1->track;
fdctrl.fifo[4] = 0;
fdctrl.fifo[5] = 0;
/* timers */
fdctrl.fifo[6] = fdctrl.timer0;
fdctrl.fifo[7] = fdctrl.timer1;
fdctrl.fifo[8] = cur_drv->last_sect;
fdctrl.fifo[9] = (fdctrl.lock << 7) |
(cur_drv->perpendicular << 2);
fdctrl.fifo[10] = fdctrl.config;
fdctrl.fifo[11] = fdctrl.precomp_trk;
fdctrl.fifo[12] = fdctrl.pwrd;
fdctrl.fifo[13] = 0;
fdctrl.fifo[14] = 0;
fdctrl_set_fifo(15, 1);
return;
case 0x33:
/* OPTION */
FLOPPY_DPRINTF("OPTION command\n");
/* 1 parameter cmd */
fdctrl.data_len = 2;
goto enqueue;
case 0x42:
/* READ_TRACK */
FLOPPY_DPRINTF("READ_TRACK command\n");
/* 8 parameters cmd */
fdctrl.data_len = 9;
goto enqueue;
case 0x4A:
/* READ_ID */
FLOPPY_DPRINTF("READ_ID command\n");
/* 1 parameter cmd */
fdctrl.data_len = 2;
goto enqueue;
case 0x4C:
/* RESTORE */
FLOPPY_DPRINTF("RESTORE command\n");
/* 17 parameters cmd */
fdctrl.data_len = 18;
goto enqueue;
case 0x4D:
/* FORMAT_TRACK */
FLOPPY_DPRINTF("FORMAT_TRACK command\n");
/* 5 parameters cmd */
fdctrl.data_len = 9;
goto enqueue;
case 0x8E:
/* DRIVE_SPECIFICATION_COMMAND */
FLOPPY_DPRINTF("DRIVE_SPECIFICATION_COMMAND command\n");
/* 5 parameters cmd */
fdctrl.data_len = 6;
goto enqueue;
case 0x8F:
/* RELATIVE_SEEK_OUT */
FLOPPY_DPRINTF("RELATIVE_SEEK_OUT command\n");
/* 2 parameters cmd */
fdctrl.data_len = 3;
goto enqueue;
case 0x94:
/* LOCK */
FLOPPY_DPRINTF("LOCK command\n");
/* No parameters cmd */
fdctrl.lock = 1;
fdctrl.fifo[0] = 0x10;
fdctrl_set_fifo(1, 1);
return;
case 0xCD:
/* FORMAT_AND_WRITE */
FLOPPY_DPRINTF("FORMAT_AND_WRITE command\n");
/* 10 parameters cmd */
fdctrl.data_len = 11;
goto enqueue;
case 0xCF:
/* RELATIVE_SEEK_IN */
FLOPPY_DPRINTF("RELATIVE_SEEK_IN command\n");
/* 2 parameters cmd */
fdctrl.data_len = 3;
goto enqueue;
default:
/* Unknown command */
FLOPPY_ERROR("unknown command: 0x%02x\n", value);
fdctrl_unimplemented();
return;
}
}
enqueue:
fdctrl.fifo[fdctrl.data_pos] = value;
if (++fdctrl.data_pos == fdctrl.data_len) {
/* We now have all parameters
* and will be able to treat the command
*/
switch (fdctrl.fifo[0] & 0x1F) {
case 0x06:
{
/* READ variants */
FLOPPY_DPRINTF("treat READ command\n");
fdctrl_start_transfer(FD_DIR_READ);
return;
}
case 0x0C:
/* READ_DELETED variants */
// FLOPPY_DPRINTF("treat READ_DELETED command\n");
FLOPPY_ERROR("treat READ_DELETED command\n");
fdctrl_start_transfer_del(1);
return;
case 0x16:
/* VERIFY variants */
// FLOPPY_DPRINTF("treat VERIFY command\n");
FLOPPY_ERROR("treat VERIFY command\n");
fdctrl_stop_transfer(0x20, 0x00, 0x00);
return;
case 0x10:
/* SCAN_EQUAL variants */
// FLOPPY_DPRINTF("treat SCAN_EQUAL command\n");
FLOPPY_ERROR("treat SCAN_EQUAL command\n");
