674e534527
If FEAT_NV2 redirects a system register access to a memory offset from VNCR_EL2, that access might fault. In this case we need to report the correct syndrome information: * Data Abort, from same-EL * no ISS information * the VNCR bit (bit 13) is set and the exception must be taken to EL2. Save an appropriate syndrome template when generating code; we can then use that to: * select the right target EL * reconstitute a correct final syndrome for the data abort * report the right syndrome if we take a FEAT_RME granule protection fault on the VNCR-based write Note that because VNCR is bit 13, we must start keeping bit 13 in template syndromes, by adjusting ARM_INSN_START_WORD2_SHIFT. Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Tested-by: Miguel Luis <miguel.luis@oracle.com>
14383 lines
443 KiB
C
14383 lines
443 KiB
C
/*
|
|
* AArch64 translation
|
|
*
|
|
* Copyright (c) 2013 Alexander Graf <agraf@suse.de>
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#include "qemu/osdep.h"
|
|
|
|
#include "exec/exec-all.h"
|
|
#include "translate.h"
|
|
#include "translate-a64.h"
|
|
#include "qemu/log.h"
|
|
#include "disas/disas.h"
|
|
#include "arm_ldst.h"
|
|
#include "semihosting/semihost.h"
|
|
#include "cpregs.h"
|
|
|
|
static TCGv_i64 cpu_X[32];
|
|
static TCGv_i64 cpu_pc;
|
|
|
|
/* Load/store exclusive handling */
|
|
static TCGv_i64 cpu_exclusive_high;
|
|
|
|
static const char *regnames[] = {
|
|
"x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
|
|
"x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
|
|
"x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
|
|
"x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
|
|
};
|
|
|
|
enum a64_shift_type {
|
|
A64_SHIFT_TYPE_LSL = 0,
|
|
A64_SHIFT_TYPE_LSR = 1,
|
|
A64_SHIFT_TYPE_ASR = 2,
|
|
A64_SHIFT_TYPE_ROR = 3
|
|
};
|
|
|
|
/*
|
|
* Helpers for extracting complex instruction fields
|
|
*/
|
|
|
|
/*
|
|
* For load/store with an unsigned 12 bit immediate scaled by the element
|
|
* size. The input has the immediate field in bits [14:3] and the element
|
|
* size in [2:0].
|
|
*/
|
|
static int uimm_scaled(DisasContext *s, int x)
|
|
{
|
|
unsigned imm = x >> 3;
|
|
unsigned scale = extract32(x, 0, 3);
|
|
return imm << scale;
|
|
}
|
|
|
|
/* For load/store memory tags: scale offset by LOG2_TAG_GRANULE */
|
|
static int scale_by_log2_tag_granule(DisasContext *s, int x)
|
|
{
|
|
return x << LOG2_TAG_GRANULE;
|
|
}
|
|
|
|
/*
|
|
* Include the generated decoders.
|
|
*/
|
|
|
|
#include "decode-sme-fa64.c.inc"
|
|
#include "decode-a64.c.inc"
|
|
|
|
/* Table based decoder typedefs - used when the relevant bits for decode
|
|
* are too awkwardly scattered across the instruction (eg SIMD).
|
|
*/
|
|
typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
|
|
|
|
typedef struct AArch64DecodeTable {
|
|
uint32_t pattern;
|
|
uint32_t mask;
|
|
AArch64DecodeFn *disas_fn;
|
|
} AArch64DecodeTable;
|
|
|
|
/* initialize TCG globals. */
|
|
void a64_translate_init(void)
|
|
{
|
|
int i;
|
|
|
|
cpu_pc = tcg_global_mem_new_i64(tcg_env,
|
|
offsetof(CPUARMState, pc),
|
|
"pc");
|
|
for (i = 0; i < 32; i++) {
|
|
cpu_X[i] = tcg_global_mem_new_i64(tcg_env,
|
|
offsetof(CPUARMState, xregs[i]),
|
|
regnames[i]);
|
|
}
|
|
|
|
cpu_exclusive_high = tcg_global_mem_new_i64(tcg_env,
|
|
offsetof(CPUARMState, exclusive_high), "exclusive_high");
|
|
}
|
|
|
|
/*
|
|
* Return the core mmu_idx to use for A64 load/store insns which
|
|
* have a "unprivileged load/store" variant. Those insns access
|
|
* EL0 if executed from an EL which has control over EL0 (usually
|
|
* EL1) but behave like normal loads and stores if executed from
|
|
* elsewhere (eg EL3).
|
|
*
|
|
* @unpriv : true for the unprivileged encoding; false for the
|
|
* normal encoding (in which case we will return the same
|
|
* thing as get_mem_index().
|
|
*/
|
|
static int get_a64_user_mem_index(DisasContext *s, bool unpriv)
|
|
{
|
|
/*
|
|
* If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
|
|
* which is the usual mmu_idx for this cpu state.
|
|
*/
|
|
ARMMMUIdx useridx = s->mmu_idx;
|
|
|
|
if (unpriv && s->unpriv) {
|
|
/*
|
|
* We have pre-computed the condition for AccType_UNPRIV.
|
|
* Therefore we should never get here with a mmu_idx for
|
|
* which we do not know the corresponding user mmu_idx.
