qemu/net.c
Mark McLoughlin 13cf8f2129 Port usb net to QemuOpts
We need net_client_init_from_opts() exported for this

Signed-off-by: Mark McLoughlin <markmc@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2009-10-06 14:36:13 -05:00

3258 lines
84 KiB
C

/*
* QEMU System Emulator
*
* Copyright (c) 2003-2008 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <unistd.h>
#include <fcntl.h>
#include <signal.h>
#include <time.h>
#include <errno.h>
#include <sys/time.h>
#include <zlib.h>
/* Needed early for CONFIG_BSD etc. */
#include "config-host.h"
#ifndef _WIN32
#include <sys/times.h>
#include <sys/wait.h>
#include <termios.h>
#include <sys/mman.h>
#include <sys/ioctl.h>
#include <sys/resource.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <net/if.h>
#ifdef __NetBSD__
#include <net/if_tap.h>
#endif
#ifdef __linux__
#include <linux/if_tun.h>
#endif
#include <arpa/inet.h>
#include <dirent.h>
#include <netdb.h>
#include <sys/select.h>
#ifdef CONFIG_BSD
#include <sys/stat.h>
#if defined(__FreeBSD__) || defined(__DragonFly__)
#include <libutil.h>
#else
#include <util.h>
#endif
#elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
#include <freebsd/stdlib.h>
#else
#ifdef __linux__
#include <pty.h>
#include <malloc.h>
#include <linux/rtc.h>
/* For the benefit of older linux systems which don't supply it,
we use a local copy of hpet.h. */
/* #include <linux/hpet.h> */
#include "hpet.h"
#include <linux/ppdev.h>
#include <linux/parport.h>
#endif
#ifdef __sun__
#include <sys/stat.h>
#include <sys/ethernet.h>
#include <sys/sockio.h>
#include <netinet/arp.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/ip_icmp.h> // must come after ip.h
#include <netinet/udp.h>
#include <netinet/tcp.h>
#include <net/if.h>
#include <syslog.h>
#include <stropts.h>
#endif
#endif
#endif
#if defined(__OpenBSD__)
#include <util.h>
#endif
#if defined(CONFIG_VDE)
#include <libvdeplug.h>
#endif
#include "qemu-common.h"
#include "net.h"
#include "monitor.h"
#include "sysemu.h"
#include "qemu-timer.h"
#include "qemu-char.h"
#include "audio/audio.h"
#include "qemu_socket.h"
#include "qemu-log.h"
#include "qemu-config.h"
#include "slirp/libslirp.h"
#include "qemu-queue.h"
static VLANState *first_vlan;
/***********************************************************/
/* network device redirectors */
#if defined(DEBUG_NET) || defined(DEBUG_SLIRP)
static void hex_dump(FILE *f, const uint8_t *buf, int size)
{
int len, i, j, c;
for(i=0;i<size;i+=16) {
len = size - i;
if (len > 16)
len = 16;
fprintf(f, "%08x ", i);
for(j=0;j<16;j++) {
if (j < len)
fprintf(f, " %02x", buf[i+j]);
else
fprintf(f, " ");
}
fprintf(f, " ");
for(j=0;j<len;j++) {
c = buf[i+j];
if (c < ' ' || c > '~')
c = '.';
fprintf(f, "%c", c);
}
fprintf(f, "\n");
}
}
#endif
static int parse_macaddr(uint8_t *macaddr, const char *p)
{
int i;
char *last_char;
long int offset;
errno = 0;
offset = strtol(p, &last_char, 0);
if (0 == errno && '\0' == *last_char &&
offset >= 0 && offset <= 0xFFFFFF) {
macaddr[3] = (offset & 0xFF0000) >> 16;
macaddr[4] = (offset & 0xFF00) >> 8;
macaddr[5] = offset & 0xFF;
return 0;
} else {
for(i = 0; i < 6; i++) {
macaddr[i] = strtol(p, (char **)&p, 16);
if (i == 5) {
if (*p != '\0')
return -1;
} else {
if (*p != ':' && *p != '-')
return -1;
p++;
}
}
return 0;
}
return -1;
}
static int get_str_sep(char *buf, int buf_size, const char **pp, int sep)
{
const char *p, *p1;
int len;
p = *pp;
p1 = strchr(p, sep);
if (!p1)
return -1;
len = p1 - p;
p1++;
if (buf_size > 0) {
if (len > buf_size - 1)
len = buf_size - 1;
memcpy(buf, p, len);
buf[len] = '\0';
}
*pp = p1;
return 0;
}
int parse_host_src_port(struct sockaddr_in *haddr,
struct sockaddr_in *saddr,
const char *input_str)
{
char *str = strdup(input_str);
char *host_str = str;
char *src_str;
const char *src_str2;
char *ptr;
/*
* Chop off any extra arguments at the end of the string which
* would start with a comma, then fill in the src port information
* if it was provided else use the "any address" and "any port".
*/
if ((ptr = strchr(str,',')))
*ptr = '\0';
if ((src_str = strchr(input_str,'@'))) {
*src_str = '\0';
src_str++;
}
if (parse_host_port(haddr, host_str) < 0)
goto fail;
src_str2 = src_str;
if (!src_str || *src_str == '\0')
src_str2 = ":0";
if (parse_host_port(saddr, src_str2) < 0)
goto fail;
free(str);
return(0);
fail:
free(str);
return -1;
}
int parse_host_port(struct sockaddr_in *saddr, const char *str)
{
char buf[512];
struct hostent *he;
const char *p, *r;
int port;
p = str;
if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
return -1;
saddr->sin_family = AF_INET;
if (buf[0] == '\0') {
saddr->sin_addr.s_addr = 0;
} else {
if (qemu_isdigit(buf[0])) {
if (!inet_aton(buf, &saddr->sin_addr))
return -1;
} else {
if ((he = gethostbyname(buf)) == NULL)
return - 1;
saddr->sin_addr = *(struct in_addr *)he->h_addr;
}
}
port = strtol(p, (char **)&r, 0);
if (r == p)
return -1;
saddr->sin_port = htons(port);
return 0;
}
void qemu_format_nic_info_str(VLANClientState *vc, uint8_t macaddr[6])
{
snprintf(vc->info_str, sizeof(vc->info_str),
"model=%s,macaddr=%02x:%02x:%02x:%02x:%02x:%02x",
vc->model,
macaddr[0], macaddr[1], macaddr[2],
macaddr[3], macaddr[4], macaddr[5]);
}
static char *assign_name(VLANClientState *vc1, const char *model)
{
VLANState *vlan;
char buf[256];
int id = 0;
for (vlan = first_vlan; vlan; vlan = vlan->next) {
VLANClientState *vc;
for (vc = vlan->first_client; vc; vc = vc->next)
if (vc != vc1 && strcmp(vc->model, model) == 0)
id++;
}
snprintf(buf, sizeof(buf), "%s.%d", model, id);
return qemu_strdup(buf);
}
VLANClientState *qemu_new_vlan_client(VLANState *vlan,
const char *model,
const char *name,
NetCanReceive *can_receive,
NetReceive *receive,
NetReceiveIOV *receive_iov,
NetCleanup *cleanup,
void *opaque)
{
VLANClientState *vc, **pvc;
vc = qemu_mallocz(sizeof(VLANClientState));
vc->model = qemu_strdup(model);
if (name)
vc->name = qemu_strdup(name);
else
vc->name = assign_name(vc, model);
vc->can_receive = can_receive;
vc->receive = receive;
vc->receive_iov = receive_iov;
vc->cleanup = cleanup;
vc->opaque = opaque;
vc->vlan = vlan;
vc->next = NULL;
pvc = &vlan->first_client;
while (*pvc != NULL)
pvc = &(*pvc)->next;
*pvc = vc;
return vc;
}
void qemu_del_vlan_client(VLANClientState *vc)
{
VLANClientState **pvc = &vc->vlan->first_client;
while (*pvc != NULL)
if (*pvc == vc) {
*pvc = vc->next;
if (vc->cleanup) {
vc->cleanup(vc);
}
qemu_free(vc->name);
qemu_free(vc->model);
qemu_free(vc);
break;
} else
pvc = &(*pvc)->next;
}
VLANClientState *qemu_find_vlan_client(VLANState *vlan, void *opaque)
{
VLANClientState **pvc = &vlan->first_client;
while (*pvc != NULL)
if ((*pvc)->opaque == opaque)
return *pvc;
else
pvc = &(*pvc)->next;
return NULL;
}
static VLANClientState *
qemu_find_vlan_client_by_name(Monitor *mon, int vlan_id,
const char *client_str)
{
VLANState *vlan;
VLANClientState *vc;
vlan = qemu_find_vlan(vlan_id, 0);
if (!vlan) {
monitor_printf(mon, "unknown VLAN %d\n", vlan_id);
return NULL;
}
for (vc = vlan->first_client; vc != NULL; vc = vc->next) {
if (!strcmp(vc->name, client_str)) {
break;
}
}
if (!vc) {
monitor_printf(mon, "can't find device %s on VLAN %d\n",
client_str, vlan_id);
}
return vc;
}
int qemu_can_send_packet(VLANClientState *sender)
{
VLANState *vlan = sender->vlan;
VLANClientState *vc;
for (vc = vlan->first_client; vc != NULL; vc = vc->next) {
if (vc == sender) {
continue;
}
/* no can_receive() handler, they can always receive */
if (!vc->can_receive || vc->can_receive(vc)) {
return 1;
}
}
return 0;
}
static int
qemu_deliver_packet(VLANClientState *sender, const uint8_t *buf, int size)
{
VLANClientState *vc;
int ret = -1;
sender->vlan->delivering = 1;
for (vc = sender->vlan->first_client; vc != NULL; vc = vc->next) {
ssize_t len;
if (vc == sender) {
continue;
}
if (vc->link_down) {
ret = size;
continue;
}
len = vc->receive(vc, buf, size);
ret = (ret >= 0) ? ret : len;
}
sender->vlan->delivering = 0;
return ret;
}
void qemu_purge_queued_packets(VLANClientState *vc)
{
VLANPacket *packet, *next;
QTAILQ_FOREACH_SAFE(packet, &vc->vlan->send_queue, entry, next) {
if (packet->sender == vc) {
QTAILQ_REMOVE(&vc->vlan->send_queue, packet, entry);
qemu_free(packet);
}
}
}
