qemu/target/i386/cpu.c
Paolo Bonzini 673652a785 Merge commit 'df84f17' into HEAD
This merge fixes a semantic conflict with the trivial tree.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-10-26 15:38:02 +02:00

6388 lines
222 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* i386 CPUID helper functions
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/units.h"
#include "qemu/cutils.h"
#include "qemu/bitops.h"
#include "qemu/qemu-print.h"
#include "cpu.h"
#include "exec/exec-all.h"
#include "sysemu/kvm.h"
#include "sysemu/reset.h"
#include "sysemu/hvf.h"
#include "sysemu/cpus.h"
#include "kvm_i386.h"
#include "sev_i386.h"
#include "qemu/error-report.h"
#include "qemu/module.h"
#include "qemu/option.h"
#include "qemu/config-file.h"
#include "qapi/error.h"
#include "qapi/qapi-visit-machine.h"
#include "qapi/qapi-visit-run-state.h"
#include "qapi/qmp/qdict.h"
#include "qapi/qmp/qerror.h"
#include "qapi/visitor.h"
#include "qom/qom-qobject.h"
#include "sysemu/arch_init.h"
#include "qapi/qapi-commands-machine-target.h"
#include "standard-headers/asm-x86/kvm_para.h"
#include "sysemu/sysemu.h"
#include "sysemu/tcg.h"
#include "hw/qdev-properties.h"
#include "hw/i386/topology.h"
#ifndef CONFIG_USER_ONLY
#include "exec/address-spaces.h"
#include "hw/xen/xen.h"
#include "hw/i386/apic_internal.h"
#include "hw/boards.h"
#endif
#include "disas/capstone.h"
/* Helpers for building CPUID[2] descriptors: */
struct CPUID2CacheDescriptorInfo {
enum CacheType type;
int level;
int size;
int line_size;
int associativity;
};
/*
* Known CPUID 2 cache descriptors.
* From Intel SDM Volume 2A, CPUID instruction
*/
struct CPUID2CacheDescriptorInfo cpuid2_cache_descriptors[] = {
[0x06] = { .level = 1, .type = INSTRUCTION_CACHE, .size = 8 * KiB,
.associativity = 4, .line_size = 32, },
[0x08] = { .level = 1, .type = INSTRUCTION_CACHE, .size = 16 * KiB,
.associativity = 4, .line_size = 32, },
[0x09] = { .level = 1, .type = INSTRUCTION_CACHE, .size = 32 * KiB,
.associativity = 4, .line_size = 64, },
[0x0A] = { .level = 1, .type = DATA_CACHE, .size = 8 * KiB,
.associativity = 2, .line_size = 32, },
[0x0C] = { .level = 1, .type = DATA_CACHE, .size = 16 * KiB,
.associativity = 4, .line_size = 32, },
[0x0D] = { .level = 1, .type = DATA_CACHE, .size = 16 * KiB,
.associativity = 4, .line_size = 64, },
[0x0E] = { .level = 1, .type = DATA_CACHE, .size = 24 * KiB,
.associativity = 6, .line_size = 64, },
[0x1D] = { .level = 2, .type = UNIFIED_CACHE, .size = 128 * KiB,
.associativity = 2, .line_size = 64, },
[0x21] = { .level = 2, .type = UNIFIED_CACHE, .size = 256 * KiB,
.associativity = 8, .line_size = 64, },
/* lines per sector is not supported cpuid2_cache_descriptor(),
* so descriptors 0x22, 0x23 are not included
*/
[0x24] = { .level = 2, .type = UNIFIED_CACHE, .size = 1 * MiB,
.associativity = 16, .line_size = 64, },
/* lines per sector is not supported cpuid2_cache_descriptor(),
* so descriptors 0x25, 0x20 are not included
*/
[0x2C] = { .level = 1, .type = DATA_CACHE, .size = 32 * KiB,
.associativity = 8, .line_size = 64, },
[0x30] = { .level = 1, .type = INSTRUCTION_CACHE, .size = 32 * KiB,
.associativity = 8, .line_size = 64, },
[0x41] = { .level = 2, .type = UNIFIED_CACHE, .size = 128 * KiB,
.associativity = 4, .line_size = 32, },
[0x42] = { .level = 2, .type = UNIFIED_CACHE, .size = 256 * KiB,
.associativity = 4, .line_size = 32, },
[0x43] = { .level = 2, .type = UNIFIED_CACHE, .size = 512 * KiB,
.associativity = 4, .line_size = 32, },
[0x44] = { .level = 2, .type = UNIFIED_CACHE, .size = 1 * MiB,
.associativity = 4, .line_size = 32, },
[0x45] = { .level = 2, .type = UNIFIED_CACHE, .size = 2 * MiB,
.associativity = 4, .line_size = 32, },
[0x46] = { .level = 3, .type = UNIFIED_CACHE, .size = 4 * MiB,
.associativity = 4, .line_size = 64, },
[0x47] = { .level = 3, .type = UNIFIED_CACHE, .size = 8 * MiB,
.associativity = 8, .line_size = 64, },
[0x48] = { .level = 2, .type = UNIFIED_CACHE, .size = 3 * MiB,
.associativity = 12, .line_size = 64, },
/* Descriptor 0x49 depends on CPU family/model, so it is not included */
[0x4A] = { .level = 3, .type = UNIFIED_CACHE, .size = 6 * MiB,
.associativity = 12, .line_size = 64, },
[0x4B] = { .level = 3, .type = UNIFIED_CACHE, .size = 8 * MiB,
.associativity = 16, .line_size = 64, },
[0x4C] = { .level = 3, .type = UNIFIED_CACHE, .size = 12 * MiB,
.associativity = 12, .line_size = 64, },
[0x4D] = { .level = 3, .type = UNIFIED_CACHE, .size = 16 * MiB,
.associativity = 16, .line_size = 64, },
[0x4E] = { .level = 2, .type = UNIFIED_CACHE, .size = 6 * MiB,
.associativity = 24, .line_size = 64, },
[0x60] = { .level = 1, .type = DATA_CACHE, .size = 16 * KiB,
.associativity = 8, .line_size = 64, },
[0x66] = { .level = 1, .type = DATA_CACHE, .size = 8 * KiB,
.associativity = 4, .line_size = 64, },
[0x67] = { .level = 1, .type = DATA_CACHE, .size = 16 * KiB,
.associativity = 4, .line_size = 64, },
[0x68] = { .level = 1, .type = DATA_CACHE, .size = 32 * KiB,
.associativity = 4, .line_size = 64, },
[0x78] = { .level = 2, .type = UNIFIED_CACHE, .size = 1 * MiB,
.associativity = 4, .line_size = 64, },
/* lines per sector is not supported cpuid2_cache_descriptor(),
* so descriptors 0x79, 0x7A, 0x7B, 0x7C are not included.
*/
[0x7D] = { .level = 2, .type = UNIFIED_CACHE, .size = 2 * MiB,
.associativity = 8, .line_size = 64, },
[0x7F] = { .level = 2, .type = UNIFIED_CACHE, .size = 512 * KiB,
.associativity = 2, .line_size = 64, },
[0x80] = { .level = 2, .type = UNIFIED_CACHE, .size = 512 * KiB,
.associativity = 8, .line_size = 64, },
[0x82] = { .level = 2, .type = UNIFIED_CACHE, .size = 256 * KiB,
.associativity = 8, .line_size = 32, },
[0x83] = { .level = 2, .type = UNIFIED_CACHE, .size = 512 * KiB,
.associativity = 8, .line_size = 32, },
[0x84] = { .level = 2, .type = UNIFIED_CACHE, .size = 1 * MiB,
.associativity = 8, .line_size = 32, },
[0x85] = { .level = 2, .type = UNIFIED_CACHE, .size = 2 * MiB,
.associativity = 8, .line_size = 32, },
[0x86] = { .level = 2, .type = UNIFIED_CACHE, .size = 512 * KiB,
.associativity = 4, .line_size = 64, },
[0x87] = { .level = 2, .type = UNIFIED_CACHE, .size = 1 * MiB,
.associativity = 8, .line_size = 64, },
[0xD0] = { .level = 3, .type = UNIFIED_CACHE, .size = 512 * KiB,
.associativity = 4, .line_size = 64, },
[0xD1] = { .level = 3, .type = UNIFIED_CACHE, .size = 1 * MiB,
.associativity = 4, .line_size = 64, },
[0xD2] = { .level = 3, .type = UNIFIED_CACHE, .size = 2 * MiB,
.associativity = 4, .line_size = 64, },
[0xD6] = { .level = 3, .type = UNIFIED_CACHE, .size = 1 * MiB,
.associativity = 8, .line_size = 64, },
[0xD7] = { .level = 3, .type = UNIFIED_CACHE, .size = 2 * MiB,
.associativity = 8, .line_size = 64, },
[0xD8] = { .level = 3, .type = UNIFIED_CACHE, .size = 4 * MiB,
.associativity = 8, .line_size = 64, },
[0xDC] = { .level = 3, .type = UNIFIED_CACHE, .size = 1.5 * MiB,
.associativity = 12, .line_size = 64, },
[0xDD] = { .level = 3, .type = UNIFIED_CACHE, .size = 3 * MiB,
.associativity = 12, .line_size = 64, },
[0xDE] = { .level = 3, .type = UNIFIED_CACHE, .size = 6 * MiB,
.associativity = 12, .line_size = 64, },
[0xE2] = { .level = 3, .type = UNIFIED_CACHE, .size = 2 * MiB,
.associativity = 16, .line_size = 64, },
[0xE3] = { .level = 3, .type = UNIFIED_CACHE, .size = 4 * MiB,
.associativity = 16, .line_size = 64, },
[0xE4] = { .level = 3, .type = UNIFIED_CACHE, .size = 8 * MiB,
.associativity = 16, .line_size = 64, },
[0xEA] = { .level = 3, .type = UNIFIED_CACHE, .size = 12 * MiB,
.associativity = 24, .line_size = 64, },
[0xEB] = { .level = 3, .type = UNIFIED_CACHE, .size = 18 * MiB,
.associativity = 24, .line_size = 64, },
[0xEC] = { .level = 3, .type = UNIFIED_CACHE, .size = 24 * MiB,
.associativity = 24, .line_size = 64, },
};
/*
* "CPUID leaf 2 does not report cache descriptor information,
* use CPUID leaf 4 to query cache parameters"
*/
#define CACHE_DESCRIPTOR_UNAVAILABLE 0xFF
/*
* Return a CPUID 2 cache descriptor for a given cache.
* If no known descriptor is found, return CACHE_DESCRIPTOR_UNAVAILABLE
*/
static uint8_t cpuid2_cache_descriptor(CPUCacheInfo *cache)
{
int i;
assert(cache->size > 0);
assert(cache->level > 0);
assert(cache->line_size > 0);
assert(cache->associativity > 0);
for (i = 0; i < ARRAY_SIZE(cpuid2_cache_descriptors); i++) {
struct CPUID2CacheDescriptorInfo *d = &cpuid2_cache_descriptors[i];
if (d->level == cache->level && d->type == cache->type &&
d->size == cache->size && d->line_size == cache->line_size &&
d->associativity == cache->associativity) {
return i;
}
}
return CACHE_DESCRIPTOR_UNAVAILABLE;
}
/* CPUID Leaf 4 constants: */
/* EAX: */
#define CACHE_TYPE_D 1
#define CACHE_TYPE_I 2
#define CACHE_TYPE_UNIFIED 3
#define CACHE_LEVEL(l) (l << 5)
#define CACHE_SELF_INIT_LEVEL (1 << 8)
/* EDX: */
#define CACHE_NO_INVD_SHARING (1 << 0)
#define CACHE_INCLUSIVE (1 << 1)
#define CACHE_COMPLEX_IDX (1 << 2)
/* Encode CacheType for CPUID[4].EAX */
#define CACHE_TYPE(t) (((t) == DATA_CACHE) ? CACHE_TYPE_D : \
((t) == INSTRUCTION_CACHE) ? CACHE_TYPE_I : \
((t) == UNIFIED_CACHE) ? CACHE_TYPE_UNIFIED : \
0 /* Invalid value */)
/* Encode cache info for CPUID[4] */
static void encode_cache_cpuid4(CPUCacheInfo *cache,
int num_apic_ids, int num_cores,
uint32_t *eax, uint32_t *ebx,
uint32_t *ecx, uint32_t *edx)
{
assert(cache->size == cache->line_size * cache->associativity *
cache->partitions * cache->sets);
assert(num_apic_ids > 0);
*eax = CACHE_TYPE(cache->type) |
CACHE_LEVEL(cache->level) |
(cache->self_init ? CACHE_SELF_INIT_LEVEL : 0) |
((num_cores - 1) << 26) |
((num_apic_ids - 1) << 14);
assert(cache->line_size > 0);
assert(cache->partitions > 0);
assert(cache->associativity > 0);
/* We don't implement fully-associative caches */
assert(cache->associativity < cache->sets);
*ebx = (cache->line_size - 1) |
((cache->partitions - 1) << 12) |
((cache->associativity - 1) << 22);
assert(cache->sets > 0);
*ecx = cache->sets - 1;
*edx = (cache->no_invd_sharing ? CACHE_NO_INVD_SHARING : 0) |
(cache->inclusive ? CACHE_INCLUSIVE : 0) |
(cache->complex_indexing ? CACHE_COMPLEX_IDX : 0);
}
/* Encode cache info for CPUID[0x80000005].ECX or CPUID[0x80000005].EDX */
static uint32_t encode_cache_cpuid80000005(CPUCacheInfo *cache)
{
assert(cache->size % 1024 == 0);
assert(cache->lines_per_tag > 0);
assert(cache->associativity > 0);
assert(cache->line_size > 0);
return ((cache->size / 1024) << 24) | (cache->associativity << 16) |
(cache->lines_per_tag << 8) | (cache->line_size);
}
#define ASSOC_FULL 0xFF
/* AMD associativity encoding used on CPUID Leaf 0x80000006: */
#define AMD_ENC_ASSOC(a) (a <= 1 ? a : \
a == 2 ? 0x2 : \
a == 4 ? 0x4 : \
a == 8 ? 0x6 : \
a == 16 ? 0x8 : \
a == 32 ? 0xA : \
a == 48 ? 0xB : \
a == 64 ? 0xC : \
a == 96 ? 0xD : \
a == 128 ? 0xE : \
a == ASSOC_FULL ? 0xF : \
0 /* invalid value */)
/*
* Encode cache info for CPUID[0x80000006].ECX and CPUID[0x80000006].EDX
* @l3 can be NULL.
*/
static void encode_cache_cpuid80000006(CPUCacheInfo *l2,
CPUCacheInfo *l3,
uint32_t *ecx, uint32_t *edx)
{
assert(l2->size % 1024 == 0);
assert(l2->associativity > 0);
assert(l2->lines_per_tag > 0);
assert(l2->line_size > 0);
*ecx = ((l2->size / 1024) << 16) |
(AMD_ENC_ASSOC(l2->associativity) << 12) |
(l2->lines_per_tag << 8) | (l2->line_size);
if (l3) {
assert(l3->size % (512 * 1024) == 0);
assert(l3->associativity > 0);
assert(l3->lines_per_tag > 0);
assert(l3->line_size > 0);
*edx = ((l3->size / (512 * 1024)) << 18) |
(AMD_ENC_ASSOC(l3->associativity) << 12) |
(l3->lines_per_tag << 8) | (l3->line_size);
} else {
*edx = 0;
}
}
/*
* Definitions used for building CPUID Leaf 0x8000001D and 0x8000001E
* Please refer to the AMD64 Architecture Programmers Manual Volume 3.
* Define the constants to build the cpu topology. Right now, TOPOEXT
* feature is enabled only on EPYC. So, these constants are based on
* EPYC supported configurations. We may need to handle the cases if
* these values change in future.
*/
/* Maximum core complexes in a node */
#define MAX_CCX 2
/* Maximum cores in a core complex */
#define MAX_CORES_IN_CCX 4
/* Maximum cores in a node */
#define MAX_CORES_IN_NODE 8
/* Maximum nodes in a socket */
#define MAX_NODES_PER_SOCKET 4
/*
* Figure out the number of nodes required to build this config.
* Max cores in a node is 8
*/
static int nodes_in_socket(int nr_cores)
{
int nodes;
nodes = DIV_ROUND_UP(nr_cores, MAX_CORES_IN_NODE);
/* Hardware does not support config with 3 nodes, return 4 in that case */
return (nodes == 3) ? 4 : nodes;
}
/*
* Decide the number of cores in a core complex with the given nr_cores using
* following set constants MAX_CCX, MAX_CORES_IN_CCX, MAX_CORES_IN_NODE and
* MAX_NODES_PER_SOCKET. Maintain symmetry as much as possible
* L3 cache is shared across all cores in a core complex. So, this will also
* tell us how many cores are sharing the L3 cache.
*/
static int cores_in_core_complex(int nr_cores)
{
int nodes;
/* Check if we can fit all the cores in one core complex */
if (nr_cores <= MAX_CORES_IN_CCX) {
return nr_cores;
}
/* Get the number of nodes required to build this config */
nodes = nodes_in_socket(nr_cores);
/*
* Divide the cores accros all the core complexes
* Return rounded up value
*/
return DIV_ROUND_UP(nr_cores, nodes * MAX_CCX);
}
/* Encode cache info for CPUID[8000001D] */
static void encode_cache_cpuid8000001d(CPUCacheInfo *cache, CPUState *cs,
uint32_t *eax, uint32_t *ebx,
uint32_t *ecx, uint32_t *edx)
{
uint32_t l3_cores;
assert(cache->size == cache->line_size * cache->associativity *
cache->partitions * cache->sets);
*eax = CACHE_TYPE(cache->type) | CACHE_LEVEL(cache->level) |
(cache->self_init ? CACHE_SELF_INIT_LEVEL : 0);
/* L3 is shared among multiple cores */
if (cache->level == 3) {
l3_cores = cores_in_core_complex(cs->nr_cores);
*eax |= ((l3_cores * cs->nr_threads) - 1) << 14;
} else {
*eax |= ((cs->nr_threads - 1) << 14);
}
assert(cache->line_size > 0);
assert(cache->partitions > 0);
assert(cache->associativity > 0);
/* We don't implement fully-associative caches */
assert(cache->associativity < cache->sets);
*ebx = (cache->line_size - 1) |
((cache->partitions - 1) << 12) |
((cache->associativity - 1) << 22);
assert(cache->sets > 0);
*ecx = cache->sets - 1;
*edx = (cache->no_invd_sharing ? CACHE_NO_INVD_SHARING : 0) |
(cache->inclusive ? CACHE_INCLUSIVE : 0) |
(cache->complex_indexing ? CACHE_COMPLEX_IDX : 0);
}
/* Data structure to hold the configuration info for a given core index */
struct core_topology {
/* core complex id of the current core index */
int ccx_id;
/*
* Adjusted core index for this core in the topology
* This can be 0,1,2,3 with max 4 cores in a core complex
*/
int core_id;
/* Node id for this core index */
int node_id;
/* Number of nodes in this config */
int num_nodes;
};
/*
* Build the configuration closely match the EPYC hardware. Using the EPYC
* hardware configuration values (MAX_CCX, MAX_CORES_IN_CCX, MAX_CORES_IN_NODE)
* right now. This could change in future.
* nr_cores : Total number of cores in the config
* core_id : Core index of the current CPU
* topo : Data structure to hold all the config info for this core index
*/
static void build_core_topology(int nr_cores, int core_id,
struct core_topology *topo)
{
int nodes, cores_in_ccx;
/* First get the number of nodes required */
nodes = nodes_in_socket(nr_cores);
cores_in_ccx = cores_in_core_complex(nr_cores);
topo->node_id = core_id / (cores_in_ccx * MAX_CCX);
topo->ccx_id = (core_id % (cores_in_ccx * MAX_CCX)) / cores_in_ccx;
topo->core_id = core_id % cores_in_ccx;
topo->num_nodes = nodes;
}
/* Encode cache info for CPUID[8000001E] */
static void encode_topo_cpuid8000001e(CPUState *cs, X86CPU *cpu,
uint32_t *eax, uint32_t *ebx,
uint32_t *ecx, uint32_t *edx)
{
struct core_topology topo = {0};
unsigned long nodes;
int shift;
build_core_topology(cs->nr_cores, cpu->core_id, &topo);
*eax = cpu->apic_id;
/*
* CPUID_Fn8000001E_EBX
* 31:16 Reserved
* 15:8 Threads per core (The number of threads per core is
* Threads per core + 1)
* 7:0 Core id (see bit decoding below)
* SMT:
* 4:3 node id
* 2 Core complex id
* 1:0 Core id
* Non SMT:
* 5:4 node id
* 3 Core complex id
* 1:0 Core id
*/
if (cs->nr_threads - 1) {
*ebx = ((cs->nr_threads - 1) << 8) | (topo.node_id << 3) |
(topo.ccx_id << 2) | topo.core_id;
} else {
*ebx = (topo.node_id << 4) | (topo.ccx_id << 3) | topo.core_id;
}
/*
* CPUID_Fn8000001E_ECX
* 31:11 Reserved
* 10:8 Nodes per processor (Nodes per processor is number of nodes + 1)
* 7:0 Node id (see bit decoding below)
* 2 Socket id
* 1:0 Node id
*/
if (topo.num_nodes <= 4) {
*ecx = ((topo.num_nodes - 1) << 8) | (cpu->socket_id << 2) |
topo.node_id;
} else {
/*
* Node id fix up. Actual hardware supports up to 4 nodes. But with
* more than 32 cores, we may end up with more than 4 nodes.
* Node id is a combination of socket id and node id. Only requirement
* here is that this number should be unique accross the system.
* Shift the socket id to accommodate more nodes. We dont expect both
* socket id and node id to be big number at the same time. This is not
* an ideal config but we need to to support it. Max nodes we can have
* is 32 (255/8) with 8 cores per node and 255 max cores. We only need
* 5 bits for nodes. Find the left most set bit to represent the total
* number of nodes. find_last_bit returns last set bit(0 based). Left
* shift(+1) the socket id to represent all the nodes.