|
|
*/
|
|
switch (useridx) {
|
|
case ARMMMUIdx_E10_1:
|
|
case ARMMMUIdx_E10_1_PAN:
|
|
useridx = ARMMMUIdx_E10_0;
|
|
break;
|
|
case ARMMMUIdx_E20_2:
|
|
case ARMMMUIdx_E20_2_PAN:
|
|
useridx = ARMMMUIdx_E20_0;
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
return arm_to_core_mmu_idx(useridx);
|
|
}
|
|
|
|
static void set_btype_raw(int val)
|
|
{
|
|
tcg_gen_st_i32(tcg_constant_i32(val), tcg_env,
|
|
offsetof(CPUARMState, btype));
|
|
}
|
|
|
|
static void set_btype(DisasContext *s, int val)
|
|
{
|
|
/* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */
|
|
tcg_debug_assert(val >= 1 && val <= 3);
|
|
set_btype_raw(val);
|
|
s->btype = -1;
|
|
}
|
|
|
|
static void reset_btype(DisasContext *s)
|
|
{
|
|
if (s->btype != 0) {
|
|
set_btype_raw(0);
|
|
s->btype = 0;
|
|
}
|
|
}
|
|
|
|
static void gen_pc_plus_diff(DisasContext *s, TCGv_i64 dest, target_long diff)
|
|
{
|
|
assert(s->pc_save != -1);
|
|
if (tb_cflags(s->base.tb) & CF_PCREL) {
|
|
tcg_gen_addi_i64(dest, cpu_pc, (s->pc_curr - s->pc_save) + diff);
|
|
} else {
|
|
tcg_gen_movi_i64(dest, s->pc_curr + diff);
|
|
}
|
|
}
|
|
|
|
void gen_a64_update_pc(DisasContext *s, target_long diff)
|
|
{
|
|
gen_pc_plus_diff(s, cpu_pc, diff);
|
|
s->pc_save = s->pc_curr + diff;
|
|
}
|
|
|
|
/*
|
|
* Handle Top Byte Ignore (TBI) bits.
|
|
*
|
|
* If address tagging is enabled via the TCR TBI bits:
|
|
* + for EL2 and EL3 there is only one TBI bit, and if it is set
|
|
* then the address is zero-extended, clearing bits [63:56]
|
|
* + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
|
|
* and TBI1 controls addresses with bit 55 == 1.
|
|
* If the appropriate TBI bit is set for the address then
|
|
* the address is sign-extended from bit 55 into bits [63:56]
|
|
*
|
|
* Here We have concatenated TBI{1,0} into tbi.
|
|
*/
|
|
static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
|
|
TCGv_i64 src, int tbi)
|
|
{
|
|
if (tbi == 0) {
|
|
/* Load unmodified address */
|
|
tcg_gen_mov_i64(dst, src);
|
|
} else if (!regime_has_2_ranges(s->mmu_idx)) {
|
|
/* Force tag byte to all zero */
|
|
tcg_gen_extract_i64(dst, src, 0, 56);
|
|
} else {
|
|
/* Sign-extend from bit 55. */
|
|
tcg_gen_sextract_i64(dst, src, 0, 56);
|
|
|
|
switch (tbi) {
|
|
case 1:
|
|
/* tbi0 but !tbi1: only use the extension if positive */
|
|
tcg_gen_and_i64(dst, dst, src);
|
|
break;
|
|
case 2:
|
|
/* !tbi0 but tbi1: only use the extension if negative */
|
|
tcg_gen_or_i64(dst, dst, src);
|
|
break;
|
|
case 3:
|
|
/* tbi0 and tbi1: always use the extension */
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
}
|
|
|
|
static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
|
|
{
|
|
/*
|
|
* If address tagging is enabled for instructions via the TCR TBI bits,
|
|
* then loading an address into the PC will clear out any tag.
|
|
*/
|
|
gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
|
|
s->pc_save = -1;
|
|
}
|
|
|
|
/*
|
|
* Handle MTE and/or TBI.
|
|
*
|
|
* For TBI, ideally, we would do nothing. Proper behaviour on fault is
|
|
* for the tag to be present in the FAR_ELx register. But for user-only
|
|
* mode we do not have a TLB with which to implement this, so we must
|
|
* remove the top byte now.
|
|
*
|
|
* Always return a fresh temporary that we can increment independently
|
|
* of the write-back address.
|
|
*/
|
|
|
|
TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
|
|
{
|
|
TCGv_i64 clean = tcg_temp_new_i64();
|
|
#ifdef CONFIG_USER_ONLY
|
|
gen_top_byte_ignore(s, clean, addr, s->tbid);
|
|
#else
|
|
tcg_gen_mov_i64(clean, addr);
|
|
#endif
|
|
return clean;
|
|
}
|
|
|
|
/* Insert a zero tag into src, with the result at dst. */
|
|
static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src)
|
|
{
|
|
tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4));
|
|
}
|
|
|
|
static void gen_probe_access(DisasContext *s, TCGv_i64 ptr,
|
|
MMUAccessType acc, int log2_size)
|
|
{
|
|
gen_helper_probe_access(tcg_env, ptr,
|
|
tcg_constant_i32(acc),
|
|
tcg_constant_i32(get_mem_index(s)),
|
|
tcg_constant_i32(1 << log2_size));
|
|
}
|
|
|
|
/*
|
|
* For MTE, check a single logical or atomic access. This probes a single
|
|
* address, the exact one specified. The size and alignment of the access
|
|
* is not relevant to MTE, per se, but watchpoints do require the size,
|
|
* and we want to recognize those before making any other changes to state.
|
|
*/
|
|
static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr,
|
|
bool is_write, bool tag_checked,
|
|
MemOp memop, bool is_unpriv,
|
|
int core_idx)
|
|
{
|
|
if (tag_checked && s->mte_active[is_unpriv]) {
|
|
TCGv_i64 ret;
|
|
int desc = 0;
|
|
|
|
desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx);
|
|
desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
|
|
desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
|
|
desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
|
|
desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(memop));
|
|
desc = FIELD_DP32(desc, MTEDESC, SIZEM1, memop_size(memop) - 1);
|
|
|
|
ret = tcg_temp_new_i64();
|
|
gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
|
|
|
|
return ret;
|
|
}
|
|
return clean_data_tbi(s, addr);
|
|
}
|
|
|
|
TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write,
|
|
bool tag_checked, MemOp memop)
|
|
{
|
|
return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, memop,
|
|
false, get_mem_index(s));
|
|
}
|
|
|
|
/*
|
|
* For MTE, check multiple logical sequential accesses.