fdctrl_start_transfer(FD_DIR_SCANE);
return;
case 0x19:
/* SCAN_LOW_OR_EQUAL variants */
// FLOPPY_DPRINTF("treat SCAN_LOW_OR_EQUAL command\n");
FLOPPY_ERROR("treat SCAN_LOW_OR_EQUAL command\n");
fdctrl_start_transfer(FD_DIR_SCANL);
return;
case 0x1D:
/* SCAN_HIGH_OR_EQUAL variants */
// FLOPPY_DPRINTF("treat SCAN_HIGH_OR_EQUAL command\n");
FLOPPY_ERROR("treat SCAN_HIGH_OR_EQUAL command\n");
fdctrl_start_transfer(FD_DIR_SCANH);
return;
default:
break;
}
switch (fdctrl.fifo[0] & 0x3F) {
case 0x05:
/* WRITE variants */
FLOPPY_DPRINTF("treat WRITE command (%02x)\n", fdctrl.fifo[0]);
fdctrl_start_transfer(FD_DIR_WRITE);
return;
case 0x09:
/* WRITE_DELETED variants */
// FLOPPY_DPRINTF("treat WRITE_DELETED command\n");
FLOPPY_ERROR("treat WRITE_DELETED command\n");
fdctrl_start_transfer_del(FD_DIR_WRITE);
return;
default:
break;
}
switch (fdctrl.fifo[0]) {
case 0x03:
/* SPECIFY */
FLOPPY_DPRINTF("treat SPECIFY command\n");
fdctrl.timer0 = (fdctrl.fifo[1] >> 4) & 0xF;
fdctrl.timer1 = fdctrl.fifo[1] >> 1;
/* No result back */
fdctrl_reset_fifo();
break;
case 0x04:
/* SENSE_DRIVE_STATUS */
FLOPPY_DPRINTF("treat SENSE_DRIVE_STATUS command\n");
fdctrl.cur_drv = fdctrl.fifo[1] & 1;
cur_drv = fdctrl.cur_drv == 0 ? drv0 : drv1;
cur_drv->head = (fdctrl.fifo[1] >> 2) & 1;
/* 1 Byte status back */
fdctrl.fifo[0] = (cur_drv->ro << 6) |
(cur_drv->track == 0 ? 0x10 : 0x00) |
fdctrl.cur_drv;
fdctrl_set_fifo(1, 0);
break;
case 0x07:
/* RECALIBRATE */
FLOPPY_DPRINTF("treat RECALIBRATE command\n");
fdctrl.cur_drv = fdctrl.fifo[1] & 1;
cur_drv = fdctrl.cur_drv == 0 ? drv0 : drv1;
fd_recalibrate(cur_drv);
fdctrl_reset_fifo();
/* Raise Interrupt */
fdctrl_raise_irq(0x20);
break;
case 0x0F:
/* SEEK */
FLOPPY_DPRINTF("treat SEEK command\n");
fdctrl.cur_drv = fdctrl.fifo[1] & 1;
cur_drv = fdctrl.cur_drv == 0 ? drv0 : drv1;
if (fdctrl.fifo[2] <= cur_drv->track)
cur_drv->dir = 1;
else
cur_drv->dir = 0;
cur_drv->head = (fdctrl.fifo[1] >> 2) & 1;
if (fdctrl.fifo[2] > cur_drv->max_track) {
fdctrl_raise_irq(0x60);
} else {
cur_drv->track = fdctrl.fifo[2];
fdctrl_reset_fifo();
/* Raise Interrupt */
fdctrl_raise_irq(0x20);
}
break;
case 0x12:
/* PERPENDICULAR_MODE */
FLOPPY_DPRINTF("treat PERPENDICULAR_MODE command\n");
if (fdctrl.fifo[1] & 0x80)
cur_drv->perpendicular = fdctrl.fifo[1] & 0x7;
/* No result back */
fdctrl_reset_fifo();
break;
case 0x13:
/* CONFIGURE */
FLOPPY_DPRINTF("treat CONFIGURE command\n");
fdctrl.config = fdctrl.fifo[2];
fdctrl.precomp_trk = fdctrl.fifo[3];
/* No result back */
fdctrl_reset_fifo();
break;
case 0x17:
/* POWERDOWN_MODE */
FLOPPY_DPRINTF("treat POWERDOWN_MODE command\n");
fdctrl.pwrd = fdctrl.fifo[1];