void qemu_flush_queued_packets(VLANClientState *vc)
{
while (!QTAILQ_EMPTY(&vc->vlan->send_queue)) {
VLANPacket *packet;
int ret;
packet = QTAILQ_FIRST(&vc->vlan->send_queue);
QTAILQ_REMOVE(&vc->vlan->send_queue, packet, entry);
ret = qemu_deliver_packet(packet->sender, packet->data, packet->size);
if (ret == 0 && packet->sent_cb != NULL) {
QTAILQ_INSERT_HEAD(&vc->vlan->send_queue, packet, entry);
break;
}
if (packet->sent_cb)
packet->sent_cb(packet->sender, ret);
qemu_free(packet);
}
}
static void qemu_enqueue_packet(VLANClientState *sender,
const uint8_t *buf, int size,
NetPacketSent *sent_cb)
{
VLANPacket *packet;
packet = qemu_malloc(sizeof(VLANPacket) + size);
packet->sender = sender;
packet->size = size;
packet->sent_cb = sent_cb;
memcpy(packet->data, buf, size);
QTAILQ_INSERT_TAIL(&sender->vlan->send_queue, packet, entry);
}
ssize_t qemu_send_packet_async(VLANClientState *sender,
const uint8_t *buf, int size,
NetPacketSent *sent_cb)
{
int ret;
if (sender->link_down) {
return size;
}
#ifdef DEBUG_NET
printf("vlan %d send:\n", sender->vlan->id);
hex_dump(stdout, buf, size);
#endif
if (sender->vlan->delivering) {
qemu_enqueue_packet(sender, buf, size, NULL);
return size;
}
ret = qemu_deliver_packet(sender, buf, size);
if (ret == 0 && sent_cb != NULL) {
qemu_enqueue_packet(sender, buf, size, sent_cb);
return 0;
}
qemu_flush_queued_packets(sender);
return ret;
}
void qemu_send_packet(VLANClientState *vc, const uint8_t *buf, int size)
{
qemu_send_packet_async(vc, buf, size, NULL);
}
static ssize_t vc_sendv_compat(VLANClientState *vc, const struct iovec *iov,
int iovcnt)
{
uint8_t buffer[4096];
size_t offset = 0;
int i;
for (i = 0; i < iovcnt; i++) {
size_t len;
len = MIN(sizeof(buffer) - offset, iov[i].iov_len);
memcpy(buffer + offset, iov[i].iov_base, len);
offset += len;
}
return vc->receive(vc, buffer, offset);
}
static ssize_t calc_iov_length(const struct iovec *iov, int iovcnt)
{
size_t offset = 0;
int i;
for (i = 0; i < iovcnt; i++)
offset += iov[i].iov_len;
return offset;
}
static int qemu_deliver_packet_iov(VLANClientState *sender,
const struct iovec *iov, int iovcnt)
{
VLANClientState *vc;
int ret = -1;
sender->vlan->delivering = 1;
for (vc = sender->vlan->first_client; vc != NULL; vc = vc->next) {
ssize_t len;
if (vc == sender) {
continue;
}
if (vc->link_down) {
ret = calc_iov_length(iov, iovcnt);
continue;
}
if (vc->receive_iov) {
len = vc->receive_iov(vc, iov, iovcnt);
} else {
len = vc_sendv_compat(vc, iov, iovcnt);
}
ret = (ret >= 0) ? ret : len;
}
sender->vlan->delivering = 0;
return ret;
}
static ssize_t qemu_enqueue_packet_iov(VLANClientState *sender,
const struct iovec *iov, int iovcnt,
NetPacketSent *sent_cb)
{
VLANPacket *packet;
size_t max_len = 0;
int i;
max_len = calc_iov_length(iov, iovcnt);
packet = qemu_malloc(sizeof(VLANPacket) + max_len);
packet->sender = sender;
packet->sent_cb = sent_cb;
packet->size = 0;
for (i = 0; i < iovcnt; i++) {
size_t len = iov[i].iov_len;
memcpy(packet->data + packet->size, iov[i].iov_base, len);
packet->size += len;
}
QTAILQ_INSERT_TAIL(&sender->vlan->send_queue, packet, entry);
return packet->size;
}
ssize_t qemu_sendv_packet_async(VLANClientState *sender,
const struct iovec *iov, int iovcnt,
NetPacketSent *sent_cb)
{
int ret;
if (sender->link_down) {
return calc_iov_length(iov, iovcnt);
}
if (sender->vlan->delivering) {
return qemu_enqueue_packet_iov(sender, iov, iovcnt, NULL);
}
ret = qemu_deliver_packet_iov(sender, iov, iovcnt);
if (ret == 0 && sent_cb != NULL) {
qemu_enqueue_packet_iov(sender, iov, iovcnt, sent_cb);
return 0;
}
qemu_flush_queued_packets(sender);
return ret;
}
ssize_t
qemu_sendv_packet(VLANClientState *vc, const struct iovec *iov, int iovcnt)
{
return qemu_sendv_packet_async(vc, iov, iovcnt, NULL);
}
#if defined(CONFIG_SLIRP)
/* slirp network adapter */
#define SLIRP_CFG_HOSTFWD 1
#define SLIRP_CFG_LEGACY 2
struct slirp_config_str {
struct slirp_config_str *next;
int flags;
char str[1024];
int legacy_format;
};
typedef struct SlirpState {
QTAILQ_ENTRY(SlirpState) entry;
VLANClientState *vc;
Slirp *slirp;
#ifndef _WIN32
char smb_dir[128];
#endif
} SlirpState;
static struct slirp_config_str *slirp_configs;
const char *legacy_tftp_prefix;
const char *legacy_bootp_filename;
static QTAILQ_HEAD(slirp_stacks, SlirpState) slirp_stacks =
QTAILQ_HEAD_INITIALIZER(slirp_stacks);
static int slirp_hostfwd(SlirpState *s, const char *redir_str,
int legacy_format);
static int slirp_guestfwd(SlirpState *s, const char *config_str,
int legacy_format);
#ifndef _WIN32
static const char *legacy_smb_export;
static int slirp_smb(SlirpState *s, const char *exported_dir,
struct in_addr vserver_addr);
static void slirp_smb_cleanup(SlirpState *s);
#else
static inline void slirp_smb_cleanup(SlirpState *s) { }
#endif
int slirp_can_output(void *opaque)
{
SlirpState *s = opaque;
return qemu_can_send_packet(s->vc);
}
void slirp_output(void *opaque, const uint8_t *pkt, int pkt_len)
{
SlirpState *s = opaque;
#ifdef DEBUG_SLIRP
printf("slirp output:\n");
hex_dump(stdout, pkt, pkt_len);
#endif
qemu_send_packet(s->vc, pkt, pkt_len);
}
static ssize_t slirp_receive(VLANClientState *vc, const uint8_t *buf, size_t size)
{
SlirpState *s = vc->opaque;
#ifdef DEBUG_SLIRP
printf("slirp input:\n");
hex_dump(stdout, buf, size);
#endif
slirp_input(s->slirp, buf, size);
return size;
}
static void net_slirp_cleanup(VLANClientState *vc)
{
SlirpState *s = vc->opaque;
slirp_cleanup(s->slirp);
slirp_smb_cleanup(s);
QTAILQ_REMOVE(&slirp_stacks, s, entry);
qemu_free(s);
}
static int net_slirp_init(VLANState *vlan, const char *model,
const char *name, int restricted,
const char *vnetwork, const char *vhost,
const char *vhostname, const char *tftp_export,
const char *bootfile, const char *vdhcp_start,
const char *vnameserver, const char *smb_export,
const char *vsmbserver)
{
/* default settings according to historic slirp */
struct in_addr net = { .s_addr = htonl(0x0a000200) }; /* 10.0.2.0 */
struct in_addr mask = { .s_addr = htonl(0xffffff00) }; /* 255.255.255.0 */
struct in_addr host = { .s_addr = htonl(0x0a000202) }; /* 10.0.2.2 */
struct in_addr dhcp = { .s_addr = htonl(0x0a00020f) }; /* 10.0.2.15 */
struct in_addr dns = { .s_addr = htonl(0x0a000203) }; /* 10.0.2.3 */
#ifndef _WIN32
struct in_addr smbsrv = { .s_addr = 0 };
#endif
SlirpState *s;
char buf[20];
uint32_t addr;
int shift;
char *end;
struct slirp_config_str *config;
if (!tftp_export) {
tftp_export = legacy_tftp_prefix;
}
if (!bootfile) {
bootfile = legacy_bootp_filename;
}
if (vnetwork) {
if (get_str_sep(buf, sizeof(buf), &vnetwork, '/') < 0) {
if (!inet_aton(vnetwork, &net)) {
return -1;
}
addr = ntohl(net.s_addr);
if (!(addr & 0x80000000)) {
mask.s_addr = htonl(0xff000000); /* class A */
} else if ((addr & 0xfff00000) == 0xac100000) {
mask.s_addr = htonl(0xfff00000); /* priv. 172.16.0.0/12 */
} else if ((addr & 0xc0000000) == 0x80000000) {
mask.s_addr = htonl(0xffff0000); /* class B */
} else if ((addr & 0xffff0000) == 0xc0a80000) {
mask.s_addr = htonl(0xffff0000); /* priv. 192.168.0.0/16 */
} else if ((addr & 0xffff0000) == 0xc6120000) {
mask.s_addr = htonl(0xfffe0000); /* tests 198.18.0.0/15 */
} else if ((addr & 0xe0000000) == 0xe0000000) {
mask.s_addr = htonl(0xffffff00); /* class C */
} else {
mask.s_addr = htonl(0xfffffff0); /* multicast/reserved */
}
} else {
if (!inet_aton(buf, &net)) {
return -1;
}
shift = strtol(vnetwork, &end, 10);
if (*end != '\0') {
if (!inet_aton(vnetwork, &mask)) {
return -1;
}
} else if (shift < 4 || shift > 32) {
return -1;
} else {
mask.s_addr = htonl(0xffffffff << (32 - shift));
}
}
net.s_addr &= mask.s_addr;
host.s_addr = net.s_addr | (htonl(0x0202) & ~mask.s_addr);
dhcp.s_addr = net.s_addr | (htonl(0x020f) & ~mask.s_addr);
dns.s_addr = net.s_addr | (htonl(0x0203) & ~mask.s_addr);
}
if (vhost && !inet_aton(vhost, &host)) {
return -1;
}
if ((host.s_addr & mask.s_addr) != net.s_addr) {
return -1;
}
if (vdhcp_start && !inet_aton(vdhcp_start, &dhcp)) {
return -1;
}
if ((dhcp.s_addr & mask.s_addr) != net.s_addr ||
dhcp.s_addr == host.s_addr || dhcp.s_addr == dns.s_addr) {
return -1;
}
if (vnameserver && !inet_aton(vnameserver, &dns)) {
return -1;
}
if ((dns.s_addr & mask.s_addr) != net.s_addr ||