|
|
*/
|
|
TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write,
|
|
bool tag_checked, int total_size, MemOp single_mop)
|
|
{
|
|
if (tag_checked && s->mte_active[0]) {
|
|
TCGv_i64 ret;
|
|
int desc = 0;
|
|
|
|
desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
|
|
desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
|
|
desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
|
|
desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
|
|
desc = FIELD_DP32(desc, MTEDESC, ALIGN, get_alignment_bits(single_mop));
|
|
desc = FIELD_DP32(desc, MTEDESC, SIZEM1, total_size - 1);
|
|
|
|
ret = tcg_temp_new_i64();
|
|
gen_helper_mte_check(ret, tcg_env, tcg_constant_i32(desc), addr);
|
|
|
|
return ret;
|
|
}
|
|
return clean_data_tbi(s, addr);
|
|
}
|
|
|
|
/*
|
|
* Generate the special alignment check that applies to AccType_ATOMIC
|
|
* and AccType_ORDERED insns under FEAT_LSE2: the access need not be
|
|
* naturally aligned, but it must not cross a 16-byte boundary.
|
|
* See AArch64.CheckAlignment().
|
|
*/
|
|
static void check_lse2_align(DisasContext *s, int rn, int imm,
|
|
bool is_write, MemOp mop)
|
|
{
|
|
TCGv_i32 tmp;
|
|
TCGv_i64 addr;
|
|
TCGLabel *over_label;
|
|
MMUAccessType type;
|
|
int mmu_idx;
|
|
|
|
tmp = tcg_temp_new_i32();
|
|
tcg_gen_extrl_i64_i32(tmp, cpu_reg_sp(s, rn));
|
|
tcg_gen_addi_i32(tmp, tmp, imm & 15);
|
|
tcg_gen_andi_i32(tmp, tmp, 15);
|
|
tcg_gen_addi_i32(tmp, tmp, memop_size(mop));
|
|
|
|
over_label = gen_new_label();
|
|
tcg_gen_brcondi_i32(TCG_COND_LEU, tmp, 16, over_label);
|
|
|
|
addr = tcg_temp_new_i64();
|
|
tcg_gen_addi_i64(addr, cpu_reg_sp(s, rn), imm);
|
|
|
|
type = is_write ? MMU_DATA_STORE : MMU_DATA_LOAD,
|
|
mmu_idx = get_mem_index(s);
|
|
gen_helper_unaligned_access(tcg_env, addr, tcg_constant_i32(type),
|
|
tcg_constant_i32(mmu_idx));
|
|
|
|
gen_set_label(over_label);
|
|
|
|
}
|
|
|
|
/* Handle the alignment check for AccType_ATOMIC instructions. */
|
|
static MemOp check_atomic_align(DisasContext *s, int rn, MemOp mop)
|
|
{
|
|
MemOp size = mop & MO_SIZE;
|
|
|
|
if (size == MO_8) {
|
|
return mop;
|
|
}
|
|
|
|
/*
|
|
* If size == MO_128, this is a LDXP, and the operation is single-copy
|
|
* atomic for each doubleword, not the entire quadword; it still must
|
|
* be quadword aligned.
|
|
*/
|
|
if (size == MO_128) {
|
|
return finalize_memop_atom(s, MO_128 | MO_ALIGN,
|
|
MO_ATOM_IFALIGN_PAIR);
|
|
}
|
|
if (dc_isar_feature(aa64_lse2, s)) {
|
|
check_lse2_align(s, rn, 0, true, mop);
|
|
} else {
|
|
mop |= MO_ALIGN;
|
|
}
|
|
return finalize_memop(s, mop);
|
|
}
|
|
|
|
/* Handle the alignment check for AccType_ORDERED instructions. */
|
|
static MemOp check_ordered_align(DisasContext *s, int rn, int imm,
|
|
bool is_write, MemOp mop)
|
|
{
|
|
MemOp size = mop & MO_SIZE;
|
|
|
|
if (size == MO_8) {
|
|
return mop;
|
|
}
|
|
if (size == MO_128) {
|
|
return finalize_memop_atom(s, MO_128 | MO_ALIGN,
|
|
MO_ATOM_IFALIGN_PAIR);
|
|
}
|
|
if (!dc_isar_feature(aa64_lse2, s)) {
|
|
mop |= MO_ALIGN;
|
|
} else if (!s->naa) {
|
|
check_lse2_align(s, rn, imm, is_write, mop);
|
|
}
|
|
return finalize_memop(s, mop);
|
|
}
|
|
|
|
typedef struct DisasCompare64 {
|
|
TCGCond cond;
|
|
TCGv_i64 value;
|
|
} DisasCompare64;
|
|
|
|
static void a64_test_cc(DisasCompare64 *c64, int cc)
|
|
{
|
|
DisasCompare c32;
|
|
|
|
arm_test_cc(&c32, cc);
|
|
|
|
/*
|
|
* Sign-extend the 32-bit value so that the GE/LT comparisons work
|
|
* properly. The NE/EQ comparisons are also fine with this choice.
