qemu/hw/axis_dev88.c
edgar_igl c1e1a49190 ETRAX: Always provide a valid net model.
Signed-off-by: Edgar E. Iglesias <edgar.iglesias@gmail.com>


git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@6226 c046a42c-6fe2-441c-8c8c-71466251a162
2009-01-07 22:46:50 +00:00

372 lines
11 KiB
C

/*
* QEMU model for the AXIS devboard 88.
*
* Copyright (c) 2009 Edgar E. Iglesias, Axis Communications AB.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <time.h>
#include <sys/time.h>
#include "hw.h"
#include "net.h"
#include "flash.h"
#include "sysemu.h"
#include "devices.h"
#include "boards.h"
#include "etraxfs.h"
#define D(x)
#define DNAND(x)
struct nand_state_t
{
struct nand_flash_s *nand;
unsigned int rdy:1;
unsigned int ale:1;
unsigned int cle:1;
unsigned int ce:1;
};
static struct nand_state_t nand_state;
static uint32_t nand_readl (void *opaque, target_phys_addr_t addr)
{
struct nand_state_t *s = opaque;
uint32_t r;
int rdy;
r = nand_getio(s->nand);
nand_getpins(s->nand, &rdy);
s->rdy = rdy;
DNAND(printf("%s addr=%x r=%x\n", __func__, addr, r));
return r;
}
static void
nand_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
{
struct nand_state_t *s = opaque;
int rdy;
DNAND(printf("%s addr=%x v=%x\n", __func__, addr, value));
nand_setpins(s->nand, s->cle, s->ale, s->ce, 1, 0);
nand_setio(s->nand, value);
nand_getpins(s->nand, &rdy);
s->rdy = rdy;
}
static CPUReadMemoryFunc *nand_read[] = {
&nand_readl,
&nand_readl,
&nand_readl,
};
static CPUWriteMemoryFunc *nand_write[] = {
&nand_writel,
&nand_writel,
&nand_writel,
};
struct tempsensor_t
{
unsigned int shiftreg;
unsigned int count;
enum {
ST_OUT, ST_IN, ST_Z
} state;
uint16_t regs[3];
};
static void tempsensor_clkedge(struct tempsensor_t *s,
unsigned int clk, unsigned int data_in)
{
D(printf("%s clk=%d state=%d sr=%x\n", __func__,
clk, s->state, s->shiftreg));
if (s->count == 0) {
s->count = 16;
s->state = ST_OUT;
}
switch (s->state) {
case ST_OUT:
/* Output reg is clocked at negedge. */
if (!clk) {
s->count--;
s->shiftreg <<= 1;
if (s->count == 0) {
s->shiftreg = 0;
s->state = ST_IN;
s->count = 16;
}
}
break;
case ST_Z:
if (clk) {
s->count--;
if (s->count == 0) {
s->shiftreg = 0;
s->state = ST_OUT;
s->count = 16;
}
}
break;
case ST_IN:
/* Indata is sampled at posedge. */
if (clk) {
s->count--;
s->shiftreg <<= 1;
s->shiftreg |= data_in & 1;
if (s->count == 0) {
D(printf("%s cfgreg=%x\n", __func__, s->shiftreg));
s->regs[0] = s->shiftreg;
s->state = ST_OUT;
s->count = 16;
if ((s->regs[0] & 0xff) == 0) {
/* 25 degrees celcius. */
s->shiftreg = 0x0b9f;
} else if ((s->regs[0] & 0xff) == 0xff) {
/* Sensor ID, 0x8100 LM70. */
s->shiftreg = 0x8100;
} else
printf("Invalid tempsens state %x\n", s->regs[0]);
}
}
break;
}
}
#define RW_PA_DOUT 0x00
#define R_PA_DIN 0x01
#define RW_PA_OE 0x02
#define RW_PD_DOUT 0x10
#define R_PD_DIN 0x11
#define RW_PD_OE 0x12
static struct gpio_state_t
{
struct nand_state_t *nand;
struct tempsensor_t tempsensor;
uint32_t regs[0x5c / 4];
} gpio_state;
static uint32_t gpio_readl (void *opaque, target_phys_addr_t addr)
{
struct gpio_state_t *s = opaque;
uint32_t r = 0;
addr >>= 2;
switch (addr)
{
case R_PA_DIN:
r = s->regs[RW_PA_DOUT] & s->regs[RW_PA_OE];
/* Encode pins from the nand. */
r |= s->nand->rdy << 7;
break;
case R_PD_DIN:
r = s->regs[RW_PD_DOUT] & s->regs[RW_PD_OE];
/* Encode temp sensor pins. */
r |= (!!(s->tempsensor.shiftreg & 0x10000)) << 4;
break;
default:
r = s->regs[addr];
break;
}
return r;
D(printf("%s %x=%x\n", __func__, addr, r));
}
static void gpio_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
{
struct gpio_state_t *s = opaque;
D(printf("%s %x=%x\n", __func__, addr, value));
addr >>= 2;
switch (addr)
{
case RW_PA_DOUT:
/* Decode nand pins. */
s->nand->ale = !!(value & (1 << 6));
s->nand->cle = !!(value & (1 << 5));
s->nand->ce = !!(value & (1 << 4));
s->regs[addr] = value;
break;
case RW_PD_DOUT:
/* Temp sensor clk. */
if ((s->regs[addr] ^ value) & 2)