dns.s_addr == host.s_addr) {
return -1;
}
#ifndef _WIN32
if (vsmbserver && !inet_aton(vsmbserver, &smbsrv)) {
return -1;
}
#endif
s = qemu_mallocz(sizeof(SlirpState));
s->slirp = slirp_init(restricted, net, mask, host, vhostname,
tftp_export, bootfile, dhcp, dns, s);
QTAILQ_INSERT_TAIL(&slirp_stacks, s, entry);
for (config = slirp_configs; config; config = config->next) {
if (config->flags & SLIRP_CFG_HOSTFWD) {
if (slirp_hostfwd(s, config->str,
config->flags & SLIRP_CFG_LEGACY) < 0)
return -1;
} else {
if (slirp_guestfwd(s, config->str,
config->flags & SLIRP_CFG_LEGACY) < 0)
return -1;
}
}
#ifndef _WIN32
if (!smb_export) {
smb_export = legacy_smb_export;
}
if (smb_export) {
if (slirp_smb(s, smb_export, smbsrv) < 0)
return -1;
}
#endif
s->vc = qemu_new_vlan_client(vlan, model, name, NULL, slirp_receive, NULL,
net_slirp_cleanup, s);
snprintf(s->vc->info_str, sizeof(s->vc->info_str),
"net=%s, restricted=%c", inet_ntoa(net), restricted ? 'y' : 'n');
return 0;
}
static SlirpState *slirp_lookup(Monitor *mon, const char *vlan,
const char *stack)
{
VLANClientState *vc;
if (vlan) {
vc = qemu_find_vlan_client_by_name(mon, strtol(vlan, NULL, 0), stack);
if (!vc) {
return NULL;
}
if (strcmp(vc->model, "user")) {
monitor_printf(mon, "invalid device specified\n");
return NULL;
}
return vc->opaque;
} else {
if (QTAILQ_EMPTY(&slirp_stacks)) {
monitor_printf(mon, "user mode network stack not in use\n");
return NULL;
}
return QTAILQ_FIRST(&slirp_stacks);
}
}
void net_slirp_hostfwd_remove(Monitor *mon, const QDict *qdict)
{
struct in_addr host_addr = { .s_addr = INADDR_ANY };
int host_port;
char buf[256] = "";
const char *src_str, *p;
SlirpState *s;
int is_udp = 0;
int err;
const char *arg1 = qdict_get_str(qdict, "arg1");
const char *arg2 = qdict_get_try_str(qdict, "arg2");
const char *arg3 = qdict_get_try_str(qdict, "arg3");
if (arg2) {
s = slirp_lookup(mon, arg1, arg2);
src_str = arg3;
} else {
s = slirp_lookup(mon, NULL, NULL);
src_str = arg1;
}
if (!s) {
return;
}
if (!src_str || !src_str[0])
goto fail_syntax;
p = src_str;
get_str_sep(buf, sizeof(buf), &p, ':');
if (!strcmp(buf, "tcp") || buf[0] == '\0') {
is_udp = 0;
} else if (!strcmp(buf, "udp")) {
is_udp = 1;
} else {
goto fail_syntax;
}
if (get_str_sep(buf, sizeof(buf), &p, ':') < 0) {
goto fail_syntax;
}
if (buf[0] != '\0' && !inet_aton(buf, &host_addr)) {
goto fail_syntax;
}
host_port = atoi(p);
err = slirp_remove_hostfwd(QTAILQ_FIRST(&slirp_stacks)->slirp, is_udp,
host_addr, host_port);
monitor_printf(mon, "host forwarding rule for %s %s\n", src_str,
err ? "removed" : "not found");
return;
fail_syntax:
monitor_printf(mon, "invalid format\n");
}
static int slirp_hostfwd(SlirpState *s, const char *redir_str,
int legacy_format)
{
struct in_addr host_addr = { .s_addr = INADDR_ANY };
struct in_addr guest_addr = { .s_addr = 0 };
int host_port, guest_port;
const char *p;
char buf[256];
int is_udp;
char *end;
p = redir_str;
if (!p || get_str_sep(buf, sizeof(buf), &p, ':') < 0) {
goto fail_syntax;
}
if (!strcmp(buf, "tcp") || buf[0] == '\0') {
is_udp = 0;
} else if (!strcmp(buf, "udp")) {
is_udp = 1;
} else {
goto fail_syntax;
}
if (!legacy_format) {
if (get_str_sep(buf, sizeof(buf), &p, ':') < 0) {
goto fail_syntax;
}
if (buf[0] != '\0' && !inet_aton(buf, &host_addr)) {
goto fail_syntax;
}
}
if (get_str_sep(buf, sizeof(buf), &p, legacy_format ? ':' : '-') < 0) {
goto fail_syntax;
}
host_port = strtol(buf, &end, 0);
if (*end != '\0' || host_port < 1 || host_port > 65535) {
goto fail_syntax;
}
if (get_str_sep(buf, sizeof(buf), &p, ':') < 0) {
goto fail_syntax;
}
if (buf[0] != '\0' && !inet_aton(buf, &guest_addr)) {
goto fail_syntax;
}
guest_port = strtol(p, &end, 0);
if (*end != '\0' || guest_port < 1 || guest_port > 65535) {
goto fail_syntax;
}
if (slirp_add_hostfwd(s->slirp, is_udp, host_addr, host_port, guest_addr,
guest_port) < 0) {
qemu_error("could not set up host forwarding rule '%s'\n",
redir_str);
return -1;
}
return 0;
fail_syntax:
qemu_error("invalid host forwarding rule '%s'\n", redir_str);
return -1;
}
void net_slirp_hostfwd_add(Monitor *mon, const QDict *qdict)
{
const char *redir_str;
SlirpState *s;
const char *arg1 = qdict_get_str(qdict, "arg1");
const char *arg2 = qdict_get_try_str(qdict, "arg2");
const char *arg3 = qdict_get_try_str(qdict, "arg3");
if (arg2) {
s = slirp_lookup(mon, arg1, arg2);
redir_str = arg3;
} else {
s = slirp_lookup(mon, NULL, NULL);
redir_str = arg1;
}
if (s) {
slirp_hostfwd(s, redir_str, 0);
}
}
int net_slirp_redir(const char *redir_str)
{
struct slirp_config_str *config;
if (QTAILQ_EMPTY(&slirp_stacks)) {
config = qemu_malloc(sizeof(*config));
pstrcpy(config->str, sizeof(config->str), redir_str);
config->flags = SLIRP_CFG_HOSTFWD | SLIRP_CFG_LEGACY;
config->next = slirp_configs;
slirp_configs = config;
return 0;
}
return slirp_hostfwd(QTAILQ_FIRST(&slirp_stacks), redir_str, 1);
}
#ifndef _WIN32
/* automatic user mode samba server configuration */
static void slirp_smb_cleanup(SlirpState *s)
{
char cmd[128];
if (s->smb_dir[0] != '\0') {
snprintf(cmd, sizeof(cmd), "rm -rf %s", s->smb_dir);
system(cmd);
s->smb_dir[0] = '\0';
}
}
static int slirp_smb(SlirpState* s, const char *exported_dir,
struct in_addr vserver_addr)
{
static int instance;
char smb_conf[128];
char smb_cmdline[128];
FILE *f;
snprintf(s->smb_dir, sizeof(s->smb_dir), "/tmp/qemu-smb.%ld-%d",
(long)getpid(), instance++);
if (mkdir(s->smb_dir, 0700) < 0) {
qemu_error("could not create samba server dir '%s'\n", s->smb_dir);
return -1;
}
snprintf(smb_conf, sizeof(smb_conf), "%s/%s", s->smb_dir, "smb.conf");
f = fopen(smb_conf, "w");
if (!f) {
slirp_smb_cleanup(s);
qemu_error("could not create samba server configuration file '%s'\n",
smb_conf);
return -1;
}
fprintf(f,
"[global]\n"
"private dir=%s\n"
"smb ports=0\n"
"socket address=127.0.0.1\n"
"pid directory=%s\n"
"lock directory=%s\n"
"log file=%s/log.smbd\n"
"smb passwd file=%s/smbpasswd\n"
"security = share\n"
"[qemu]\n"
"path=%s\n"
"read only=no\n"
"guest ok=yes\n",
s->smb_dir,
s->smb_dir,
s->smb_dir,
s->smb_dir,
s->smb_dir,
exported_dir
);
fclose(f);
snprintf(smb_cmdline, sizeof(smb_cmdline), "%s -s %s",
SMBD_COMMAND, smb_conf);
if (slirp_add_exec(s->slirp, 0, smb_cmdline, &vserver_addr, 139) < 0) {
slirp_smb_cleanup(s);
qemu_error("conflicting/invalid smbserver address\n");
return -1;
}
return 0;
}
/* automatic user mode samba server configuration (legacy interface) */
int net_slirp_smb(const char *exported_dir)
{
struct in_addr vserver_addr = { .s_addr = 0 };
if (legacy_smb_export) {
fprintf(stderr, "-smb given twice\n");
return -1;
}
legacy_smb_export = exported_dir;
if (!QTAILQ_EMPTY(&slirp_stacks)) {
return slirp_smb(QTAILQ_FIRST(&slirp_stacks), exported_dir,
vserver_addr);
}
return 0;
}
#endif /* !defined(_WIN32) */
struct GuestFwd {
CharDriverState *hd;
struct in_addr server;
int port;
Slirp *slirp;
};
static int guestfwd_can_read(void *opaque)
{
struct GuestFwd *fwd = opaque;
return slirp_socket_can_recv(fwd->slirp, fwd->server, fwd->port);
}
static void guestfwd_read(void *opaque, const uint8_t *buf, int size)
{
struct GuestFwd *fwd = opaque;
slirp_socket_recv(fwd->slirp, fwd->server, fwd->port, buf, size);
}
static int slirp_guestfwd(SlirpState *s, const char *config_str,
int legacy_format)
{
struct in_addr server = { .s_addr = 0 };
struct GuestFwd *fwd;
const char *p;
char buf[128];
char *end;
int port;
p = config_str;
if (legacy_format) {
if (get_str_sep(buf, sizeof(buf), &p, ':') < 0) {
goto fail_syntax;
}
} else {
if (get_str_sep(buf, sizeof(buf), &p, ':') < 0) {
goto fail_syntax;
}
if (strcmp(buf, "tcp") && buf[0] != '\0') {
goto fail_syntax;
}
if (get_str_sep(buf, sizeof(buf), &p, ':') < 0) {
goto fail_syntax;
}
if (buf[0] != '\0' && !inet_aton(buf, &server)) {
goto fail_syntax;
}
if (get_str_sep(buf, sizeof(buf), &p, '-') < 0) {
goto fail_syntax;
}
}
port = strtol(buf, &end, 10);
if (*end != '\0' || port < 1 || port > 65535) {
goto fail_syntax;
}
fwd = qemu_malloc(sizeof(struct GuestFwd));
snprintf(buf, sizeof(buf), "guestfwd.tcp:%d", port);
fwd->hd = qemu_chr_open(buf, p, NULL);
if (!fwd->hd) {
qemu_error("could not open guest forwarding device '%s'\n", buf);
qemu_free(fwd);
return -1;
}