|
|
*/
|
|
c64->cond = c32.cond;
|
|
c64->value = tcg_temp_new_i64();
|
|
tcg_gen_ext_i32_i64(c64->value, c32.value);
|
|
}
|
|
|
|
static void gen_rebuild_hflags(DisasContext *s)
|
|
{
|
|
gen_helper_rebuild_hflags_a64(tcg_env, tcg_constant_i32(s->current_el));
|
|
}
|
|
|
|
static void gen_exception_internal(int excp)
|
|
{
|
|
assert(excp_is_internal(excp));
|
|
gen_helper_exception_internal(tcg_env, tcg_constant_i32(excp));
|
|
}
|
|
|
|
static void gen_exception_internal_insn(DisasContext *s, int excp)
|
|
{
|
|
gen_a64_update_pc(s, 0);
|
|
gen_exception_internal(excp);
|
|
s->base.is_jmp = DISAS_NORETURN;
|
|
}
|
|
|
|
static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
|
|
{
|
|
gen_a64_update_pc(s, 0);
|
|
gen_helper_exception_bkpt_insn(tcg_env, tcg_constant_i32(syndrome));
|
|
s->base.is_jmp = DISAS_NORETURN;
|
|
}
|
|
|
|
static void gen_step_complete_exception(DisasContext *s)
|
|
{
|
|
/* We just completed step of an insn. Move from Active-not-pending
|
|
* to Active-pending, and then also take the swstep exception.
|
|
* This corresponds to making the (IMPDEF) choice to prioritize
|
|
* swstep exceptions over asynchronous exceptions taken to an exception
|
|
* level where debug is disabled. This choice has the advantage that
|
|
* we do not need to maintain internal state corresponding to the
|
|
* ISV/EX syndrome bits between completion of the step and generation
|
|
* of the exception, and our syndrome information is always correct.
|
|
*/
|
|
gen_ss_advance(s);
|
|
gen_swstep_exception(s, 1, s->is_ldex);
|
|
s->base.is_jmp = DISAS_NORETURN;
|
|
}
|
|
|
|
static inline bool use_goto_tb(DisasContext *s, uint64_t dest)
|
|
{
|
|
if (s->ss_active) {
|
|
return false;
|
|
}
|
|
return translator_use_goto_tb(&s->base, dest);
|
|
}
|
|
|
|
static void gen_goto_tb(DisasContext *s, int n, int64_t diff)
|
|
{
|
|
if (use_goto_tb(s, s->pc_curr + diff)) {
|
|
/*
|
|
* For pcrel, the pc must always be up-to-date on entry to
|
|
* the linked TB, so that it can use simple additions for all
|
|
* further adjustments. For !pcrel, the linked TB is compiled
|
|
* to know its full virtual address, so we can delay the
|
|
* update to pc to the unlinked path. A long chain of links
|
|
* can thus avoid many updates to the PC.
|
|
*/
|
|
if (tb_cflags(s->base.tb) & CF_PCREL) {
|
|
gen_a64_update_pc(s, diff);
|
|
tcg_gen_goto_tb(n);
|
|
} else {
|
|
tcg_gen_goto_tb(n);
|
|
gen_a64_update_pc(s, diff);
|
|
}
|
|
tcg_gen_exit_tb(s->base.tb, n);
|
|
s->base.is_jmp = DISAS_NORETURN;
|
|
} else {
|
|
gen_a64_update_pc(s, diff);
|
|
if (s->ss_active) {
|
|
gen_step_complete_exception(s);
|
|
} else {
|
|
tcg_gen_lookup_and_goto_ptr();
|
|
s->base.is_jmp = DISAS_NORETURN;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Register access functions
|
|
*
|
|
* These functions are used for directly accessing a register in where
|
|
* changes to the final register value are likely to be made. If you
|
|
* need to use a register for temporary calculation (e.g. index type
|
|
* operations) use the read_* form.
|
|
*
|
|
* B1.2.1 Register mappings
|
|
*
|
|
* In instruction register encoding 31 can refer to ZR (zero register) or
|
|
* the SP (stack pointer) depending on context. In QEMU's case we map SP
|
|
* to cpu_X[31] and ZR accesses to a temporary which can be discarded.
|
|
* This is the point of the _sp forms.
|
|
*/
|
|
TCGv_i64 cpu_reg(DisasContext *s, int reg)
|
|
{
|
|
if (reg == 31) {
|
|
TCGv_i64 t = tcg_temp_new_i64();
|
|
tcg_gen_movi_i64(t, 0);
|
|
return t;
|
|
} else {
|
|
return cpu_X[reg];
|
|
}
|
|
}
|
|
|
|
/* register access for when 31 == SP */
|
|
TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
|
|
{
|
|
return cpu_X[reg];
|
|
}
|
|
|
|
/* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
|
|
* representing the register contents. This TCGv is an auto-freed
|
|
* temporary so it need not be explicitly freed, and may be modified.
|
|
*/
|
|
TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
|
|
{
|
|
TCGv_i64 v = tcg_temp_new_i64();
|
|
if (reg != 31) {
|
|
if (sf) {
|
|
tcg_gen_mov_i64(v, cpu_X[reg]);
|
|
} else {
|
|
tcg_gen_ext32u_i64(v, cpu_X[reg]);
|
|
}
|
|
} else {
|
|
tcg_gen_movi_i64(v, 0);
|
|
}
|
|
return v;
|
|
}
|
|
|
|
TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
|
|
{
|
|
TCGv_i64 v = tcg_temp_new_i64();
|
|
if (sf) {
|
|
tcg_gen_mov_i64(v, cpu_X[reg]);
|
|
} else {
|
|
tcg_gen_ext32u_i64(v, cpu_X[reg]);
|
|
}
|
|
return v;
|
|
}
|
|
|
|
/* Return the offset into CPUARMState of a slice (from
|
|
* the least significant end) of FP register Qn (ie
|
|
* Dn, Sn, Hn or Bn).