*/
nodes = topo.num_nodes - 1;
shift = find_last_bit(&nodes, 8);
*ecx = ((topo.num_nodes - 1) << 8) | (cpu->socket_id << (shift + 1)) |
topo.node_id;
}
*edx = 0;
}
/*
* Definitions of the hardcoded cache entries we expose:
* These are legacy cache values. If there is a need to change any
* of these values please use builtin_x86_defs
*/
/* L1 data cache: */
static CPUCacheInfo legacy_l1d_cache = {
.type = DATA_CACHE,
.level = 1,
.size = 32 * KiB,
.self_init = 1,
.line_size = 64,
.associativity = 8,
.sets = 64,
.partitions = 1,
.no_invd_sharing = true,
};
/*FIXME: CPUID leaf 0x80000005 is inconsistent with leaves 2 & 4 */
static CPUCacheInfo legacy_l1d_cache_amd = {
.type = DATA_CACHE,
.level = 1,
.size = 64 * KiB,
.self_init = 1,
.line_size = 64,
.associativity = 2,
.sets = 512,
.partitions = 1,
.lines_per_tag = 1,
.no_invd_sharing = true,
};
/* L1 instruction cache: */
static CPUCacheInfo legacy_l1i_cache = {
.type = INSTRUCTION_CACHE,
.level = 1,
.size = 32 * KiB,
.self_init = 1,
.line_size = 64,
.associativity = 8,
.sets = 64,
.partitions = 1,
.no_invd_sharing = true,
};
/*FIXME: CPUID leaf 0x80000005 is inconsistent with leaves 2 & 4 */
static CPUCacheInfo legacy_l1i_cache_amd = {
.type = INSTRUCTION_CACHE,
.level = 1,
.size = 64 * KiB,
.self_init = 1,
.line_size = 64,
.associativity = 2,
.sets = 512,
.partitions = 1,
.lines_per_tag = 1,
.no_invd_sharing = true,
};
/* Level 2 unified cache: */
static CPUCacheInfo legacy_l2_cache = {
.type = UNIFIED_CACHE,
.level = 2,
.size = 4 * MiB,
.self_init = 1,
.line_size = 64,
.associativity = 16,
.sets = 4096,
.partitions = 1,
.no_invd_sharing = true,
};
/*FIXME: CPUID leaf 2 descriptor is inconsistent with CPUID leaf 4 */
static CPUCacheInfo legacy_l2_cache_cpuid2 = {
.type = UNIFIED_CACHE,
.level = 2,
.size = 2 * MiB,
.line_size = 64,
.associativity = 8,
};
/*FIXME: CPUID leaf 0x80000006 is inconsistent with leaves 2 & 4 */
static CPUCacheInfo legacy_l2_cache_amd = {
.type = UNIFIED_CACHE,
.level = 2,
.size = 512 * KiB,
.line_size = 64,
.lines_per_tag = 1,
.associativity = 16,
.sets = 512,
.partitions = 1,
};
/* Level 3 unified cache: */
static CPUCacheInfo legacy_l3_cache = {
.type = UNIFIED_CACHE,
.level = 3,
.size = 16 * MiB,
.line_size = 64,
.associativity = 16,
.sets = 16384,
.partitions = 1,
.lines_per_tag = 1,
.self_init = true,
.inclusive = true,
.complex_indexing = true,
};
/* TLB definitions: */
#define L1_DTLB_2M_ASSOC 1
#define L1_DTLB_2M_ENTRIES 255
#define L1_DTLB_4K_ASSOC 1
#define L1_DTLB_4K_ENTRIES 255
#define L1_ITLB_2M_ASSOC 1
#define L1_ITLB_2M_ENTRIES 255
#define L1_ITLB_4K_ASSOC 1
#define L1_ITLB_4K_ENTRIES 255
#define L2_DTLB_2M_ASSOC 0 /* disabled */
#define L2_DTLB_2M_ENTRIES 0 /* disabled */
#define L2_DTLB_4K_ASSOC 4
#define L2_DTLB_4K_ENTRIES 512
#define L2_ITLB_2M_ASSOC 0 /* disabled */
#define L2_ITLB_2M_ENTRIES 0 /* disabled */
#define L2_ITLB_4K_ASSOC 4
#define L2_ITLB_4K_ENTRIES 512
/* CPUID Leaf 0x14 constants: */
#define INTEL_PT_MAX_SUBLEAF 0x1
/*
* bit[00]: IA32_RTIT_CTL.CR3 filter can be set to 1 and IA32_RTIT_CR3_MATCH
* MSR can be accessed;
* bit[01]: Support Configurable PSB and Cycle-Accurate Mode;
* bit[02]: Support IP Filtering, TraceStop filtering, and preservation
* of Intel PT MSRs across warm reset;
* bit[03]: Support MTC timing packet and suppression of COFI-based packets;
*/
#define INTEL_PT_MINIMAL_EBX 0xf
/*
* bit[00]: Tracing can be enabled with IA32_RTIT_CTL.ToPA = 1 and
* IA32_RTIT_OUTPUT_BASE and IA32_RTIT_OUTPUT_MASK_PTRS MSRs can be
* accessed;
* bit[01]: ToPA tables can hold any number of output entries, up to the
* maximum allowed by the MaskOrTableOffset field of
* IA32_RTIT_OUTPUT_MASK_PTRS;
* bit[02]: Support Single-Range Output scheme;
*/
#define INTEL_PT_MINIMAL_ECX 0x7
/* generated packets which contain IP payloads have LIP values */
#define INTEL_PT_IP_LIP (1 << 31)
#define INTEL_PT_ADDR_RANGES_NUM 0x2 /* Number of configurable address ranges */
#define INTEL_PT_ADDR_RANGES_NUM_MASK 0x3
#define INTEL_PT_MTC_BITMAP (0x0249 << 16) /* Support ART(0,3,6,9) */
#define INTEL_PT_CYCLE_BITMAP 0x1fff /* Support 0,2^(0~11) */
#define INTEL_PT_PSB_BITMAP (0x003f << 16) /* Support 2K,4K,8K,16K,32K,64K */
static void x86_cpu_vendor_words2str(char *dst, uint32_t vendor1,
uint32_t vendor2, uint32_t vendor3)
{
int i;
for (i = 0; i < 4; i++) {
dst[i] = vendor1 >> (8 * i);
dst[i + 4] = vendor2 >> (8 * i);
dst[i + 8] = vendor3 >> (8 * i);
}
dst[CPUID_VENDOR_SZ] = '\0';
}
#define I486_FEATURES (CPUID_FP87 | CPUID_VME | CPUID_PSE)
#define PENTIUM_FEATURES (I486_FEATURES | CPUID_DE | CPUID_TSC | \
CPUID_MSR | CPUID_MCE | CPUID_CX8 | CPUID_MMX | CPUID_APIC)
#define PENTIUM2_FEATURES (PENTIUM_FEATURES | CPUID_PAE | CPUID_SEP | \
CPUID_MTRR | CPUID_PGE | CPUID_MCA | CPUID_CMOV | CPUID_PAT | \
CPUID_PSE36 | CPUID_FXSR)
#define PENTIUM3_FEATURES (PENTIUM2_FEATURES | CPUID_SSE)
#define PPRO_FEATURES (CPUID_FP87 | CPUID_DE | CPUID_PSE | CPUID_TSC | \
CPUID_MSR | CPUID_MCE | CPUID_CX8 | CPUID_PGE | CPUID_CMOV | \
CPUID_PAT | CPUID_FXSR | CPUID_MMX | CPUID_SSE | CPUID_SSE2 | \
CPUID_PAE | CPUID_SEP | CPUID_APIC)
#define TCG_FEATURES (CPUID_FP87 | CPUID_PSE | CPUID_TSC | CPUID_MSR | \
CPUID_PAE | CPUID_MCE | CPUID_CX8 | CPUID_APIC | CPUID_SEP | \
CPUID_MTRR | CPUID_PGE | CPUID_MCA | CPUID_CMOV | CPUID_PAT | \
CPUID_PSE36 | CPUID_CLFLUSH | CPUID_ACPI | CPUID_MMX | \
CPUID_FXSR | CPUID_SSE | CPUID_SSE2 | CPUID_SS | CPUID_DE)
/* partly implemented:
CPUID_MTRR, CPUID_MCA, CPUID_CLFLUSH (needed for Win64) */
/* missing:
CPUID_VME, CPUID_DTS, CPUID_SS, CPUID_HT, CPUID_TM, CPUID_PBE */
#define TCG_EXT_FEATURES (CPUID_EXT_SSE3 | CPUID_EXT_PCLMULQDQ | \
CPUID_EXT_MONITOR | CPUID_EXT_SSSE3 | CPUID_EXT_CX16 | \
CPUID_EXT_SSE41 | CPUID_EXT_SSE42 | CPUID_EXT_POPCNT | \
CPUID_EXT_XSAVE | /* CPUID_EXT_OSXSAVE is dynamic */ \
CPUID_EXT_MOVBE | CPUID_EXT_AES | CPUID_EXT_HYPERVISOR | \
CPUID_EXT_RDRAND)
/* missing:
CPUID_EXT_DTES64, CPUID_EXT_DSCPL, CPUID_EXT_VMX, CPUID_EXT_SMX,
CPUID_EXT_EST, CPUID_EXT_TM2, CPUID_EXT_CID, CPUID_EXT_FMA,
CPUID_EXT_XTPR, CPUID_EXT_PDCM, CPUID_EXT_PCID, CPUID_EXT_DCA,
CPUID_EXT_X2APIC, CPUID_EXT_TSC_DEADLINE_TIMER, CPUID_EXT_AVX,
CPUID_EXT_F16C */
#ifdef TARGET_X86_64
#define TCG_EXT2_X86_64_FEATURES (CPUID_EXT2_SYSCALL | CPUID_EXT2_LM)
#else
#define TCG_EXT2_X86_64_FEATURES 0
#endif
#define TCG_EXT2_FEATURES ((TCG_FEATURES & CPUID_EXT2_AMD_ALIASES) | \
CPUID_EXT2_NX | CPUID_EXT2_MMXEXT | CPUID_EXT2_RDTSCP | \
CPUID_EXT2_3DNOW | CPUID_EXT2_3DNOWEXT | CPUID_EXT2_PDPE1GB | \
TCG_EXT2_X86_64_FEATURES)
#define TCG_EXT3_FEATURES (CPUID_EXT3_LAHF_LM | CPUID_EXT3_SVM | \
CPUID_EXT3_CR8LEG | CPUID_EXT3_ABM | CPUID_EXT3_SSE4A)
#define TCG_EXT4_FEATURES 0
#define TCG_SVM_FEATURES CPUID_SVM_NPT
#define TCG_KVM_FEATURES 0
#define TCG_7_0_EBX_FEATURES (CPUID_7_0_EBX_SMEP | CPUID_7_0_EBX_SMAP | \
CPUID_7_0_EBX_BMI1 | CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ADX | \
CPUID_7_0_EBX_PCOMMIT | CPUID_7_0_EBX_CLFLUSHOPT | \
CPUID_7_0_EBX_CLWB | CPUID_7_0_EBX_MPX | CPUID_7_0_EBX_FSGSBASE | \
CPUID_7_0_EBX_ERMS)
/* missing:
CPUID_7_0_EBX_HLE, CPUID_7_0_EBX_AVX2,
CPUID_7_0_EBX_INVPCID, CPUID_7_0_EBX_RTM,
CPUID_7_0_EBX_RDSEED */
#define TCG_7_0_ECX_FEATURES (CPUID_7_0_ECX_PKU | \
/* CPUID_7_0_ECX_OSPKE is dynamic */ \
CPUID_7_0_ECX_LA57)
#define TCG_7_0_EDX_FEATURES 0
#define TCG_7_1_EAX_FEATURES 0
#define TCG_APM_FEATURES 0
#define TCG_6_EAX_FEATURES CPUID_6_EAX_ARAT
#define TCG_XSAVE_FEATURES (CPUID_XSAVE_XSAVEOPT | CPUID_XSAVE_XGETBV1)
/* missing:
CPUID_XSAVE_XSAVEC, CPUID_XSAVE_XSAVES */
typedef enum FeatureWordType {
CPUID_FEATURE_WORD,
MSR_FEATURE_WORD,
} FeatureWordType;
typedef struct FeatureWordInfo {
FeatureWordType type;
/* feature flags names are taken from "Intel Processor Identification and
* the CPUID Instruction" and AMD's "CPUID Specification".
* In cases of disagreement between feature naming conventions,
* aliases may be added.
*/
const char *feat_names[64];
union {
/* If type==CPUID_FEATURE_WORD */
struct {
uint32_t eax; /* Input EAX for CPUID */
bool needs_ecx; /* CPUID instruction uses ECX as input */
uint32_t ecx; /* Input ECX value for CPUID */
int reg; /* output register (R_* constant) */
} cpuid;
/* If type==MSR_FEATURE_WORD */
struct {
uint32_t index;
} msr;
};
uint64_t tcg_features; /* Feature flags supported by TCG */
uint64_t unmigratable_flags; /* Feature flags known to be unmigratable */
uint64_t migratable_flags; /* Feature flags known to be migratable */
/* Features that shouldn't be auto-enabled by "-cpu host" */
uint64_t no_autoenable_flags;
} FeatureWordInfo;
static FeatureWordInfo feature_word_info[FEATURE_WORDS] = {
[FEAT_1_EDX] = {
.type = CPUID_FEATURE_WORD,
.feat_names = {
"fpu", "vme", "de", "pse",
"tsc", "msr", "pae", "mce",
"cx8", "apic", NULL, "sep",
"mtrr", "pge", "mca", "cmov",
"pat", "pse36", "pn" /* Intel psn */, "clflush" /* Intel clfsh */,
NULL, "ds" /* Intel dts */, "acpi", "mmx",
"fxsr", "sse", "sse2", "ss",
"ht" /* Intel htt */, "tm", "ia64", "pbe",
},
.cpuid = {.eax = 1, .reg = R_EDX, },
.tcg_features = TCG_FEATURES,
},
[FEAT_1_ECX] = {
.type = CPUID_FEATURE_WORD,
.feat_names = {
"pni" /* Intel,AMD sse3 */, "pclmulqdq", "dtes64", "monitor",
"ds-cpl", "vmx", "smx", "est",
"tm2", "ssse3", "cid", NULL,
"fma", "cx16", "xtpr", "pdcm",
NULL, "pcid", "dca", "sse4.1",
"sse4.2", "x2apic", "movbe", "popcnt",
"tsc-deadline", "aes", "xsave", NULL /* osxsave */,
"avx", "f16c", "rdrand", "hypervisor",
},
.cpuid = { .eax = 1, .reg = R_ECX, },
.tcg_features = TCG_EXT_FEATURES,
},
/* Feature names that are already defined on feature_name[] but
* are set on CPUID[8000_0001].EDX on AMD CPUs don't have their
* names on feat_names below. They are copied automatically
* to features[FEAT_8000_0001_EDX] if and only if CPU vendor is AMD.
*/
[FEAT_8000_0001_EDX] = {
.type = CPUID_FEATURE_WORD,
.feat_names = {
NULL /* fpu */, NULL /* vme */, NULL /* de */, NULL /* pse */,
NULL /* tsc */, NULL /* msr */, NULL /* pae */, NULL /* mce */,
NULL /* cx8 */, NULL /* apic */, NULL, "syscall",
NULL /* mtrr */, NULL /* pge */, NULL /* mca */, NULL /* cmov */,
NULL /* pat */, NULL /* pse36 */, NULL, NULL /* Linux mp */,
"nx", NULL, "mmxext", NULL /* mmx */,
NULL /* fxsr */, "fxsr-opt", "pdpe1gb", "rdtscp",
NULL, "lm", "3dnowext", "3dnow",
},
.cpuid = { .eax = 0x80000001, .reg = R_EDX, },
.tcg_features = TCG_EXT2_FEATURES,
},
[FEAT_8000_0001_ECX] = {
.type = CPUID_FEATURE_WORD,
.feat_names = {
"lahf-lm", "cmp-legacy", "svm", "extapic",
"cr8legacy", "abm", "sse4a", "misalignsse",
"3dnowprefetch", "osvw", "ibs", "xop",
"skinit", "wdt", NULL, "lwp",
"fma4", "tce", NULL, "nodeid-msr",
NULL, "tbm", "topoext", "perfctr-core",
"perfctr-nb", NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
},
.cpuid = { .eax = 0x80000001, .reg = R_ECX, },
.tcg_features = TCG_EXT3_FEATURES,
/*
* TOPOEXT is always allowed but can't be enabled blindly by
* "-cpu host", as it requires consistent cache topology info
* to be provided so it doesn't confuse guests.
*/
.no_autoenable_flags = CPUID_EXT3_TOPOEXT,
},
[FEAT_C000_0001_EDX] = {
.type = CPUID_FEATURE_WORD,
.feat_names = {
NULL, NULL, "xstore", "xstore-en",
NULL, NULL, "xcrypt", "xcrypt-en",
"ace2", "ace2-en", "phe", "phe-en",
"pmm", "pmm-en", NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
},
.cpuid = { .eax = 0xC0000001, .reg = R_EDX, },
.tcg_features = TCG_EXT4_FEATURES,
},
[FEAT_KVM] = {
.type = CPUID_FEATURE_WORD,
.feat_names = {
"kvmclock", "kvm-nopiodelay", "kvm-mmu", "kvmclock",
"kvm-asyncpf", "kvm-steal-time", "kvm-pv-eoi", "kvm-pv-unhalt",
NULL, "kvm-pv-tlb-flush", NULL, "kvm-pv-ipi",
"kvm-poll-control", "kvm-pv-sched-yield", NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
"kvmclock-stable-bit", NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
},
.cpuid = { .eax = KVM_CPUID_FEATURES, .reg = R_EAX, },
.tcg_features = TCG_KVM_FEATURES,
},
[FEAT_KVM_HINTS] = {
.type = CPUID_FEATURE_WORD,
.feat_names = {
"kvm-hint-dedicated", NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
},
.cpuid = { .eax = KVM_CPUID_FEATURES, .reg = R_EDX, },
.tcg_features = TCG_KVM_FEATURES,
/*
* KVM hints aren't auto-enabled by -cpu host, they need to be
* explicitly enabled in the command-line.
*/
.no_autoenable_flags = ~0U,
},
/*
* .feat_names are commented out for Hyper-V enlightenments because we
* don't want to have two different ways for enabling them on QEMU command
* line. Some features (e.g. "hyperv_time", "hyperv_vapic", ...) require
* enabling several feature bits simultaneously, exposing these bits
* individually may just confuse guests.
*/
[FEAT_HYPERV_EAX] = {
.type = CPUID_FEATURE_WORD,
.feat_names = {
NULL /* hv_msr_vp_runtime_access */, NULL /* hv_msr_time_refcount_access */,
NULL /* hv_msr_synic_access */, NULL /* hv_msr_stimer_access */,
NULL /* hv_msr_apic_access */, NULL /* hv_msr_hypercall_access */,
NULL /* hv_vpindex_access */, NULL /* hv_msr_reset_access */,
NULL /* hv_msr_stats_access */, NULL /* hv_reftsc_access */,
NULL /* hv_msr_idle_access */, NULL /* hv_msr_frequency_access */,
NULL /* hv_msr_debug_access */, NULL /* hv_msr_reenlightenment_access */,
NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
},
.cpuid = { .eax = 0x40000003, .reg = R_EAX, },
},
[FEAT_HYPERV_EBX] = {
.type = CPUID_FEATURE_WORD,
.feat_names = {
NULL /* hv_create_partitions */, NULL /* hv_access_partition_id */,
NULL /* hv_access_memory_pool */, NULL /* hv_adjust_message_buffers */,
NULL /* hv_post_messages */, NULL /* hv_signal_events */,
NULL /* hv_create_port */, NULL /* hv_connect_port */,
NULL /* hv_access_stats */, NULL, NULL, NULL /* hv_debugging */,
NULL /* hv_cpu_power_management */, NULL /* hv_configure_profiler */,
NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
},
.cpuid = { .eax = 0x40000003, .reg = R_EBX, },
},
[FEAT_HYPERV_EDX] = {
.type = CPUID_FEATURE_WORD,
.feat_names = {
NULL /* hv_mwait */, NULL /* hv_guest_debugging */,
NULL /* hv_perf_monitor */, NULL /* hv_cpu_dynamic_part */,
NULL /* hv_hypercall_params_xmm */, NULL /* hv_guest_idle_state */,
NULL, NULL,
NULL, NULL, NULL /* hv_guest_crash_msr */, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
},
.cpuid = { .eax = 0x40000003, .reg = R_EDX, },
},
[FEAT_HV_RECOMM_EAX] = {
.type = CPUID_FEATURE_WORD,
.feat_names = {
NULL /* hv_recommend_pv_as_switch */,
NULL /* hv_recommend_pv_tlbflush_local */,
NULL /* hv_recommend_pv_tlbflush_remote */,
NULL /* hv_recommend_msr_apic_access */,
NULL /* hv_recommend_msr_reset */,
NULL /* hv_recommend_relaxed_timing */,
NULL /* hv_recommend_dma_remapping */,
NULL /* hv_recommend_int_remapping */,
NULL /* hv_recommend_x2apic_msrs */,
NULL /* hv_recommend_autoeoi_deprecation */,
NULL /* hv_recommend_pv_ipi */,
NULL /* hv_recommend_ex_hypercalls */,
NULL /* hv_hypervisor_is_nested */,
NULL /* hv_recommend_int_mbec */,
NULL /* hv_recommend_evmcs */,
NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
},
.cpuid = { .eax = 0x40000004, .reg = R_EAX, },
},
[FEAT_HV_NESTED_EAX] = {
.type = CPUID_FEATURE_WORD,
.cpuid = { .eax = 0x4000000A, .reg = R_EAX, },
},
[FEAT_SVM] = {
.type = CPUID_FEATURE_WORD,
.feat_names = {
"npt", "lbrv", "svm-lock", "nrip-save",
"tsc-scale", "vmcb-clean", "flushbyasid", "decodeassists",
NULL, NULL, "pause-filter", NULL,
"pfthreshold", NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
},
.cpuid = { .eax = 0x8000000A, .reg = R_EDX, },
.tcg_features = TCG_SVM_FEATURES,
},
[FEAT_7_0_EBX] = {
.type = CPUID_FEATURE_WORD,
.feat_names = {
"fsgsbase", "tsc-adjust", NULL, "bmi1",
"hle", "avx2", NULL, "smep",
"bmi2", "erms", "invpcid", "rtm",
NULL, NULL, "mpx", NULL,
"avx512f", "avx512dq", "rdseed", "adx",
"smap", "avx512ifma", "pcommit", "clflushopt",
"clwb", "intel-pt", "avx512pf", "avx512er",
"avx512cd", "sha-ni", "avx512bw", "avx512vl",
},
.cpuid = {
.eax = 7,
.needs_ecx = true, .ecx = 0,
.reg = R_EBX,
},
.tcg_features = TCG_7_0_EBX_FEATURES,
},
[FEAT_7_0_ECX] = {
.type = CPUID_FEATURE_WORD,
.feat_names = {
NULL, "avx512vbmi", "umip", "pku",
NULL /* ospke */, "waitpkg", "avx512vbmi2", NULL,
"gfni", "vaes", "vpclmulqdq", "avx512vnni",
"avx512bitalg", NULL, "avx512-vpopcntdq", NULL,
"la57", NULL, NULL, NULL,
NULL, NULL, "rdpid", NULL,
NULL, "cldemote", NULL, "movdiri",
"movdir64b", NULL, NULL, NULL,
},
.cpuid = {
.eax = 7,
.needs_ecx = true, .ecx = 0,
.reg = R_ECX,
},
.tcg_features = TCG_7_0_ECX_FEATURES,
},
[FEAT_7_0_EDX] = {
.type = CPUID_FEATURE_WORD,
.feat_names = {
NULL, NULL, "avx512-4vnniw", "avx512-4fmaps",
NULL, NULL, NULL, NULL,
NULL, NULL, "md-clear", NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL /* pconfig */, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, "spec-ctrl", "stibp",
NULL, "arch-capabilities", "core-capability", "ssbd",
},
.cpuid = {
.eax = 7,
.needs_ecx = true, .ecx = 0,
.reg = R_EDX,
},
.tcg_features = TCG_7_0_EDX_FEATURES,
},
[FEAT_7_1_EAX] = {
.type = CPUID_FEATURE_WORD,
.feat_names = {
NULL, NULL, NULL, NULL,
NULL, "avx512-bf16", NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
},
.cpuid = {
.eax = 7,
.needs_ecx = true, .ecx = 1,
.reg = R_EAX,
},
.tcg_features = TCG_7_1_EAX_FEATURES,
},
[FEAT_8000_0007_EDX] = {
.type = CPUID_FEATURE_WORD,
.feat_names = {
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
"invtsc", NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
},
.cpuid = { .eax = 0x80000007, .reg = R_EDX, },
.tcg_features = TCG_APM_FEATURES,
.unmigratable_flags = CPUID_APM_INVTSC,
},
[FEAT_8000_0008_EBX] = {
.type = CPUID_FEATURE_WORD,
.feat_names = {
"clzero", NULL, "xsaveerptr", NULL,
NULL, NULL, NULL, NULL,
NULL, "wbnoinvd", NULL, NULL,
"ibpb", NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
"amd-ssbd", "virt-ssbd", "amd-no-ssb", NULL,
NULL, NULL, NULL, NULL,
},
.cpuid = { .eax = 0x80000008, .reg = R_EBX, },
.tcg_features = 0,
.unmigratable_flags = 0,
},
[FEAT_XSAVE] = {
.type = CPUID_FEATURE_WORD,
.feat_names = {
"xsaveopt", "xsavec", "xgetbv1", "xsaves",
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
},
.cpuid = {
.eax = 0xd,
.needs_ecx = true, .ecx = 1,
.reg = R_EAX,
},
.tcg_features = TCG_XSAVE_FEATURES,
},
[FEAT_6_EAX] = {
.type = CPUID_FEATURE_WORD,
.feat_names = {
NULL, NULL, "arat", NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
},
.cpuid = { .eax = 6, .reg = R_EAX, },
.tcg_features = TCG_6_EAX_FEATURES,
},
[FEAT_XSAVE_COMP_LO] = {
.type = CPUID_FEATURE_WORD,
.cpuid = {
.eax = 0xD,
.needs_ecx = true, .ecx = 0,
.reg = R_EAX,
},
.tcg_features = ~0U,
.migratable_flags = XSTATE_FP_MASK | XSTATE_SSE_MASK |
XSTATE_YMM_MASK | XSTATE_BNDREGS_MASK | XSTATE_BNDCSR_MASK |
XSTATE_OPMASK_MASK | XSTATE_ZMM_Hi256_MASK | XSTATE_Hi16_ZMM_MASK |
XSTATE_PKRU_MASK,
},
[FEAT_XSAVE_COMP_HI] = {
.type = CPUID_FEATURE_WORD,
.cpuid = {
.eax = 0xD,
.needs_ecx = true, .ecx = 0,
.reg = R_EDX,
},
.tcg_features = ~0U,
},
/*Below are MSR exposed features*/
[FEAT_ARCH_CAPABILITIES] = {
.type = MSR_FEATURE_WORD,
.feat_names = {
"rdctl-no", "ibrs-all", "rsba", "skip-l1dfl-vmentry",
"ssb-no", "mds-no", NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
},
.msr = {
.index = MSR_IA32_ARCH_CAPABILITIES,
},
},
[FEAT_CORE_CAPABILITY] = {
.type = MSR_FEATURE_WORD,
.feat_names = {
NULL, NULL, NULL, NULL,
NULL, "split-lock-detect", NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
},
.msr = {
.index = MSR_IA32_CORE_CAPABILITY,
},
},
[FEAT_VMX_PROCBASED_CTLS] = {
.type = MSR_FEATURE_WORD,
.feat_names = {
NULL, NULL, "vmx-vintr-pending", "vmx-tsc-offset",
NULL, NULL, NULL, "vmx-hlt-exit",
NULL, "vmx-invlpg-exit", "vmx-mwait-exit", "vmx-rdpmc-exit",
"vmx-rdtsc-exit", NULL, NULL, "vmx-cr3-load-noexit",
"vmx-cr3-store-noexit", NULL, NULL, "vmx-cr8-load-exit",
"vmx-cr8-store-exit", "vmx-flexpriority", "vmx-vnmi-pending", "vmx-movdr-exit",
"vmx-io-exit", "vmx-io-bitmap", NULL, "vmx-mtf",
"vmx-msr-bitmap", "vmx-monitor-exit", "vmx-pause-exit", "vmx-secondary-ctls",
},
.msr = {
.index = MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
}
},
[FEAT_VMX_SECONDARY_CTLS] = {
.type = MSR_FEATURE_WORD,
.feat_names = {
"vmx-apicv-xapic", "vmx-ept", "vmx-desc-exit", "vmx-rdtscp-exit",
"vmx-apicv-x2apic", "vmx-vpid", "vmx-wbinvd-exit", "vmx-unrestricted-guest",
"vmx-apicv-register", "vmx-apicv-vid", "vmx-ple", "vmx-rdrand-exit",
"vmx-invpcid-exit", "vmx-vmfunc", "vmx-shadow-vmcs", "vmx-encls-exit",
"vmx-rdseed-exit", "vmx-pml", NULL, NULL,
"vmx-xsaves", NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
},
.msr = {
.index = MSR_IA32_VMX_PROCBASED_CTLS2,
}
},
[FEAT_VMX_PINBASED_CTLS] = {
.type = MSR_FEATURE_WORD,
.feat_names = {
"vmx-intr-exit", NULL, NULL, "vmx-nmi-exit",
NULL, "vmx-vnmi", "vmx-preemption-timer", "vmx-posted-intr",
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
},
.msr = {
.index = MSR_IA32_VMX_TRUE_PINBASED_CTLS,
}
},
[FEAT_VMX_EXIT_CTLS] = {
.type = MSR_FEATURE_WORD,
/*
* VMX_VM_EXIT_HOST_ADDR_SPACE_SIZE is copied from
* the LM CPUID bit.