if (slirp_add_exec(s->slirp, 3, fwd->hd, &server, port) < 0) {
qemu_error("conflicting/invalid host:port in guest forwarding "
"rule '%s'\n", config_str);
qemu_free(fwd);
return -1;
}
fwd->server = server;
fwd->port = port;
fwd->slirp = s->slirp;
qemu_chr_add_handlers(fwd->hd, guestfwd_can_read, guestfwd_read,
NULL, fwd);
return 0;
fail_syntax:
qemu_error("invalid guest forwarding rule '%s'\n", config_str);
return -1;
}
void do_info_usernet(Monitor *mon)
{
SlirpState *s;
QTAILQ_FOREACH(s, &slirp_stacks, entry) {
monitor_printf(mon, "VLAN %d (%s):\n", s->vc->vlan->id, s->vc->name);
slirp_connection_info(s->slirp, mon);
}
}
#endif /* CONFIG_SLIRP */
#if !defined(_WIN32)
typedef struct TAPState {
VLANClientState *vc;
int fd;
char down_script[1024];
char down_script_arg[128];
uint8_t buf[4096];
unsigned int read_poll : 1;
unsigned int write_poll : 1;
} TAPState;
static int launch_script(const char *setup_script, const char *ifname, int fd);
static int tap_can_send(void *opaque);
static void tap_send(void *opaque);
static void tap_writable(void *opaque);
static void tap_update_fd_handler(TAPState *s)
{
qemu_set_fd_handler2(s->fd,
s->read_poll ? tap_can_send : NULL,
s->read_poll ? tap_send : NULL,
s->write_poll ? tap_writable : NULL,
s);
}
static void tap_read_poll(TAPState *s, int enable)
{
s->read_poll = !!enable;
tap_update_fd_handler(s);
}
static void tap_write_poll(TAPState *s, int enable)
{
s->write_poll = !!enable;
tap_update_fd_handler(s);
}
static void tap_writable(void *opaque)
{
TAPState *s = opaque;
tap_write_poll(s, 0);
qemu_flush_queued_packets(s->vc);
}
static ssize_t tap_receive_iov(VLANClientState *vc, const struct iovec *iov,
int iovcnt)
{
TAPState *s = vc->opaque;
ssize_t len;
do {
len = writev(s->fd, iov, iovcnt);
} while (len == -1 && errno == EINTR);
if (len == -1 && errno == EAGAIN) {
tap_write_poll(s, 1);
return 0;
}
return len;
}
static ssize_t tap_receive(VLANClientState *vc, const uint8_t *buf, size_t size)
{
TAPState *s = vc->opaque;
ssize_t len;
do {
len = write(s->fd, buf, size);
} while (len == -1 && (errno == EINTR || errno == EAGAIN));
return len;
}
static int tap_can_send(void *opaque)
{
TAPState *s = opaque;
return qemu_can_send_packet(s->vc);
}
#ifdef __sun__
static ssize_t tap_read_packet(int tapfd, uint8_t *buf, int maxlen)
{
struct strbuf sbuf;
int f = 0;
sbuf.maxlen = maxlen;
sbuf.buf = (char *)buf;
return getmsg(tapfd, NULL, &sbuf, &f) >= 0 ? sbuf.len : -1;
}
#else
static ssize_t tap_read_packet(int tapfd, uint8_t *buf, int maxlen)
{
return read(tapfd, buf, maxlen);
}
#endif
static void tap_send_completed(VLANClientState *vc, ssize_t len)
{
TAPState *s = vc->opaque;
tap_read_poll(s, 1);
}
static void tap_send(void *opaque)
{
TAPState *s = opaque;
int size;
do {
size = tap_read_packet(s->fd, s->buf, sizeof(s->buf));
if (size <= 0) {
break;
}
size = qemu_send_packet_async(s->vc, s->buf, size, tap_send_completed);
if (size == 0) {
tap_read_poll(s, 0);
}
} while (size > 0);
}
#ifdef TUNSETSNDBUF
/* sndbuf should be set to a value lower than the tx queue
* capacity of any destination network interface.
* Ethernet NICs generally have txqueuelen=1000, so 1Mb is
* a good default, given a 1500 byte MTU.
*/
#define TAP_DEFAULT_SNDBUF 1024*1024
static int tap_set_sndbuf(TAPState *s, QemuOpts *opts)
{
int sndbuf;
sndbuf = qemu_opt_get_size(opts, "sndbuf", TAP_DEFAULT_SNDBUF);
if (!sndbuf) {
sndbuf = INT_MAX;
}
if (ioctl(s->fd, TUNSETSNDBUF, &sndbuf) == -1 && qemu_opt_get(opts, "sndbuf")) {
qemu_error("TUNSETSNDBUF ioctl failed: %s\n", strerror(errno));
return -1;
}
return 0;
}
#else
static int tap_set_sndbuf(TAPState *s, QemuOpts *opts)
{
return 0;
}
#endif /* TUNSETSNDBUF */
static void tap_cleanup(VLANClientState *vc)
{
TAPState *s = vc->opaque;
qemu_purge_queued_packets(vc);
if (s->down_script[0])
launch_script(s->down_script, s->down_script_arg, s->fd);
tap_read_poll(s, 0);
tap_write_poll(s, 0);
close(s->fd);
qemu_free(s);
}
/* fd support */
static TAPState *net_tap_fd_init(VLANState *vlan,
const char *model,
const char *name,
int fd)
{
TAPState *s;
s = qemu_mallocz(sizeof(TAPState));
s->fd = fd;
s->vc = qemu_new_vlan_client(vlan, model, name, NULL, tap_receive,
tap_receive_iov, tap_cleanup, s);
tap_read_poll(s, 1);
snprintf(s->vc->info_str, sizeof(s->vc->info_str), "fd=%d", fd);
return s;
}
#if defined (CONFIG_BSD) || defined (__FreeBSD_kernel__)
static int tap_open(char *ifname, int ifname_size)
{
int fd;
char *dev;
struct stat s;
TFR(fd = open("/dev/tap", O_RDWR));
if (fd < 0) {
fprintf(stderr, "warning: could not open /dev/tap: no virtual network emulation\n");
return -1;
}
fstat(fd, &s);
dev = devname(s.st_rdev, S_IFCHR);
pstrcpy(ifname, ifname_size, dev);
fcntl(fd, F_SETFL, O_NONBLOCK);
return fd;
}
#elif defined(__sun__)
#define TUNNEWPPA (('T'<<16) | 0x0001)
/*
* Allocate TAP device, returns opened fd.
* Stores dev name in the first arg(must be large enough).
*/
static int tap_alloc(char *dev, size_t dev_size)
{
int tap_fd, if_fd, ppa = -1;
static int ip_fd = 0;
char *ptr;
static int arp_fd = 0;
int ip_muxid, arp_muxid;
struct strioctl strioc_if, strioc_ppa;
int link_type = I_PLINK;;
struct lifreq ifr;
char actual_name[32] = "";
memset(&ifr, 0x0, sizeof(ifr));
if( *dev ){
ptr = dev;
while( *ptr && !qemu_isdigit((int)*ptr) ) ptr++;
ppa = atoi(ptr);
}
/* Check if IP device was opened */
if( ip_fd )
close(ip_fd);
TFR(ip_fd = open("/dev/udp", O_RDWR, 0));
if (ip_fd < 0) {
syslog(LOG_ERR, "Can't open /dev/ip (actually /dev/udp)");
return -1;
}
TFR(tap_fd = open("/dev/tap", O_RDWR, 0));
if (tap_fd < 0) {
syslog(LOG_ERR, "Can't open /dev/tap");
return -1;
}
/* Assign a new PPA and get its unit number. */
strioc_ppa.ic_cmd = TUNNEWPPA;
strioc_ppa.ic_timout = 0;
strioc_ppa.ic_len = sizeof(ppa);
strioc_ppa.ic_dp = (char *)&ppa;
if ((ppa = ioctl (tap_fd, I_STR, &strioc_ppa)) < 0)
syslog (LOG_ERR, "Can't assign new interface");
TFR(if_fd = open("/dev/tap", O_RDWR, 0));
if (if_fd < 0) {
syslog(LOG_ERR, "Can't open /dev/tap (2)");
return -1;
}
if(ioctl(if_fd, I_PUSH, "ip") < 0){
syslog(LOG_ERR, "Can't push IP module");
return -1;
}
if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) < 0)
syslog(LOG_ERR, "Can't get flags\n");
snprintf (actual_name, 32, "tap%d", ppa);
pstrcpy(ifr.lifr_name, sizeof(ifr.lifr_name), actual_name);
ifr.lifr_ppa = ppa;
/* Assign ppa according to the unit number returned by tun device */
if (ioctl (if_fd, SIOCSLIFNAME, &ifr) < 0)
syslog (LOG_ERR, "Can't set PPA %d", ppa);
if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) <0)
syslog (LOG_ERR, "Can't get flags\n");
/* Push arp module to if_fd */
if (ioctl (if_fd, I_PUSH, "arp") < 0)
syslog (LOG_ERR, "Can't push ARP module (2)");
/* Push arp module to ip_fd */
if (ioctl (ip_fd, I_POP, NULL) < 0)
syslog (LOG_ERR, "I_POP failed\n");
if (ioctl (ip_fd, I_PUSH, "arp") < 0)
syslog (LOG_ERR, "Can't push ARP module (3)\n");
/* Open arp_fd */
TFR(arp_fd = open ("/dev/tap", O_RDWR, 0));
if (arp_fd < 0)
syslog (LOG_ERR, "Can't open %s\n", "/dev/tap");
/* Set ifname to arp */
strioc_if.ic_cmd = SIOCSLIFNAME;
strioc_if.ic_timout = 0;
strioc_if.ic_len = sizeof(ifr);
strioc_if.ic_dp = (char *)&ifr;
if (ioctl(arp_fd, I_STR, &strioc_if) < 0){
syslog (LOG_ERR, "Can't set ifname to arp\n");
}
if((ip_muxid = ioctl(ip_fd, I_LINK, if_fd)) < 0){
syslog(LOG_ERR, "Can't link TAP device to IP");
return -1;
}
if ((arp_muxid = ioctl (ip_fd, link_type, arp_fd)) < 0)
syslog (LOG_ERR, "Can't link TAP device to ARP");
close (if_fd);
memset(&ifr, 0x0, sizeof(ifr));
pstrcpy(ifr.lifr_name, sizeof(ifr.lifr_name), actual_name);
ifr.lifr_ip_muxid = ip_muxid;
ifr.lifr_arp_muxid = arp_muxid;
if (ioctl (ip_fd, SIOCSLIFMUXID, &ifr) < 0)
{
ioctl (ip_fd, I_PUNLINK , arp_muxid);
ioctl (ip_fd, I_PUNLINK, ip_muxid);
syslog (LOG_ERR, "Can't set multiplexor id");
}
snprintf(dev, dev_size, "tap%d", ppa);
return tap_fd;
}
static int tap_open(char *ifname, int ifname_size)
{
char dev[10]="";
int fd;
if( (fd = tap_alloc(dev, sizeof(dev))) < 0 ){
fprintf(stderr, "Cannot allocate TAP device\n");
return -1;
}
pstrcpy(ifname, ifname_size, dev);
fcntl(fd, F_SETFL, O_NONBLOCK);
return fd;
}
#elif defined (_AIX)
static int tap_open(char *ifname, int ifname_size)
{
fprintf (stderr, "no tap on AIX\n");