|
|
* (Note that this is not the same mapping as for A32; see cpu.h)
|
|
*/
|
|
static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
|
|
{
|
|
return vec_reg_offset(s, regno, 0, size);
|
|
}
|
|
|
|
/* Offset of the high half of the 128 bit vector Qn */
|
|
static inline int fp_reg_hi_offset(DisasContext *s, int regno)
|
|
{
|
|
return vec_reg_offset(s, regno, 1, MO_64);
|
|
}
|
|
|
|
/* Convenience accessors for reading and writing single and double
|
|
* FP registers. Writing clears the upper parts of the associated
|
|
* 128 bit vector register, as required by the architecture.
|
|
* Note that unlike the GP register accessors, the values returned
|
|
* by the read functions must be manually freed.
|
|
*/
|
|
static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
|
|
{
|
|
TCGv_i64 v = tcg_temp_new_i64();
|
|
|
|
tcg_gen_ld_i64(v, tcg_env, fp_reg_offset(s, reg, MO_64));
|
|
return v;
|
|
}
|
|
|
|
static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
|
|
{
|
|
TCGv_i32 v = tcg_temp_new_i32();
|
|
|
|
tcg_gen_ld_i32(v, tcg_env, fp_reg_offset(s, reg, MO_32));
|
|
return v;
|
|
}
|
|
|
|
static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
|
|
{
|
|
TCGv_i32 v = tcg_temp_new_i32();
|
|
|
|
tcg_gen_ld16u_i32(v, tcg_env, fp_reg_offset(s, reg, MO_16));
|
|
return v;
|
|
}
|
|
|
|
/* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
|
|
* If SVE is not enabled, then there are only 128 bits in the vector.
|
|
*/
|
|
static void clear_vec_high(DisasContext *s, bool is_q, int rd)
|
|
{
|
|
unsigned ofs = fp_reg_offset(s, rd, MO_64);
|
|
unsigned vsz = vec_full_reg_size(s);
|
|
|
|
/* Nop move, with side effect of clearing the tail. */
|
|
tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz);
|
|
}
|
|
|
|
void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
|
|
{
|
|
unsigned ofs = fp_reg_offset(s, reg, MO_64);
|
|
|
|
tcg_gen_st_i64(v, tcg_env, ofs);
|
|
clear_vec_high(s, false, reg);
|
|
}
|
|
|
|
static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
|
|
{
|
|
TCGv_i64 tmp = tcg_temp_new_i64();
|
|
|
|
tcg_gen_extu_i32_i64(tmp, v);
|
|
write_fp_dreg(s, reg, tmp);
|
|
}
|
|
|
|
/* Expand a 2-operand AdvSIMD vector operation using an expander function. */
|
|
static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
|
|
GVecGen2Fn *gvec_fn, int vece)
|
|
{
|
|
gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
|
|
is_q ? 16 : 8, vec_full_reg_size(s));
|
|
}
|
|
|
|
/* Expand a 2-operand + immediate AdvSIMD vector operation using
|
|
* an expander function.
|
|
*/
|
|
static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
|
|
int64_t imm, GVecGen2iFn *gvec_fn, int vece)
|
|
{
|
|
gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
|
|
imm, is_q ? 16 : 8, vec_full_reg_size(s));
|
|
}
|
|
|
|
/* Expand a 3-operand AdvSIMD vector operation using an expander function. */
|
|
static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
|
|
GVecGen3Fn *gvec_fn, int vece)
|
|
{
|
|
gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
|
|
vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
|
|
}
|
|
|
|
/* Expand a 4-operand AdvSIMD vector operation using an expander function. */
|
|
static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
|
|
int rx, GVecGen4Fn *gvec_fn, int vece)
|
|
{
|
|
gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
|
|
vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
|
|
is_q ? 16 : 8, vec_full_reg_size(s));
|
|
}
|
|
|
|
/* Expand a 2-operand operation using an out-of-line helper. */
|
|
static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd,
|
|
int rn, int data, gen_helper_gvec_2 *fn)
|
|
{
|
|
tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
|
|
vec_full_reg_offset(s, rn),
|
|
is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
|
|
}
|
|
|
|
/* Expand a 3-operand operation using an out-of-line helper. */
|
|
static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
|
|
int rn, int rm, int data, gen_helper_gvec_3 *fn)
|
|
{
|
|
tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
|
|
vec_full_reg_offset(s, rn),
|
|
vec_full_reg_offset(s, rm),
|
|
is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
|
|
}
|
|
|
|
/* Expand a 3-operand + fpstatus pointer + simd data value operation using
|
|
* an out-of-line helper.
|
|
*/
|
|
static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
|
|
int rm, bool is_fp16, int data,
|
|
gen_helper_gvec_3_ptr *fn)
|
|
{
|
|
TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
|
|
tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
|
|
vec_full_reg_offset(s, rn),
|
|
vec_full_reg_offset(s, rm), fpst,
|
|
is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
|
|
}
|
|
|
|
/* Expand a 3-operand + qc + operation using an out-of-line helper. */
|
|
static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn,
|
|
int rm, gen_helper_gvec_3_ptr *fn)
|
|
{
|
|
TCGv_ptr qc_ptr = tcg_temp_new_ptr();
|
|
|
|
tcg_gen_addi_ptr(qc_ptr, tcg_env, offsetof(CPUARMState, vfp.qc));
|
|
tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
|
|
vec_full_reg_offset(s, rn),
|
|
vec_full_reg_offset(s, rm), qc_ptr,
|
|
is_q ? 16 : 8, vec_full_reg_size(s), 0, fn);
|
|
}
|
|
|
|
/* Expand a 4-operand operation using an out-of-line helper. */
|
|
static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn,
|
|
int rm, int ra, int data, gen_helper_gvec_4 *fn)
|
|
{
|
|
tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
|
|
vec_full_reg_offset(s, rn),
|
|
vec_full_reg_offset(s, rm),
|
|
vec_full_reg_offset(s, ra),
|
|
is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
|
|
}
|
|
|
|
/*
|
|
* Expand a 4-operand + fpstatus pointer + simd data value operation using
|
|
* an out-of-line helper.