*/
.feat_names = {
NULL, NULL, "vmx-exit-nosave-debugctl", NULL,
NULL, NULL, NULL, NULL,
NULL, NULL /* vmx-exit-host-addr-space-size */, NULL, NULL,
"vmx-exit-load-perf-global-ctrl", NULL, NULL, "vmx-exit-ack-intr",
NULL, NULL, "vmx-exit-save-pat", "vmx-exit-load-pat",
"vmx-exit-save-efer", "vmx-exit-load-efer",
"vmx-exit-save-preemption-timer", "vmx-exit-clear-bndcfgs",
NULL, "vmx-exit-clear-rtit-ctl", NULL, NULL,
NULL, NULL, NULL, NULL,
},
.msr = {
.index = MSR_IA32_VMX_TRUE_EXIT_CTLS,
}
},
[FEAT_VMX_ENTRY_CTLS] = {
.type = MSR_FEATURE_WORD,
.feat_names = {
NULL, NULL, "vmx-entry-noload-debugctl", NULL,
NULL, NULL, NULL, NULL,
NULL, "vmx-entry-ia32e-mode", NULL, NULL,
NULL, "vmx-entry-load-perf-global-ctrl", "vmx-entry-load-pat", "vmx-entry-load-efer",
"vmx-entry-load-bndcfgs", NULL, "vmx-entry-load-rtit-ctl", NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
},
.msr = {
.index = MSR_IA32_VMX_TRUE_ENTRY_CTLS,
}
},
[FEAT_VMX_MISC] = {
.type = MSR_FEATURE_WORD,
.feat_names = {
NULL, NULL, NULL, NULL,
NULL, "vmx-store-lma", "vmx-activity-hlt", "vmx-activity-shutdown",
"vmx-activity-wait-sipi", NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, "vmx-vmwrite-vmexit-fields", "vmx-zero-len-inject", NULL,
},
.msr = {
.index = MSR_IA32_VMX_MISC,
}
},
[FEAT_VMX_EPT_VPID_CAPS] = {
.type = MSR_FEATURE_WORD,
.feat_names = {
"vmx-ept-execonly", NULL, NULL, NULL,
NULL, NULL, "vmx-page-walk-4", "vmx-page-walk-5",
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
"vmx-ept-2mb", "vmx-ept-1gb", NULL, NULL,
"vmx-invept", "vmx-eptad", "vmx-ept-advanced-exitinfo", NULL,
NULL, "vmx-invept-single-context", "vmx-invept-all-context", NULL,
NULL, NULL, NULL, NULL,
"vmx-invvpid", NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
"vmx-invvpid-single-addr", "vmx-invept-single-context",
"vmx-invvpid-all-context", "vmx-invept-single-context-noglobals",
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
NULL, NULL, NULL, NULL,
},
.msr = {
.index = MSR_IA32_VMX_EPT_VPID_CAP,
}
},
[FEAT_VMX_BASIC] = {
.type = MSR_FEATURE_WORD,
.feat_names = {
[54] = "vmx-ins-outs",
[55] = "vmx-true-ctls",
},
.msr = {
.index = MSR_IA32_VMX_BASIC,
},
/* Just to be safe - we don't support setting the MSEG version field. */
.no_autoenable_flags = MSR_VMX_BASIC_DUAL_MONITOR,
},
[FEAT_VMX_VMFUNC] = {
.type = MSR_FEATURE_WORD,
.feat_names = {
[0] = "vmx-eptp-switching",
},
.msr = {
.index = MSR_IA32_VMX_VMFUNC,
}
},
};
typedef struct FeatureMask {
FeatureWord index;
uint64_t mask;
} FeatureMask;
typedef struct FeatureDep {
FeatureMask from, to;
} FeatureDep;
static FeatureDep feature_dependencies[] = {
{
.from = { FEAT_7_0_EDX, CPUID_7_0_EDX_ARCH_CAPABILITIES },
.to = { FEAT_ARCH_CAPABILITIES, ~0ull },
},
{
.from = { FEAT_7_0_EDX, CPUID_7_0_EDX_CORE_CAPABILITY },
.to = { FEAT_CORE_CAPABILITY, ~0ull },
},
{
.from = { FEAT_1_ECX, CPUID_EXT_VMX },
.to = { FEAT_VMX_PROCBASED_CTLS, ~0ull },
},
{
.from = { FEAT_1_ECX, CPUID_EXT_VMX },
.to = { FEAT_VMX_PINBASED_CTLS, ~0ull },
},
{
.from = { FEAT_1_ECX, CPUID_EXT_VMX },
.to = { FEAT_VMX_EXIT_CTLS, ~0ull },
},
{
.from = { FEAT_1_ECX, CPUID_EXT_VMX },
.to = { FEAT_VMX_ENTRY_CTLS, ~0ull },
},
{
.from = { FEAT_1_ECX, CPUID_EXT_VMX },
.to = { FEAT_VMX_MISC, ~0ull },
},
{
.from = { FEAT_1_ECX, CPUID_EXT_VMX },
.to = { FEAT_VMX_BASIC, ~0ull },
},
{
.from = { FEAT_8000_0001_EDX, CPUID_EXT2_LM },
.to = { FEAT_VMX_ENTRY_CTLS, VMX_VM_ENTRY_IA32E_MODE },
},
{
.from = { FEAT_VMX_PROCBASED_CTLS, VMX_CPU_BASED_ACTIVATE_SECONDARY_CONTROLS },
.to = { FEAT_VMX_SECONDARY_CTLS, ~0ull },
},
{
.from = { FEAT_XSAVE, CPUID_XSAVE_XSAVES },
.to = { FEAT_VMX_SECONDARY_CTLS, VMX_SECONDARY_EXEC_XSAVES },
},
{
.from = { FEAT_1_ECX, CPUID_EXT_RDRAND },
.to = { FEAT_VMX_SECONDARY_CTLS, VMX_SECONDARY_EXEC_RDRAND_EXITING },
},
{
.from = { FEAT_7_0_EBX, CPUID_7_0_EBX_INVPCID },
.to = { FEAT_VMX_SECONDARY_CTLS, VMX_SECONDARY_EXEC_ENABLE_INVPCID },
},
{
.from = { FEAT_7_0_EBX, CPUID_7_0_EBX_RDSEED },
.to = { FEAT_VMX_SECONDARY_CTLS, VMX_SECONDARY_EXEC_RDSEED_EXITING },
},
{
.from = { FEAT_8000_0001_EDX, CPUID_EXT2_RDTSCP },
.to = { FEAT_VMX_SECONDARY_CTLS, VMX_SECONDARY_EXEC_RDTSCP },
},
{
.from = { FEAT_VMX_SECONDARY_CTLS, VMX_SECONDARY_EXEC_ENABLE_EPT },
.to = { FEAT_VMX_EPT_VPID_CAPS, 0xffffffffull },
},
{
.from = { FEAT_VMX_SECONDARY_CTLS, VMX_SECONDARY_EXEC_ENABLE_EPT },
.to = { FEAT_VMX_SECONDARY_CTLS, VMX_SECONDARY_EXEC_UNRESTRICTED_GUEST },
},
{
.from = { FEAT_VMX_SECONDARY_CTLS, VMX_SECONDARY_EXEC_ENABLE_VPID },
.to = { FEAT_VMX_EPT_VPID_CAPS, 0xffffffffull << 32 },
},
{
.from = { FEAT_VMX_SECONDARY_CTLS, VMX_SECONDARY_EXEC_ENABLE_VMFUNC },
.to = { FEAT_VMX_VMFUNC, ~0ull },
},
};
typedef struct X86RegisterInfo32 {
/* Name of register */
const char *name;
/* QAPI enum value register */
X86CPURegister32 qapi_enum;
} X86RegisterInfo32;
#define REGISTER(reg) \
[R_##reg] = { .name = #reg, .qapi_enum = X86_CPU_REGISTER32_##reg }
static const X86RegisterInfo32 x86_reg_info_32[CPU_NB_REGS32] = {
REGISTER(EAX),
REGISTER(ECX),
REGISTER(EDX),
REGISTER(EBX),
REGISTER(ESP),
REGISTER(EBP),
REGISTER(ESI),
REGISTER(EDI),
};
#undef REGISTER
typedef struct ExtSaveArea {
uint32_t feature, bits;
uint32_t offset, size;
} ExtSaveArea;
static const ExtSaveArea x86_ext_save_areas[] = {
[XSTATE_FP_BIT] = {
/* x87 FP state component is always enabled if XSAVE is supported */
.feature = FEAT_1_ECX, .bits = CPUID_EXT_XSAVE,
/* x87 state is in the legacy region of the XSAVE area */
.offset = 0,
.size = sizeof(X86LegacyXSaveArea) + sizeof(X86XSaveHeader),
},
[XSTATE_SSE_BIT] = {
/* SSE state component is always enabled if XSAVE is supported */
.feature = FEAT_1_ECX, .bits = CPUID_EXT_XSAVE,
/* SSE state is in the legacy region of the XSAVE area */
.offset = 0,
.size = sizeof(X86LegacyXSaveArea) + sizeof(X86XSaveHeader),
},
[XSTATE_YMM_BIT] =
{ .feature = FEAT_1_ECX, .bits = CPUID_EXT_AVX,
.offset = offsetof(X86XSaveArea, avx_state),
.size = sizeof(XSaveAVX) },
[XSTATE_BNDREGS_BIT] =
{ .feature = FEAT_7_0_EBX, .bits = CPUID_7_0_EBX_MPX,
.offset = offsetof(X86XSaveArea, bndreg_state),
.size = sizeof(XSaveBNDREG) },
[XSTATE_BNDCSR_BIT] =
{ .feature = FEAT_7_0_EBX, .bits = CPUID_7_0_EBX_MPX,
.offset = offsetof(X86XSaveArea, bndcsr_state),
.size = sizeof(XSaveBNDCSR) },
[XSTATE_OPMASK_BIT] =
{ .feature = FEAT_7_0_EBX, .bits = CPUID_7_0_EBX_AVX512F,
.offset = offsetof(X86XSaveArea, opmask_state),
.size = sizeof(XSaveOpmask) },
[XSTATE_ZMM_Hi256_BIT] =
{ .feature = FEAT_7_0_EBX, .bits = CPUID_7_0_EBX_AVX512F,
.offset = offsetof(X86XSaveArea, zmm_hi256_state),
.size = sizeof(XSaveZMM_Hi256) },
[XSTATE_Hi16_ZMM_BIT] =
{ .feature = FEAT_7_0_EBX, .bits = CPUID_7_0_EBX_AVX512F,
.offset = offsetof(X86XSaveArea, hi16_zmm_state),
.size = sizeof(XSaveHi16_ZMM) },
[XSTATE_PKRU_BIT] =
{ .feature = FEAT_7_0_ECX, .bits = CPUID_7_0_ECX_PKU,
.offset = offsetof(X86XSaveArea, pkru_state),
.size = sizeof(XSavePKRU) },
};
static uint32_t xsave_area_size(uint64_t mask)
{
int i;
uint64_t ret = 0;
for (i = 0; i < ARRAY_SIZE(x86_ext_save_areas); i++) {
const ExtSaveArea *esa = &x86_ext_save_areas[i];
if ((mask >> i) & 1) {
ret = MAX(ret, esa->offset + esa->size);
}
}
return ret;
}
static inline bool accel_uses_host_cpuid(void)
{
return kvm_enabled() || hvf_enabled();
}
static inline uint64_t x86_cpu_xsave_components(X86CPU *cpu)
{
return ((uint64_t)cpu->env.features[FEAT_XSAVE_COMP_HI]) << 32 |
cpu->env.features[FEAT_XSAVE_COMP_LO];
}
const char *get_register_name_32(unsigned int reg)
{
if (reg >= CPU_NB_REGS32) {
return NULL;
}
return x86_reg_info_32[reg].name;
}
/*
* Returns the set of feature flags that are supported and migratable by
* QEMU, for a given FeatureWord.
*/
static uint64_t x86_cpu_get_migratable_flags(FeatureWord w)
{
FeatureWordInfo *wi = &feature_word_info[w];
uint64_t r = 0;
int i;
for (i = 0; i < 64; i++) {
uint64_t f = 1ULL << i;
/* If the feature name is known, it is implicitly considered migratable,
* unless it is explicitly set in unmigratable_flags */
if ((wi->migratable_flags & f) ||
(wi->feat_names[i] && !(wi->unmigratable_flags & f))) {
r |= f;
}
}
return r;
}
void host_cpuid(uint32_t function, uint32_t count,
uint32_t *eax, uint32_t *ebx, uint32_t *ecx, uint32_t *edx)
{
uint32_t vec[4];
#ifdef __x86_64__
asm volatile("cpuid"
: "=a"(vec[0]), "=b"(vec[1]),
"=c"(vec[2]), "=d"(vec[3])
: "0"(function), "c"(count) : "cc");
#elif defined(__i386__)
asm volatile("pusha \n\t"
"cpuid \n\t"
"mov %%eax, 0(%2) \n\t"
"mov %%ebx, 4(%2) \n\t"
"mov %%ecx, 8(%2) \n\t"
"mov %%edx, 12(%2) \n\t"
"popa"
: : "a"(function), "c"(count), "S"(vec)
: "memory", "cc");
#else
abort();
#endif
if (eax)
*eax = vec[0];
if (ebx)
*ebx = vec[1];
if (ecx)
*ecx = vec[2];
if (edx)
*edx = vec[3];
}
void host_vendor_fms(char *vendor, int *family, int *model, int *stepping)
{
uint32_t eax, ebx, ecx, edx;
host_cpuid(0x0, 0, &eax, &ebx, &ecx, &edx);
x86_cpu_vendor_words2str(vendor, ebx, edx, ecx);
host_cpuid(0x1, 0, &eax, &ebx, &ecx, &edx);
if (family) {
*family = ((eax >> 8) & 0x0F) + ((eax >> 20) & 0xFF);
}
if (model) {
*model = ((eax >> 4) & 0x0F) | ((eax & 0xF0000) >> 12);
}
if (stepping) {
*stepping = eax & 0x0F;
}
}
/* CPU class name definitions: */
/* Return type name for a given CPU model name
* Caller is responsible for freeing the returned string.
*/
static char *x86_cpu_type_name(const char *model_name)
{
return g_strdup_printf(X86_CPU_TYPE_NAME("%s"), model_name);
}
static ObjectClass *x86_cpu_class_by_name(const char *cpu_model)
{
ObjectClass *oc;
char *typename = x86_cpu_type_name(cpu_model);
oc = object_class_by_name(typename);
g_free(typename);
return oc;
}
static char *x86_cpu_class_get_model_name(X86CPUClass *cc)
{
const char *class_name = object_class_get_name(OBJECT_CLASS(cc));
assert(g_str_has_suffix(class_name, X86_CPU_TYPE_SUFFIX));
return g_strndup(class_name,
strlen(class_name) - strlen(X86_CPU_TYPE_SUFFIX));
}
typedef struct PropValue {
const char *prop, *value;
} PropValue;
typedef struct X86CPUVersionDefinition {
X86CPUVersion version;
const char *alias;
PropValue *props;
} X86CPUVersionDefinition;
/* Base definition for a CPU model */
typedef struct X86CPUDefinition {
const char *name;
uint32_t level;
uint32_t xlevel;
/* vendor is zero-terminated, 12 character ASCII string */
char vendor[CPUID_VENDOR_SZ + 1];
int family;
int model;
int stepping;
FeatureWordArray features;
const char *model_id;
CPUCaches *cache_info;
/*
* Definitions for alternative versions of CPU model.
* List is terminated by item with version == 0.
* If NULL, version 1 will be registered automatically.
*/
const X86CPUVersionDefinition *versions;
} X86CPUDefinition;
/* Reference to a specific CPU model version */
struct X86CPUModel {
/* Base CPU definition */
X86CPUDefinition *cpudef;
/* CPU model version */
X86CPUVersion version;
/*
* If true, this is an alias CPU model.
* This matters only for "-cpu help" and query-cpu-definitions
*/
bool is_alias;
};
/* Get full model name for CPU version */
static char *x86_cpu_versioned_model_name(X86CPUDefinition *cpudef,
X86CPUVersion version)
{
assert(version > 0);
return g_strdup_printf("%s-v%d", cpudef->name, (int)version);
}
static const X86CPUVersionDefinition *x86_cpu_def_get_versions(X86CPUDefinition *def)
{
/* When X86CPUDefinition::versions is NULL, we register only v1 */
static const X86CPUVersionDefinition default_version_list[] = {
{ 1 },
{ /* end of list */ }
};
return def->versions ?: default_version_list;
}
static CPUCaches epyc_cache_info = {
.l1d_cache = &(CPUCacheInfo) {
.type = DATA_CACHE,
.level = 1,
.size = 32 * KiB,
.line_size = 64,
.associativity = 8,
.partitions = 1,
.sets = 64,
.lines_per_tag = 1,
.self_init = 1,
.no_invd_sharing = true,
},
.l1i_cache = &(CPUCacheInfo) {
.type = INSTRUCTION_CACHE,
.level = 1,
.size = 64 * KiB,
.line_size = 64,
.associativity = 4,
.partitions = 1,
.sets = 256,
.lines_per_tag = 1,
.self_init = 1,
.no_invd_sharing = true,
},
.l2_cache = &(CPUCacheInfo) {
.type = UNIFIED_CACHE,
.level = 2,
.size = 512 * KiB,
.line_size = 64,
.associativity = 8,
.partitions = 1,
.sets = 1024,
.lines_per_tag = 1,
},
.l3_cache = &(CPUCacheInfo) {
.type = UNIFIED_CACHE,
.level = 3,
.size = 8 * MiB,
.line_size = 64,
.associativity = 16,
.partitions = 1,
.sets = 8192,
.lines_per_tag = 1,
.self_init = true,
.inclusive = true,
.complex_indexing = true,
},
};
static X86CPUDefinition builtin_x86_defs[] = {
{
.name = "qemu64",
.level = 0xd,
.vendor = CPUID_VENDOR_AMD,
.family = 6,
.model = 6,
.stepping = 3,
.features[FEAT_1_EDX] =
PPRO_FEATURES |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA |
CPUID_PSE36,
.features[FEAT_1_ECX] =
CPUID_EXT_SSE3 | CPUID_EXT_CX16,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM | CPUID_EXT3_SVM,
.xlevel = 0x8000000A,
.model_id = "QEMU Virtual CPU version " QEMU_HW_VERSION,
},
{
.name = "phenom",
.level = 5,
.vendor = CPUID_VENDOR_AMD,
.family = 16,
.model = 2,
.stepping = 3,
/* Missing: CPUID_HT */
.features[FEAT_1_EDX] =
PPRO_FEATURES |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA |
CPUID_PSE36 | CPUID_VME,
.features[FEAT_1_ECX] =
CPUID_EXT_SSE3 | CPUID_EXT_MONITOR | CPUID_EXT_CX16 |
CPUID_EXT_POPCNT,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX |
CPUID_EXT2_3DNOW | CPUID_EXT2_3DNOWEXT | CPUID_EXT2_MMXEXT |
CPUID_EXT2_FFXSR | CPUID_EXT2_PDPE1GB | CPUID_EXT2_RDTSCP,
/* Missing: CPUID_EXT3_CMP_LEG, CPUID_EXT3_EXTAPIC,
CPUID_EXT3_CR8LEG,
CPUID_EXT3_MISALIGNSSE, CPUID_EXT3_3DNOWPREFETCH,
CPUID_EXT3_OSVW, CPUID_EXT3_IBS */
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM | CPUID_EXT3_SVM |
CPUID_EXT3_ABM | CPUID_EXT3_SSE4A,
/* Missing: CPUID_SVM_LBRV */
.features[FEAT_SVM] =
CPUID_SVM_NPT,
.xlevel = 0x8000001A,
.model_id = "AMD Phenom(tm) 9550 Quad-Core Processor"
},
{
.name = "core2duo",
.level = 10,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 15,
.stepping = 11,
/* Missing: CPUID_DTS, CPUID_HT, CPUID_TM, CPUID_PBE */
.features[FEAT_1_EDX] =
PPRO_FEATURES |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA |
CPUID_PSE36 | CPUID_VME | CPUID_ACPI | CPUID_SS,
/* Missing: CPUID_EXT_DTES64, CPUID_EXT_DSCPL, CPUID_EXT_EST,
* CPUID_EXT_TM2, CPUID_EXT_XTPR, CPUID_EXT_PDCM, CPUID_EXT_VMX */
.features[FEAT_1_ECX] =
CPUID_EXT_SSE3 | CPUID_EXT_MONITOR | CPUID_EXT_SSSE3 |
CPUID_EXT_CX16,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM,
.xlevel = 0x80000008,
.model_id = "Intel(R) Core(TM)2 Duo CPU T7700 @ 2.40GHz",
},
{
.name = "kvm64",
.level = 0xd,
.vendor = CPUID_VENDOR_INTEL,
.family = 15,
.model = 6,
.stepping = 1,
/* Missing: CPUID_HT */
.features[FEAT_1_EDX] =
PPRO_FEATURES | CPUID_VME |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA |
CPUID_PSE36,
/* Missing: CPUID_EXT_POPCNT, CPUID_EXT_MONITOR */
.features[FEAT_1_ECX] =
CPUID_EXT_SSE3 | CPUID_EXT_CX16,
/* Missing: CPUID_EXT2_PDPE1GB, CPUID_EXT2_RDTSCP */
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX,
/* Missing: CPUID_EXT3_LAHF_LM, CPUID_EXT3_CMP_LEG, CPUID_EXT3_EXTAPIC,
CPUID_EXT3_CR8LEG, CPUID_EXT3_ABM, CPUID_EXT3_SSE4A,
CPUID_EXT3_MISALIGNSSE, CPUID_EXT3_3DNOWPREFETCH,
CPUID_EXT3_OSVW, CPUID_EXT3_IBS, CPUID_EXT3_SVM */
.features[FEAT_8000_0001_ECX] =
0,
.xlevel = 0x80000008,
.model_id = "Common KVM processor"
},
{
.name = "qemu32",
.level = 4,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 6,
.stepping = 3,
.features[FEAT_1_EDX] =
PPRO_FEATURES,
.features[FEAT_1_ECX] =
CPUID_EXT_SSE3,
.xlevel = 0x80000004,
.model_id = "QEMU Virtual CPU version " QEMU_HW_VERSION,
},
{
.name = "kvm32",
.level = 5,
.vendor = CPUID_VENDOR_INTEL,
.family = 15,
.model = 6,
.stepping = 1,
.features[FEAT_1_EDX] =
PPRO_FEATURES | CPUID_VME |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_PSE36,
.features[FEAT_1_ECX] =
CPUID_EXT_SSE3,
.features[FEAT_8000_0001_ECX] =
0,
.xlevel = 0x80000008,
.model_id = "Common 32-bit KVM processor"
},
{
.name = "coreduo",
.level = 10,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 14,
.stepping = 8,
/* Missing: CPUID_DTS, CPUID_HT, CPUID_TM, CPUID_PBE */
.features[FEAT_1_EDX] =
PPRO_FEATURES | CPUID_VME |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_ACPI |
CPUID_SS,
/* Missing: CPUID_EXT_EST, CPUID_EXT_TM2 , CPUID_EXT_XTPR,
* CPUID_EXT_PDCM, CPUID_EXT_VMX */
.features[FEAT_1_ECX] =
CPUID_EXT_SSE3 | CPUID_EXT_MONITOR,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_NX,
.xlevel = 0x80000008,
.model_id = "Genuine Intel(R) CPU T2600 @ 2.16GHz",
},
{
.name = "486",
.level = 1,
.vendor = CPUID_VENDOR_INTEL,
.family = 4,
.model = 8,
.stepping = 0,
.features[FEAT_1_EDX] =
I486_FEATURES,
.xlevel = 0,
.model_id = "",
},
{
.name = "pentium",
.level = 1,
.vendor = CPUID_VENDOR_INTEL,
.family = 5,
.model = 4,
.stepping = 3,
.features[FEAT_1_EDX] =
PENTIUM_FEATURES,
.xlevel = 0,
.model_id = "",
},
{
.name = "pentium2",
.level = 2,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 5,
.stepping = 2,
.features[FEAT_1_EDX] =
PENTIUM2_FEATURES,
.xlevel = 0,
.model_id = "",
},
{
.name = "pentium3",
.level = 3,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 7,
.stepping = 3,
.features[FEAT_1_EDX] =
PENTIUM3_FEATURES,
.xlevel = 0,
.model_id = "",
},
{
.name = "athlon",
.level = 2,
.vendor = CPUID_VENDOR_AMD,
.family = 6,
.model = 2,
.stepping = 3,
.features[FEAT_1_EDX] =
PPRO_FEATURES | CPUID_PSE36 | CPUID_VME | CPUID_MTRR |
CPUID_MCA,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_MMXEXT | CPUID_EXT2_3DNOW | CPUID_EXT2_3DNOWEXT,
.xlevel = 0x80000008,
.model_id = "QEMU Virtual CPU version " QEMU_HW_VERSION,
},
{
.name = "n270",
.level = 10,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 28,
.stepping = 2,
/* Missing: CPUID_DTS, CPUID_HT, CPUID_TM, CPUID_PBE */
.features[FEAT_1_EDX] =
PPRO_FEATURES |
CPUID_MTRR | CPUID_CLFLUSH | CPUID_MCA | CPUID_VME |
CPUID_ACPI | CPUID_SS,
/* Some CPUs got no CPUID_SEP */
/* Missing: CPUID_EXT_DSCPL, CPUID_EXT_EST, CPUID_EXT_TM2,
* CPUID_EXT_XTPR */
.features[FEAT_1_ECX] =
CPUID_EXT_SSE3 | CPUID_EXT_MONITOR | CPUID_EXT_SSSE3 |
CPUID_EXT_MOVBE,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_NX,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM,
.xlevel = 0x80000008,
.model_id = "Intel(R) Atom(TM) CPU N270 @ 1.60GHz",
},
{
.name = "Conroe",
.level = 10,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 15,
.stepping = 3,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_SSSE3 | CPUID_EXT_SSE3,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM,
.xlevel = 0x80000008,
.model_id = "Intel Celeron_4x0 (Conroe/Merom Class Core 2)",
},
{
.name = "Penryn",
.level = 10,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 23,
.stepping = 3,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_SSE3,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM,
.xlevel = 0x80000008,
.model_id = "Intel Core 2 Duo P9xxx (Penryn Class Core 2)",
},
{
.name = "Nehalem",
.level = 11,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 26,
.stepping = 3,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_POPCNT | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 |
CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_SSE3,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM,
.xlevel = 0x80000008,
.model_id = "Intel Core i7 9xx (Nehalem Class Core i7)",
.versions = (X86CPUVersionDefinition[]) {
{ .version = 1 },
{
.version = 2,
.alias = "Nehalem-IBRS",
.props = (PropValue[]) {
{ "spec-ctrl", "on" },
{ "model-id",
"Intel Core i7 9xx (Nehalem Core i7, IBRS update)" },
{ /* end of list */ }
}
},
{ /* end of list */ }
}
},
{
.name = "Westmere",
.level = 11,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 44,
.stepping = 1,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_AES | CPUID_EXT_POPCNT | CPUID_EXT_SSE42 |
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_SYSCALL | CPUID_EXT2_NX,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM,
.features[FEAT_6_EAX] =
CPUID_6_EAX_ARAT,
.xlevel = 0x80000008,
.model_id = "Westmere E56xx/L56xx/X56xx (Nehalem-C)",
.versions = (X86CPUVersionDefinition[]) {
{ .version = 1 },
{
.version = 2,
.alias = "Westmere-IBRS",
.props = (PropValue[]) {
{ "spec-ctrl", "on" },
{ "model-id",
"Westmere E56xx/L56xx/X56xx (IBRS update)" },
{ /* end of list */ }
}
},
{ /* end of list */ }
}
},
{
.name = "SandyBridge",
.level = 0xd,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 42,
.stepping = 1,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_POPCNT |
CPUID_EXT_X2APIC | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 |
CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ |
CPUID_EXT_SSE3,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM,
.features[FEAT_XSAVE] =
CPUID_XSAVE_XSAVEOPT,
.features[FEAT_6_EAX] =
CPUID_6_EAX_ARAT,
.xlevel = 0x80000008,
.model_id = "Intel Xeon E312xx (Sandy Bridge)",
.versions = (X86CPUVersionDefinition[]) {
{ .version = 1 },
{
.version = 2,
.alias = "SandyBridge-IBRS",
.props = (PropValue[]) {
{ "spec-ctrl", "on" },
{ "model-id",
"Intel Xeon E312xx (Sandy Bridge, IBRS update)" },
{ /* end of list */ }
}
},
{ /* end of list */ }
}
},
{
.name = "IvyBridge",
.level = 0xd,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 58,
.stepping = 9,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_POPCNT |
CPUID_EXT_X2APIC | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 |
CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ |
CPUID_EXT_SSE3 | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
.features[FEAT_7_0_EBX] =
CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_SMEP |
CPUID_7_0_EBX_ERMS,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM,
.features[FEAT_XSAVE] =
CPUID_XSAVE_XSAVEOPT,
.features[FEAT_6_EAX] =
CPUID_6_EAX_ARAT,
.xlevel = 0x80000008,
.model_id = "Intel Xeon E3-12xx v2 (Ivy Bridge)",
.versions = (X86CPUVersionDefinition[]) {
{ .version = 1 },
{
.version = 2,
.alias = "IvyBridge-IBRS",
.props = (PropValue[]) {
{ "spec-ctrl", "on" },
{ "model-id",
"Intel Xeon E3-12xx v2 (Ivy Bridge, IBRS)" },
{ /* end of list */ }
}
},
{ /* end of list */ }
}
},
{
.name = "Haswell",
.level = 0xd,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 60,
.stepping = 4,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM,
.features[FEAT_7_0_EBX] =
CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
CPUID_7_0_EBX_RTM,
.features[FEAT_XSAVE] =
CPUID_XSAVE_XSAVEOPT,
.features[FEAT_6_EAX] =
CPUID_6_EAX_ARAT,
.xlevel = 0x80000008,
.model_id = "Intel Core Processor (Haswell)",
.versions = (X86CPUVersionDefinition[]) {
{ .version = 1 },
{
.version = 2,
.alias = "Haswell-noTSX",
.props = (PropValue[]) {
{ "hle", "off" },
{ "rtm", "off" },
{ "stepping", "1" },
{ "model-id", "Intel Core Processor (Haswell, no TSX)", },
{ /* end of list */ }
},
},
{
.version = 3,
.alias = "Haswell-IBRS",
.props = (PropValue[]) {
/* Restore TSX features removed by -v2 above */
{ "hle", "on" },
{ "rtm", "on" },
/*
* Haswell and Haswell-IBRS had stepping=4 in
* QEMU 4.0 and older
*/
{ "stepping", "4" },
{ "spec-ctrl", "on" },
{ "model-id",
"Intel Core Processor (Haswell, IBRS)" },
{ /* end of list */ }
}
},
{
.version = 4,
.alias = "Haswell-noTSX-IBRS",
.props = (PropValue[]) {
{ "hle", "off" },
{ "rtm", "off" },
/* spec-ctrl was already enabled by -v3 above */
{ "stepping", "1" },
{ "model-id",
"Intel Core Processor (Haswell, no TSX, IBRS)" },
{ /* end of list */ }
}
},
{ /* end of list */ }
}
},
{
.name = "Broadwell",
.level = 0xd,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 61,
.stepping = 2,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH,
.features[FEAT_7_0_EBX] =
CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX |
CPUID_7_0_EBX_SMAP,
.features[FEAT_XSAVE] =
CPUID_XSAVE_XSAVEOPT,
.features[FEAT_6_EAX] =
CPUID_6_EAX_ARAT,
.xlevel = 0x80000008,
.model_id = "Intel Core Processor (Broadwell)",
.versions = (X86CPUVersionDefinition[]) {
{ .version = 1 },
{
.version = 2,
.alias = "Broadwell-noTSX",
.props = (PropValue[]) {
{ "hle", "off" },
{ "rtm", "off" },
{ "model-id", "Intel Core Processor (Broadwell, no TSX)", },
{ /* end of list */ }
},
},
{
.version = 3,
.alias = "Broadwell-IBRS",
.props = (PropValue[]) {
/* Restore TSX features removed by -v2 above */
{ "hle", "on" },
{ "rtm", "on" },
{ "spec-ctrl", "on" },
{ "model-id",
"Intel Core Processor (Broadwell, IBRS)" },
{ /* end of list */ }
}
},
{
.version = 4,
.alias = "Broadwell-noTSX-IBRS",
.props = (PropValue[]) {
{ "hle", "off" },
{ "rtm", "off" },
/* spec-ctrl was already enabled by -v3 above */
{ "model-id",
"Intel Core Processor (Broadwell, no TSX, IBRS)" },
{ /* end of list */ }
}
},
{ /* end of list */ }
}
},
{
.name = "Skylake-Client",
.level = 0xd,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 94,
.stepping = 3,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH,
.features[FEAT_7_0_EBX] =
CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX |
CPUID_7_0_EBX_SMAP,
/* Missing: XSAVES (not supported by some Linux versions,
* including v4.1 to v4.12).
