qemu/hw/mcf_intc.c
Alexander Graf 2507c12ab0 Add endianness as io mem parameter
As stated before, devices can be little, big or native endian. The
target endianness is not of their concern, so we need to push things
down a level.

This patch adds a parameter to cpu_register_io_memory that allows a
device to choose its endianness. For now, all devices simply choose
native endian, because that's the same behavior as before.

Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Blue Swirl <blauwirbel@gmail.com>
2010-12-11 15:24:25 +00:00

158 lines
3.7 KiB
C

/*
* ColdFire Interrupt Controller emulation.
*
* Copyright (c) 2007 CodeSourcery.
*
* This code is licenced under the GPL
*/
#include "hw.h"
#include "mcf.h"
typedef struct {
uint64_t ipr;
uint64_t imr;
uint64_t ifr;
uint64_t enabled;
uint8_t icr[64];
CPUState *env;
int active_vector;
} mcf_intc_state;
static void mcf_intc_update(mcf_intc_state *s)
{
uint64_t active;
int i;
int best;
int best_level;
active = (s->ipr | s->ifr) & s->enabled & ~s->imr;
best_level = 0;
best = 64;
if (active) {
for (i = 0; i < 64; i++) {
if ((active & 1) != 0 && s->icr[i] >= best_level) {
best_level = s->icr[i];
best = i;
}
active >>= 1;
}
}
s->active_vector = ((best == 64) ? 24 : (best + 64));
m68k_set_irq_level(s->env, best_level, s->active_vector);
}
static uint32_t mcf_intc_read(void *opaque, target_phys_addr_t addr)
{
int offset;
mcf_intc_state *s = (mcf_intc_state *)opaque;
offset = addr & 0xff;
if (offset >= 0x40 && offset < 0x80) {
return s->icr[offset - 0x40];
}
switch (offset) {
case 0x00:
return (uint32_t)(s->ipr >> 32);
case 0x04:
return (uint32_t)s->ipr;
case 0x08:
return (uint32_t)(s->imr >> 32);
case 0x0c:
return (uint32_t)s->imr;
case 0x10:
return (uint32_t)(s->ifr >> 32);
case 0x14:
return (uint32_t)s->ifr;
case 0xe0: /* SWIACK. */
return s->active_vector;
case 0xe1: case 0xe2: case 0xe3: case 0xe4:
case 0xe5: case 0xe6: case 0xe7:
/* LnIACK */
hw_error("mcf_intc_read: LnIACK not implemented\n");
default:
return 0;
}
}
static void mcf_intc_write(void *opaque, target_phys_addr_t addr, uint32_t val)
{
int offset;
mcf_intc_state *s = (mcf_intc_state *)opaque;
offset = addr & 0xff;
if (offset >= 0x40 && offset < 0x80) {
int n = offset - 0x40;
s->icr[n] = val;
if (val == 0)
s->enabled &= ~(1ull << n);
else
s->enabled |= (1ull << n);
mcf_intc_update(s);
return;
}
switch (offset) {
case 0x00: case 0x04:
/* Ignore IPR writes. */
return;
case 0x08:
s->imr = (s->imr & 0xffffffff) | ((uint64_t)val << 32);
break;
case 0x0c:
s->imr = (s->imr & 0xffffffff00000000ull) | (uint32_t)val;
break;
default:
hw_error("mcf_intc_write: Bad write offset %d\n", offset);
break;
}
mcf_intc_update(s);
}
static void mcf_intc_set_irq(void *opaque, int irq, int level)
{
mcf_intc_state *s = (mcf_intc_state *)opaque;
if (irq >= 64)
return;
if (level)
s->ipr |= 1ull << irq;
else
s->ipr &= ~(1ull << irq);
mcf_intc_update(s);
}
static void mcf_intc_reset(mcf_intc_state *s)
{
s->imr = ~0ull;
s->ipr = 0;
s->ifr = 0;
s->enabled = 0;
memset(s->icr, 0, 64);
s->active_vector = 24;
}
static CPUReadMemoryFunc * const mcf_intc_readfn[] = {
mcf_intc_read,
mcf_intc_read,
mcf_intc_read
};
static CPUWriteMemoryFunc * const mcf_intc_writefn[] = {
mcf_intc_write,
mcf_intc_write,
mcf_intc_write
};
qemu_irq *mcf_intc_init(target_phys_addr_t base, CPUState *env)
{
mcf_intc_state *s;
int iomemtype;
s = qemu_mallocz(sizeof(mcf_intc_state));
s->env = env;
mcf_intc_reset(s);
iomemtype = cpu_register_io_memory(mcf_intc_readfn,
mcf_intc_writefn, s,
DEVICE_NATIVE_ENDIAN);
cpu_register_physical_memory(base, 0x100, iomemtype);
return qemu_allocate_irqs(mcf_intc_set_irq, s, 64);
}