|
|
*/
|
|
static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn,
|
|
int rm, int ra, bool is_fp16, int data,
|
|
gen_helper_gvec_4_ptr *fn)
|
|
{
|
|
TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
|
|
tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
|
|
vec_full_reg_offset(s, rn),
|
|
vec_full_reg_offset(s, rm),
|
|
vec_full_reg_offset(s, ra), fpst,
|
|
is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
|
|
}
|
|
|
|
/* Set ZF and NF based on a 64 bit result. This is alas fiddlier
|
|
* than the 32 bit equivalent.
|
|
*/
|
|
static inline void gen_set_NZ64(TCGv_i64 result)
|
|
{
|
|
tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
|
|
tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
|
|
}
|
|
|
|
/* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
|
|
static inline void gen_logic_CC(int sf, TCGv_i64 result)
|
|
{
|
|
if (sf) {
|
|
gen_set_NZ64(result);
|
|
} else {
|
|
tcg_gen_extrl_i64_i32(cpu_ZF, result);
|
|
tcg_gen_mov_i32(cpu_NF, cpu_ZF);
|
|
}
|
|
tcg_gen_movi_i32(cpu_CF, 0);
|
|
tcg_gen_movi_i32(cpu_VF, 0);
|
|
}
|
|
|
|
/* dest = T0 + T1; compute C, N, V and Z flags */
|
|
static void gen_add64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
|
|
{
|
|
TCGv_i64 result, flag, tmp;
|
|
result = tcg_temp_new_i64();
|
|
flag = tcg_temp_new_i64();
|
|
tmp = tcg_temp_new_i64();
|
|
|
|
tcg_gen_movi_i64(tmp, 0);
|
|
tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
|
|
|
|
tcg_gen_extrl_i64_i32(cpu_CF, flag);
|
|
|
|
gen_set_NZ64(result);
|
|
|
|
tcg_gen_xor_i64(flag, result, t0);
|
|
tcg_gen_xor_i64(tmp, t0, t1);
|
|
tcg_gen_andc_i64(flag, flag, tmp);
|
|
tcg_gen_extrh_i64_i32(cpu_VF, flag);
|
|
|
|
tcg_gen_mov_i64(dest, result);
|
|
}
|
|
|
|
static void gen_add32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
|
|
{
|
|
TCGv_i32 t0_32 = tcg_temp_new_i32();
|
|
TCGv_i32 t1_32 = tcg_temp_new_i32();
|
|
TCGv_i32 tmp = tcg_temp_new_i32();
|
|
|
|
tcg_gen_movi_i32(tmp, 0);
|
|
tcg_gen_extrl_i64_i32(t0_32, t0);
|
|
tcg_gen_extrl_i64_i32(t1_32, t1);
|
|
tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
|
|
tcg_gen_mov_i32(cpu_ZF, cpu_NF);
|
|
tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
|
|
tcg_gen_xor_i32(tmp, t0_32, t1_32);
|
|
tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
|
|
tcg_gen_extu_i32_i64(dest, cpu_NF);
|
|
}
|
|
|
|
static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
|
|
{
|
|
if (sf) {
|
|
gen_add64_CC(dest, t0, t1);
|
|
} else {
|
|
gen_add32_CC(dest, t0, t1);
|
|
}
|
|
}
|
|
|
|
/* dest = T0 - T1; compute C, N, V and Z flags */
|
|
static void gen_sub64_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
|
|
{
|
|
/* 64 bit arithmetic */
|
|
TCGv_i64 result, flag, tmp;
|
|
|
|
result = tcg_temp_new_i64();
|
|
flag = tcg_temp_new_i64();
|
|
tcg_gen_sub_i64(result, t0, t1);
|
|
|
|
gen_set_NZ64(result);
|
|
|
|
tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
|
|
tcg_gen_extrl_i64_i32(cpu_CF, flag);
|
|
|
|
tcg_gen_xor_i64(flag, result, t0);
|
|
tmp = tcg_temp_new_i64();
|
|
tcg_gen_xor_i64(tmp, t0, t1);
|
|
tcg_gen_and_i64(flag, flag, tmp);
|
|
tcg_gen_extrh_i64_i32(cpu_VF, flag);
|
|
tcg_gen_mov_i64(dest, result);
|
|
}
|
|
|
|
static void gen_sub32_CC(TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
|
|
{
|
|
/* 32 bit arithmetic */
|
|
TCGv_i32 t0_32 = tcg_temp_new_i32();
|
|
TCGv_i32 t1_32 = tcg_temp_new_i32();
|
|
TCGv_i32 tmp;
|
|
|
|
tcg_gen_extrl_i64_i32(t0_32, t0);
|
|
tcg_gen_extrl_i64_i32(t1_32, t1);
|
|
tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
|
|
tcg_gen_mov_i32(cpu_ZF, cpu_NF);
|
|
tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
|
|
tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
|
|
tmp = tcg_temp_new_i32();
|
|
tcg_gen_xor_i32(tmp, t0_32, t1_32);
|
|
tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
|
|
tcg_gen_extu_i32_i64(dest, cpu_NF);
|
|
}
|
|
|
|
static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
|
|
{
|
|
if (sf) {
|
|
gen_sub64_CC(dest, t0, t1);
|
|
} else {
|
|
gen_sub32_CC(dest, t0, t1);
|
|
}
|
|
}
|
|
|
|
/* dest = T0 + T1 + CF; do not compute flags. */
|
|
static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
|
|
{
|
|
TCGv_i64 flag = tcg_temp_new_i64();
|
|
tcg_gen_extu_i32_i64(flag, cpu_CF);
|
|
tcg_gen_add_i64(dest, t0, t1);
|
|
tcg_gen_add_i64(dest, dest, flag);
|
|
|
|
if (!sf) {
|
|
tcg_gen_ext32u_i64(dest, dest);
|
|
}
|
|
}
|
|
|
|
/* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
|
|
static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
|
|
{
|
|
if (sf) {
|
|
TCGv_i64 result = tcg_temp_new_i64();
|
|
TCGv_i64 cf_64 = tcg_temp_new_i64();
|
|
TCGv_i64 vf_64 = tcg_temp_new_i64();