return -1;
}
#else
static int tap_open(char *ifname, int ifname_size)
{
struct ifreq ifr;
int fd, ret;
TFR(fd = open("/dev/net/tun", O_RDWR));
if (fd < 0) {
fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
return -1;
}
memset(&ifr, 0, sizeof(ifr));
ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
if (ifname[0] != '\0')
pstrcpy(ifr.ifr_name, IFNAMSIZ, ifname);
else
pstrcpy(ifr.ifr_name, IFNAMSIZ, "tap%d");
ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
if (ret != 0) {
fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
close(fd);
return -1;
}
pstrcpy(ifname, ifname_size, ifr.ifr_name);
fcntl(fd, F_SETFL, O_NONBLOCK);
return fd;
}
#endif
static int launch_script(const char *setup_script, const char *ifname, int fd)
{
sigset_t oldmask, mask;
int pid, status;
char *args[3];
char **parg;
sigemptyset(&mask);
sigaddset(&mask, SIGCHLD);
sigprocmask(SIG_BLOCK, &mask, &oldmask);
/* try to launch network script */
pid = fork();
if (pid == 0) {
int open_max = sysconf(_SC_OPEN_MAX), i;
for (i = 0; i < open_max; i++) {
if (i != STDIN_FILENO &&
i != STDOUT_FILENO &&
i != STDERR_FILENO &&
i != fd) {
close(i);
}
}
parg = args;
*parg++ = (char *)setup_script;
*parg++ = (char *)ifname;
*parg++ = NULL;
execv(setup_script, args);
_exit(1);
} else if (pid > 0) {
while (waitpid(pid, &status, 0) != pid) {
/* loop */
}
sigprocmask(SIG_SETMASK, &oldmask, NULL);
if (WIFEXITED(status) && WEXITSTATUS(status) == 0) {
return 0;
}
}
fprintf(stderr, "%s: could not launch network script\n", setup_script);
return -1;
}
static TAPState *net_tap_init(VLANState *vlan, const char *model,
const char *name, const char *ifname1,
const char *setup_script, const char *down_script)
{
TAPState *s;
int fd;
char ifname[128];
if (ifname1 != NULL)
pstrcpy(ifname, sizeof(ifname), ifname1);
else
ifname[0] = '\0';
TFR(fd = tap_open(ifname, sizeof(ifname)));
if (fd < 0)
return NULL;
if (!setup_script || !strcmp(setup_script, "no"))
setup_script = "";
if (setup_script[0] != '\0' &&
launch_script(setup_script, ifname, fd)) {
return NULL;
}
s = net_tap_fd_init(vlan, model, name, fd);
snprintf(s->vc->info_str, sizeof(s->vc->info_str),
"ifname=%s,script=%s,downscript=%s",
ifname, setup_script, down_script);
if (down_script && strcmp(down_script, "no")) {
snprintf(s->down_script, sizeof(s->down_script), "%s", down_script);
snprintf(s->down_script_arg, sizeof(s->down_script_arg), "%s", ifname);
}
return s;
}
#endif /* !_WIN32 */
#if defined(CONFIG_VDE)
typedef struct VDEState {
VLANClientState *vc;
VDECONN *vde;
} VDEState;
static void vde_to_qemu(void *opaque)
{
VDEState *s = opaque;
uint8_t buf[4096];
int size;
size = vde_recv(s->vde, (char *)buf, sizeof(buf), 0);
if (size > 0) {
qemu_send_packet(s->vc, buf, size);
}
}
static ssize_t vde_receive(VLANClientState *vc, const uint8_t *buf, size_t size)
{
VDEState *s = vc->opaque;
ssize_t ret;
do {
ret = vde_send(s->vde, (const char *)buf, size, 0);
} while (ret < 0 && errno == EINTR);
return ret;
}
static void vde_cleanup(VLANClientState *vc)
{
VDEState *s = vc->opaque;
qemu_set_fd_handler(vde_datafd(s->vde), NULL, NULL, NULL);
vde_close(s->vde);
qemu_free(s);
}
static int net_vde_init(VLANState *vlan, const char *model,
const char *name, const char *sock,
int port, const char *group, int mode)
{
VDEState *s;
char *init_group = (char *)group;
char *init_sock = (char *)sock;
struct vde_open_args args = {
.port = port,
.group = init_group,
.mode = mode,
};
s = qemu_mallocz(sizeof(VDEState));
s->vde = vde_open(init_sock, (char *)"QEMU", &args);
if (!s->vde){
free(s);
return -1;
}
s->vc = qemu_new_vlan_client(vlan, model, name, NULL, vde_receive,
NULL, vde_cleanup, s);
qemu_set_fd_handler(vde_datafd(s->vde), vde_to_qemu, NULL, s);
snprintf(s->vc->info_str, sizeof(s->vc->info_str), "sock=%s,fd=%d",
sock, vde_datafd(s->vde));
return 0;
}
#endif
/* network connection */
typedef struct NetSocketState {
VLANClientState *vc;
int fd;
int state; /* 0 = getting length, 1 = getting data */
unsigned int index;
unsigned int packet_len;
uint8_t buf[4096];
struct sockaddr_in dgram_dst; /* contains inet host and port destination iff connectionless (SOCK_DGRAM) */
} NetSocketState;
typedef struct NetSocketListenState {
VLANState *vlan;
char *model;
char *name;
int fd;
} NetSocketListenState;
/* XXX: we consider we can send the whole packet without blocking */
static ssize_t net_socket_receive(VLANClientState *vc, const uint8_t *buf, size_t size)
{
NetSocketState *s = vc->opaque;
uint32_t len;
len = htonl(size);
send_all(s->fd, (const uint8_t *)&len, sizeof(len));
return send_all(s->fd, buf, size);
}
static ssize_t net_socket_receive_dgram(VLANClientState *vc, const uint8_t *buf, size_t size)
{
NetSocketState *s = vc->opaque;
return sendto(s->fd, (const void *)buf, size, 0,
(struct sockaddr *)&s->dgram_dst, sizeof(s->dgram_dst));
}
static void net_socket_send(void *opaque)
{
NetSocketState *s = opaque;
int size, err;
unsigned l;
uint8_t buf1[4096];
const uint8_t *buf;
size = recv(s->fd, (void *)buf1, sizeof(buf1), 0);
if (size < 0) {
err = socket_error();
if (err != EWOULDBLOCK)
goto eoc;
} else if (size == 0) {
/* end of connection */
eoc:
qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
closesocket(s->fd);
return;
}
buf = buf1;
while (size > 0) {
/* reassemble a packet from the network */
switch(s->state) {
case 0:
l = 4 - s->index;
if (l > size)
l = size;
memcpy(s->buf + s->index, buf, l);
buf += l;
size -= l;
s->index += l;
if (s->index == 4) {
/* got length */
s->packet_len = ntohl(*(uint32_t *)s->buf);
s->index = 0;
s->state = 1;
}
break;
case 1:
l = s->packet_len - s->index;
if (l > size)
l = size;
if (s->index + l <= sizeof(s->buf)) {
memcpy(s->buf + s->index, buf, l);
} else {
fprintf(stderr, "serious error: oversized packet received,"
"connection terminated.\n");
s->state = 0;
goto eoc;
}
s->index += l;
buf += l;
size -= l;
if (s->index >= s->packet_len) {
qemu_send_packet(s->vc, s->buf, s->packet_len);
s->index = 0;
s->state = 0;
}
break;
}
}
}
static void net_socket_send_dgram(void *opaque)
{
NetSocketState *s = opaque;
int size;
size = recv(s->fd, (void *)s->buf, sizeof(s->buf), 0);
if (size < 0)
return;
if (size == 0) {
/* end of connection */
qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
return;
}
qemu_send_packet(s->vc, s->buf, size);
}
static int net_socket_mcast_create(struct sockaddr_in *mcastaddr)
{
struct ip_mreq imr;
int fd;
int val, ret;
if (!IN_MULTICAST(ntohl(mcastaddr->sin_addr.s_addr))) {
fprintf(stderr, "qemu: error: specified mcastaddr \"%s\" (0x%08x) does not contain a multicast address\n",
inet_ntoa(mcastaddr->sin_addr),
(int)ntohl(mcastaddr->sin_addr.s_addr));
return -1;
}
fd = socket(PF_INET, SOCK_DGRAM, 0);
if (fd < 0) {
perror("socket(PF_INET, SOCK_DGRAM)");
return -1;
}
val = 1;
ret=setsockopt(fd, SOL_SOCKET, SO_REUSEADDR,
(const char *)&val, sizeof(val));
if (ret < 0) {
perror("setsockopt(SOL_SOCKET, SO_REUSEADDR)");
goto fail;
}
ret = bind(fd, (struct sockaddr *)mcastaddr, sizeof(*mcastaddr));
if (ret < 0) {
perror("bind");
goto fail;
}
/* Add host to multicast group */
imr.imr_multiaddr = mcastaddr->sin_addr;
imr.imr_interface.s_addr = htonl(INADDR_ANY);
ret = setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
(const char *)&imr, sizeof(struct ip_mreq));
if (ret < 0) {
perror("setsockopt(IP_ADD_MEMBERSHIP)");
goto fail;
}
/* Force mcast msgs to loopback (eg. several QEMUs in same host */
val = 1;
ret=setsockopt(fd, IPPROTO_IP, IP_MULTICAST_LOOP,
(const char *)&val, sizeof(val));
if (ret < 0) {
perror("setsockopt(SOL_IP, IP_MULTICAST_LOOP)");
goto fail;
}
socket_set_nonblock(fd);
return fd;
fail:
if (fd >= 0)
closesocket(fd);
return -1;
}
static void net_socket_cleanup(VLANClientState *vc)
{
NetSocketState *s = vc->opaque;
qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
close(s->fd);
qemu_free(s);
}
static NetSocketState *net_socket_fd_init_dgram(VLANState *vlan,
const char *model,
const char *name,
int fd, int is_connected)
{
struct sockaddr_in saddr;
int newfd;
socklen_t saddr_len;
NetSocketState *s;
/* fd passed: multicast: "learn" dgram_dst address from bound address and save it
* Because this may be "shared" socket from a "master" process, datagrams would be recv()