* KVM doesn't yet expose any XSAVES state save component,
* and the only one defined in Skylake (processor tracing)
* probably will block migration anyway.
*/
.features[FEAT_XSAVE] =
CPUID_XSAVE_XSAVEOPT | CPUID_XSAVE_XSAVEC |
CPUID_XSAVE_XGETBV1,
.features[FEAT_6_EAX] =
CPUID_6_EAX_ARAT,
.xlevel = 0x80000008,
.model_id = "Intel Core Processor (Skylake)",
.versions = (X86CPUVersionDefinition[]) {
{ .version = 1 },
{
.version = 2,
.alias = "Skylake-Client-IBRS",
.props = (PropValue[]) {
{ "spec-ctrl", "on" },
{ "model-id",
"Intel Core Processor (Skylake, IBRS)" },
{ /* end of list */ }
}
},
{ /* end of list */ }
}
},
{
.name = "Skylake-Server",
.level = 0xd,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 85,
.stepping = 4,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_PDPE1GB | CPUID_EXT2_RDTSCP |
CPUID_EXT2_NX | CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH,
.features[FEAT_7_0_EBX] =
CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX |
CPUID_7_0_EBX_SMAP | CPUID_7_0_EBX_CLWB |
CPUID_7_0_EBX_AVX512F | CPUID_7_0_EBX_AVX512DQ |
CPUID_7_0_EBX_AVX512BW | CPUID_7_0_EBX_AVX512CD |
CPUID_7_0_EBX_AVX512VL | CPUID_7_0_EBX_CLFLUSHOPT,
.features[FEAT_7_0_ECX] =
CPUID_7_0_ECX_PKU,
/* Missing: XSAVES (not supported by some Linux versions,
* including v4.1 to v4.12).
* KVM doesn't yet expose any XSAVES state save component,
* and the only one defined in Skylake (processor tracing)
* probably will block migration anyway.
*/
.features[FEAT_XSAVE] =
CPUID_XSAVE_XSAVEOPT | CPUID_XSAVE_XSAVEC |
CPUID_XSAVE_XGETBV1,
.features[FEAT_6_EAX] =
CPUID_6_EAX_ARAT,
.xlevel = 0x80000008,
.model_id = "Intel Xeon Processor (Skylake)",
.versions = (X86CPUVersionDefinition[]) {
{ .version = 1 },
{
.version = 2,
.alias = "Skylake-Server-IBRS",
.props = (PropValue[]) {
/* clflushopt was not added to Skylake-Server-IBRS */
/* TODO: add -v3 including clflushopt */
{ "clflushopt", "off" },
{ "spec-ctrl", "on" },
{ "model-id",
"Intel Xeon Processor (Skylake, IBRS)" },
{ /* end of list */ }
}
},
{ /* end of list */ }
}
},
{
.name = "Cascadelake-Server",
.level = 0xd,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 85,
.stepping = 6,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_PDPE1GB | CPUID_EXT2_RDTSCP |
CPUID_EXT2_NX | CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH,
.features[FEAT_7_0_EBX] =
CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX |
CPUID_7_0_EBX_SMAP | CPUID_7_0_EBX_CLWB |
CPUID_7_0_EBX_AVX512F | CPUID_7_0_EBX_AVX512DQ |
CPUID_7_0_EBX_AVX512BW | CPUID_7_0_EBX_AVX512CD |
CPUID_7_0_EBX_AVX512VL | CPUID_7_0_EBX_CLFLUSHOPT,
.features[FEAT_7_0_ECX] =
CPUID_7_0_ECX_PKU |
CPUID_7_0_ECX_AVX512VNNI,
.features[FEAT_7_0_EDX] =
CPUID_7_0_EDX_SPEC_CTRL | CPUID_7_0_EDX_SPEC_CTRL_SSBD,
/* Missing: XSAVES (not supported by some Linux versions,
* including v4.1 to v4.12).
* KVM doesn't yet expose any XSAVES state save component,
* and the only one defined in Skylake (processor tracing)
* probably will block migration anyway.
*/
.features[FEAT_XSAVE] =
CPUID_XSAVE_XSAVEOPT | CPUID_XSAVE_XSAVEC |
CPUID_XSAVE_XGETBV1,
.features[FEAT_6_EAX] =
CPUID_6_EAX_ARAT,
.xlevel = 0x80000008,
.model_id = "Intel Xeon Processor (Cascadelake)",
.versions = (X86CPUVersionDefinition[]) {
{ .version = 1 },
{ .version = 2,
.props = (PropValue[]) {
{ "arch-capabilities", "on" },
{ "rdctl-no", "on" },
{ "ibrs-all", "on" },
{ "skip-l1dfl-vmentry", "on" },
{ "mds-no", "on" },
{ /* end of list */ }
},
},
{ /* end of list */ }
}
},
{
.name = "Icelake-Client",
.level = 0xd,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 126,
.stepping = 0,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH,
.features[FEAT_8000_0008_EBX] =
CPUID_8000_0008_EBX_WBNOINVD,
.features[FEAT_7_0_EBX] =
CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX |
CPUID_7_0_EBX_SMAP,
.features[FEAT_7_0_ECX] =
CPUID_7_0_ECX_AVX512_VBMI | CPUID_7_0_ECX_UMIP | CPUID_7_0_ECX_PKU |
CPUID_7_0_ECX_AVX512_VBMI2 | CPUID_7_0_ECX_GFNI |
CPUID_7_0_ECX_VAES | CPUID_7_0_ECX_VPCLMULQDQ |
CPUID_7_0_ECX_AVX512VNNI | CPUID_7_0_ECX_AVX512BITALG |
CPUID_7_0_ECX_AVX512_VPOPCNTDQ,
.features[FEAT_7_0_EDX] =
CPUID_7_0_EDX_SPEC_CTRL | CPUID_7_0_EDX_SPEC_CTRL_SSBD,
/* Missing: XSAVES (not supported by some Linux versions,
* including v4.1 to v4.12).
* KVM doesn't yet expose any XSAVES state save component,
* and the only one defined in Skylake (processor tracing)
* probably will block migration anyway.
*/
.features[FEAT_XSAVE] =
CPUID_XSAVE_XSAVEOPT | CPUID_XSAVE_XSAVEC |
CPUID_XSAVE_XGETBV1,
.features[FEAT_6_EAX] =
CPUID_6_EAX_ARAT,
.xlevel = 0x80000008,
.model_id = "Intel Core Processor (Icelake)",
},
{
.name = "Icelake-Server",
.level = 0xd,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 134,
.stepping = 0,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
CPUID_EXT_PCID | CPUID_EXT_F16C | CPUID_EXT_RDRAND,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_PDPE1GB | CPUID_EXT2_RDTSCP |
CPUID_EXT2_NX | CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH,
.features[FEAT_8000_0008_EBX] =
CPUID_8000_0008_EBX_WBNOINVD,
.features[FEAT_7_0_EBX] =
CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 |
CPUID_7_0_EBX_HLE | CPUID_7_0_EBX_AVX2 | CPUID_7_0_EBX_SMEP |
CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS | CPUID_7_0_EBX_INVPCID |
CPUID_7_0_EBX_RTM | CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX |
CPUID_7_0_EBX_SMAP | CPUID_7_0_EBX_CLWB |
CPUID_7_0_EBX_AVX512F | CPUID_7_0_EBX_AVX512DQ |
CPUID_7_0_EBX_AVX512BW | CPUID_7_0_EBX_AVX512CD |
CPUID_7_0_EBX_AVX512VL | CPUID_7_0_EBX_CLFLUSHOPT,
.features[FEAT_7_0_ECX] =
CPUID_7_0_ECX_AVX512_VBMI | CPUID_7_0_ECX_UMIP | CPUID_7_0_ECX_PKU |
CPUID_7_0_ECX_AVX512_VBMI2 | CPUID_7_0_ECX_GFNI |
CPUID_7_0_ECX_VAES | CPUID_7_0_ECX_VPCLMULQDQ |
CPUID_7_0_ECX_AVX512VNNI | CPUID_7_0_ECX_AVX512BITALG |
CPUID_7_0_ECX_AVX512_VPOPCNTDQ | CPUID_7_0_ECX_LA57,
.features[FEAT_7_0_EDX] =
CPUID_7_0_EDX_SPEC_CTRL | CPUID_7_0_EDX_SPEC_CTRL_SSBD,
/* Missing: XSAVES (not supported by some Linux versions,
* including v4.1 to v4.12).
* KVM doesn't yet expose any XSAVES state save component,
* and the only one defined in Skylake (processor tracing)
* probably will block migration anyway.
*/
.features[FEAT_XSAVE] =
CPUID_XSAVE_XSAVEOPT | CPUID_XSAVE_XSAVEC |
CPUID_XSAVE_XGETBV1,
.features[FEAT_6_EAX] =
CPUID_6_EAX_ARAT,
.xlevel = 0x80000008,
.model_id = "Intel Xeon Processor (Icelake)",
},
{
.name = "Denverton",
.level = 21,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 95,
.stepping = 1,
.features[FEAT_1_EDX] =
CPUID_FP87 | CPUID_VME | CPUID_DE | CPUID_PSE | CPUID_TSC |
CPUID_MSR | CPUID_PAE | CPUID_MCE | CPUID_CX8 | CPUID_APIC |
CPUID_SEP | CPUID_MTRR | CPUID_PGE | CPUID_MCA | CPUID_CMOV |
CPUID_PAT | CPUID_PSE36 | CPUID_CLFLUSH | CPUID_MMX | CPUID_FXSR |
CPUID_SSE | CPUID_SSE2,
.features[FEAT_1_ECX] =
CPUID_EXT_SSE3 | CPUID_EXT_PCLMULQDQ | CPUID_EXT_MONITOR |
CPUID_EXT_SSSE3 | CPUID_EXT_CX16 | CPUID_EXT_SSE41 |
CPUID_EXT_SSE42 | CPUID_EXT_X2APIC | CPUID_EXT_MOVBE |
CPUID_EXT_POPCNT | CPUID_EXT_TSC_DEADLINE_TIMER |
CPUID_EXT_AES | CPUID_EXT_XSAVE | CPUID_EXT_RDRAND,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_SYSCALL | CPUID_EXT2_NX | CPUID_EXT2_PDPE1GB |
CPUID_EXT2_RDTSCP | CPUID_EXT2_LM,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH,
.features[FEAT_7_0_EBX] =
CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_SMEP | CPUID_7_0_EBX_ERMS |
CPUID_7_0_EBX_MPX | CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_SMAP |
CPUID_7_0_EBX_CLFLUSHOPT | CPUID_7_0_EBX_SHA_NI,
.features[FEAT_7_0_EDX] =
CPUID_7_0_EDX_SPEC_CTRL | CPUID_7_0_EDX_ARCH_CAPABILITIES |
CPUID_7_0_EDX_SPEC_CTRL_SSBD,
/*
* Missing: XSAVES (not supported by some Linux versions,
* including v4.1 to v4.12).
* KVM doesn't yet expose any XSAVES state save component,
* and the only one defined in Skylake (processor tracing)
* probably will block migration anyway.
*/
.features[FEAT_XSAVE] =
CPUID_XSAVE_XSAVEOPT | CPUID_XSAVE_XSAVEC | CPUID_XSAVE_XGETBV1,
.features[FEAT_6_EAX] =
CPUID_6_EAX_ARAT,
.features[FEAT_ARCH_CAPABILITIES] =
MSR_ARCH_CAP_RDCL_NO | MSR_ARCH_CAP_SKIP_L1DFL_VMENTRY,
.xlevel = 0x80000008,
.model_id = "Intel Atom Processor (Denverton)",
},
{
.name = "Snowridge",
.level = 27,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 134,
.stepping = 1,
.features[FEAT_1_EDX] =
/* missing: CPUID_PN CPUID_IA64 */
/* missing: CPUID_DTS, CPUID_HT, CPUID_TM, CPUID_PBE */
CPUID_FP87 | CPUID_VME | CPUID_DE | CPUID_PSE |
CPUID_TSC | CPUID_MSR | CPUID_PAE | CPUID_MCE |
CPUID_CX8 | CPUID_APIC | CPUID_SEP |
CPUID_MTRR | CPUID_PGE | CPUID_MCA | CPUID_CMOV |
CPUID_PAT | CPUID_PSE36 | CPUID_CLFLUSH |
CPUID_MMX |
CPUID_FXSR | CPUID_SSE | CPUID_SSE2,
.features[FEAT_1_ECX] =
CPUID_EXT_SSE3 | CPUID_EXT_PCLMULQDQ | CPUID_EXT_MONITOR |
CPUID_EXT_SSSE3 |
CPUID_EXT_CX16 |
CPUID_EXT_SSE41 |
CPUID_EXT_SSE42 | CPUID_EXT_X2APIC | CPUID_EXT_MOVBE |
CPUID_EXT_POPCNT |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_AES | CPUID_EXT_XSAVE |
CPUID_EXT_RDRAND,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_SYSCALL |
CPUID_EXT2_NX |
CPUID_EXT2_PDPE1GB | CPUID_EXT2_RDTSCP |
CPUID_EXT2_LM,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_LAHF_LM |
CPUID_EXT3_3DNOWPREFETCH,
.features[FEAT_7_0_EBX] =
CPUID_7_0_EBX_FSGSBASE |
CPUID_7_0_EBX_SMEP |
CPUID_7_0_EBX_ERMS |
CPUID_7_0_EBX_MPX | /* missing bits 13, 15 */
CPUID_7_0_EBX_RDSEED |
CPUID_7_0_EBX_SMAP | CPUID_7_0_EBX_CLFLUSHOPT |
CPUID_7_0_EBX_CLWB |
CPUID_7_0_EBX_SHA_NI,
.features[FEAT_7_0_ECX] =
CPUID_7_0_ECX_UMIP |
/* missing bit 5 */
CPUID_7_0_ECX_GFNI |
CPUID_7_0_ECX_MOVDIRI | CPUID_7_0_ECX_CLDEMOTE |
CPUID_7_0_ECX_MOVDIR64B,
.features[FEAT_7_0_EDX] =
CPUID_7_0_EDX_SPEC_CTRL |
CPUID_7_0_EDX_ARCH_CAPABILITIES | CPUID_7_0_EDX_SPEC_CTRL_SSBD |
CPUID_7_0_EDX_CORE_CAPABILITY,
.features[FEAT_CORE_CAPABILITY] =
MSR_CORE_CAP_SPLIT_LOCK_DETECT,
/*
* Missing: XSAVES (not supported by some Linux versions,
* including v4.1 to v4.12).
* KVM doesn't yet expose any XSAVES state save component,
* and the only one defined in Skylake (processor tracing)
* probably will block migration anyway.
*/
.features[FEAT_XSAVE] =
CPUID_XSAVE_XSAVEOPT | CPUID_XSAVE_XSAVEC |
CPUID_XSAVE_XGETBV1,
.features[FEAT_6_EAX] =
CPUID_6_EAX_ARAT,
.xlevel = 0x80000008,
.model_id = "Intel Atom Processor (SnowRidge)",
.versions = (X86CPUVersionDefinition[]) {
{ .version = 1 },
{
.version = 2,
.props = (PropValue[]) {
{ "mpx", "off" },
{ "model-id", "Intel Atom Processor (Snowridge, no MPX)" },
{ /* end of list */ },
},
},
{ /* end of list */ },
},
},
{
.name = "KnightsMill",
.level = 0xd,
.vendor = CPUID_VENDOR_INTEL,
.family = 6,
.model = 133,
.stepping = 0,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SS | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR |
CPUID_MMX | CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV |
CPUID_MCA | CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC |
CPUID_CX8 | CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC |
CPUID_PSE | CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_POPCNT | CPUID_EXT_X2APIC | CPUID_EXT_SSE42 |
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_SSSE3 |
CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3 |
CPUID_EXT_TSC_DEADLINE_TIMER | CPUID_EXT_FMA | CPUID_EXT_MOVBE |
CPUID_EXT_F16C | CPUID_EXT_RDRAND,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_PDPE1GB | CPUID_EXT2_RDTSCP |
CPUID_EXT2_NX | CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_ABM | CPUID_EXT3_LAHF_LM | CPUID_EXT3_3DNOWPREFETCH,
.features[FEAT_7_0_EBX] =
CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 | CPUID_7_0_EBX_AVX2 |
CPUID_7_0_EBX_SMEP | CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_ERMS |
CPUID_7_0_EBX_RDSEED | CPUID_7_0_EBX_ADX | CPUID_7_0_EBX_AVX512F |
CPUID_7_0_EBX_AVX512CD | CPUID_7_0_EBX_AVX512PF |
CPUID_7_0_EBX_AVX512ER,
.features[FEAT_7_0_ECX] =
CPUID_7_0_ECX_AVX512_VPOPCNTDQ,
.features[FEAT_7_0_EDX] =
CPUID_7_0_EDX_AVX512_4VNNIW | CPUID_7_0_EDX_AVX512_4FMAPS,
.features[FEAT_XSAVE] =
CPUID_XSAVE_XSAVEOPT,
.features[FEAT_6_EAX] =
CPUID_6_EAX_ARAT,
.xlevel = 0x80000008,
.model_id = "Intel Xeon Phi Processor (Knights Mill)",
},
{
.name = "Opteron_G1",
.level = 5,
.vendor = CPUID_VENDOR_AMD,
.family = 15,
.model = 6,
.stepping = 1,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_SSE3,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL,
.xlevel = 0x80000008,
.model_id = "AMD Opteron 240 (Gen 1 Class Opteron)",
},
{
.name = "Opteron_G2",
.level = 5,
.vendor = CPUID_VENDOR_AMD,
.family = 15,
.model = 6,
.stepping = 1,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_CX16 | CPUID_EXT_SSE3,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_SVM | CPUID_EXT3_LAHF_LM,
.xlevel = 0x80000008,
.model_id = "AMD Opteron 22xx (Gen 2 Class Opteron)",
},
{
.name = "Opteron_G3",
.level = 5,
.vendor = CPUID_VENDOR_AMD,
.family = 16,
.model = 2,
.stepping = 3,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_POPCNT | CPUID_EXT_CX16 | CPUID_EXT_MONITOR |
CPUID_EXT_SSE3,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_NX | CPUID_EXT2_SYSCALL |
CPUID_EXT2_RDTSCP,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_MISALIGNSSE | CPUID_EXT3_SSE4A |
CPUID_EXT3_ABM | CPUID_EXT3_SVM | CPUID_EXT3_LAHF_LM,
.xlevel = 0x80000008,
.model_id = "AMD Opteron 23xx (Gen 3 Class Opteron)",
},
{
.name = "Opteron_G4",
.level = 0xd,
.vendor = CPUID_VENDOR_AMD,
.family = 21,
.model = 1,
.stepping = 2,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_AVX | CPUID_EXT_XSAVE | CPUID_EXT_AES |
CPUID_EXT_POPCNT | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 |
CPUID_EXT_CX16 | CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ |
CPUID_EXT_SSE3,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_PDPE1GB | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL | CPUID_EXT2_RDTSCP,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_FMA4 | CPUID_EXT3_XOP |
CPUID_EXT3_3DNOWPREFETCH | CPUID_EXT3_MISALIGNSSE |
CPUID_EXT3_SSE4A | CPUID_EXT3_ABM | CPUID_EXT3_SVM |
CPUID_EXT3_LAHF_LM,
.features[FEAT_SVM] =
CPUID_SVM_NPT | CPUID_SVM_NRIPSAVE,
/* no xsaveopt! */
.xlevel = 0x8000001A,
.model_id = "AMD Opteron 62xx class CPU",
},
{
.name = "Opteron_G5",
.level = 0xd,
.vendor = CPUID_VENDOR_AMD,
.family = 21,
.model = 2,
.stepping = 0,
.features[FEAT_1_EDX] =
CPUID_VME | CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX |
CPUID_CLFLUSH | CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA |
CPUID_PGE | CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 |
CPUID_MCE | CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE |
CPUID_DE | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_F16C | CPUID_EXT_AVX | CPUID_EXT_XSAVE |
CPUID_EXT_AES | CPUID_EXT_POPCNT | CPUID_EXT_SSE42 |
CPUID_EXT_SSE41 | CPUID_EXT_CX16 | CPUID_EXT_FMA |
CPUID_EXT_SSSE3 | CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_PDPE1GB | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL | CPUID_EXT2_RDTSCP,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_TBM | CPUID_EXT3_FMA4 | CPUID_EXT3_XOP |
CPUID_EXT3_3DNOWPREFETCH | CPUID_EXT3_MISALIGNSSE |
CPUID_EXT3_SSE4A | CPUID_EXT3_ABM | CPUID_EXT3_SVM |
CPUID_EXT3_LAHF_LM,
.features[FEAT_SVM] =
CPUID_SVM_NPT | CPUID_SVM_NRIPSAVE,
/* no xsaveopt! */
.xlevel = 0x8000001A,
.model_id = "AMD Opteron 63xx class CPU",
},
{
.name = "EPYC",
.level = 0xd,
.vendor = CPUID_VENDOR_AMD,
.family = 23,
.model = 1,
.stepping = 2,
.features[FEAT_1_EDX] =
CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH |
CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE |
CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE |
CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE |
CPUID_VME | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_RDRAND | CPUID_EXT_F16C | CPUID_EXT_AVX |
CPUID_EXT_XSAVE | CPUID_EXT_AES | CPUID_EXT_POPCNT |
CPUID_EXT_MOVBE | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 |
CPUID_EXT_CX16 | CPUID_EXT_FMA | CPUID_EXT_SSSE3 |
CPUID_EXT_MONITOR | CPUID_EXT_PCLMULQDQ | CPUID_EXT_SSE3,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_PDPE1GB |
CPUID_EXT2_FFXSR | CPUID_EXT2_MMXEXT | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_OSVW | CPUID_EXT3_3DNOWPREFETCH |
CPUID_EXT3_MISALIGNSSE | CPUID_EXT3_SSE4A | CPUID_EXT3_ABM |
CPUID_EXT3_CR8LEG | CPUID_EXT3_SVM | CPUID_EXT3_LAHF_LM |
CPUID_EXT3_TOPOEXT,
.features[FEAT_7_0_EBX] =
CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 | CPUID_7_0_EBX_AVX2 |
CPUID_7_0_EBX_SMEP | CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_RDSEED |
CPUID_7_0_EBX_ADX | CPUID_7_0_EBX_SMAP | CPUID_7_0_EBX_CLFLUSHOPT |
CPUID_7_0_EBX_SHA_NI,
/* Missing: XSAVES (not supported by some Linux versions,
* including v4.1 to v4.12).
* KVM doesn't yet expose any XSAVES state save component.
*/
.features[FEAT_XSAVE] =
CPUID_XSAVE_XSAVEOPT | CPUID_XSAVE_XSAVEC |
CPUID_XSAVE_XGETBV1,
.features[FEAT_6_EAX] =
CPUID_6_EAX_ARAT,
.features[FEAT_SVM] =
CPUID_SVM_NPT | CPUID_SVM_NRIPSAVE,
.xlevel = 0x8000001E,
.model_id = "AMD EPYC Processor",
.cache_info = &epyc_cache_info,
.versions = (X86CPUVersionDefinition[]) {
{ .version = 1 },
{
.version = 2,
.alias = "EPYC-IBPB",
.props = (PropValue[]) {
{ "ibpb", "on" },
{ "model-id",
"AMD EPYC Processor (with IBPB)" },
{ /* end of list */ }
}
},
{ /* end of list */ }
}
},
{
.name = "Dhyana",
.level = 0xd,
.vendor = CPUID_VENDOR_HYGON,
.family = 24,
.model = 0,
.stepping = 1,
.features[FEAT_1_EDX] =
CPUID_SSE2 | CPUID_SSE | CPUID_FXSR | CPUID_MMX | CPUID_CLFLUSH |
CPUID_PSE36 | CPUID_PAT | CPUID_CMOV | CPUID_MCA | CPUID_PGE |
CPUID_MTRR | CPUID_SEP | CPUID_APIC | CPUID_CX8 | CPUID_MCE |
CPUID_PAE | CPUID_MSR | CPUID_TSC | CPUID_PSE | CPUID_DE |
CPUID_VME | CPUID_FP87,
.features[FEAT_1_ECX] =
CPUID_EXT_RDRAND | CPUID_EXT_F16C | CPUID_EXT_AVX |
CPUID_EXT_XSAVE | CPUID_EXT_POPCNT |
CPUID_EXT_MOVBE | CPUID_EXT_SSE42 | CPUID_EXT_SSE41 |
CPUID_EXT_CX16 | CPUID_EXT_FMA | CPUID_EXT_SSSE3 |
CPUID_EXT_MONITOR | CPUID_EXT_SSE3,
.features[FEAT_8000_0001_EDX] =
CPUID_EXT2_LM | CPUID_EXT2_RDTSCP | CPUID_EXT2_PDPE1GB |
CPUID_EXT2_FFXSR | CPUID_EXT2_MMXEXT | CPUID_EXT2_NX |
CPUID_EXT2_SYSCALL,
.features[FEAT_8000_0001_ECX] =
CPUID_EXT3_OSVW | CPUID_EXT3_3DNOWPREFETCH |
CPUID_EXT3_MISALIGNSSE | CPUID_EXT3_SSE4A | CPUID_EXT3_ABM |
CPUID_EXT3_CR8LEG | CPUID_EXT3_SVM | CPUID_EXT3_LAHF_LM |
CPUID_EXT3_TOPOEXT,
.features[FEAT_8000_0008_EBX] =
CPUID_8000_0008_EBX_IBPB,
.features[FEAT_7_0_EBX] =
CPUID_7_0_EBX_FSGSBASE | CPUID_7_0_EBX_BMI1 | CPUID_7_0_EBX_AVX2 |
CPUID_7_0_EBX_SMEP | CPUID_7_0_EBX_BMI2 | CPUID_7_0_EBX_RDSEED |
CPUID_7_0_EBX_ADX | CPUID_7_0_EBX_SMAP | CPUID_7_0_EBX_CLFLUSHOPT,
/*
* Missing: XSAVES (not supported by some Linux versions,
* including v4.1 to v4.12).