|
|
TCGv_i64 tmp = tcg_temp_new_i64();
|
|
TCGv_i64 zero = tcg_constant_i64(0);
|
|
|
|
tcg_gen_extu_i32_i64(cf_64, cpu_CF);
|
|
tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero);
|
|
tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero);
|
|
tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
|
|
gen_set_NZ64(result);
|
|
|
|
tcg_gen_xor_i64(vf_64, result, t0);
|
|
tcg_gen_xor_i64(tmp, t0, t1);
|
|
tcg_gen_andc_i64(vf_64, vf_64, tmp);
|
|
tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
|
|
|
|
tcg_gen_mov_i64(dest, result);
|
|
} else {
|
|
TCGv_i32 t0_32 = tcg_temp_new_i32();
|
|
TCGv_i32 t1_32 = tcg_temp_new_i32();
|
|
TCGv_i32 tmp = tcg_temp_new_i32();
|
|
TCGv_i32 zero = tcg_constant_i32(0);
|
|
|
|
tcg_gen_extrl_i64_i32(t0_32, t0);
|
|
tcg_gen_extrl_i64_i32(t1_32, t1);
|
|
tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero);
|
|
tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero);
|
|
|
|
tcg_gen_mov_i32(cpu_ZF, cpu_NF);
|
|
tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
|
|
tcg_gen_xor_i32(tmp, t0_32, t1_32);
|
|
tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
|
|
tcg_gen_extu_i32_i64(dest, cpu_NF);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Load/Store generators
|
|
*/
|
|
|
|
/*
|
|
* Store from GPR register to memory.
|
|
*/
|
|
static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
|
|
TCGv_i64 tcg_addr, MemOp memop, int memidx,
|
|
bool iss_valid,
|
|
unsigned int iss_srt,
|
|
bool iss_sf, bool iss_ar)
|
|
{
|
|
tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop);
|
|
|
|
if (iss_valid) {
|
|
uint32_t syn;
|
|
|
|
syn = syn_data_abort_with_iss(0,
|
|
(memop & MO_SIZE),
|
|
false,
|
|
iss_srt,
|
|
iss_sf,
|
|
iss_ar,
|
|
0, 0, 0, 0, 0, false);
|
|
disas_set_insn_syndrome(s, syn);
|
|
}
|
|
}
|
|
|
|
static void do_gpr_st(DisasContext *s, TCGv_i64 source,
|
|
TCGv_i64 tcg_addr, MemOp memop,
|
|
bool iss_valid,
|
|
unsigned int iss_srt,
|
|
bool iss_sf, bool iss_ar)
|
|
{
|
|
do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s),
|
|
iss_valid, iss_srt, iss_sf, iss_ar);
|
|
}
|
|
|
|
/*
|
|
* Load from memory to GPR register
|
|
*/
|
|
static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
|
|
MemOp memop, bool extend, int memidx,
|
|
bool iss_valid, unsigned int iss_srt,
|
|
bool iss_sf, bool iss_ar)
|
|
{
|
|
tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
|
|
|
|
if (extend && (memop & MO_SIGN)) {
|
|
g_assert((memop & MO_SIZE) <= MO_32);
|
|
tcg_gen_ext32u_i64(dest, dest);
|
|
}
|
|
|
|
if (iss_valid) {
|
|
uint32_t syn;
|
|
|
|
syn = syn_data_abort_with_iss(0,
|
|
(memop & MO_SIZE),
|
|
(memop & MO_SIGN) != 0,
|
|
iss_srt,
|
|
iss_sf,
|
|
iss_ar,
|
|
0, 0, 0, 0, 0, false);
|
|
disas_set_insn_syndrome(s, syn);
|
|
}
|
|
}
|
|
|
|
static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
|
|
MemOp memop, bool extend,
|
|
bool iss_valid, unsigned int iss_srt,
|
|
bool iss_sf, bool iss_ar)
|
|
{
|
|
do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s),
|
|
iss_valid, iss_srt, iss_sf, iss_ar);
|
|
}
|
|
|
|
/*
|
|
* Store from FP register to memory
|
|
*/
|
|
static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, MemOp mop)
|
|
{
|
|
/* This writes the bottom N bits of a 128 bit wide vector to memory */
|
|
TCGv_i64 tmplo = tcg_temp_new_i64();
|
|
|
|
tcg_gen_ld_i64(tmplo, tcg_env, fp_reg_offset(s, srcidx, MO_64));
|
|
|
|
if ((mop & MO_SIZE) < MO_128) {
|
|
tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop);
|
|
} else {
|
|
TCGv_i64 tmphi = tcg_temp_new_i64();
|
|
TCGv_i128 t16 = tcg_temp_new_i128();
|
|
|
|
tcg_gen_ld_i64(tmphi, tcg_env, fp_reg_hi_offset(s, srcidx));
|
|
tcg_gen_concat_i64_i128(t16, tmplo, tmphi);
|
|
|
|
tcg_gen_qemu_st_i128(t16, tcg_addr, get_mem_index(s), mop);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Load from memory to FP register
|
|
*/
|
|
static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, MemOp mop)
|
|
{
|
|
/* This always zero-extends and writes to a full 128 bit wide vector */
|
|
TCGv_i64 tmplo = tcg_temp_new_i64();
|
|
TCGv_i64 tmphi = NULL;
|
|
|
|
if ((mop & MO_SIZE) < MO_128) {
|
|
tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop);
|
|
} else {
|
|
TCGv_i128 t16 = tcg_temp_new_i128();
|
|
|
|
tcg_gen_qemu_ld_i128(t16, tcg_addr, get_mem_index(s), mop);
|
|
|
|
tmphi = tcg_temp_new_i64();
|
|
tcg_gen_extr_i128_i64(tmplo, tmphi, t16);
|
|
}
|
|
|
|
tcg_gen_st_i64(tmplo, tcg_env, fp_reg_offset(s, destidx, MO_64));
|
|
|
|
if (tmphi) {
|
|
tcg_gen_st_i64(tmphi, tcg_env, fp_reg_hi_offset(s, destidx));
|
|
}
|
|
clear_vec_high(s, tmphi != NULL, destidx);
|
|
}
|
|
|
|
/*
|
|
* Vector load/store helpers.