* by ONLY ONE process: we must "clone" this dgram socket --jjo
*/
if (is_connected) {
if (getsockname(fd, (struct sockaddr *) &saddr, &saddr_len) == 0) {
/* must be bound */
if (saddr.sin_addr.s_addr==0) {
fprintf(stderr, "qemu: error: init_dgram: fd=%d unbound, cannot setup multicast dst addr\n",
fd);
return NULL;
}
/* clone dgram socket */
newfd = net_socket_mcast_create(&saddr);
if (newfd < 0) {
/* error already reported by net_socket_mcast_create() */
close(fd);
return NULL;
}
/* clone newfd to fd, close newfd */
dup2(newfd, fd);
close(newfd);
} else {
fprintf(stderr, "qemu: error: init_dgram: fd=%d failed getsockname(): %s\n",
fd, strerror(errno));
return NULL;
}
}
s = qemu_mallocz(sizeof(NetSocketState));
s->fd = fd;
s->vc = qemu_new_vlan_client(vlan, model, name, NULL, net_socket_receive_dgram,
NULL, net_socket_cleanup, s);
qemu_set_fd_handler(s->fd, net_socket_send_dgram, NULL, s);
/* mcast: save bound address as dst */
if (is_connected) s->dgram_dst=saddr;
snprintf(s->vc->info_str, sizeof(s->vc->info_str),
"socket: fd=%d (%s mcast=%s:%d)",
fd, is_connected? "cloned" : "",
inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
return s;
}
static void net_socket_connect(void *opaque)
{
NetSocketState *s = opaque;
qemu_set_fd_handler(s->fd, net_socket_send, NULL, s);
}
static NetSocketState *net_socket_fd_init_stream(VLANState *vlan,
const char *model,
const char *name,
int fd, int is_connected)
{
NetSocketState *s;
s = qemu_mallocz(sizeof(NetSocketState));
s->fd = fd;
s->vc = qemu_new_vlan_client(vlan, model, name, NULL, net_socket_receive,
NULL, net_socket_cleanup, s);
snprintf(s->vc->info_str, sizeof(s->vc->info_str),
"socket: fd=%d", fd);
if (is_connected) {
net_socket_connect(s);
} else {
qemu_set_fd_handler(s->fd, NULL, net_socket_connect, s);
}
return s;
}
static NetSocketState *net_socket_fd_init(VLANState *vlan,
const char *model, const char *name,
int fd, int is_connected)
{
int so_type = -1, optlen=sizeof(so_type);
if(getsockopt(fd, SOL_SOCKET, SO_TYPE, (char *)&so_type,
(socklen_t *)&optlen)< 0) {
fprintf(stderr, "qemu: error: getsockopt(SO_TYPE) for fd=%d failed\n", fd);
return NULL;
}
switch(so_type) {
case SOCK_DGRAM:
return net_socket_fd_init_dgram(vlan, model, name, fd, is_connected);
case SOCK_STREAM:
return net_socket_fd_init_stream(vlan, model, name, fd, is_connected);
default:
/* who knows ... this could be a eg. a pty, do warn and continue as stream */
fprintf(stderr, "qemu: warning: socket type=%d for fd=%d is not SOCK_DGRAM or SOCK_STREAM\n", so_type, fd);
return net_socket_fd_init_stream(vlan, model, name, fd, is_connected);
}
return NULL;
}
static void net_socket_accept(void *opaque)
{
NetSocketListenState *s = opaque;
NetSocketState *s1;
struct sockaddr_in saddr;
socklen_t len;
int fd;
for(;;) {
len = sizeof(saddr);
fd = accept(s->fd, (struct sockaddr *)&saddr, &len);
if (fd < 0 && errno != EINTR) {
return;
} else if (fd >= 0) {
break;
}
}
s1 = net_socket_fd_init(s->vlan, s->model, s->name, fd, 1);
if (!s1) {
closesocket(fd);
} else {
snprintf(s1->vc->info_str, sizeof(s1->vc->info_str),
"socket: connection from %s:%d",
inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
}
}
static int net_socket_listen_init(VLANState *vlan,
const char *model,
const char *name,
const char *host_str)
{
NetSocketListenState *s;
int fd, val, ret;
struct sockaddr_in saddr;
if (parse_host_port(&saddr, host_str) < 0)
return -1;
s = qemu_mallocz(sizeof(NetSocketListenState));
fd = socket(PF_INET, SOCK_STREAM, 0);
if (fd < 0) {
perror("socket");
return -1;
}
socket_set_nonblock(fd);
/* allow fast reuse */
val = 1;
setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
ret = bind(fd, (struct sockaddr *)&saddr, sizeof(saddr));
if (ret < 0) {
perror("bind");
return -1;
}
ret = listen(fd, 0);
if (ret < 0) {
perror("listen");
return -1;
}
s->vlan = vlan;
s->model = qemu_strdup(model);
s->name = name ? qemu_strdup(name) : NULL;
s->fd = fd;
qemu_set_fd_handler(fd, net_socket_accept, NULL, s);
return 0;
}
static int net_socket_connect_init(VLANState *vlan,
const char *model,
const char *name,
const char *host_str)
{
NetSocketState *s;
int fd, connected, ret, err;
struct sockaddr_in saddr;
if (parse_host_port(&saddr, host_str) < 0)
return -1;
fd = socket(PF_INET, SOCK_STREAM, 0);
if (fd < 0) {
perror("socket");
return -1;
}
socket_set_nonblock(fd);
connected = 0;
for(;;) {
ret = connect(fd, (struct sockaddr *)&saddr, sizeof(saddr));
if (ret < 0) {
err = socket_error();
if (err == EINTR || err == EWOULDBLOCK) {
} else if (err == EINPROGRESS) {
break;
#ifdef _WIN32
} else if (err == WSAEALREADY) {
break;
#endif
} else {
perror("connect");
closesocket(fd);
return -1;
}
} else {
connected = 1;
break;
}
}
s = net_socket_fd_init(vlan, model, name, fd, connected);
if (!s)
return -1;
snprintf(s->vc->info_str, sizeof(s->vc->info_str),
"socket: connect to %s:%d",
inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
return 0;
}
static int net_socket_mcast_init(VLANState *vlan,
const char *model,
const char *name,
const char *host_str)
{
NetSocketState *s;
int fd;
struct sockaddr_in saddr;
if (parse_host_port(&saddr, host_str) < 0)
return -1;
fd = net_socket_mcast_create(&saddr);
if (fd < 0)
return -1;
s = net_socket_fd_init(vlan, model, name, fd, 0);
if (!s)
return -1;
s->dgram_dst = saddr;
snprintf(s->vc->info_str, sizeof(s->vc->info_str),
"socket: mcast=%s:%d",
inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
return 0;
}
typedef struct DumpState {
VLANClientState *pcap_vc;
int fd;
int pcap_caplen;
} DumpState;
#define PCAP_MAGIC 0xa1b2c3d4
struct pcap_file_hdr {
uint32_t magic;
uint16_t version_major;
uint16_t version_minor;
int32_t thiszone;
uint32_t sigfigs;
uint32_t snaplen;
uint32_t linktype;
};
struct pcap_sf_pkthdr {
struct {
int32_t tv_sec;
int32_t tv_usec;
} ts;
uint32_t caplen;
uint32_t len;
};
static ssize_t dump_receive(VLANClientState *vc, const uint8_t *buf, size_t size)
{
DumpState *s = vc->opaque;
struct pcap_sf_pkthdr hdr;
int64_t ts;
int caplen;
/* Early return in case of previous error. */
if (s->fd < 0) {
return size;
}
ts = muldiv64(qemu_get_clock(vm_clock), 1000000, get_ticks_per_sec());
caplen = size > s->pcap_caplen ? s->pcap_caplen : size;
hdr.ts.tv_sec = ts / 1000000;
hdr.ts.tv_usec = ts % 1000000;
hdr.caplen = caplen;
hdr.len = size;
if (write(s->fd, &hdr, sizeof(hdr)) != sizeof(hdr) ||
write(s->fd, buf, caplen) != caplen) {
qemu_log("-net dump write error - stop dump\n");
close(s->fd);
s->fd = -1;
}
return size;
}
static void net_dump_cleanup(VLANClientState *vc)
{
DumpState *s = vc->opaque;
close(s->fd);
qemu_free(s);
}
static int net_dump_init(VLANState *vlan, const char *device,
const char *name, const char *filename, int len)
{
struct pcap_file_hdr hdr;
DumpState *s;
s = qemu_malloc(sizeof(DumpState));
s->fd = open(filename, O_CREAT | O_WRONLY | O_BINARY, 0644);
if (s->fd < 0) {
qemu_error("-net dump: can't open %s\n", filename);
return -1;
}
s->pcap_caplen = len;
hdr.magic = PCAP_MAGIC;
hdr.version_major = 2;
hdr.version_minor = 4;
hdr.thiszone = 0;
hdr.sigfigs = 0;
hdr.snaplen = s->pcap_caplen;
hdr.linktype = 1;
if (write(s->fd, &hdr, sizeof(hdr)) < sizeof(hdr)) {
qemu_error("-net dump write error: %s\n", strerror(errno));
close(s->fd);
qemu_free(s);
return -1;
}
s->pcap_vc = qemu_new_vlan_client(vlan, device, name, NULL, dump_receive, NULL,
net_dump_cleanup, s);
snprintf(s->pcap_vc->info_str, sizeof(s->pcap_vc->info_str),
"dump to %s (len=%d)", filename, len);
return 0;
}
/* find or alloc a new VLAN */
VLANState *qemu_find_vlan(int id, int allocate)
{
VLANState **pvlan, *vlan;
for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
if (vlan->id == id)
return vlan;
}
if (!allocate) {
return NULL;
}
vlan = qemu_mallocz(sizeof(VLANState));
vlan->id = id;
QTAILQ_INIT(&vlan->send_queue);
vlan->next = NULL;
pvlan = &first_vlan;
while (*pvlan != NULL)
pvlan = &(*pvlan)->next;
*pvlan = vlan;
return vlan;
}
static int nic_get_free_idx(void)
{
int index;
for (index = 0; index < MAX_NICS; index++)
if (!nd_table[index].used)
return index;
return -1;
}
int qemu_show_nic_models(const char *arg, const char *const *models)
{
int i;
if (!arg || strcmp(arg, "?"))