* KVM doesn't yet expose any XSAVES state save component.
*/
.features[FEAT_XSAVE] =
CPUID_XSAVE_XSAVEOPT | CPUID_XSAVE_XSAVEC |
CPUID_XSAVE_XGETBV1,
.features[FEAT_6_EAX] =
CPUID_6_EAX_ARAT,
.features[FEAT_SVM] =
CPUID_SVM_NPT | CPUID_SVM_NRIPSAVE,
.xlevel = 0x8000001E,
.model_id = "Hygon Dhyana Processor",
.cache_info = &epyc_cache_info,
},
};
/* KVM-specific features that are automatically added/removed
* from all CPU models when KVM is enabled.
*/
static PropValue kvm_default_props[] = {
{ "kvmclock", "on" },
{ "kvm-nopiodelay", "on" },
{ "kvm-asyncpf", "on" },
{ "kvm-steal-time", "on" },
{ "kvm-pv-eoi", "on" },
{ "kvmclock-stable-bit", "on" },
{ "x2apic", "on" },
{ "acpi", "off" },
{ "monitor", "off" },
{ "svm", "off" },
{ NULL, NULL },
};
/* TCG-specific defaults that override all CPU models when using TCG
*/
static PropValue tcg_default_props[] = {
{ "vme", "off" },
{ NULL, NULL },
};
X86CPUVersion default_cpu_version = CPU_VERSION_LATEST;
void x86_cpu_set_default_version(X86CPUVersion version)
{
/* Translating CPU_VERSION_AUTO to CPU_VERSION_AUTO doesn't make sense */
assert(version != CPU_VERSION_AUTO);
default_cpu_version = version;
}
static X86CPUVersion x86_cpu_model_last_version(const X86CPUModel *model)
{
int v = 0;
const X86CPUVersionDefinition *vdef =
x86_cpu_def_get_versions(model->cpudef);
while (vdef->version) {
v = vdef->version;
vdef++;
}
return v;
}
/* Return the actual version being used for a specific CPU model */
static X86CPUVersion x86_cpu_model_resolve_version(const X86CPUModel *model)
{
X86CPUVersion v = model->version;
if (v == CPU_VERSION_AUTO) {
v = default_cpu_version;
}
if (v == CPU_VERSION_LATEST) {
return x86_cpu_model_last_version(model);
}
return v;
}
void x86_cpu_change_kvm_default(const char *prop, const char *value)
{
PropValue *pv;
for (pv = kvm_default_props; pv->prop; pv++) {
if (!strcmp(pv->prop, prop)) {
pv->value = value;
break;
}
}
/* It is valid to call this function only for properties that
* are already present in the kvm_default_props table.
*/
assert(pv->prop);
}
static uint64_t x86_cpu_get_supported_feature_word(FeatureWord w,
bool migratable_only);
static bool lmce_supported(void)
{
uint64_t mce_cap = 0;
#ifdef CONFIG_KVM
if (kvm_ioctl(kvm_state, KVM_X86_GET_MCE_CAP_SUPPORTED, &mce_cap) < 0) {
return false;
}
#endif
return !!(mce_cap & MCG_LMCE_P);
}
#define CPUID_MODEL_ID_SZ 48
/**
* cpu_x86_fill_model_id:
* Get CPUID model ID string from host CPU.
*
* @str should have at least CPUID_MODEL_ID_SZ bytes
*
* The function does NOT add a null terminator to the string
* automatically.
*/
static int cpu_x86_fill_model_id(char *str)
{
uint32_t eax = 0, ebx = 0, ecx = 0, edx = 0;
int i;
for (i = 0; i < 3; i++) {
host_cpuid(0x80000002 + i, 0, &eax, &ebx, &ecx, &edx);
memcpy(str + i * 16 + 0, &eax, 4);
memcpy(str + i * 16 + 4, &ebx, 4);
memcpy(str + i * 16 + 8, &ecx, 4);
memcpy(str + i * 16 + 12, &edx, 4);
}
return 0;
}
static Property max_x86_cpu_properties[] = {
DEFINE_PROP_BOOL("migratable", X86CPU, migratable, true),
DEFINE_PROP_BOOL("host-cache-info", X86CPU, cache_info_passthrough, false),
DEFINE_PROP_END_OF_LIST()
};
static void max_x86_cpu_class_init(ObjectClass *oc, void *data)
{
DeviceClass *dc = DEVICE_CLASS(oc);
X86CPUClass *xcc = X86_CPU_CLASS(oc);
xcc->ordering = 9;
xcc->model_description =
"Enables all features supported by the accelerator in the current host";
dc->props = max_x86_cpu_properties;
}
static void max_x86_cpu_initfn(Object *obj)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
KVMState *s = kvm_state;
/* We can't fill the features array here because we don't know yet if
* "migratable" is true or false.
*/
cpu->max_features = true;
if (accel_uses_host_cpuid()) {
char vendor[CPUID_VENDOR_SZ + 1] = { 0 };
char model_id[CPUID_MODEL_ID_SZ + 1] = { 0 };
int family, model, stepping;
host_vendor_fms(vendor, &family, &model, &stepping);
cpu_x86_fill_model_id(model_id);
object_property_set_str(OBJECT(cpu), vendor, "vendor", &error_abort);
object_property_set_int(OBJECT(cpu), family, "family", &error_abort);
object_property_set_int(OBJECT(cpu), model, "model", &error_abort);
object_property_set_int(OBJECT(cpu), stepping, "stepping",
&error_abort);
object_property_set_str(OBJECT(cpu), model_id, "model-id",
&error_abort);
if (kvm_enabled()) {
env->cpuid_min_level =
kvm_arch_get_supported_cpuid(s, 0x0, 0, R_EAX);
env->cpuid_min_xlevel =
kvm_arch_get_supported_cpuid(s, 0x80000000, 0, R_EAX);
env->cpuid_min_xlevel2 =
kvm_arch_get_supported_cpuid(s, 0xC0000000, 0, R_EAX);
} else {
env->cpuid_min_level =
hvf_get_supported_cpuid(0x0, 0, R_EAX);
env->cpuid_min_xlevel =
hvf_get_supported_cpuid(0x80000000, 0, R_EAX);
env->cpuid_min_xlevel2 =
hvf_get_supported_cpuid(0xC0000000, 0, R_EAX);
}
if (lmce_supported()) {
object_property_set_bool(OBJECT(cpu), true, "lmce", &error_abort);
}
} else {
object_property_set_str(OBJECT(cpu), CPUID_VENDOR_AMD,
"vendor", &error_abort);
object_property_set_int(OBJECT(cpu), 6, "family", &error_abort);
object_property_set_int(OBJECT(cpu), 6, "model", &error_abort);
object_property_set_int(OBJECT(cpu), 3, "stepping", &error_abort);
object_property_set_str(OBJECT(cpu),
"QEMU TCG CPU version " QEMU_HW_VERSION,
"model-id", &error_abort);
}
object_property_set_bool(OBJECT(cpu), true, "pmu", &error_abort);
}
static const TypeInfo max_x86_cpu_type_info = {
.name = X86_CPU_TYPE_NAME("max"),
.parent = TYPE_X86_CPU,
.instance_init = max_x86_cpu_initfn,
.class_init = max_x86_cpu_class_init,
};
#if defined(CONFIG_KVM) || defined(CONFIG_HVF)
static void host_x86_cpu_class_init(ObjectClass *oc, void *data)
{
X86CPUClass *xcc = X86_CPU_CLASS(oc);
xcc->host_cpuid_required = true;
xcc->ordering = 8;
#if defined(CONFIG_KVM)
xcc->model_description =
"KVM processor with all supported host features ";
#elif defined(CONFIG_HVF)
xcc->model_description =
"HVF processor with all supported host features ";
#endif
}
static const TypeInfo host_x86_cpu_type_info = {
.name = X86_CPU_TYPE_NAME("host"),
.parent = X86_CPU_TYPE_NAME("max"),
.class_init = host_x86_cpu_class_init,
};
#endif
static char *feature_word_description(FeatureWordInfo *f, uint32_t bit)
{
assert(f->type == CPUID_FEATURE_WORD || f->type == MSR_FEATURE_WORD);
switch (f->type) {
case CPUID_FEATURE_WORD:
{
const char *reg = get_register_name_32(f->cpuid.reg);
assert(reg);
return g_strdup_printf("CPUID.%02XH:%s",
f->cpuid.eax, reg);
}
case MSR_FEATURE_WORD:
return g_strdup_printf("MSR(%02XH)",
f->msr.index);
}
return NULL;
}
static bool x86_cpu_have_filtered_features(X86CPU *cpu)
{
FeatureWord w;
for (w = 0; w < FEATURE_WORDS; w++) {
if (cpu->filtered_features[w]) {
return true;
}
}
return false;
}
static void mark_unavailable_features(X86CPU *cpu, FeatureWord w, uint64_t mask,
const char *verbose_prefix)
{
CPUX86State *env = &cpu->env;
FeatureWordInfo *f = &feature_word_info[w];
int i;
char *feat_word_str;
if (!cpu->force_features) {
env->features[w] &= ~mask;
}
cpu->filtered_features[w] |= mask;
if (!verbose_prefix) {
return;
}
for (i = 0; i < 64; ++i) {
if ((1ULL << i) & mask) {
feat_word_str = feature_word_description(f, i);
warn_report("%s: %s%s%s [bit %d]",
verbose_prefix,
feat_word_str,
f->feat_names[i] ? "." : "",
f->feat_names[i] ? f->feat_names[i] : "", i);
g_free(feat_word_str);
}
}
}
static void x86_cpuid_version_get_family(Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
int64_t value;
value = (env->cpuid_version >> 8) & 0xf;
if (value == 0xf) {
value += (env->cpuid_version >> 20) & 0xff;
}
visit_type_int(v, name, &value, errp);
}
static void x86_cpuid_version_set_family(Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
const int64_t min = 0;
const int64_t max = 0xff + 0xf;
Error *local_err = NULL;
int64_t value;
visit_type_int(v, name, &value, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
if (value < min || value > max) {
error_setg(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE, "",
name ? name : "null", value, min, max);
return;
}
env->cpuid_version &= ~0xff00f00;
if (value > 0x0f) {
env->cpuid_version |= 0xf00 | ((value - 0x0f) << 20);
} else {
env->cpuid_version |= value << 8;
}
}
static void x86_cpuid_version_get_model(Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
int64_t value;
value = (env->cpuid_version >> 4) & 0xf;
value |= ((env->cpuid_version >> 16) & 0xf) << 4;
visit_type_int(v, name, &value, errp);
}
static void x86_cpuid_version_set_model(Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
const int64_t min = 0;
const int64_t max = 0xff;
Error *local_err = NULL;
int64_t value;
visit_type_int(v, name, &value, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
if (value < min || value > max) {
error_setg(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE, "",
name ? name : "null", value, min, max);
return;
}
env->cpuid_version &= ~0xf00f0;
env->cpuid_version |= ((value & 0xf) << 4) | ((value >> 4) << 16);
}
static void x86_cpuid_version_get_stepping(Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
int64_t value;
value = env->cpuid_version & 0xf;
visit_type_int(v, name, &value, errp);
}
static void x86_cpuid_version_set_stepping(Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
const int64_t min = 0;
const int64_t max = 0xf;
Error *local_err = NULL;
int64_t value;
visit_type_int(v, name, &value, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
if (value < min || value > max) {
error_setg(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE, "",
name ? name : "null", value, min, max);
return;
}
env->cpuid_version &= ~0xf;
env->cpuid_version |= value & 0xf;
}
static char *x86_cpuid_get_vendor(Object *obj, Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
char *value;
value = g_malloc(CPUID_VENDOR_SZ + 1);
x86_cpu_vendor_words2str(value, env->cpuid_vendor1, env->cpuid_vendor2,
env->cpuid_vendor3);
return value;
}
static void x86_cpuid_set_vendor(Object *obj, const char *value,
Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
int i;
if (strlen(value) != CPUID_VENDOR_SZ) {
error_setg(errp, QERR_PROPERTY_VALUE_BAD, "", "vendor", value);
return;
}
env->cpuid_vendor1 = 0;
env->cpuid_vendor2 = 0;
env->cpuid_vendor3 = 0;
for (i = 0; i < 4; i++) {
env->cpuid_vendor1 |= ((uint8_t)value[i ]) << (8 * i);
env->cpuid_vendor2 |= ((uint8_t)value[i + 4]) << (8 * i);
env->cpuid_vendor3 |= ((uint8_t)value[i + 8]) << (8 * i);
}
}
static char *x86_cpuid_get_model_id(Object *obj, Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
char *value;
int i;
value = g_malloc(48 + 1);
for (i = 0; i < 48; i++) {
value[i] = env->cpuid_model[i >> 2] >> (8 * (i & 3));
}
value[48] = '\0';
return value;
}
static void x86_cpuid_set_model_id(Object *obj, const char *model_id,
Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
CPUX86State *env = &cpu->env;
int c, len, i;
if (model_id == NULL) {
model_id = "";
}
len = strlen(model_id);
memset(env->cpuid_model, 0, 48);
for (i = 0; i < 48; i++) {
if (i >= len) {
c = '\0';
} else {
c = (uint8_t)model_id[i];
}
env->cpuid_model[i >> 2] |= c << (8 * (i & 3));
}
}
static void x86_cpuid_get_tsc_freq(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
int64_t value;
value = cpu->env.tsc_khz * 1000;
visit_type_int(v, name, &value, errp);
}
static void x86_cpuid_set_tsc_freq(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
const int64_t min = 0;
const int64_t max = INT64_MAX;
Error *local_err = NULL;
int64_t value;
visit_type_int(v, name, &value, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
if (value < min || value > max) {
error_setg(errp, QERR_PROPERTY_VALUE_OUT_OF_RANGE, "",
name ? name : "null", value, min, max);
return;
}
cpu->env.tsc_khz = cpu->env.user_tsc_khz = value / 1000;
}
/* Generic getter for "feature-words" and "filtered-features" properties */
static void x86_cpu_get_feature_words(Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
uint64_t *array = (uint64_t *)opaque;
FeatureWord w;
X86CPUFeatureWordInfo word_infos[FEATURE_WORDS] = { };
X86CPUFeatureWordInfoList list_entries[FEATURE_WORDS] = { };
X86CPUFeatureWordInfoList *list = NULL;
for (w = 0; w < FEATURE_WORDS; w++) {
FeatureWordInfo *wi = &feature_word_info[w];
/*
* We didn't have MSR features when "feature-words" was
* introduced. Therefore skipped other type entries.
*/
if (wi->type != CPUID_FEATURE_WORD) {
continue;
}
X86CPUFeatureWordInfo *qwi = &word_infos[w];
qwi->cpuid_input_eax = wi->cpuid.eax;
qwi->has_cpuid_input_ecx = wi->cpuid.needs_ecx;
qwi->cpuid_input_ecx = wi->cpuid.ecx;
qwi->cpuid_register = x86_reg_info_32[wi->cpuid.reg].qapi_enum;
qwi->features = array[w];
/* List will be in reverse order, but order shouldn't matter */
list_entries[w].next = list;
list_entries[w].value = &word_infos[w];
list = &list_entries[w];
}
visit_type_X86CPUFeatureWordInfoList(v, "feature-words", &list, errp);
}
/* Convert all '_' in a feature string option name to '-', to make feature
* name conform to QOM property naming rule, which uses '-' instead of '_'.
*/
static inline void feat2prop(char *s)
{
while ((s = strchr(s, '_'))) {
*s = '-';
}
}
/* Return the feature property name for a feature flag bit */
static const char *x86_cpu_feature_name(FeatureWord w, int bitnr)
{
const char *name;
/* XSAVE components are automatically enabled by other features,
* so return the original feature name instead
*/
if (w == FEAT_XSAVE_COMP_LO || w == FEAT_XSAVE_COMP_HI) {
int comp = (w == FEAT_XSAVE_COMP_HI) ? bitnr + 32 : bitnr;
if (comp < ARRAY_SIZE(x86_ext_save_areas) &&
x86_ext_save_areas[comp].bits) {
w = x86_ext_save_areas[comp].feature;
bitnr = ctz32(x86_ext_save_areas[comp].bits);
}
}
assert(bitnr < 64);
assert(w < FEATURE_WORDS);
name = feature_word_info[w].feat_names[bitnr];
assert(bitnr < 32 || !(name && feature_word_info[w].type == CPUID_FEATURE_WORD));
return name;
}
/* Compatibily hack to maintain legacy +-feat semantic,
* where +-feat overwrites any feature set by
* feat=on|feat even if the later is parsed after +-feat
* (i.e. "-x2apic,x2apic=on" will result in x2apic disabled)
*/
static GList *plus_features, *minus_features;
static gint compare_string(gconstpointer a, gconstpointer b)
{
return g_strcmp0(a, b);
}
/* Parse "+feature,-feature,feature=foo" CPU feature string
*/
static void x86_cpu_parse_featurestr(const char *typename, char *features,
Error **errp)
{
char *featurestr; /* Single 'key=value" string being parsed */
static bool cpu_globals_initialized;
bool ambiguous = false;
if (cpu_globals_initialized) {
return;
}
cpu_globals_initialized = true;
if (!features) {
return;
}
for (featurestr = strtok(features, ",");
featurestr;
featurestr = strtok(NULL, ",")) {
const char *name;
const char *val = NULL;
char *eq = NULL;
char num[32];
GlobalProperty *prop;
/* Compatibility syntax: */
if (featurestr[0] == '+') {
plus_features = g_list_append(plus_features,
g_strdup(featurestr + 1));
continue;
} else if (featurestr[0] == '-') {
minus_features = g_list_append(minus_features,
g_strdup(featurestr + 1));
continue;
}
eq = strchr(featurestr, '=');
if (eq) {
*eq++ = 0;
val = eq;
} else {
val = "on";
}
feat2prop(featurestr);
name = featurestr;
if (g_list_find_custom(plus_features, name, compare_string)) {
warn_report("Ambiguous CPU model string. "
"Don't mix both \"+%s\" and \"%s=%s\"",
name, name, val);
ambiguous = true;
}
if (g_list_find_custom(minus_features, name, compare_string)) {
warn_report("Ambiguous CPU model string. "
"Don't mix both \"-%s\" and \"%s=%s\"",
name, name, val);
ambiguous = true;
}
/* Special case: */
if (!strcmp(name, "tsc-freq")) {
int ret;
uint64_t tsc_freq;
ret = qemu_strtosz_metric(val, NULL, &tsc_freq);
if (ret < 0 || tsc_freq > INT64_MAX) {
error_setg(errp, "bad numerical value %s", val);
return;
}
snprintf(num, sizeof(num), "%" PRId64, tsc_freq);
val = num;
name = "tsc-frequency";
}
prop = g_new0(typeof(*prop), 1);
prop->driver = typename;
prop->property = g_strdup(name);
prop->value = g_strdup(val);
qdev_prop_register_global(prop);
}
if (ambiguous) {
warn_report("Compatibility of ambiguous CPU model "
"strings won't be kept on future QEMU versions");
}
}
static void x86_cpu_expand_features(X86CPU *cpu, Error **errp);
static void x86_cpu_filter_features(X86CPU *cpu, bool verbose);
/* Build a list with the name of all features on a feature word array */
static void x86_cpu_list_feature_names(FeatureWordArray features,
strList **feat_names)
{
FeatureWord w;
strList **next = feat_names;
for (w = 0; w < FEATURE_WORDS; w++) {
uint64_t filtered = features[w];
int i;
for (i = 0; i < 64; i++) {
if (filtered & (1ULL << i)) {
strList *new = g_new0(strList, 1);
new->value = g_strdup(x86_cpu_feature_name(w, i));
*next = new;
next = &new->next;
}
}
}
}
static void x86_cpu_get_unavailable_features(Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
X86CPU *xc = X86_CPU(obj);
strList *result = NULL;
x86_cpu_list_feature_names(xc->filtered_features, &result);
visit_type_strList(v, "unavailable-features", &result, errp);
}
/* Check for missing features that may prevent the CPU class from
* running using the current machine and accelerator.
*/
static void x86_cpu_class_check_missing_features(X86CPUClass *xcc,
strList **missing_feats)
{
X86CPU *xc;
Error *err = NULL;
strList **next = missing_feats;
if (xcc->host_cpuid_required && !accel_uses_host_cpuid()) {
strList *new = g_new0(strList, 1);
new->value = g_strdup("kvm");
*missing_feats = new;
return;
}
xc = X86_CPU(object_new(object_class_get_name(OBJECT_CLASS(xcc))));
x86_cpu_expand_features(xc, &err);
if (err) {
/* Errors at x86_cpu_expand_features should never happen,
* but in case it does, just report the model as not
* runnable at all using the "type" property.
*/
strList *new = g_new0(strList, 1);
new->value = g_strdup("type");
*next = new;
next = &new->next;
}
x86_cpu_filter_features(xc, false);
x86_cpu_list_feature_names(xc->filtered_features, next);
object_unref(OBJECT(xc));
}
/* Print all cpuid feature names in featureset
*/
static void listflags(GList *features)
{
size_t len = 0;
GList *tmp;
for (tmp = features; tmp; tmp = tmp->next) {
const char *name = tmp->data;
if ((len + strlen(name) + 1) >= 75) {
qemu_printf("\n");
len = 0;
}
qemu_printf("%s%s", len == 0 ? " " : " ", name);
len += strlen(name) + 1;
}
qemu_printf("\n");
}
/* Sort alphabetically by type name, respecting X86CPUClass::ordering. */
static gint x86_cpu_list_compare(gconstpointer a, gconstpointer b)
{
ObjectClass *class_a = (ObjectClass *)a;
ObjectClass *class_b = (ObjectClass *)b;
X86CPUClass *cc_a = X86_CPU_CLASS(class_a);
X86CPUClass *cc_b = X86_CPU_CLASS(class_b);
char *name_a, *name_b;
int ret;
if (cc_a->ordering != cc_b->ordering) {
ret = cc_a->ordering - cc_b->ordering;
} else {
name_a = x86_cpu_class_get_model_name(cc_a);
name_b = x86_cpu_class_get_model_name(cc_b);
ret = strcmp(name_a, name_b);
g_free(name_a);
g_free(name_b);
}
return ret;
}
static GSList *get_sorted_cpu_model_list(void)
{
GSList *list = object_class_get_list(TYPE_X86_CPU, false);
list = g_slist_sort(list, x86_cpu_list_compare);
return list;
}
static char *x86_cpu_class_get_model_id(X86CPUClass *xc)
{
Object *obj = object_new(object_class_get_name(OBJECT_CLASS(xc)));
char *r = object_property_get_str(obj, "model-id", &error_abort);
object_unref(obj);
return r;
}
static char *x86_cpu_class_get_alias_of(X86CPUClass *cc)
{
X86CPUVersion version;
if (!cc->model || !cc->model->is_alias) {
return NULL;
}
version = x86_cpu_model_resolve_version(cc->model);
if (version <= 0) {
return NULL;
}
return x86_cpu_versioned_model_name(cc->model->cpudef, version);
}
static void x86_cpu_list_entry(gpointer data, gpointer user_data)
{
ObjectClass *oc = data;
X86CPUClass *cc = X86_CPU_CLASS(oc);
char *name = x86_cpu_class_get_model_name(cc);
char *desc = g_strdup(cc->model_description);
char *alias_of = x86_cpu_class_get_alias_of(cc);
if (!desc && alias_of) {
if (cc->model && cc->model->version == CPU_VERSION_AUTO) {
desc = g_strdup("(alias configured by machine type)");
} else {
desc = g_strdup_printf("(alias of %s)", alias_of);
}
}
if (!desc) {
desc = x86_cpu_class_get_model_id(cc);
}
qemu_printf("x86 %-20s %-48s\n", name, desc);
g_free(name);
g_free(desc);
g_free(alias_of);
}
/* list available CPU models and flags */
void x86_cpu_list(void)
{
int i, j;
GSList *list;
GList *names = NULL;
qemu_printf("Available CPUs:\n");
list = get_sorted_cpu_model_list();
g_slist_foreach(list, x86_cpu_list_entry, NULL);
g_slist_free(list);
names = NULL;
for (i = 0; i < ARRAY_SIZE(feature_word_info); i++) {
FeatureWordInfo *fw = &feature_word_info[i];
for (j = 0; j < 64; j++) {
if (fw->feat_names[j]) {
names = g_list_append(names, (gpointer)fw->feat_names[j]);
}
}
}
names = g_list_sort(names, (GCompareFunc)strcmp);
qemu_printf("\nRecognized CPUID flags:\n");
listflags(names);
qemu_printf("\n");
g_list_free(names);
}
static void x86_cpu_definition_entry(gpointer data, gpointer user_data)
{
ObjectClass *oc = data;
X86CPUClass *cc = X86_CPU_CLASS(oc);
CpuDefinitionInfoList **cpu_list = user_data;
CpuDefinitionInfoList *entry;
CpuDefinitionInfo *info;
info = g_malloc0(sizeof(*info));
info->name = x86_cpu_class_get_model_name(cc);
x86_cpu_class_check_missing_features(cc, &info->unavailable_features);
info->has_unavailable_features = true;
info->q_typename = g_strdup(object_class_get_name(oc));
info->migration_safe = cc->migration_safe;
info->has_migration_safe = true;
info->q_static = cc->static_model;
/*
* Old machine types won't report aliases, so that alias translation
* doesn't break compatibility with previous QEMU versions.