fdctrl.fifo[0] = fdctrl.fifo[1];
fdctrl_set_fifo(1, 1);
break;
case 0x33:
/* OPTION */
FLOPPY_DPRINTF("treat OPTION command\n");
/* No result back */
fdctrl_reset_fifo();
break;
case 0x42:
/* READ_TRACK */
// FLOPPY_DPRINTF("treat READ_TRACK command\n");
FLOPPY_ERROR("treat READ_TRACK command\n");
fdctrl_unimplemented();
break;
case 0x4A:
/* READ_ID */
// FLOPPY_DPRINTF("treat READ_ID command\n");
FLOPPY_ERROR("treat READ_ID command\n");
fdctrl_stop_transfer(0x00, 0x00, 0x00);
break;
case 0x4C:
/* RESTORE */
FLOPPY_DPRINTF("treat RESTORE command\n");
/* Drives position */
drv0->track = fdctrl.fifo[3];
drv1->track = fdctrl.fifo[4];
/* timers */
fdctrl.timer0 = fdctrl.fifo[7];
fdctrl.timer1 = fdctrl.fifo[8];
cur_drv->last_sect = fdctrl.fifo[9];
fdctrl.lock = fdctrl.fifo[10] >> 7;
cur_drv->perpendicular = (fdctrl.fifo[10] >> 2) & 0xF;
fdctrl.config = fdctrl.fifo[11];
fdctrl.precomp_trk = fdctrl.fifo[12];
fdctrl.pwrd = fdctrl.fifo[13];
fdctrl_reset_fifo();
break;
case 0x4D:
/* FORMAT_TRACK */
// FLOPPY_DPRINTF("treat FORMAT_TRACK command\n");
FLOPPY_ERROR("treat FORMAT_TRACK command\n");
fdctrl_unimplemented();
break;
case 0x8E:
/* DRIVE_SPECIFICATION_COMMAND */
FLOPPY_DPRINTF("treat DRIVE_SPECIFICATION_COMMAND command\n");
if (fdctrl.fifo[fdctrl.data_pos - 1] & 0x80) {
/* Command parameters done */
if (fdctrl.fifo[fdctrl.data_pos - 1] & 0x40) {
fdctrl.fifo[0] = fdctrl.fifo[1];
fdctrl.fifo[2] = 0;
fdctrl.fifo[3] = 0;
fdctrl_set_fifo(4, 1);
} else {
fdctrl_reset_fifo();
}
} else if (fdctrl.data_len > 7) {
/* ERROR */
fdctrl.fifo[0] = 0x80 |
(cur_drv->head << 2) | fdctrl.cur_drv;
fdctrl_set_fifo(1, 1);
}
break;
case 0x8F:
/* RELATIVE_SEEK_OUT */
FLOPPY_DPRINTF("treat RELATIVE_SEEK_OUT command\n");
fdctrl.cur_drv = fdctrl.fifo[1] & 1;
cur_drv = fdctrl.cur_drv == 0 ? drv0 : drv1;
cur_drv->head = (fdctrl.fifo[1] >> 2) & 1;
if (fdctrl.fifo[2] + cur_drv->track > cur_drv->max_track) {
/* ERROR */
fdctrl_raise_irq(0x70);
} else {
cur_drv->track += fdctrl.fifo[2];
cur_drv->dir = 0;
fdctrl_reset_fifo();
fdctrl_raise_irq(0x20);
}
break;
case 0xCD:
/* FORMAT_AND_WRITE */
// FLOPPY_DPRINTF("treat FORMAT_AND_WRITE command\n");
FLOPPY_ERROR("treat FORMAT_AND_WRITE command\n");
fdctrl_unimplemented();
break;
case 0xCF:
/* RELATIVE_SEEK_IN */
FLOPPY_DPRINTF("treat RELATIVE_SEEK_IN command\n");
fdctrl.cur_drv = fdctrl.fifo[1] & 1;
cur_drv = fdctrl.cur_drv == 0 ? drv0 : drv1;
cur_drv->head = (fdctrl.fifo[1] >> 2) & 1;
if (fdctrl.fifo[2] > cur_drv->track) {
/* ERROR */
fdctrl_raise_irq(0x60);
} else {
fdctrl_reset_fifo();
cur_drv->track -= fdctrl.fifo[2];
cur_drv->dir = 1;
/* Raise Interrupt */
fdctrl_raise_irq(0x20);
}
break;
}
}
}