return 0;
fprintf(stderr, "qemu: Supported NIC models: ");
for (i = 0 ; models[i]; i++)
fprintf(stderr, "%s%c", models[i], models[i+1] ? ',' : '\n');
return 1;
}
void qemu_check_nic_model(NICInfo *nd, const char *model)
{
const char *models[2];
models[0] = model;
models[1] = NULL;
if (qemu_show_nic_models(nd->model, models))
exit(0);
if (qemu_find_nic_model(nd, models, model) < 0)
exit(1);
}
int qemu_find_nic_model(NICInfo *nd, const char * const *models,
const char *default_model)
{
int i;
if (!nd->model)
nd->model = qemu_strdup(default_model);
for (i = 0 ; models[i]; i++) {
if (strcmp(nd->model, models[i]) == 0)
return i;
}
qemu_error("qemu: Unsupported NIC model: %s\n", nd->model);
return -1;
}
static int net_handle_fd_param(Monitor *mon, const char *param)
{
if (!qemu_isdigit(param[0])) {
int fd;
fd = monitor_get_fd(mon, param);
if (fd == -1) {
qemu_error("No file descriptor named %s found", param);
return -1;
}
return fd;
} else {
return strtol(param, NULL, 0);
}
}
static int net_init_nic(QemuOpts *opts, Monitor *mon)
{
int idx;
NICInfo *nd;
idx = nic_get_free_idx();
if (idx == -1 || nb_nics >= MAX_NICS) {
qemu_error("Too Many NICs\n");
return -1;
}
nd = &nd_table[idx];
memset(nd, 0, sizeof(*nd));
nd->vlan = qemu_find_vlan(qemu_opt_get_number(opts, "vlan", 0), 1);
if (qemu_opts_id(opts)) {
nd->id = qemu_strdup(qemu_opts_id(opts));
}
if (qemu_opt_get(opts, "name")) {
nd->name = qemu_strdup(qemu_opt_get(opts, "name"));
}
if (qemu_opt_get(opts, "model")) {
nd->model = qemu_strdup(qemu_opt_get(opts, "model"));
}
if (qemu_opt_get(opts, "addr")) {
nd->devaddr = qemu_strdup(qemu_opt_get(opts, "addr"));
}
nd->macaddr[0] = 0x52;
nd->macaddr[1] = 0x54;
nd->macaddr[2] = 0x00;
nd->macaddr[3] = 0x12;
nd->macaddr[4] = 0x34;
nd->macaddr[5] = 0x56 + idx;
if (qemu_opt_get(opts, "macaddr") &&
parse_macaddr(nd->macaddr, qemu_opt_get(opts, "macaddr")) < 0) {
qemu_error("invalid syntax for ethernet address\n");
return -1;
}
nd->nvectors = qemu_opt_get_number(opts, "vectors", NIC_NVECTORS_UNSPECIFIED);
if (nd->nvectors != NIC_NVECTORS_UNSPECIFIED &&
(nd->nvectors < 0 || nd->nvectors > 0x7ffffff)) {
qemu_error("invalid # of vectors: %d\n", nd->nvectors);
return -1;
}
nd->used = 1;
nd->vlan->nb_guest_devs++;
nb_nics++;
return idx;
}
static int net_init_slirp_configs(const char *name, const char *value, void *opaque)
{
struct slirp_config_str *config;
if (strcmp(name, "hostfwd") != 0 && strcmp(name, "guestfwd") != 0) {
return 0;
}
config = qemu_mallocz(sizeof(*config));
pstrcpy(config->str, sizeof(config->str), value);
if (!strcmp(name, "hostfwd")) {
config->flags = SLIRP_CFG_HOSTFWD;
}
config->next = slirp_configs;
slirp_configs = config;
return 0;
}
static int net_init_slirp(QemuOpts *opts, Monitor *mon)
{
VLANState *vlan;
struct slirp_config_str *config;
const char *name;
const char *vhost;
const char *vhostname;
const char *vdhcp_start;
const char *vnamesrv;
const char *tftp_export;
const char *bootfile;
const char *smb_export;
const char *vsmbsrv;
char *vnet = NULL;
int restricted = 0;
int ret;
vlan = qemu_find_vlan(qemu_opt_get_number(opts, "vlan", 0), 1);
name = qemu_opt_get(opts, "name");
vhost = qemu_opt_get(opts, "host");
vhostname = qemu_opt_get(opts, "hostname");
vdhcp_start = qemu_opt_get(opts, "dhcpstart");
vnamesrv = qemu_opt_get(opts, "dns");
tftp_export = qemu_opt_get(opts, "tftp");
bootfile = qemu_opt_get(opts, "bootfile");
smb_export = qemu_opt_get(opts, "smb");
vsmbsrv = qemu_opt_get(opts, "smbserver");
if (qemu_opt_get(opts, "ip")) {
const char *ip = qemu_opt_get(opts, "ip");
int l = strlen(ip) + strlen("/24") + 1;
vnet = qemu_malloc(l);
/* emulate legacy ip= parameter */
pstrcpy(vnet, l, ip);
pstrcat(vnet, l, "/24");
}
if (qemu_opt_get(opts, "net")) {
if (vnet) {
qemu_free(vnet);
}
vnet = qemu_strdup(qemu_opt_get(opts, "net"));
}
if (qemu_opt_get(opts, "restrict") &&
qemu_opt_get(opts, "restrict")[0] == 'y') {
restricted = 1;
}
qemu_opt_foreach(opts, net_init_slirp_configs, NULL, 0);
ret = net_slirp_init(vlan, "user", name, restricted, vnet, vhost,
vhostname, tftp_export, bootfile, vdhcp_start,
vnamesrv, smb_export, vsmbsrv);
while (slirp_configs) {
config = slirp_configs;
slirp_configs = config->next;
qemu_free(config);
}
if (ret != -1) {
vlan->nb_host_devs++;
}
qemu_free(vnet);
return ret;
}
#ifdef _WIN32
static int net_init_tap_win32(QemuOpts *opts, Monitor *mon)
{
VLANState *vlan;
const char *name;
const char *ifname;
vlan = qemu_find_vlan(qemu_opt_get_number(opts, "vlan", 0), 1);
name = qemu_opt_get(opts, "name");
ifname = qemu_opt_get(opts, "ifname");
if (!ifname) {
qemu_error("tap: no interface name\n");
return -1;
}
if (tap_win32_init(vlan, "tap", name, ifname) == -1) {
return -1;
}
vlan->nb_host_devs++;
return 0;
}
#elif !defined(_AIX)
static int net_init_tap(QemuOpts *opts, Monitor *mon)
{
VLANState *vlan;
const char *name;
TAPState *s;
vlan = qemu_find_vlan(qemu_opt_get_number(opts, "vlan", 0), 1);
name = qemu_opt_get(opts, "name");
if (qemu_opt_get(opts, "fd")) {
int fd;
if (qemu_opt_get(opts, "ifname") ||
qemu_opt_get(opts, "script") ||
qemu_opt_get(opts, "downscript")) {
qemu_error("ifname=, script= and downscript= is invalid with fd=\n");
return -1;
}
fd = net_handle_fd_param(mon, qemu_opt_get(opts, "fd"));
if (fd == -1) {
return -1;
}
fcntl(fd, F_SETFL, O_NONBLOCK);
s = net_tap_fd_init(vlan, "tap", name, fd);
if (!s) {
close(fd);
}
} else {
const char *ifname, *script, *downscript;
ifname = qemu_opt_get(opts, "ifname");
script = qemu_opt_get(opts, "script");
downscript = qemu_opt_get(opts, "downscript");
if (!script) {
script = DEFAULT_NETWORK_SCRIPT;
}
if (!downscript) {
downscript = DEFAULT_NETWORK_DOWN_SCRIPT;
}
s = net_tap_init(vlan, "tap", name, ifname, script, downscript);
}
if (!s) {
return -1;
}
if (tap_set_sndbuf(s, opts) < 0) {
return -1;
}
vlan->nb_host_devs++;
return 0;
}
#endif
static int net_init_socket(QemuOpts *opts, Monitor *mon)
{
VLANState *vlan;
const char *name;
vlan = qemu_find_vlan(qemu_opt_get_number(opts, "vlan", 0), 1);
name = qemu_opt_get(opts, "name");
if (qemu_opt_get(opts, "fd")) {
int fd;
if (qemu_opt_get(opts, "listen") ||
qemu_opt_get(opts, "connect") ||
qemu_opt_get(opts, "mcast")) {
qemu_error("listen=, connect= and mcast= is invalid with fd=\n");
return -1;
}
fd = net_handle_fd_param(mon, qemu_opt_get(opts, "fd"));
if (fd == -1) {
return -1;
}
if (!net_socket_fd_init(vlan, "socket", name, fd, 1)) {
close(fd);
return -1;
}
} else if (qemu_opt_get(opts, "listen")) {
const char *listen;
if (qemu_opt_get(opts, "fd") ||
qemu_opt_get(opts, "connect") ||
qemu_opt_get(opts, "mcast")) {
qemu_error("fd=, connect= and mcast= is invalid with listen=\n");
return -1;
}
listen = qemu_opt_get(opts, "listen");
if (net_socket_listen_init(vlan, "socket", name, listen) == -1) {
return -1;
}
} else if (qemu_opt_get(opts, "connect")) {
const char *connect;
if (qemu_opt_get(opts, "fd") ||
qemu_opt_get(opts, "listen") ||
qemu_opt_get(opts, "mcast")) {
qemu_error("fd=, listen= and mcast= is invalid with connect=\n");
return -1;
}
connect = qemu_opt_get(opts, "connect");
if (net_socket_connect_init(vlan, "socket", name, connect) == -1) {
return -1;
}
} else if (qemu_opt_get(opts, "mcast")) {
const char *mcast;
if (qemu_opt_get(opts, "fd") ||
qemu_opt_get(opts, "connect") ||
qemu_opt_get(opts, "listen")) {
qemu_error("fd=, connect= and listen= is invalid with mcast=\n");
return -1;
}
mcast = qemu_opt_get(opts, "mcast");
if (net_socket_mcast_init(vlan, "socket", name, mcast) == -1) {
return -1;
}
} else {
qemu_error("-socket requires fd=, listen=, connect= or mcast=\n");
return -1;
}
vlan->nb_host_devs++;
return 0;
}
#ifdef CONFIG_VDE
static int net_init_vde(QemuOpts *opts, Monitor *mon)
{
VLANState *vlan;
const char *name;
const char *sock;
const char *group;
int port, mode;
vlan = qemu_find_vlan(qemu_opt_get_number(opts, "vlan", 0), 1);
name = qemu_opt_get(opts, "name");
sock = qemu_opt_get(opts, "sock");
group = qemu_opt_get(opts, "group");
port = qemu_opt_get_number(opts, "port", 0);
mode = qemu_opt_get_number(opts, "mode", 0700);
if (net_vde_init(vlan, "vde", name, sock, port, group, mode) == -1) {
return -1;
}
vlan->nb_host_devs++;
return 0;
}
#endif
static int net_init_dump(QemuOpts *opts, Monitor *mon)
{
VLANState *vlan;
int len;
const char *file;
const char *name;
char def_file[128];
vlan = qemu_find_vlan(qemu_opt_get_number(opts, "vlan", 0), 1);
name = qemu_opt_get(opts, "name");
file = qemu_opt_get(opts, "file");
if (!file) {
snprintf(def_file, sizeof(def_file), "qemu-vlan%d.pcap", vlan->id);
file = def_file;
}
len = qemu_opt_get_size(opts, "len", 65536);
return net_dump_init(vlan, "dump", name, file, len);
}
#define NET_COMMON_PARAMS_DESC \
{ \
.name = "type", \
.type = QEMU_OPT_STRING, \
.help = "net client type (nic, tap etc.)", \
}, { \
.name = "vlan", \
.type = QEMU_OPT_NUMBER, \
.help = "vlan number", \
}, { \
.name = "name", \
.type = QEMU_OPT_STRING, \
.help = "identifier for monitor commands", \
}
typedef int (*net_client_init_func)(QemuOpts *opts, Monitor *mon);
/* magic number, but compiler will warn if too small */
#define NET_MAX_DESC 20
static struct {
const char *type;
net_client_init_func init;
QemuOptDesc desc[NET_MAX_DESC];