*/
if (default_cpu_version != CPU_VERSION_LEGACY) {
info->alias_of = x86_cpu_class_get_alias_of(cc);
info->has_alias_of = !!info->alias_of;
}
entry = g_malloc0(sizeof(*entry));
entry->value = info;
entry->next = *cpu_list;
*cpu_list = entry;
}
CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
{
CpuDefinitionInfoList *cpu_list = NULL;
GSList *list = get_sorted_cpu_model_list();
g_slist_foreach(list, x86_cpu_definition_entry, &cpu_list);
g_slist_free(list);
return cpu_list;
}
static uint64_t x86_cpu_get_supported_feature_word(FeatureWord w,
bool migratable_only)
{
FeatureWordInfo *wi = &feature_word_info[w];
uint64_t r = 0;
if (kvm_enabled()) {
switch (wi->type) {
case CPUID_FEATURE_WORD:
r = kvm_arch_get_supported_cpuid(kvm_state, wi->cpuid.eax,
wi->cpuid.ecx,
wi->cpuid.reg);
break;
case MSR_FEATURE_WORD:
r = kvm_arch_get_supported_msr_feature(kvm_state,
wi->msr.index);
break;
}
} else if (hvf_enabled()) {
if (wi->type != CPUID_FEATURE_WORD) {
return 0;
}
r = hvf_get_supported_cpuid(wi->cpuid.eax,
wi->cpuid.ecx,
wi->cpuid.reg);
} else if (tcg_enabled()) {
r = wi->tcg_features;
} else {
return ~0;
}
if (migratable_only) {
r &= x86_cpu_get_migratable_flags(w);
}
return r;
}
static void x86_cpu_apply_props(X86CPU *cpu, PropValue *props)
{
PropValue *pv;
for (pv = props; pv->prop; pv++) {
if (!pv->value) {
continue;
}
object_property_parse(OBJECT(cpu), pv->value, pv->prop,
&error_abort);
}
}
/* Apply properties for the CPU model version specified in model */
static void x86_cpu_apply_version_props(X86CPU *cpu, X86CPUModel *model)
{
const X86CPUVersionDefinition *vdef;
X86CPUVersion version = x86_cpu_model_resolve_version(model);
if (version == CPU_VERSION_LEGACY) {
return;
}
for (vdef = x86_cpu_def_get_versions(model->cpudef); vdef->version; vdef++) {
PropValue *p;
for (p = vdef->props; p && p->prop; p++) {
object_property_parse(OBJECT(cpu), p->value, p->prop,
&error_abort);
}
if (vdef->version == version) {
break;
}
}
/*
* If we reached the end of the list, version number was invalid
*/
assert(vdef->version == version);
}
/* Load data from X86CPUDefinition into a X86CPU object
*/
static void x86_cpu_load_model(X86CPU *cpu, X86CPUModel *model, Error **errp)
{
X86CPUDefinition *def = model->cpudef;
CPUX86State *env = &cpu->env;
const char *vendor;
char host_vendor[CPUID_VENDOR_SZ + 1];
FeatureWord w;
/*NOTE: any property set by this function should be returned by
* x86_cpu_static_props(), so static expansion of
* query-cpu-model-expansion is always complete.
*/
/* CPU models only set _minimum_ values for level/xlevel: */
object_property_set_uint(OBJECT(cpu), def->level, "min-level", errp);
object_property_set_uint(OBJECT(cpu), def->xlevel, "min-xlevel", errp);
object_property_set_int(OBJECT(cpu), def->family, "family", errp);
object_property_set_int(OBJECT(cpu), def->model, "model", errp);
object_property_set_int(OBJECT(cpu), def->stepping, "stepping", errp);
object_property_set_str(OBJECT(cpu), def->model_id, "model-id", errp);
for (w = 0; w < FEATURE_WORDS; w++) {
env->features[w] = def->features[w];
}
/* legacy-cache defaults to 'off' if CPU model provides cache info */
cpu->legacy_cache = !def->cache_info;
/* Special cases not set in the X86CPUDefinition structs: */
/* TODO: in-kernel irqchip for hvf */
if (kvm_enabled()) {
if (!kvm_irqchip_in_kernel()) {
x86_cpu_change_kvm_default("x2apic", "off");
}
x86_cpu_apply_props(cpu, kvm_default_props);
} else if (tcg_enabled()) {
x86_cpu_apply_props(cpu, tcg_default_props);
}
env->features[FEAT_1_ECX] |= CPUID_EXT_HYPERVISOR;
/* sysenter isn't supported in compatibility mode on AMD,
* syscall isn't supported in compatibility mode on Intel.
* Normally we advertise the actual CPU vendor, but you can
* override this using the 'vendor' property if you want to use
* KVM's sysenter/syscall emulation in compatibility mode and
* when doing cross vendor migration
*/
vendor = def->vendor;
if (accel_uses_host_cpuid()) {
uint32_t ebx = 0, ecx = 0, edx = 0;
host_cpuid(0, 0, NULL, &ebx, &ecx, &edx);
x86_cpu_vendor_words2str(host_vendor, ebx, edx, ecx);
vendor = host_vendor;
}
object_property_set_str(OBJECT(cpu), vendor, "vendor", errp);
x86_cpu_apply_version_props(cpu, model);
}
#ifndef CONFIG_USER_ONLY
/* Return a QDict containing keys for all properties that can be included
* in static expansion of CPU models. All properties set by x86_cpu_load_model()
* must be included in the dictionary.
*/
static QDict *x86_cpu_static_props(void)
{
FeatureWord w;
int i;
static const char *props[] = {
"min-level",
"min-xlevel",
"family",
"model",
"stepping",
"model-id",
"vendor",
"lmce",
NULL,
};
static QDict *d;
if (d) {
return d;
}
d = qdict_new();
for (i = 0; props[i]; i++) {
qdict_put_null(d, props[i]);
}
for (w = 0; w < FEATURE_WORDS; w++) {
FeatureWordInfo *fi = &feature_word_info[w];
int bit;
for (bit = 0; bit < 64; bit++) {
if (!fi->feat_names[bit]) {
continue;
}
qdict_put_null(d, fi->feat_names[bit]);
}
}
return d;
}
/* Add an entry to @props dict, with the value for property. */
static void x86_cpu_expand_prop(X86CPU *cpu, QDict *props, const char *prop)
{
QObject *value = object_property_get_qobject(OBJECT(cpu), prop,
&error_abort);
qdict_put_obj(props, prop, value);
}
/* Convert CPU model data from X86CPU object to a property dictionary
* that can recreate exactly the same CPU model.
*/
static void x86_cpu_to_dict(X86CPU *cpu, QDict *props)
{
QDict *sprops = x86_cpu_static_props();
const QDictEntry *e;
for (e = qdict_first(sprops); e; e = qdict_next(sprops, e)) {
const char *prop = qdict_entry_key(e);
x86_cpu_expand_prop(cpu, props, prop);
}
}
/* Convert CPU model data from X86CPU object to a property dictionary
* that can recreate exactly the same CPU model, including every
* writeable QOM property.
*/
static void x86_cpu_to_dict_full(X86CPU *cpu, QDict *props)
{
ObjectPropertyIterator iter;
ObjectProperty *prop;
object_property_iter_init(&iter, OBJECT(cpu));
while ((prop = object_property_iter_next(&iter))) {
/* skip read-only or write-only properties */
if (!prop->get || !prop->set) {
continue;
}
/* "hotplugged" is the only property that is configurable
* on the command-line but will be set differently on CPUs
* created using "-cpu ... -smp ..." and by CPUs created
* on the fly by x86_cpu_from_model() for querying. Skip it.
*/
if (!strcmp(prop->name, "hotplugged")) {
continue;
}
x86_cpu_expand_prop(cpu, props, prop->name);
}
}
static void object_apply_props(Object *obj, QDict *props, Error **errp)
{
const QDictEntry *prop;
Error *err = NULL;
for (prop = qdict_first(props); prop; prop = qdict_next(props, prop)) {
object_property_set_qobject(obj, qdict_entry_value(prop),
qdict_entry_key(prop), &err);
if (err) {
break;
}
}
error_propagate(errp, err);
}
/* Create X86CPU object according to model+props specification */
static X86CPU *x86_cpu_from_model(const char *model, QDict *props, Error **errp)
{
X86CPU *xc = NULL;
X86CPUClass *xcc;
Error *err = NULL;
xcc = X86_CPU_CLASS(cpu_class_by_name(TYPE_X86_CPU, model));
if (xcc == NULL) {
error_setg(&err, "CPU model '%s' not found", model);
goto out;
}
xc = X86_CPU(object_new(object_class_get_name(OBJECT_CLASS(xcc))));
if (props) {
object_apply_props(OBJECT(xc), props, &err);
if (err) {
goto out;
}
}
x86_cpu_expand_features(xc, &err);
if (err) {
goto out;
}
out:
if (err) {
error_propagate(errp, err);
object_unref(OBJECT(xc));
xc = NULL;
}
return xc;
}
CpuModelExpansionInfo *
qmp_query_cpu_model_expansion(CpuModelExpansionType type,
CpuModelInfo *model,
Error **errp)
{
X86CPU *xc = NULL;
Error *err = NULL;
CpuModelExpansionInfo *ret = g_new0(CpuModelExpansionInfo, 1);
QDict *props = NULL;
const char *base_name;
xc = x86_cpu_from_model(model->name,
model->has_props ?
qobject_to(QDict, model->props) :
NULL, &err);
if (err) {
goto out;
}
props = qdict_new();
ret->model = g_new0(CpuModelInfo, 1);
ret->model->props = QOBJECT(props);
ret->model->has_props = true;
switch (type) {
case CPU_MODEL_EXPANSION_TYPE_STATIC:
/* Static expansion will be based on "base" only */
base_name = "base";
x86_cpu_to_dict(xc, props);
break;
case CPU_MODEL_EXPANSION_TYPE_FULL:
/* As we don't return every single property, full expansion needs
* to keep the original model name+props, and add extra
* properties on top of that.
*/
base_name = model->name;
x86_cpu_to_dict_full(xc, props);
break;
default:
error_setg(&err, "Unsupported expansion type");
goto out;
}
x86_cpu_to_dict(xc, props);
ret->model->name = g_strdup(base_name);
out:
object_unref(OBJECT(xc));
if (err) {
error_propagate(errp, err);
qapi_free_CpuModelExpansionInfo(ret);
ret = NULL;
}
return ret;
}
#endif /* !CONFIG_USER_ONLY */
static gchar *x86_gdb_arch_name(CPUState *cs)
{
#ifdef TARGET_X86_64
return g_strdup("i386:x86-64");
#else
return g_strdup("i386");
#endif
}
static void x86_cpu_cpudef_class_init(ObjectClass *oc, void *data)
{
X86CPUModel *model = data;
X86CPUClass *xcc = X86_CPU_CLASS(oc);
xcc->model = model;
xcc->migration_safe = true;
}
static void x86_register_cpu_model_type(const char *name, X86CPUModel *model)
{
char *typename = x86_cpu_type_name(name);
TypeInfo ti = {
.name = typename,
.parent = TYPE_X86_CPU,
.class_init = x86_cpu_cpudef_class_init,
.class_data = model,
};
type_register(&ti);
g_free(typename);
}
static void x86_register_cpudef_types(X86CPUDefinition *def)
{
X86CPUModel *m;
const X86CPUVersionDefinition *vdef;
char *name;
/* AMD aliases are handled at runtime based on CPUID vendor, so
* they shouldn't be set on the CPU model table.
*/
assert(!(def->features[FEAT_8000_0001_EDX] & CPUID_EXT2_AMD_ALIASES));
/* catch mistakes instead of silently truncating model_id when too long */
assert(def->model_id && strlen(def->model_id) <= 48);
/* Unversioned model: */
m = g_new0(X86CPUModel, 1);
m->cpudef = def;
m->version = CPU_VERSION_AUTO;
m->is_alias = true;
x86_register_cpu_model_type(def->name, m);
/* Versioned models: */
for (vdef = x86_cpu_def_get_versions(def); vdef->version; vdef++) {
X86CPUModel *m = g_new0(X86CPUModel, 1);
m->cpudef = def;
m->version = vdef->version;
name = x86_cpu_versioned_model_name(def, vdef->version);
x86_register_cpu_model_type(name, m);
g_free(name);
if (vdef->alias) {
X86CPUModel *am = g_new0(X86CPUModel, 1);
am->cpudef = def;
am->version = vdef->version;
am->is_alias = true;
x86_register_cpu_model_type(vdef->alias, am);
}
}
}
#if !defined(CONFIG_USER_ONLY)
void cpu_clear_apic_feature(CPUX86State *env)
{
env->features[FEAT_1_EDX] &= ~CPUID_APIC;
}
#endif /* !CONFIG_USER_ONLY */
void cpu_x86_cpuid(CPUX86State *env, uint32_t index, uint32_t count,
uint32_t *eax, uint32_t *ebx,
uint32_t *ecx, uint32_t *edx)
{
X86CPU *cpu = env_archcpu(env);
CPUState *cs = env_cpu(env);
uint32_t die_offset;
uint32_t limit;
uint32_t signature[3];
/* Calculate & apply limits for different index ranges */
if (index >= 0xC0000000) {
limit = env->cpuid_xlevel2;
} else if (index >= 0x80000000) {
limit = env->cpuid_xlevel;
} else if (index >= 0x40000000) {
limit = 0x40000001;
} else {
limit = env->cpuid_level;
}
if (index > limit) {
/* Intel documentation states that invalid EAX input will
* return the same information as EAX=cpuid_level
* (Intel SDM Vol. 2A - Instruction Set Reference - CPUID)
*/
index = env->cpuid_level;
}
switch(index) {
case 0:
*eax = env->cpuid_level;
*ebx = env->cpuid_vendor1;
*edx = env->cpuid_vendor2;
*ecx = env->cpuid_vendor3;
break;
case 1:
*eax = env->cpuid_version;
*ebx = (cpu->apic_id << 24) |
8 << 8; /* CLFLUSH size in quad words, Linux wants it. */
*ecx = env->features[FEAT_1_ECX];
if ((*ecx & CPUID_EXT_XSAVE) && (env->cr[4] & CR4_OSXSAVE_MASK)) {
*ecx |= CPUID_EXT_OSXSAVE;
}
*edx = env->features[FEAT_1_EDX];
if (cs->nr_cores * cs->nr_threads > 1) {
*ebx |= (cs->nr_cores * cs->nr_threads) << 16;
*edx |= CPUID_HT;
}
break;
case 2:
/* cache info: needed for Pentium Pro compatibility */
if (cpu->cache_info_passthrough) {
host_cpuid(index, 0, eax, ebx, ecx, edx);
break;
}
*eax = 1; /* Number of CPUID[EAX=2] calls required */
*ebx = 0;
if (!cpu->enable_l3_cache) {
*ecx = 0;
} else {
*ecx = cpuid2_cache_descriptor(env->cache_info_cpuid2.l3_cache);
}
*edx = (cpuid2_cache_descriptor(env->cache_info_cpuid2.l1d_cache) << 16) |
(cpuid2_cache_descriptor(env->cache_info_cpuid2.l1i_cache) << 8) |
(cpuid2_cache_descriptor(env->cache_info_cpuid2.l2_cache));
break;
case 4:
/* cache info: needed for Core compatibility */
if (cpu->cache_info_passthrough) {
host_cpuid(index, count, eax, ebx, ecx, edx);
/* QEMU gives out its own APIC IDs, never pass down bits 31..26. */
*eax &= ~0xFC000000;
if ((*eax & 31) && cs->nr_cores > 1) {
*eax |= (cs->nr_cores - 1) << 26;
}
} else {
*eax = 0;
switch (count) {
case 0: /* L1 dcache info */
encode_cache_cpuid4(env->cache_info_cpuid4.l1d_cache,
1, cs->nr_cores,
eax, ebx, ecx, edx);
break;
case 1: /* L1 icache info */
encode_cache_cpuid4(env->cache_info_cpuid4.l1i_cache,
1, cs->nr_cores,
eax, ebx, ecx, edx);
break;
case 2: /* L2 cache info */
encode_cache_cpuid4(env->cache_info_cpuid4.l2_cache,
cs->nr_threads, cs->nr_cores,
eax, ebx, ecx, edx);
break;
case 3: /* L3 cache info */
die_offset = apicid_die_offset(env->nr_dies,
cs->nr_cores, cs->nr_threads);
if (cpu->enable_l3_cache) {
encode_cache_cpuid4(env->cache_info_cpuid4.l3_cache,
(1 << die_offset), cs->nr_cores,
eax, ebx, ecx, edx);
break;
}
/* fall through */
default: /* end of info */
*eax = *ebx = *ecx = *edx = 0;
break;
}
}
break;
case 5:
/* MONITOR/MWAIT Leaf */
*eax = cpu->mwait.eax; /* Smallest monitor-line size in bytes */
*ebx = cpu->mwait.ebx; /* Largest monitor-line size in bytes */
*ecx = cpu->mwait.ecx; /* flags */
*edx = cpu->mwait.edx; /* mwait substates */
break;
case 6:
/* Thermal and Power Leaf */
*eax = env->features[FEAT_6_EAX];
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
case 7:
/* Structured Extended Feature Flags Enumeration Leaf */
if (count == 0) {
/* Maximum ECX value for sub-leaves */
*eax = env->cpuid_level_func7;
*ebx = env->features[FEAT_7_0_EBX]; /* Feature flags */
*ecx = env->features[FEAT_7_0_ECX]; /* Feature flags */
if ((*ecx & CPUID_7_0_ECX_PKU) && env->cr[4] & CR4_PKE_MASK) {
*ecx |= CPUID_7_0_ECX_OSPKE;
}
*edx = env->features[FEAT_7_0_EDX]; /* Feature flags */
} else if (count == 1) {
*eax = env->features[FEAT_7_1_EAX];
*ebx = 0;
*ecx = 0;
*edx = 0;
} else {
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
}
break;
case 9:
/* Direct Cache Access Information Leaf */
*eax = 0; /* Bits 0-31 in DCA_CAP MSR */
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
case 0xA:
/* Architectural Performance Monitoring Leaf */
if (kvm_enabled() && cpu->enable_pmu) {
KVMState *s = cs->kvm_state;
*eax = kvm_arch_get_supported_cpuid(s, 0xA, count, R_EAX);
*ebx = kvm_arch_get_supported_cpuid(s, 0xA, count, R_EBX);
*ecx = kvm_arch_get_supported_cpuid(s, 0xA, count, R_ECX);
*edx = kvm_arch_get_supported_cpuid(s, 0xA, count, R_EDX);
} else if (hvf_enabled() && cpu->enable_pmu) {
*eax = hvf_get_supported_cpuid(0xA, count, R_EAX);
*ebx = hvf_get_supported_cpuid(0xA, count, R_EBX);
*ecx = hvf_get_supported_cpuid(0xA, count, R_ECX);
*edx = hvf_get_supported_cpuid(0xA, count, R_EDX);
} else {
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
}
break;
case 0xB:
/* Extended Topology Enumeration Leaf */
if (!cpu->enable_cpuid_0xb) {
*eax = *ebx = *ecx = *edx = 0;
break;
}
*ecx = count & 0xff;
*edx = cpu->apic_id;
switch (count) {
case 0:
*eax = apicid_core_offset(env->nr_dies,
cs->nr_cores, cs->nr_threads);
*ebx = cs->nr_threads;
*ecx |= CPUID_TOPOLOGY_LEVEL_SMT;
break;
case 1:
*eax = apicid_pkg_offset(env->nr_dies,
cs->nr_cores, cs->nr_threads);
*ebx = cs->nr_cores * cs->nr_threads;
*ecx |= CPUID_TOPOLOGY_LEVEL_CORE;
break;
default:
*eax = 0;
*ebx = 0;
*ecx |= CPUID_TOPOLOGY_LEVEL_INVALID;
}
assert(!(*eax & ~0x1f));
*ebx &= 0xffff; /* The count doesn't need to be reliable. */
break;
case 0x1F:
/* V2 Extended Topology Enumeration Leaf */
if (env->nr_dies < 2) {
*eax = *ebx = *ecx = *edx = 0;
break;
}
*ecx = count & 0xff;
*edx = cpu->apic_id;
switch (count) {
case 0:
*eax = apicid_core_offset(env->nr_dies, cs->nr_cores,
cs->nr_threads);
*ebx = cs->nr_threads;
*ecx |= CPUID_TOPOLOGY_LEVEL_SMT;
break;
case 1:
*eax = apicid_die_offset(env->nr_dies, cs->nr_cores,
cs->nr_threads);
*ebx = cs->nr_cores * cs->nr_threads;
*ecx |= CPUID_TOPOLOGY_LEVEL_CORE;
break;
case 2:
*eax = apicid_pkg_offset(env->nr_dies, cs->nr_cores,
cs->nr_threads);
*ebx = env->nr_dies * cs->nr_cores * cs->nr_threads;
*ecx |= CPUID_TOPOLOGY_LEVEL_DIE;
break;
default:
*eax = 0;
*ebx = 0;
*ecx |= CPUID_TOPOLOGY_LEVEL_INVALID;
}
assert(!(*eax & ~0x1f));
*ebx &= 0xffff; /* The count doesn't need to be reliable. */
break;
case 0xD: {
/* Processor Extended State */
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
if (!(env->features[FEAT_1_ECX] & CPUID_EXT_XSAVE)) {
break;
}
if (count == 0) {
*ecx = xsave_area_size(x86_cpu_xsave_components(cpu));
*eax = env->features[FEAT_XSAVE_COMP_LO];
*edx = env->features[FEAT_XSAVE_COMP_HI];
/*
* The initial value of xcr0 and ebx == 0, On host without kvm
* commit 412a3c41(e.g., CentOS 6), the ebx's value always == 0
* even through guest update xcr0, this will crash some legacy guest
* (e.g., CentOS 6), So set ebx == ecx to workaroud it.
*/
*ebx = kvm_enabled() ? *ecx : xsave_area_size(env->xcr0);
} else if (count == 1) {
*eax = env->features[FEAT_XSAVE];
} else if (count < ARRAY_SIZE(x86_ext_save_areas)) {
if ((x86_cpu_xsave_components(cpu) >> count) & 1) {
const ExtSaveArea *esa = &x86_ext_save_areas[count];
*eax = esa->size;
*ebx = esa->offset;
}
}
break;
}
case 0x14: {
/* Intel Processor Trace Enumeration */
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
if (!(env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) ||
!kvm_enabled()) {
break;
}
if (count == 0) {
*eax = INTEL_PT_MAX_SUBLEAF;
*ebx = INTEL_PT_MINIMAL_EBX;
*ecx = INTEL_PT_MINIMAL_ECX;
} else if (count == 1) {
*eax = INTEL_PT_MTC_BITMAP | INTEL_PT_ADDR_RANGES_NUM;
*ebx = INTEL_PT_PSB_BITMAP | INTEL_PT_CYCLE_BITMAP;
}
break;
}
case 0x40000000:
/*
* CPUID code in kvm_arch_init_vcpu() ignores stuff
* set here, but we restrict to TCG none the less.
*/
if (tcg_enabled() && cpu->expose_tcg) {
memcpy(signature, "TCGTCGTCGTCG", 12);
*eax = 0x40000001;
*ebx = signature[0];
*ecx = signature[1];
*edx = signature[2];
} else {
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
}
break;
case 0x40000001:
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
case 0x80000000:
*eax = env->cpuid_xlevel;
*ebx = env->cpuid_vendor1;
*edx = env->cpuid_vendor2;
*ecx = env->cpuid_vendor3;
break;
case 0x80000001:
*eax = env->cpuid_version;
*ebx = 0;
*ecx = env->features[FEAT_8000_0001_ECX];
*edx = env->features[FEAT_8000_0001_EDX];
/* The Linux kernel checks for the CMPLegacy bit and
* discards multiple thread information if it is set.
* So don't set it here for Intel to make Linux guests happy.
*/
if (cs->nr_cores * cs->nr_threads > 1) {
if (env->cpuid_vendor1 != CPUID_VENDOR_INTEL_1 ||
env->cpuid_vendor2 != CPUID_VENDOR_INTEL_2 ||
env->cpuid_vendor3 != CPUID_VENDOR_INTEL_3) {
*ecx |= 1 << 1; /* CmpLegacy bit */
}
}
break;
case 0x80000002:
case 0x80000003:
case 0x80000004:
*eax = env->cpuid_model[(index - 0x80000002) * 4 + 0];
*ebx = env->cpuid_model[(index - 0x80000002) * 4 + 1];
*ecx = env->cpuid_model[(index - 0x80000002) * 4 + 2];
*edx = env->cpuid_model[(index - 0x80000002) * 4 + 3];
break;
case 0x80000005:
/* cache info (L1 cache) */
if (cpu->cache_info_passthrough) {
host_cpuid(index, 0, eax, ebx, ecx, edx);
break;
}
*eax = (L1_DTLB_2M_ASSOC << 24) | (L1_DTLB_2M_ENTRIES << 16) | \
(L1_ITLB_2M_ASSOC << 8) | (L1_ITLB_2M_ENTRIES);
*ebx = (L1_DTLB_4K_ASSOC << 24) | (L1_DTLB_4K_ENTRIES << 16) | \
(L1_ITLB_4K_ASSOC << 8) | (L1_ITLB_4K_ENTRIES);
*ecx = encode_cache_cpuid80000005(env->cache_info_amd.l1d_cache);
*edx = encode_cache_cpuid80000005(env->cache_info_amd.l1i_cache);
break;
case 0x80000006:
/* cache info (L2 cache) */
if (cpu->cache_info_passthrough) {
host_cpuid(index, 0, eax, ebx, ecx, edx);
break;
}
*eax = (AMD_ENC_ASSOC(L2_DTLB_2M_ASSOC) << 28) | \
(L2_DTLB_2M_ENTRIES << 16) | \
(AMD_ENC_ASSOC(L2_ITLB_2M_ASSOC) << 12) | \
(L2_ITLB_2M_ENTRIES);
*ebx = (AMD_ENC_ASSOC(L2_DTLB_4K_ASSOC) << 28) | \
(L2_DTLB_4K_ENTRIES << 16) | \
(AMD_ENC_ASSOC(L2_ITLB_4K_ASSOC) << 12) | \
(L2_ITLB_4K_ENTRIES);
encode_cache_cpuid80000006(env->cache_info_amd.l2_cache,
cpu->enable_l3_cache ?