tempsensor_clkedge(&s->tempsensor, !!(value & 2),
!!(value & 16));
s->regs[addr] = value;
break;
default:
s->regs[addr] = value;
break;
}
}
static CPUReadMemoryFunc *gpio_read[] = {
NULL, NULL,
&gpio_readl,
};
static CPUWriteMemoryFunc *gpio_write[] = {
NULL, NULL,
&gpio_writel,
};
#define INTMEM_SIZE (128 * 1024)
static uint32_t bootstrap_pc;
static void main_cpu_reset(void *opaque)
{
CPUState *env = opaque;
cpu_reset(env);
env->pc = bootstrap_pc;
}
static
void axisdev88_init (ram_addr_t ram_size, int vga_ram_size,
const char *boot_device, DisplayState *ds,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename, const char *cpu_model)
{
CPUState *env;
struct etraxfs_pic *pic;
void *etraxfs_dmac;
struct etraxfs_dma_client *eth[2] = {NULL, NULL};
int kernel_size;
int i;
int nand_regs;
int gpio_regs;
ram_addr_t phys_ram;
ram_addr_t phys_intmem;
/* init CPUs */
if (cpu_model == NULL) {
cpu_model = "crisv32";
}
env = cpu_init(cpu_model);
qemu_register_reset(main_cpu_reset, env);
/* allocate RAM */
phys_ram = qemu_ram_alloc(ram_size);
cpu_register_physical_memory(0x40000000, ram_size, phys_ram | IO_MEM_RAM);
/* The ETRAX-FS has 128Kb on chip ram, the docs refer to it as the
internal memory. */
phys_intmem = qemu_ram_alloc(INTMEM_SIZE);
cpu_register_physical_memory(0x38000000, INTMEM_SIZE,
phys_intmem | IO_MEM_RAM);
/* Attach a NAND flash to CS1. */
nand_state.nand = nand_init(NAND_MFR_STMICRO, 0x39);
nand_regs = cpu_register_io_memory(0, nand_read, nand_write, &nand_state);
cpu_register_physical_memory(0x10000000, 0x05000000, nand_regs);
gpio_state.nand = &nand_state;
gpio_regs = cpu_register_io_memory(0, gpio_read, gpio_write, &gpio_state);
cpu_register_physical_memory(0x3001a000, 0x5c, gpio_regs);
pic = etraxfs_pic_init(env, 0x3001c000);
etraxfs_dmac = etraxfs_dmac_init(env, 0x30000000, 10);
for (i = 0; i < 10; i++) {
/* On ETRAX, odd numbered channels are inputs. */
etraxfs_dmac_connect(etraxfs_dmac, i, pic->irq + 7 + i, i & 1);
}
/* Add the two ethernet blocks. */
nd_table[0].model = nd_table[0].model ? nd_table[0].model : "fseth";
eth[0] = etraxfs_eth_init(&nd_table[0], env, pic->irq + 25, 0x30034000);
if (nb_nics > 1) {
nd_table[1].model = nd_table[1].model ? nd_table[1].model : "fseth";
eth[1] = etraxfs_eth_init(&nd_table[1], env, pic->irq + 26, 0x30036000);
}
/* The DMA Connector block is missing, hardwire things for now. */
etraxfs_dmac_connect_client(etraxfs_dmac, 0, eth[0]);
etraxfs_dmac_connect_client(etraxfs_dmac, 1, eth[0] + 1);
if (eth[1]) {
etraxfs_dmac_connect_client(etraxfs_dmac, 6, eth[1]);
etraxfs_dmac_connect_client(etraxfs_dmac, 7, eth[1] + 1);
}
/* 2 timers. */
etraxfs_timer_init(env, pic->irq + 0x1b, pic->nmi + 1, 0x3001e000);
etraxfs_timer_init(env, pic->irq + 0x1b, pic->nmi + 1, 0x3005e000);
for (i = 0; i < 4; i++) {
if (serial_hds[i]) {
etraxfs_ser_init(env, pic->irq + 0x14 + i,
serial_hds[i], 0x30026000 + i * 0x2000);
}
}
if (kernel_filename) {
uint64_t entry, high;
int kcmdline_len;
/* Boots a kernel elf binary, os/linux-2.6/vmlinux from the axis
devboard SDK. */
kernel_size = load_elf(kernel_filename, -0x80000000LL,
&entry, NULL, &high);
bootstrap_pc = entry;
if (kernel_size < 0) {
/* Takes a kimage from the axis devboard SDK. */
kernel_size = load_image(kernel_filename, phys_ram_base + 0x4000);
bootstrap_pc = 0x40004000;
env->regs[9] = 0x40004000 + kernel_size;
}
env->regs[8] = 0x56902387; /* RAM init magic. */
if (kernel_cmdline && (kcmdline_len = strlen(kernel_cmdline))) {
if (kcmdline_len > 256) {
fprintf(stderr, "Too long CRIS kernel cmdline (max 256)\n");
exit(1);
}
pstrcpy_targphys(high, 256, kernel_cmdline);
/* Let the kernel know we are modifying the cmdline. */
env->regs[10] = 0x87109563;
env->regs[11] = high;
}
}
env->pc = bootstrap_pc;
printf ("pc =%x\n", env->pc);
printf ("ram size =%ld\n", ram_size);
}
QEMUMachine axisdev88_machine = {
.name = "axis-dev88",
.desc = "AXIS devboard 88",
.init = axisdev88_init,
.ram_require = 0x8000000,
};