} net_client_types[] = {
{
.type = "none",
.desc = {
NET_COMMON_PARAMS_DESC,
{ /* end of list */ }
},
}, {
.type = "nic",
.init = net_init_nic,
.desc = {
NET_COMMON_PARAMS_DESC,
{
.name = "macaddr",
.type = QEMU_OPT_STRING,
.help = "MAC address",
}, {
.name = "model",
.type = QEMU_OPT_STRING,
.help = "device model (e1000, rtl8139, virtio etc.)",
}, {
.name = "addr",
.type = QEMU_OPT_STRING,
.help = "PCI device address",
}, {
.name = "vectors",
.type = QEMU_OPT_NUMBER,
.help = "number of MSI-x vectors, 0 to disable MSI-X",
},
{ /* end of list */ }
},
#ifdef CONFIG_SLIRP
}, {
.type = "user",
.init = net_init_slirp,
.desc = {
NET_COMMON_PARAMS_DESC,
{
.name = "hostname",
.type = QEMU_OPT_STRING,
.help = "client hostname reported by the builtin DHCP server",
}, {
.name = "restrict",
.type = QEMU_OPT_STRING,
.help = "isolate the guest from the host (y|yes|n|no)",
}, {
.name = "ip",
.type = QEMU_OPT_STRING,
.help = "legacy parameter, use net= instead",
}, {
.name = "net",
.type = QEMU_OPT_STRING,
.help = "IP address and optional netmask",
}, {
.name = "host",
.type = QEMU_OPT_STRING,
.help = "guest-visible address of the host",
}, {
.name = "tftp",
.type = QEMU_OPT_STRING,
.help = "root directory of the built-in TFTP server",
}, {
.name = "bootfile",
.type = QEMU_OPT_STRING,
.help = "BOOTP filename, for use with tftp=",
}, {
.name = "dhcpstart",
.type = QEMU_OPT_STRING,
.help = "the first of the 16 IPs the built-in DHCP server can assign",
}, {
.name = "dns",
.type = QEMU_OPT_STRING,
.help = "guest-visible address of the virtual nameserver",
}, {
.name = "smb",
.type = QEMU_OPT_STRING,
.help = "root directory of the built-in SMB server",
}, {
.name = "smbserver",
.type = QEMU_OPT_STRING,
.help = "IP address of the built-in SMB server",
}, {
.name = "hostfwd",
.type = QEMU_OPT_STRING,
.help = "guest port number to forward incoming TCP or UDP connections",
}, {
.name = "guestfwd",
.type = QEMU_OPT_STRING,
.help = "IP address and port to forward guest TCP connections",
},
{ /* end of list */ }
},
#endif
#ifdef _WIN32
}, {
.type = "tap",
.init = net_init_tap_win32,
.desc = {
NET_COMMON_PARAMS_DESC,
{
.name = "ifname",
.type = QEMU_OPT_STRING,
.help = "interface name",
},
{ /* end of list */ }
},
#elif !defined(_AIX)
}, {
.type = "tap",
.init = net_init_tap,
.desc = {
NET_COMMON_PARAMS_DESC,
{
.name = "fd",
.type = QEMU_OPT_STRING,
.help = "file descriptor of an already opened tap",
}, {
.name = "ifname",
.type = QEMU_OPT_STRING,
.help = "interface name",
}, {
.name = "script",
.type = QEMU_OPT_STRING,
.help = "script to initialize the interface",
}, {
.name = "downscript",
.type = QEMU_OPT_STRING,
.help = "script to shut down the interface",
#ifdef TUNSETSNDBUF
}, {
.name = "sndbuf",
.type = QEMU_OPT_SIZE,
.help = "send buffer limit"
#endif
},
{ /* end of list */ }
},
#endif
}, {
.type = "socket",
.init = net_init_socket,
.desc = {
NET_COMMON_PARAMS_DESC,
{
.name = "fd",
.type = QEMU_OPT_STRING,
.help = "file descriptor of an already opened socket",
}, {
.name = "listen",
.type = QEMU_OPT_STRING,
.help = "port number, and optional hostname, to listen on",
}, {
.name = "connect",
.type = QEMU_OPT_STRING,
.help = "port number, and optional hostname, to connect to",
}, {
.name = "mcast",
.type = QEMU_OPT_STRING,
.help = "UDP multicast address and port number",
},
{ /* end of list */ }
},
#ifdef CONFIG_VDE
}, {
.type = "vde",
.init = net_init_vde,
.desc = {
NET_COMMON_PARAMS_DESC,
{
.name = "sock",
.type = QEMU_OPT_STRING,
.help = "socket path",
}, {
.name = "port",
.type = QEMU_OPT_NUMBER,
.help = "port number",
}, {
.name = "group",
.type = QEMU_OPT_STRING,
.help = "group owner of socket",
}, {
.name = "mode",
.type = QEMU_OPT_NUMBER,
.help = "permissions for socket",
},
{ /* end of list */ }
},
#endif
}, {
.type = "dump",
.init = net_init_dump,
.desc = {
NET_COMMON_PARAMS_DESC,
{
.name = "len",
.type = QEMU_OPT_SIZE,
.help = "per-packet size limit (64k default)",
}, {
.name = "file",
.type = QEMU_OPT_STRING,
.help = "dump file path (default is qemu-vlan0.pcap)",
},
{ /* end of list */ }
},
},
{ /* end of list */ }
};
int net_client_init_from_opts(Monitor *mon, QemuOpts *opts)
{
const char *type;
int i;
type = qemu_opt_get(opts, "type");
if (!type) {
qemu_error("No type specified for -net\n");
return -1;
}
for (i = 0; net_client_types[i].type != NULL; i++) {
if (!strcmp(net_client_types[i].type, type)) {
if (qemu_opts_validate(opts, &net_client_types[i].desc[0]) == -1) {
return -1;
}
if (net_client_types[i].init) {
return net_client_types[i].init(opts, NULL);
} else {
return 0;
}
}
}
qemu_error("Invalid -net type '%s'\n", type);
return -1;
}
int net_client_init(Monitor *mon, const char *device, const char *p)
{
QemuOpts *opts;
#ifdef CONFIG_SLIRP
if (!strcmp(device, "channel")) {
int ret;
if (QTAILQ_EMPTY(&slirp_stacks)) {
struct slirp_config_str *config;
config = qemu_malloc(sizeof(*config));
pstrcpy(config->str, sizeof(config->str), p);
config->flags = SLIRP_CFG_LEGACY;
config->next = slirp_configs;
slirp_configs = config;
ret = 0;
} else {
ret = slirp_guestfwd(QTAILQ_FIRST(&slirp_stacks), p, 1);
}
return ret;
}
#endif
opts = qemu_opts_parse(&qemu_net_opts, p, NULL);
if (!opts) {
return -1;
}
qemu_opt_set(opts, "type", device);
return net_client_init_from_opts(mon, opts);
}
void net_client_uninit(NICInfo *nd)
{
nd->vlan->nb_guest_devs--;
nb_nics--;
qemu_free(nd->model);
qemu_free(nd->name);
qemu_free(nd->devaddr);
qemu_free(nd->id);
nd->used = 0;
}
static int net_host_check_device(const char *device)
{
int i;
const char *valid_param_list[] = { "tap", "socket", "dump"
#ifdef CONFIG_SLIRP
,"user"
#endif
#ifdef CONFIG_VDE
,"vde"
#endif
};
for (i = 0; i < sizeof(valid_param_list) / sizeof(char *); i++) {
if (!strncmp(valid_param_list[i], device,
strlen(valid_param_list[i])))
return 1;
}
return 0;
}
void net_host_device_add(Monitor *mon, const QDict *qdict)
{
const char *device = qdict_get_str(qdict, "device");
const char *opts_str = qdict_get_try_str(qdict, "opts");
QemuOpts *opts;
if (!net_host_check_device(device)) {
monitor_printf(mon, "invalid host network device %s\n", device);
return;
}
opts = qemu_opts_parse(&qemu_net_opts, opts_str ? opts_str : "", NULL);
if (!opts) {
monitor_printf(mon, "parsing network options '%s' failed\n",
opts_str ? opts_str : "");
return;
}
qemu_opt_set(opts, "type", device);
if (net_client_init_from_opts(mon, opts) < 0) {
monitor_printf(mon, "adding host network device %s failed\n", device);
}
}
void net_host_device_remove(Monitor *mon, const QDict *qdict)
{
VLANClientState *vc;
int vlan_id = qdict_get_int(qdict, "vlan_id");
const char *device = qdict_get_str(qdict, "device");
vc = qemu_find_vlan_client_by_name(mon, vlan_id, device);
if (!vc) {
return;
}
if (!net_host_check_device(vc->model)) {
monitor_printf(mon, "invalid host network device %s\n", device);
return;
}
qemu_del_vlan_client(vc);
}
int net_client_parse(const char *str)
{
const char *p;
char *q;
char device[64];
p = str;
q = device;
while (*p != '\0' && *p != ',') {
if ((q - device) < sizeof(device) - 1)
*q++ = *p;
p++;
}
*q = '\0';
if (*p == ',')
p++;
return net_client_init(NULL, device, p);
}
void net_set_boot_mask(int net_boot_mask)
{
int i;
/* Only the first four NICs may be bootable */
net_boot_mask = net_boot_mask & 0xF;
for (i = 0; i < nb_nics; i++) {
if (net_boot_mask & (1 << i)) {
nd_table[i].bootable = 1;
net_boot_mask &= ~(1 << i);
}
}
if (net_boot_mask) {
fprintf(stderr, "Cannot boot from non-existent NIC\n");
exit(1);
}
}
void do_info_network(Monitor *mon)
{
VLANState *vlan;
VLANClientState *vc;
for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
monitor_printf(mon, "VLAN %d devices:\n", vlan->id);
for(vc = vlan->first_client; vc != NULL; vc = vc->next)
monitor_printf(mon, " %s: %s\n", vc->name, vc->info_str);
}
}
void do_set_link(Monitor *mon, const QDict *qdict)
{
VLANState *vlan;
VLANClientState *vc = NULL;
const char *name = qdict_get_str(qdict, "name");
const char *up_or_down = qdict_get_str(qdict, "up_or_down");
for (vlan = first_vlan; vlan != NULL; vlan = vlan->next)
for (vc = vlan->first_client; vc != NULL; vc = vc->next)
if (strcmp(vc->name, name) == 0)
goto done;
done:
if (!vc) {
monitor_printf(mon, "could not find network device '%s'\n", name);
return;
}
if (strcmp(up_or_down, "up") == 0)
vc->link_down = 0;
else if (strcmp(up_or_down, "down") == 0)
vc->link_down = 1;
else
monitor_printf(mon, "invalid link status '%s'; only 'up' or 'down' "
"valid\n", up_or_down);
if (vc->link_status_changed)
vc->link_status_changed(vc);
}
void net_cleanup(void)
{
VLANState *vlan;
/* close network clients */
for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
VLANClientState *vc = vlan->first_client;
while (vc) {
VLANClientState *next = vc->next;
qemu_del_vlan_client(vc);
vc = next;
}
}
}
void net_client_check(void)
{
VLANState *vlan;
for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
if (vlan->nb_guest_devs == 0 && vlan->nb_host_devs == 0)
continue;
if (vlan->nb_guest_devs == 0)
fprintf(stderr, "Warning: vlan %d with no nics\n", vlan->id);
if (vlan->nb_host_devs == 0)
fprintf(stderr,
"Warning: vlan %d is not connected to host network\n",
vlan->id);
}
}