env->cache_info_amd.l3_cache : NULL,
ecx, edx);
break;
case 0x80000007:
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = env->features[FEAT_8000_0007_EDX];
break;
case 0x80000008:
/* virtual & phys address size in low 2 bytes. */
if (env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM) {
/* 64 bit processor */
*eax = cpu->phys_bits; /* configurable physical bits */
if (env->features[FEAT_7_0_ECX] & CPUID_7_0_ECX_LA57) {
*eax |= 0x00003900; /* 57 bits virtual */
} else {
*eax |= 0x00003000; /* 48 bits virtual */
}
} else {
*eax = cpu->phys_bits;
}
*ebx = env->features[FEAT_8000_0008_EBX];
*ecx = 0;
*edx = 0;
if (cs->nr_cores * cs->nr_threads > 1) {
*ecx |= (cs->nr_cores * cs->nr_threads) - 1;
}
break;
case 0x8000000A:
if (env->features[FEAT_8000_0001_ECX] & CPUID_EXT3_SVM) {
*eax = 0x00000001; /* SVM Revision */
*ebx = 0x00000010; /* nr of ASIDs */
*ecx = 0;
*edx = env->features[FEAT_SVM]; /* optional features */
} else {
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
}
break;
case 0x8000001D:
*eax = 0;
if (cpu->cache_info_passthrough) {
host_cpuid(index, count, eax, ebx, ecx, edx);
break;
}
switch (count) {
case 0: /* L1 dcache info */
encode_cache_cpuid8000001d(env->cache_info_amd.l1d_cache, cs,
eax, ebx, ecx, edx);
break;
case 1: /* L1 icache info */
encode_cache_cpuid8000001d(env->cache_info_amd.l1i_cache, cs,
eax, ebx, ecx, edx);
break;
case 2: /* L2 cache info */
encode_cache_cpuid8000001d(env->cache_info_amd.l2_cache, cs,
eax, ebx, ecx, edx);
break;
case 3: /* L3 cache info */
encode_cache_cpuid8000001d(env->cache_info_amd.l3_cache, cs,
eax, ebx, ecx, edx);
break;
default: /* end of info */
*eax = *ebx = *ecx = *edx = 0;
break;
}
break;
case 0x8000001E:
assert(cpu->core_id <= 255);
encode_topo_cpuid8000001e(cs, cpu,
eax, ebx, ecx, edx);
break;
case 0xC0000000:
*eax = env->cpuid_xlevel2;
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
case 0xC0000001:
/* Support for VIA CPU's CPUID instruction */
*eax = env->cpuid_version;
*ebx = 0;
*ecx = 0;
*edx = env->features[FEAT_C000_0001_EDX];
break;
case 0xC0000002:
case 0xC0000003:
case 0xC0000004:
/* Reserved for the future, and now filled with zero */
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
case 0x8000001F:
*eax = sev_enabled() ? 0x2 : 0;
*ebx = sev_get_cbit_position();
*ebx |= sev_get_reduced_phys_bits() << 6;
*ecx = 0;
*edx = 0;
break;
default:
/* reserved values: zero */
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
}
}
/* CPUClass::reset() */
static void x86_cpu_reset(CPUState *s)
{
X86CPU *cpu = X86_CPU(s);
X86CPUClass *xcc = X86_CPU_GET_CLASS(cpu);
CPUX86State *env = &cpu->env;
target_ulong cr4;
uint64_t xcr0;
int i;
xcc->parent_reset(s);
memset(env, 0, offsetof(CPUX86State, end_reset_fields));
env->old_exception = -1;
/* init to reset state */
env->hflags2 |= HF2_GIF_MASK;
cpu_x86_update_cr0(env, 0x60000010);
env->a20_mask = ~0x0;
env->smbase = 0x30000;
env->msr_smi_count = 0;
env->idt.limit = 0xffff;
env->gdt.limit = 0xffff;
env->ldt.limit = 0xffff;
env->ldt.flags = DESC_P_MASK | (2 << DESC_TYPE_SHIFT);
env->tr.limit = 0xffff;
env->tr.flags = DESC_P_MASK | (11 << DESC_TYPE_SHIFT);
cpu_x86_load_seg_cache(env, R_CS, 0xf000, 0xffff0000, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_CS_MASK |
DESC_R_MASK | DESC_A_MASK);
cpu_x86_load_seg_cache(env, R_DS, 0, 0, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
DESC_A_MASK);
cpu_x86_load_seg_cache(env, R_ES, 0, 0, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
DESC_A_MASK);
cpu_x86_load_seg_cache(env, R_SS, 0, 0, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
DESC_A_MASK);
cpu_x86_load_seg_cache(env, R_FS, 0, 0, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
DESC_A_MASK);
cpu_x86_load_seg_cache(env, R_GS, 0, 0, 0xffff,
DESC_P_MASK | DESC_S_MASK | DESC_W_MASK |
DESC_A_MASK);
env->eip = 0xfff0;
env->regs[R_EDX] = env->cpuid_version;
env->eflags = 0x2;
/* FPU init */
for (i = 0; i < 8; i++) {
env->fptags[i] = 1;
}
cpu_set_fpuc(env, 0x37f);
env->mxcsr = 0x1f80;
/* All units are in INIT state. */
env->xstate_bv = 0;
env->pat = 0x0007040600070406ULL;
env->msr_ia32_misc_enable = MSR_IA32_MISC_ENABLE_DEFAULT;
if (env->features[FEAT_1_ECX] & CPUID_EXT_MONITOR) {
env->msr_ia32_misc_enable |= MSR_IA32_MISC_ENABLE_MWAIT;
}
memset(env->dr, 0, sizeof(env->dr));
env->dr[6] = DR6_FIXED_1;
env->dr[7] = DR7_FIXED_1;
cpu_breakpoint_remove_all(s, BP_CPU);
cpu_watchpoint_remove_all(s, BP_CPU);
cr4 = 0;
xcr0 = XSTATE_FP_MASK;
#ifdef CONFIG_USER_ONLY
/* Enable all the features for user-mode. */
if (env->features[FEAT_1_EDX] & CPUID_SSE) {
xcr0 |= XSTATE_SSE_MASK;
}
for (i = 2; i < ARRAY_SIZE(x86_ext_save_areas); i++) {
const ExtSaveArea *esa = &x86_ext_save_areas[i];
if (env->features[esa->feature] & esa->bits) {
xcr0 |= 1ull << i;
}
}
if (env->features[FEAT_1_ECX] & CPUID_EXT_XSAVE) {
cr4 |= CR4_OSFXSR_MASK | CR4_OSXSAVE_MASK;
}
if (env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_FSGSBASE) {
cr4 |= CR4_FSGSBASE_MASK;
}
#endif
env->xcr0 = xcr0;
cpu_x86_update_cr4(env, cr4);
/*
* SDM 11.11.5 requires:
* - IA32_MTRR_DEF_TYPE MSR.E = 0
* - IA32_MTRR_PHYSMASKn.V = 0
* All other bits are undefined. For simplification, zero it all.
*/
env->mtrr_deftype = 0;
memset(env->mtrr_var, 0, sizeof(env->mtrr_var));
memset(env->mtrr_fixed, 0, sizeof(env->mtrr_fixed));
env->interrupt_injected = -1;
env->exception_nr = -1;
env->exception_pending = 0;
env->exception_injected = 0;
env->exception_has_payload = false;
env->exception_payload = 0;
env->nmi_injected = false;
#if !defined(CONFIG_USER_ONLY)
/* We hard-wire the BSP to the first CPU. */
apic_designate_bsp(cpu->apic_state, s->cpu_index == 0);
s->halted = !cpu_is_bsp(cpu);
if (kvm_enabled()) {
kvm_arch_reset_vcpu(cpu);
}
else if (hvf_enabled()) {
hvf_reset_vcpu(s);
}
#endif
}
#ifndef CONFIG_USER_ONLY
bool cpu_is_bsp(X86CPU *cpu)
{
return cpu_get_apic_base(cpu->apic_state) & MSR_IA32_APICBASE_BSP;
}
/* TODO: remove me, when reset over QOM tree is implemented */
static void x86_cpu_machine_reset_cb(void *opaque)
{
X86CPU *cpu = opaque;
cpu_reset(CPU(cpu));
}
#endif
static void mce_init(X86CPU *cpu)
{
CPUX86State *cenv = &cpu->env;
unsigned int bank;
if (((cenv->cpuid_version >> 8) & 0xf) >= 6
&& (cenv->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
(CPUID_MCE | CPUID_MCA)) {
cenv->mcg_cap = MCE_CAP_DEF | MCE_BANKS_DEF |
(cpu->enable_lmce ? MCG_LMCE_P : 0);
cenv->mcg_ctl = ~(uint64_t)0;
for (bank = 0; bank < MCE_BANKS_DEF; bank++) {
cenv->mce_banks[bank * 4] = ~(uint64_t)0;
}
}
}
#ifndef CONFIG_USER_ONLY
APICCommonClass *apic_get_class(void)
{
const char *apic_type = "apic";
/* TODO: in-kernel irqchip for hvf */
if (kvm_apic_in_kernel()) {
apic_type = "kvm-apic";
} else if (xen_enabled()) {
apic_type = "xen-apic";
}
return APIC_COMMON_CLASS(object_class_by_name(apic_type));
}
static void x86_cpu_apic_create(X86CPU *cpu, Error **errp)
{
APICCommonState *apic;
ObjectClass *apic_class = OBJECT_CLASS(apic_get_class());
cpu->apic_state = DEVICE(object_new(object_class_get_name(apic_class)));
object_property_add_child(OBJECT(cpu), "lapic",
OBJECT(cpu->apic_state), &error_abort);
object_unref(OBJECT(cpu->apic_state));
qdev_prop_set_uint32(cpu->apic_state, "id", cpu->apic_id);
/* TODO: convert to link<> */
apic = APIC_COMMON(cpu->apic_state);
apic->cpu = cpu;
apic->apicbase = APIC_DEFAULT_ADDRESS | MSR_IA32_APICBASE_ENABLE;
}
static void x86_cpu_apic_realize(X86CPU *cpu, Error **errp)
{
APICCommonState *apic;
static bool apic_mmio_map_once;
if (cpu->apic_state == NULL) {
return;
}
object_property_set_bool(OBJECT(cpu->apic_state), true, "realized",
errp);
/* Map APIC MMIO area */
apic = APIC_COMMON(cpu->apic_state);
if (!apic_mmio_map_once) {
memory_region_add_subregion_overlap(get_system_memory(),
apic->apicbase &
MSR_IA32_APICBASE_BASE,
&apic->io_memory,
0x1000);
apic_mmio_map_once = true;
}
}
static void x86_cpu_machine_done(Notifier *n, void *unused)
{
X86CPU *cpu = container_of(n, X86CPU, machine_done);
MemoryRegion *smram =
(MemoryRegion *) object_resolve_path("/machine/smram", NULL);
if (smram) {
cpu->smram = g_new(MemoryRegion, 1);
memory_region_init_alias(cpu->smram, OBJECT(cpu), "smram",
smram, 0, 1ull << 32);
memory_region_set_enabled(cpu->smram, true);
memory_region_add_subregion_overlap(cpu->cpu_as_root, 0, cpu->smram, 1);
}
}
#else
static void x86_cpu_apic_realize(X86CPU *cpu, Error **errp)
{
}
#endif
/* Note: Only safe for use on x86(-64) hosts */
static uint32_t x86_host_phys_bits(void)
{
uint32_t eax;
uint32_t host_phys_bits;
host_cpuid(0x80000000, 0, &eax, NULL, NULL, NULL);
if (eax >= 0x80000008) {
host_cpuid(0x80000008, 0, &eax, NULL, NULL, NULL);
/* Note: According to AMD doc 25481 rev 2.34 they have a field
* at 23:16 that can specify a maximum physical address bits for
* the guest that can override this value; but I've not seen
* anything with that set.
*/
host_phys_bits = eax & 0xff;
} else {
/* It's an odd 64 bit machine that doesn't have the leaf for
* physical address bits; fall back to 36 that's most older
* Intel.
*/
host_phys_bits = 36;
}
return host_phys_bits;
}
static void x86_cpu_adjust_level(X86CPU *cpu, uint32_t *min, uint32_t value)
{
if (*min < value) {
*min = value;
}
}
/* Increase cpuid_min_{level,xlevel,xlevel2} automatically, if appropriate */
static void x86_cpu_adjust_feat_level(X86CPU *cpu, FeatureWord w)
{
CPUX86State *env = &cpu->env;
FeatureWordInfo *fi = &feature_word_info[w];
uint32_t eax = fi->cpuid.eax;
uint32_t region = eax & 0xF0000000;
assert(feature_word_info[w].type == CPUID_FEATURE_WORD);
if (!env->features[w]) {
return;
}
switch (region) {
case 0x00000000:
x86_cpu_adjust_level(cpu, &env->cpuid_min_level, eax);
break;
case 0x80000000:
x86_cpu_adjust_level(cpu, &env->cpuid_min_xlevel, eax);
break;
case 0xC0000000:
x86_cpu_adjust_level(cpu, &env->cpuid_min_xlevel2, eax);
break;
}
if (eax == 7) {
x86_cpu_adjust_level(cpu, &env->cpuid_min_level_func7,
fi->cpuid.ecx);
}
}
/* Calculate XSAVE components based on the configured CPU feature flags */
static void x86_cpu_enable_xsave_components(X86CPU *cpu)
{
CPUX86State *env = &cpu->env;
int i;
uint64_t mask;
if (!(env->features[FEAT_1_ECX] & CPUID_EXT_XSAVE)) {
return;
}
mask = 0;
for (i = 0; i < ARRAY_SIZE(x86_ext_save_areas); i++) {
const ExtSaveArea *esa = &x86_ext_save_areas[i];
if (env->features[esa->feature] & esa->bits) {
mask |= (1ULL << i);
}
}
env->features[FEAT_XSAVE_COMP_LO] = mask;
env->features[FEAT_XSAVE_COMP_HI] = mask >> 32;
}
/***** Steps involved on loading and filtering CPUID data
*
* When initializing and realizing a CPU object, the steps
* involved in setting up CPUID data are:
*
* 1) Loading CPU model definition (X86CPUDefinition). This is
* implemented by x86_cpu_load_model() and should be completely
* transparent, as it is done automatically by instance_init.
* No code should need to look at X86CPUDefinition structs
* outside instance_init.
*
* 2) CPU expansion. This is done by realize before CPUID
* filtering, and will make sure host/accelerator data is
* loaded for CPU models that depend on host capabilities
* (e.g. "host"). Done by x86_cpu_expand_features().
*
* 3) CPUID filtering. This initializes extra data related to
* CPUID, and checks if the host supports all capabilities
* required by the CPU. Runnability of a CPU model is
* determined at this step. Done by x86_cpu_filter_features().
*
* Some operations don't require all steps to be performed.
* More precisely:
*
* - CPU instance creation (instance_init) will run only CPU
* model loading. CPU expansion can't run at instance_init-time
* because host/accelerator data may be not available yet.
* - CPU realization will perform both CPU model expansion and CPUID
* filtering, and return an error in case one of them fails.
* - query-cpu-definitions needs to run all 3 steps. It needs
* to run CPUID filtering, as the 'unavailable-features'
* field is set based on the filtering results.
* - The query-cpu-model-expansion QMP command only needs to run
* CPU model loading and CPU expansion. It should not filter
* any CPUID data based on host capabilities.
*/
/* Expand CPU configuration data, based on configured features
* and host/accelerator capabilities when appropriate.
*/
static void x86_cpu_expand_features(X86CPU *cpu, Error **errp)
{
CPUX86State *env = &cpu->env;
FeatureWord w;
int i;
GList *l;
Error *local_err = NULL;
for (l = plus_features; l; l = l->next) {
const char *prop = l->data;
object_property_set_bool(OBJECT(cpu), true, prop, &local_err);
if (local_err) {
goto out;
}
}
for (l = minus_features; l; l = l->next) {
const char *prop = l->data;
object_property_set_bool(OBJECT(cpu), false, prop, &local_err);
if (local_err) {
goto out;
}
}
/*TODO: Now cpu->max_features doesn't overwrite features
* set using QOM properties, and we can convert
* plus_features & minus_features to global properties
* inside x86_cpu_parse_featurestr() too.
*/
if (cpu->max_features) {
for (w = 0; w < FEATURE_WORDS; w++) {
/* Override only features that weren't set explicitly
* by the user.
*/
env->features[w] |=
x86_cpu_get_supported_feature_word(w, cpu->migratable) &
~env->user_features[w] & \
~feature_word_info[w].no_autoenable_flags;
}
}
for (i = 0; i < ARRAY_SIZE(feature_dependencies); i++) {
FeatureDep *d = &feature_dependencies[i];
if (!(env->features[d->from.index] & d->from.mask)) {
uint64_t unavailable_features = env->features[d->to.index] & d->to.mask;
/* Not an error unless the dependent feature was added explicitly. */
mark_unavailable_features(cpu, d->to.index,
unavailable_features & env->user_features[d->to.index],
"This feature depends on other features that were not requested");
env->user_features[d->to.index] |= unavailable_features;
env->features[d->to.index] &= ~unavailable_features;
}
}
if (!kvm_enabled() || !cpu->expose_kvm) {
env->features[FEAT_KVM] = 0;
}
x86_cpu_enable_xsave_components(cpu);
/* CPUID[EAX=7,ECX=0].EBX always increased level automatically: */
x86_cpu_adjust_feat_level(cpu, FEAT_7_0_EBX);
if (cpu->full_cpuid_auto_level) {
x86_cpu_adjust_feat_level(cpu, FEAT_1_EDX);
x86_cpu_adjust_feat_level(cpu, FEAT_1_ECX);
x86_cpu_adjust_feat_level(cpu, FEAT_6_EAX);
x86_cpu_adjust_feat_level(cpu, FEAT_7_0_ECX);
x86_cpu_adjust_feat_level(cpu, FEAT_7_1_EAX);
x86_cpu_adjust_feat_level(cpu, FEAT_8000_0001_EDX);
x86_cpu_adjust_feat_level(cpu, FEAT_8000_0001_ECX);
x86_cpu_adjust_feat_level(cpu, FEAT_8000_0007_EDX);
x86_cpu_adjust_feat_level(cpu, FEAT_8000_0008_EBX);
x86_cpu_adjust_feat_level(cpu, FEAT_C000_0001_EDX);
x86_cpu_adjust_feat_level(cpu, FEAT_SVM);
x86_cpu_adjust_feat_level(cpu, FEAT_XSAVE);
/* Intel Processor Trace requires CPUID[0x14] */
if ((env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) &&
kvm_enabled() && cpu->intel_pt_auto_level) {
x86_cpu_adjust_level(cpu, &cpu->env.cpuid_min_level, 0x14);
}
/* CPU topology with multi-dies support requires CPUID[0x1F] */
if (env->nr_dies > 1) {
x86_cpu_adjust_level(cpu, &env->cpuid_min_level, 0x1F);
}
/* SVM requires CPUID[0x8000000A] */
if (env->features[FEAT_8000_0001_ECX] & CPUID_EXT3_SVM) {
x86_cpu_adjust_level(cpu, &env->cpuid_min_xlevel, 0x8000000A);
}
/* SEV requires CPUID[0x8000001F] */
if (sev_enabled()) {
x86_cpu_adjust_level(cpu, &env->cpuid_min_xlevel, 0x8000001F);
}
}
/* Set cpuid_*level* based on cpuid_min_*level, if not explicitly set */
if (env->cpuid_level_func7 == UINT32_MAX) {
env->cpuid_level_func7 = env->cpuid_min_level_func7;
}
if (env->cpuid_level == UINT32_MAX) {
env->cpuid_level = env->cpuid_min_level;
}
if (env->cpuid_xlevel == UINT32_MAX) {
env->cpuid_xlevel = env->cpuid_min_xlevel;
}
if (env->cpuid_xlevel2 == UINT32_MAX) {
env->cpuid_xlevel2 = env->cpuid_min_xlevel2;
}
out:
if (local_err != NULL) {
error_propagate(errp, local_err);
}
}
/*
* Finishes initialization of CPUID data, filters CPU feature
* words based on host availability of each feature.
*
* Returns: 0 if all flags are supported by the host, non-zero otherwise.
*/
static void x86_cpu_filter_features(X86CPU *cpu, bool verbose)
{
CPUX86State *env = &cpu->env;
FeatureWord w;
const char *prefix = NULL;
if (verbose) {
prefix = accel_uses_host_cpuid()
? "host doesn't support requested feature"
: "TCG doesn't support requested feature";
}
for (w = 0; w < FEATURE_WORDS; w++) {
uint64_t host_feat =
x86_cpu_get_supported_feature_word(w, false);
uint64_t requested_features = env->features[w];
uint64_t unavailable_features = requested_features & ~host_feat;
mark_unavailable_features(cpu, w, unavailable_features, prefix);
}
if ((env->features[FEAT_7_0_EBX] & CPUID_7_0_EBX_INTEL_PT) &&
kvm_enabled()) {
KVMState *s = CPU(cpu)->kvm_state;
uint32_t eax_0 = kvm_arch_get_supported_cpuid(s, 0x14, 0, R_EAX);
uint32_t ebx_0 = kvm_arch_get_supported_cpuid(s, 0x14, 0, R_EBX);
uint32_t ecx_0 = kvm_arch_get_supported_cpuid(s, 0x14, 0, R_ECX);
uint32_t eax_1 = kvm_arch_get_supported_cpuid(s, 0x14, 1, R_EAX);
uint32_t ebx_1 = kvm_arch_get_supported_cpuid(s, 0x14, 1, R_EBX);
if (!eax_0 ||
((ebx_0 & INTEL_PT_MINIMAL_EBX) != INTEL_PT_MINIMAL_EBX) ||
((ecx_0 & INTEL_PT_MINIMAL_ECX) != INTEL_PT_MINIMAL_ECX) ||
((eax_1 & INTEL_PT_MTC_BITMAP) != INTEL_PT_MTC_BITMAP) ||
((eax_1 & INTEL_PT_ADDR_RANGES_NUM_MASK) <
INTEL_PT_ADDR_RANGES_NUM) ||
((ebx_1 & (INTEL_PT_PSB_BITMAP | INTEL_PT_CYCLE_BITMAP)) !=
(INTEL_PT_PSB_BITMAP | INTEL_PT_CYCLE_BITMAP)) ||
(ecx_0 & INTEL_PT_IP_LIP)) {
/*
* Processor Trace capabilities aren't configurable, so if the
* host can't emulate the capabilities we report on
* cpu_x86_cpuid(), intel-pt can't be enabled on the current host.
*/
mark_unavailable_features(cpu, FEAT_7_0_EBX, CPUID_7_0_EBX_INTEL_PT, prefix);
}
}
}
static void x86_cpu_realizefn(DeviceState *dev, Error **errp)
{
CPUState *cs = CPU(dev);
X86CPU *cpu = X86_CPU(dev);
X86CPUClass *xcc = X86_CPU_GET_CLASS(dev);
CPUX86State *env = &cpu->env;
Error *local_err = NULL;
static bool ht_warned;
if (xcc->host_cpuid_required) {
if (!accel_uses_host_cpuid()) {
char *name = x86_cpu_class_get_model_name(xcc);
error_setg(&local_err, "CPU model '%s' requires KVM", name);
g_free(name);
goto out;
}
if (enable_cpu_pm) {
host_cpuid(5, 0, &cpu->mwait.eax, &cpu->mwait.ebx,
&cpu->mwait.ecx, &cpu->mwait.edx);
env->features[FEAT_1_ECX] |= CPUID_EXT_MONITOR;
}
}
/* mwait extended info: needed for Core compatibility */
/* We always wake on interrupt even if host does not have the capability */
cpu->mwait.ecx |= CPUID_MWAIT_EMX | CPUID_MWAIT_IBE;
if (cpu->apic_id == UNASSIGNED_APIC_ID) {
error_setg(errp, "apic-id property was not initialized properly");
return;
}
x86_cpu_expand_features(cpu, &local_err);
if (local_err) {
goto out;
}
x86_cpu_filter_features(cpu, cpu->check_cpuid || cpu->enforce_cpuid);
if (cpu->enforce_cpuid && x86_cpu_have_filtered_features(cpu)) {
error_setg(&local_err,
accel_uses_host_cpuid() ?
"Host doesn't support requested features" :
"TCG doesn't support requested features");
goto out;
}
/* On AMD CPUs, some CPUID[8000_0001].EDX bits must match the bits on
* CPUID[1].EDX.
*/
if (IS_AMD_CPU(env)) {
env->features[FEAT_8000_0001_EDX] &= ~CPUID_EXT2_AMD_ALIASES;
env->features[FEAT_8000_0001_EDX] |= (env->features[FEAT_1_EDX]
& CPUID_EXT2_AMD_ALIASES);
}
/* For 64bit systems think about the number of physical bits to present.
* ideally this should be the same as the host; anything other than matching
* the host can cause incorrect guest behaviour.
* QEMU used to pick the magic value of 40 bits that corresponds to
* consumer AMD devices but nothing else.
*/
if (env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM) {
if (accel_uses_host_cpuid()) {
uint32_t host_phys_bits = x86_host_phys_bits();
static bool warned;
/* Print a warning if the user set it to a value that's not the
* host value.
*/
if (cpu->phys_bits != host_phys_bits && cpu->phys_bits != 0 &&
!warned) {
warn_report("Host physical bits (%u)"
" does not match phys-bits property (%u)",
host_phys_bits, cpu->phys_bits);
warned = true;
}
if (cpu->host_phys_bits) {
/* The user asked for us to use the host physical bits */
cpu->phys_bits = host_phys_bits;
if (cpu->host_phys_bits_limit &&
cpu->phys_bits > cpu->host_phys_bits_limit) {
cpu->phys_bits = cpu->host_phys_bits_limit;
}
}
if (cpu->phys_bits &&
(cpu->phys_bits > TARGET_PHYS_ADDR_SPACE_BITS ||
cpu->phys_bits < 32)) {
error_setg(errp, "phys-bits should be between 32 and %u "
" (but is %u)",
TARGET_PHYS_ADDR_SPACE_BITS, cpu->phys_bits);
return;
}
} else {
if (cpu->phys_bits && cpu->phys_bits != TCG_PHYS_ADDR_BITS) {
error_setg(errp, "TCG only supports phys-bits=%u",
TCG_PHYS_ADDR_BITS);
return;
}
}
/* 0 means it was not explicitly set by the user (or by machine
* compat_props or by the host code above). In this case, the default
* is the value used by TCG (40).
*/
if (cpu->phys_bits == 0) {
cpu->phys_bits = TCG_PHYS_ADDR_BITS;
}
} else {
/* For 32 bit systems don't use the user set value, but keep
* phys_bits consistent with what we tell the guest.
*/
if (cpu->phys_bits != 0) {
error_setg(errp, "phys-bits is not user-configurable in 32 bit");
return;
}
if (env->features[FEAT_1_EDX] & CPUID_PSE36) {
cpu->phys_bits = 36;
} else {
cpu->phys_bits = 32;
}
}
/* Cache information initialization */
if (!cpu->legacy_cache) {
if (!xcc->model || !xcc->model->cpudef->cache_info) {
char *name = x86_cpu_class_get_model_name(xcc);
error_setg(errp,
"CPU model '%s' doesn't support legacy-cache=off", name);
g_free(name);
return;
}
env->cache_info_cpuid2 = env->cache_info_cpuid4 = env->cache_info_amd =
*xcc->model->cpudef->cache_info;
} else {
/* Build legacy cache information */
env->cache_info_cpuid2.l1d_cache = &legacy_l1d_cache;
env->cache_info_cpuid2.l1i_cache = &legacy_l1i_cache;
env->cache_info_cpuid2.l2_cache = &legacy_l2_cache_cpuid2;
env->cache_info_cpuid2.l3_cache = &legacy_l3_cache;
env->cache_info_cpuid4.l1d_cache = &legacy_l1d_cache;
env->cache_info_cpuid4.l1i_cache = &legacy_l1i_cache;
env->cache_info_cpuid4.l2_cache = &legacy_l2_cache;
env->cache_info_cpuid4.l3_cache = &legacy_l3_cache;
env->cache_info_amd.l1d_cache = &legacy_l1d_cache_amd;
env->cache_info_amd.l1i_cache = &legacy_l1i_cache_amd;
env->cache_info_amd.l2_cache = &legacy_l2_cache_amd;
env->cache_info_amd.l3_cache = &legacy_l3_cache;
}
cpu_exec_realizefn(cs, &local_err);
if (local_err != NULL) {
error_propagate(errp, local_err);
return;
}
#ifndef CONFIG_USER_ONLY
MachineState *ms = MACHINE(qdev_get_machine());
qemu_register_reset(x86_cpu_machine_reset_cb, cpu);
if (cpu->env.features[FEAT_1_EDX] & CPUID_APIC || ms->smp.cpus > 1) {
x86_cpu_apic_create(cpu, &local_err);
if (local_err != NULL) {
goto out;
}
}
#endif
mce_init(cpu);
#ifndef CONFIG_USER_ONLY
if (tcg_enabled()) {
cpu->cpu_as_mem = g_new(MemoryRegion, 1);
cpu->cpu_as_root = g_new(MemoryRegion, 1);
/* Outer container... */
memory_region_init(cpu->cpu_as_root, OBJECT(cpu), "memory", ~0ull);
memory_region_set_enabled(cpu->cpu_as_root, true);
/* ... with two regions inside: normal system memory with low
* priority, and...
*/
memory_region_init_alias(cpu->cpu_as_mem, OBJECT(cpu), "memory",
get_system_memory(), 0, ~0ull);
memory_region_add_subregion_overlap(cpu->cpu_as_root, 0, cpu->cpu_as_mem, 0);
memory_region_set_enabled(cpu->cpu_as_mem, true);
cs->num_ases = 2;
cpu_address_space_init(cs, 0, "cpu-memory", cs->memory);
cpu_address_space_init(cs, 1, "cpu-smm", cpu->cpu_as_root);
/* ... SMRAM with higher priority, linked from /machine/smram. */
cpu->machine_done.notify = x86_cpu_machine_done;
qemu_add_machine_init_done_notifier(&cpu->machine_done);
}
#endif
qemu_init_vcpu(cs);
/*
* Most Intel and certain AMD CPUs support hyperthreading. Even though QEMU
* fixes this issue by adjusting CPUID_0000_0001_EBX and CPUID_8000_0008_ECX
* based on inputs (sockets,cores,threads), it is still better to give
* users a warning.
*
* NOTE: the following code has to follow qemu_init_vcpu(). Otherwise
* cs->nr_threads hasn't be populated yet and the checking is incorrect.
*/
if (IS_AMD_CPU(env) &&
!(env->features[FEAT_8000_0001_ECX] & CPUID_EXT3_TOPOEXT) &&
cs->nr_threads > 1 && !ht_warned) {
warn_report("This family of AMD CPU doesn't support "
"hyperthreading(%d)",
cs->nr_threads);
error_printf("Please configure -smp options properly"
" or try enabling topoext feature.\n");
ht_warned = true;
}
x86_cpu_apic_realize(cpu, &local_err);
if (local_err != NULL) {
goto out;
}
cpu_reset(cs);
xcc->parent_realize(dev, &local_err);
out:
if (local_err != NULL) {
error_propagate(errp, local_err);
return;
}
}
static void x86_cpu_unrealizefn(DeviceState *dev, Error **errp)
{
X86CPU *cpu = X86_CPU(dev);
X86CPUClass *xcc = X86_CPU_GET_CLASS(dev);
Error *local_err = NULL;
#ifndef CONFIG_USER_ONLY
cpu_remove_sync(CPU(dev));
qemu_unregister_reset(x86_cpu_machine_reset_cb, dev);
#endif
if (cpu->apic_state) {
object_unparent(OBJECT(cpu->apic_state));
cpu->apic_state = NULL;
}
xcc->parent_unrealize(dev, &local_err);
if (local_err != NULL) {
error_propagate(errp, local_err);
return;
}
}
typedef struct BitProperty {
FeatureWord w;
uint64_t mask;
} BitProperty;
static void x86_cpu_get_bit_prop(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
X86CPU *cpu = X86_CPU(obj);
BitProperty *fp = opaque;
uint64_t f = cpu->env.features[fp->w];
bool value = (f & fp->mask) == fp->mask;
visit_type_bool(v, name, &value, errp);
}
static void x86_cpu_set_bit_prop(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
DeviceState *dev = DEVICE(obj);
X86CPU *cpu = X86_CPU(obj);
BitProperty *fp = opaque;
Error *local_err = NULL;
bool value;
if (dev->realized) {
qdev_prop_set_after_realize(dev, name, errp);
return;
}
visit_type_bool(v, name, &value, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
if (value) {
cpu->env.features[fp->w] |= fp->mask;
} else {
cpu->env.features[fp->w] &= ~fp->mask;
}
cpu->env.user_features[fp->w] |= fp->mask;
}
static void x86_cpu_release_bit_prop(Object *obj, const char *name,
void *opaque)
{
BitProperty *prop = opaque;
g_free(prop);
}
/* Register a boolean property to get/set a single bit in a uint32_t field.
*
* The same property name can be registered multiple times to make it affect
* multiple bits in the same FeatureWord. In that case, the getter will return
* true only if all bits are set.
*/
static void x86_cpu_register_bit_prop(X86CPU *cpu,
const char *prop_name,
FeatureWord w,
int bitnr)
{
BitProperty *fp;
ObjectProperty *op;
uint64_t mask = (1ULL << bitnr);
op = object_property_find(OBJECT(cpu), prop_name, NULL);
if (op) {
fp = op->opaque;
assert(fp->w == w);
fp->mask |= mask;
} else {
fp = g_new0(BitProperty, 1);
fp->w = w;
fp->mask = mask;
object_property_add(OBJECT(cpu), prop_name, "bool",
x86_cpu_get_bit_prop,
x86_cpu_set_bit_prop,
x86_cpu_release_bit_prop, fp, &error_abort);
}
}
static void x86_cpu_register_feature_bit_props(X86CPU *cpu,
FeatureWord w,
int bitnr)
{
FeatureWordInfo *fi = &feature_word_info[w];
const char *name = fi->feat_names[bitnr];
if (!name) {
return;
}
/* Property names should use "-" instead of "_".
* Old names containing underscores are registered as aliases
* using object_property_add_alias()
*/
assert(!strchr(name, '_'));
/* aliases don't use "|" delimiters anymore, they are registered
* manually using object_property_add_alias() */
assert(!strchr(name, '|'));
x86_cpu_register_bit_prop(cpu, name, w, bitnr);
}
static GuestPanicInformation *x86_cpu_get_crash_info(CPUState *cs)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
GuestPanicInformation *panic_info = NULL;
if (env->features[FEAT_HYPERV_EDX] & HV_GUEST_CRASH_MSR_AVAILABLE) {
panic_info = g_malloc0(sizeof(GuestPanicInformation));
panic_info->type = GUEST_PANIC_INFORMATION_TYPE_HYPER_V;
assert(HV_CRASH_PARAMS >= 5);
panic_info->u.hyper_v.arg1 = env->msr_hv_crash_params[0];
panic_info->u.hyper_v.arg2 = env->msr_hv_crash_params[1];
panic_info->u.hyper_v.arg3 = env->msr_hv_crash_params[2];
panic_info->u.hyper_v.arg4 = env->msr_hv_crash_params[3];
panic_info->u.hyper_v.arg5 = env->msr_hv_crash_params[4];
}
return panic_info;
}
static void x86_cpu_get_crash_info_qom(Object *obj, Visitor *v,
const char *name, void *opaque,
Error **errp)
{
CPUState *cs = CPU(obj);
GuestPanicInformation *panic_info;
if (!cs->crash_occurred) {
error_setg(errp, "No crash occured");
return;
}
panic_info = x86_cpu_get_crash_info(cs);
if (panic_info == NULL) {
error_setg(errp, "No crash information");
return;
}
visit_type_GuestPanicInformation(v, "crash-information", &panic_info,
errp);
qapi_free_GuestPanicInformation(panic_info);
}
static void x86_cpu_initfn(Object *obj)
{
X86CPU *cpu = X86_CPU(obj);
X86CPUClass *xcc = X86_CPU_GET_CLASS(obj);
CPUX86State *env = &cpu->env;
FeatureWord w;
env->nr_dies = 1;
cpu_set_cpustate_pointers(cpu);
object_property_add(obj, "family", "int",
x86_cpuid_version_get_family,
x86_cpuid_version_set_family, NULL, NULL, NULL);
object_property_add(obj, "model", "int",
x86_cpuid_version_get_model,
x86_cpuid_version_set_model, NULL, NULL, NULL);
object_property_add(obj, "stepping", "int",
x86_cpuid_version_get_stepping,
x86_cpuid_version_set_stepping, NULL, NULL, NULL);
object_property_add_str(obj, "vendor",
x86_cpuid_get_vendor,
x86_cpuid_set_vendor, NULL);
object_property_add_str(obj, "model-id",
x86_cpuid_get_model_id,
x86_cpuid_set_model_id, NULL);
object_property_add(obj, "tsc-frequency", "int",
x86_cpuid_get_tsc_freq,
x86_cpuid_set_tsc_freq, NULL, NULL, NULL);
object_property_add(obj, "feature-words", "X86CPUFeatureWordInfo",
x86_cpu_get_feature_words,
NULL, NULL, (void *)env->features, NULL);
object_property_add(obj, "filtered-features", "X86CPUFeatureWordInfo",
x86_cpu_get_feature_words,
NULL, NULL, (void *)cpu->filtered_features, NULL);
/*
* The "unavailable-features" property has the same semantics as
* CpuDefinitionInfo.unavailable-features on the "query-cpu-definitions"
* QMP command: they list the features that would have prevented the
* CPU from running if the "enforce" flag was set.
*/
object_property_add(obj, "unavailable-features", "strList",
x86_cpu_get_unavailable_features,
NULL, NULL, NULL, &error_abort);
object_property_add(obj, "crash-information", "GuestPanicInformation",
x86_cpu_get_crash_info_qom, NULL, NULL, NULL, NULL);
for (w = 0; w < FEATURE_WORDS; w++) {
int bitnr;
for (bitnr = 0; bitnr < 64; bitnr++) {
x86_cpu_register_feature_bit_props(cpu, w, bitnr);
}
}
object_property_add_alias(obj, "sse3", obj, "pni", &error_abort);
object_property_add_alias(obj, "pclmuldq", obj, "pclmulqdq", &error_abort);
object_property_add_alias(obj, "sse4-1", obj, "sse4.1", &error_abort);
object_property_add_alias(obj, "sse4-2", obj, "sse4.2", &error_abort);
object_property_add_alias(obj, "xd", obj, "nx", &error_abort);
object_property_add_alias(obj, "ffxsr", obj, "fxsr-opt", &error_abort);
object_property_add_alias(obj, "i64", obj, "lm", &error_abort);
object_property_add_alias(obj, "ds_cpl", obj, "ds-cpl", &error_abort);
object_property_add_alias(obj, "tsc_adjust", obj, "tsc-adjust", &error_abort);
object_property_add_alias(obj, "fxsr_opt", obj, "fxsr-opt", &error_abort);
object_property_add_alias(obj, "lahf_lm", obj, "lahf-lm", &error_abort);
object_property_add_alias(obj, "cmp_legacy", obj, "cmp-legacy", &error_abort);
object_property_add_alias(obj, "nodeid_msr", obj, "nodeid-msr", &error_abort);
object_property_add_alias(obj, "perfctr_core", obj, "perfctr-core", &error_abort);
object_property_add_alias(obj, "perfctr_nb", obj, "perfctr-nb", &error_abort);
object_property_add_alias(obj, "kvm_nopiodelay", obj, "kvm-nopiodelay", &error_abort);
object_property_add_alias(obj, "kvm_mmu", obj, "kvm-mmu", &error_abort);
object_property_add_alias(obj, "kvm_asyncpf", obj, "kvm-asyncpf", &error_abort);
object_property_add_alias(obj, "kvm_steal_time", obj, "kvm-steal-time", &error_abort);
object_property_add_alias(obj, "kvm_pv_eoi", obj, "kvm-pv-eoi", &error_abort);
object_property_add_alias(obj, "kvm_pv_unhalt", obj, "kvm-pv-unhalt", &error_abort);
object_property_add_alias(obj, "kvm_poll_control", obj, "kvm-poll-control",
&error_abort);
object_property_add_alias(obj, "svm_lock", obj, "svm-lock", &error_abort);
object_property_add_alias(obj, "nrip_save", obj, "nrip-save", &error_abort);
object_property_add_alias(obj, "tsc_scale", obj, "tsc-scale", &error_abort);
object_property_add_alias(obj, "vmcb_clean", obj, "vmcb-clean", &error_abort);
object_property_add_alias(obj, "pause_filter", obj, "pause-filter", &error_abort);
object_property_add_alias(obj, "sse4_1", obj, "sse4.1", &error_abort);
object_property_add_alias(obj, "sse4_2", obj, "sse4.2", &error_abort);
if (xcc->model) {
x86_cpu_load_model(cpu, xcc->model, &error_abort);
}
}
static int64_t x86_cpu_get_arch_id(CPUState *cs)
{
X86CPU *cpu = X86_CPU(cs);
return cpu->apic_id;
}
static bool x86_cpu_get_paging_enabled(const CPUState *cs)
{
X86CPU *cpu = X86_CPU(cs);
return cpu->env.cr[0] & CR0_PG_MASK;
}
static void x86_cpu_set_pc(CPUState *cs, vaddr value)
{
X86CPU *cpu = X86_CPU(cs);
cpu->env.eip = value;
}
static void x86_cpu_synchronize_from_tb(CPUState *cs, TranslationBlock *tb)
{
X86CPU *cpu = X86_CPU(cs);
cpu->env.eip = tb->pc - tb->cs_base;
}
int x86_cpu_pending_interrupt(CPUState *cs, int interrupt_request)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
#if !defined(CONFIG_USER_ONLY)
if (interrupt_request & CPU_INTERRUPT_POLL) {
return CPU_INTERRUPT_POLL;
}
#endif
if (interrupt_request & CPU_INTERRUPT_SIPI) {
return CPU_INTERRUPT_SIPI;
}
if (env->hflags2 & HF2_GIF_MASK) {
if ((interrupt_request & CPU_INTERRUPT_SMI) &&
!(env->hflags & HF_SMM_MASK)) {
return CPU_INTERRUPT_SMI;
} else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
!(env->hflags2 & HF2_NMI_MASK)) {
return CPU_INTERRUPT_NMI;
} else if (interrupt_request & CPU_INTERRUPT_MCE) {
return CPU_INTERRUPT_MCE;
} else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
(((env->hflags2 & HF2_VINTR_MASK) &&
(env->hflags2 & HF2_HIF_MASK)) ||
(!(env->hflags2 & HF2_VINTR_MASK) &&
(env->eflags & IF_MASK &&
!(env->hflags & HF_INHIBIT_IRQ_MASK))))) {
return CPU_INTERRUPT_HARD;
#if !defined(CONFIG_USER_ONLY)
} else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
(env->eflags & IF_MASK) &&
!(env->hflags & HF_INHIBIT_IRQ_MASK)) {
return CPU_INTERRUPT_VIRQ;
#endif
}
}
return 0;
}
static bool x86_cpu_has_work(CPUState *cs)
{
return x86_cpu_pending_interrupt(cs, cs->interrupt_request) != 0;
}
static void x86_disas_set_info(CPUState *cs, disassemble_info *info)
{
X86CPU *cpu = X86_CPU(cs);
CPUX86State *env = &cpu->env;
info->mach = (env->hflags & HF_CS64_MASK ? bfd_mach_x86_64
: env->hflags & HF_CS32_MASK ? bfd_mach_i386_i386
: bfd_mach_i386_i8086);
info->print_insn = print_insn_i386;
info->cap_arch = CS_ARCH_X86;
info->cap_mode = (env->hflags & HF_CS64_MASK ? CS_MODE_64
: env->hflags & HF_CS32_MASK ? CS_MODE_32
: CS_MODE_16);
info->cap_insn_unit = 1;
info->cap_insn_split = 8;
}
void x86_update_hflags(CPUX86State *env)
{
uint32_t hflags;
#define HFLAG_COPY_MASK \
~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
hflags = env->hflags & HFLAG_COPY_MASK;
hflags |= (env->segs[R_SS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
if (env->cr[4] & CR4_OSFXSR_MASK) {
hflags |= HF_OSFXSR_MASK;
}
if (env->efer & MSR_EFER_LMA) {
hflags |= HF_LMA_MASK;
}
if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
} else {
hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
(DESC_B_SHIFT - HF_CS32_SHIFT);
hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
(DESC_B_SHIFT - HF_SS32_SHIFT);
if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
!(hflags & HF_CS32_MASK)) {
hflags |= HF_ADDSEG_MASK;
} else {
hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
}
}
env->hflags = hflags;
}
static Property x86_cpu_properties[] = {
#ifdef CONFIG_USER_ONLY
/* apic_id = 0 by default for *-user, see commit 9886e834 */
DEFINE_PROP_UINT32("apic-id", X86CPU, apic_id, 0),
DEFINE_PROP_INT32("thread-id", X86CPU, thread_id, 0),
DEFINE_PROP_INT32("core-id", X86CPU, core_id, 0),
DEFINE_PROP_INT32("die-id", X86CPU, die_id, 0),
DEFINE_PROP_INT32("socket-id", X86CPU, socket_id, 0),
#else
DEFINE_PROP_UINT32("apic-id", X86CPU, apic_id, UNASSIGNED_APIC_ID),
DEFINE_PROP_INT32("thread-id", X86CPU, thread_id, -1),
DEFINE_PROP_INT32("core-id", X86CPU, core_id, -1),
DEFINE_PROP_INT32("die-id", X86CPU, die_id, -1),
DEFINE_PROP_INT32("socket-id", X86CPU, socket_id, -1),
#endif
DEFINE_PROP_INT32("node-id", X86CPU, node_id, CPU_UNSET_NUMA_NODE_ID),
DEFINE_PROP_BOOL("pmu", X86CPU, enable_pmu, false),
DEFINE_PROP_UINT32("hv-spinlocks", X86CPU, hyperv_spinlock_attempts,
HYPERV_SPINLOCK_NEVER_RETRY),
DEFINE_PROP_BIT64("hv-relaxed", X86CPU, hyperv_features,
HYPERV_FEAT_RELAXED, 0),
DEFINE_PROP_BIT64("hv-vapic", X86CPU, hyperv_features,
HYPERV_FEAT_VAPIC, 0),
DEFINE_PROP_BIT64("hv-time", X86CPU, hyperv_features,
HYPERV_FEAT_TIME, 0),
DEFINE_PROP_BIT64("hv-crash", X86CPU, hyperv_features,
HYPERV_FEAT_CRASH, 0),
DEFINE_PROP_BIT64("hv-reset", X86CPU, hyperv_features,
HYPERV_FEAT_RESET, 0),
DEFINE_PROP_BIT64("hv-vpindex", X86CPU, hyperv_features,
HYPERV_FEAT_VPINDEX, 0),
DEFINE_PROP_BIT64("hv-runtime", X86CPU, hyperv_features,
HYPERV_FEAT_RUNTIME, 0),
DEFINE_PROP_BIT64("hv-synic", X86CPU, hyperv_features,
HYPERV_FEAT_SYNIC, 0),
DEFINE_PROP_BIT64("hv-stimer", X86CPU, hyperv_features,
HYPERV_FEAT_STIMER, 0),
DEFINE_PROP_BIT64("hv-frequencies", X86CPU, hyperv_features,
HYPERV_FEAT_FREQUENCIES, 0),
DEFINE_PROP_BIT64("hv-reenlightenment", X86CPU, hyperv_features,
HYPERV_FEAT_REENLIGHTENMENT, 0),
DEFINE_PROP_BIT64("hv-tlbflush", X86CPU, hyperv_features,
HYPERV_FEAT_TLBFLUSH, 0),
DEFINE_PROP_BIT64("hv-evmcs", X86CPU, hyperv_features,
HYPERV_FEAT_EVMCS, 0),
DEFINE_PROP_BIT64("hv-ipi", X86CPU, hyperv_features,
HYPERV_FEAT_IPI, 0),
DEFINE_PROP_BIT64("hv-stimer-direct", X86CPU, hyperv_features,
HYPERV_FEAT_STIMER_DIRECT, 0),
DEFINE_PROP_ON_OFF_AUTO("hv-no-nonarch-coresharing", X86CPU,
hyperv_no_nonarch_cs, ON_OFF_AUTO_OFF),
DEFINE_PROP_BOOL("hv-passthrough", X86CPU, hyperv_passthrough, false),
DEFINE_PROP_BOOL("check", X86CPU, check_cpuid, true),
DEFINE_PROP_BOOL("enforce", X86CPU, enforce_cpuid, false),
DEFINE_PROP_BOOL("x-force-features", X86CPU, force_features, false),
DEFINE_PROP_BOOL("kvm", X86CPU, expose_kvm, true),
DEFINE_PROP_UINT32("phys-bits", X86CPU, phys_bits, 0),
DEFINE_PROP_BOOL("host-phys-bits", X86CPU, host_phys_bits, false),
DEFINE_PROP_UINT8("host-phys-bits-limit", X86CPU, host_phys_bits_limit, 0),
DEFINE_PROP_BOOL("fill-mtrr-mask", X86CPU, fill_mtrr_mask, true),
DEFINE_PROP_UINT32("level-func7", X86CPU, env.cpuid_level_func7,
UINT32_MAX),
DEFINE_PROP_UINT32("level", X86CPU, env.cpuid_level, UINT32_MAX),
DEFINE_PROP_UINT32("xlevel", X86CPU, env.cpuid_xlevel, UINT32_MAX),
DEFINE_PROP_UINT32("xlevel2", X86CPU, env.cpuid_xlevel2, UINT32_MAX),
DEFINE_PROP_UINT32("min-level", X86CPU, env.cpuid_min_level, 0),
DEFINE_PROP_UINT32("min-xlevel", X86CPU, env.cpuid_min_xlevel, 0),
DEFINE_PROP_UINT32("min-xlevel2", X86CPU, env.cpuid_min_xlevel2, 0),
DEFINE_PROP_BOOL("full-cpuid-auto-level", X86CPU, full_cpuid_auto_level, true),
DEFINE_PROP_STRING("hv-vendor-id", X86CPU, hyperv_vendor_id),
DEFINE_PROP_BOOL("cpuid-0xb", X86CPU, enable_cpuid_0xb, true),
DEFINE_PROP_BOOL("lmce", X86CPU, enable_lmce, false),
DEFINE_PROP_BOOL("l3-cache", X86CPU, enable_l3_cache, true),
DEFINE_PROP_BOOL("kvm-no-smi-migration", X86CPU, kvm_no_smi_migration,
false),
DEFINE_PROP_BOOL("vmware-cpuid-freq", X86CPU, vmware_cpuid_freq, true),
DEFINE_PROP_BOOL("tcg-cpuid", X86CPU, expose_tcg, true),
DEFINE_PROP_BOOL("x-migrate-smi-count", X86CPU, migrate_smi_count,
true),
/*
* lecacy_cache defaults to true unless the CPU model provides its
* own cache information (see x86_cpu_load_def()).
*/
DEFINE_PROP_BOOL("legacy-cache", X86CPU, legacy_cache, true),
/*
* From "Requirements for Implementing the Microsoft
* Hypervisor Interface":
* https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/tlfs
*
* "Starting with Windows Server 2012 and Windows 8, if
* CPUID.40000005.EAX contains a value of -1, Windows assumes that
* the hypervisor imposes no specific limit to the number of VPs.
* In this case, Windows Server 2012 guest VMs may use more than
* 64 VPs, up to the maximum supported number of processors applicable
* to the specific Windows version being used."
*/
DEFINE_PROP_INT32("x-hv-max-vps", X86CPU, hv_max_vps, -1),
DEFINE_PROP_BOOL("x-hv-synic-kvm-only", X86CPU, hyperv_synic_kvm_only,
false),
DEFINE_PROP_BOOL("x-intel-pt-auto-level", X86CPU, intel_pt_auto_level,
true),
DEFINE_PROP_END_OF_LIST()
};
static void x86_cpu_common_class_init(ObjectClass *oc, void *data)
{
X86CPUClass *xcc = X86_CPU_CLASS(oc);
CPUClass *cc = CPU_CLASS(oc);
DeviceClass *dc = DEVICE_CLASS(oc);
device_class_set_parent_realize(dc, x86_cpu_realizefn,
&xcc->parent_realize);
device_class_set_parent_unrealize(dc, x86_cpu_unrealizefn,
&xcc->parent_unrealize);
dc->props = x86_cpu_properties;
xcc->parent_reset = cc->reset;
cc->reset = x86_cpu_reset;
cc->reset_dump_flags = CPU_DUMP_FPU | CPU_DUMP_CCOP;
cc->class_by_name = x86_cpu_class_by_name;
cc->parse_features = x86_cpu_parse_featurestr;
cc->has_work = x86_cpu_has_work;
#ifdef CONFIG_TCG
cc->do_interrupt = x86_cpu_do_interrupt;
cc->cpu_exec_interrupt = x86_cpu_exec_interrupt;
#endif
cc->dump_state = x86_cpu_dump_state;
cc->get_crash_info = x86_cpu_get_crash_info;
cc->set_pc = x86_cpu_set_pc;
cc->synchronize_from_tb = x86_cpu_synchronize_from_tb;
cc->gdb_read_register = x86_cpu_gdb_read_register;
cc->gdb_write_register = x86_cpu_gdb_write_register;
cc->get_arch_id = x86_cpu_get_arch_id;
cc->get_paging_enabled = x86_cpu_get_paging_enabled;
#ifndef CONFIG_USER_ONLY
cc->asidx_from_attrs = x86_asidx_from_attrs;
cc->get_memory_mapping = x86_cpu_get_memory_mapping;
cc->get_phys_page_attrs_debug = x86_cpu_get_phys_page_attrs_debug;
cc->write_elf64_note = x86_cpu_write_elf64_note;
cc->write_elf64_qemunote = x86_cpu_write_elf64_qemunote;
cc->write_elf32_note = x86_cpu_write_elf32_note;
cc->write_elf32_qemunote = x86_cpu_write_elf32_qemunote;
cc->vmsd = &vmstate_x86_cpu;
#endif
cc->gdb_arch_name = x86_gdb_arch_name;
#ifdef TARGET_X86_64
cc->gdb_core_xml_file = "i386-64bit.xml";
cc->gdb_num_core_regs = 66;
#else
cc->gdb_core_xml_file = "i386-32bit.xml";
cc->gdb_num_core_regs = 50;
#endif
#if defined(CONFIG_TCG) && !defined(CONFIG_USER_ONLY)
cc->debug_excp_handler = breakpoint_handler;
#endif
cc->cpu_exec_enter = x86_cpu_exec_enter;
cc->cpu_exec_exit = x86_cpu_exec_exit;
#ifdef CONFIG_TCG
cc->tcg_initialize = tcg_x86_init;
cc->tlb_fill = x86_cpu_tlb_fill;
#endif
cc->disas_set_info = x86_disas_set_info;
dc->user_creatable = true;
}
static const TypeInfo x86_cpu_type_info = {
.name = TYPE_X86_CPU,
.parent = TYPE_CPU,
.instance_size = sizeof(X86CPU),
.instance_init = x86_cpu_initfn,
.abstract = true,
.class_size = sizeof(X86CPUClass),
.class_init = x86_cpu_common_class_init,
};
/* "base" CPU model, used by query-cpu-model-expansion */
static void x86_cpu_base_class_init(ObjectClass *oc, void *data)
{
X86CPUClass *xcc = X86_CPU_CLASS(oc);
xcc->static_model = true;
xcc->migration_safe = true;
xcc->model_description = "base CPU model type with no features enabled";
xcc->ordering = 8;
}
static const TypeInfo x86_base_cpu_type_info = {
.name = X86_CPU_TYPE_NAME("base"),
.parent = TYPE_X86_CPU,
.class_init = x86_cpu_base_class_init,
};
static void x86_cpu_register_types(void)
{
int i;
type_register_static(&x86_cpu_type_info);
for (i = 0; i < ARRAY_SIZE(builtin_x86_defs); i++) {
x86_register_cpudef_types(&builtin_x86_defs[i]);
}
type_register_static(&max_x86_cpu_type_info);
type_register_static(&x86_base_cpu_type_info);
#if defined(CONFIG_KVM) || defined(CONFIG_HVF)
type_register_static(&host_x86_cpu_type_info);
#endif
}
type_init(x86_cpu_register_types)