|
|
*
|
|
* The principal difference between this and a FP load is that we don't
|
|
* zero extend as we are filling a partial chunk of the vector register.
|
|
* These functions don't support 128 bit loads/stores, which would be
|
|
* normal load/store operations.
|
|
*
|
|
* The _i32 versions are useful when operating on 32 bit quantities
|
|
* (eg for floating point single or using Neon helper functions).
|
|
*/
|
|
|
|
/* Get value of an element within a vector register */
|
|
static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
|
|
int element, MemOp memop)
|
|
{
|
|
int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
|
|
switch ((unsigned)memop) {
|
|
case MO_8:
|
|
tcg_gen_ld8u_i64(tcg_dest, tcg_env, vect_off);
|
|
break;
|
|
case MO_16:
|
|
tcg_gen_ld16u_i64(tcg_dest, tcg_env, vect_off);
|
|
break;
|
|
case MO_32:
|
|
tcg_gen_ld32u_i64(tcg_dest, tcg_env, vect_off);
|
|
break;
|
|
case MO_8|MO_SIGN:
|
|
tcg_gen_ld8s_i64(tcg_dest, tcg_env, vect_off);
|
|
break;
|
|
case MO_16|MO_SIGN:
|
|
tcg_gen_ld16s_i64(tcg_dest, tcg_env, vect_off);
|
|
break;
|
|
case MO_32|MO_SIGN:
|
|
tcg_gen_ld32s_i64(tcg_dest, tcg_env, vect_off);
|
|
break;
|
|
case MO_64:
|
|
case MO_64|MO_SIGN:
|
|
tcg_gen_ld_i64(tcg_dest, tcg_env, vect_off);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
|
|
int element, MemOp memop)
|
|
{
|
|
int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
|
|
switch (memop) {
|
|
case MO_8:
|
|
tcg_gen_ld8u_i32(tcg_dest, tcg_env, vect_off);
|
|
break;
|
|
case MO_16:
|
|
tcg_gen_ld16u_i32(tcg_dest, tcg_env, vect_off);
|
|
break;
|
|
case MO_8|MO_SIGN:
|
|
tcg_gen_ld8s_i32(tcg_dest, tcg_env, vect_off);
|
|
break;
|
|
case MO_16|MO_SIGN:
|
|
tcg_gen_ld16s_i32(tcg_dest, tcg_env, vect_off);
|
|
break;
|
|
case MO_32:
|
|
case MO_32|MO_SIGN:
|
|
tcg_gen_ld_i32(tcg_dest, tcg_env, vect_off);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
/* Set value of an element within a vector register */
|
|
static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
|
|
int element, MemOp memop)
|
|
{
|
|
int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
|
|
switch (memop) {
|
|
case MO_8:
|
|
tcg_gen_st8_i64(tcg_src, tcg_env, vect_off);
|
|
break;
|
|
case MO_16:
|
|
tcg_gen_st16_i64(tcg_src, tcg_env, vect_off);
|
|
break;
|
|
case MO_32:
|
|
tcg_gen_st32_i64(tcg_src, tcg_env, vect_off);
|
|
break;
|
|
case MO_64:
|
|
tcg_gen_st_i64(tcg_src, tcg_env, vect_off);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
|
|
int destidx, int element, MemOp memop)
|
|
{
|
|
int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
|
|
switch (memop) {
|
|
case MO_8:
|
|
tcg_gen_st8_i32(tcg_src, tcg_env, vect_off);
|
|
break;
|
|
case MO_16:
|
|
tcg_gen_st16_i32(tcg_src, tcg_env, vect_off);
|
|
break;
|
|
case MO_32:
|
|
tcg_gen_st_i32(tcg_src, tcg_env, vect_off);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
/* Store from vector register to memory */
|
|
static void do_vec_st(DisasContext *s, int srcidx, int element,
|
|
TCGv_i64 tcg_addr, MemOp mop)
|
|
{
|
|
TCGv_i64 tcg_tmp = tcg_temp_new_i64();
|
|
|
|
read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE);
|
|
tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
|
|
}
|
|
|
|
/* Load from memory to vector register */
|
|
static void do_vec_ld(DisasContext *s, int destidx, int element,
|
|
TCGv_i64 tcg_addr, MemOp mop)
|
|
{
|
|
TCGv_i64 tcg_tmp = tcg_temp_new_i64();
|
|
|
|
tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
|
|
write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE);
|
|
}
|
|
|
|
/* Check that FP/Neon access is enabled. If it is, return
|
|
* true. If not, emit code to generate an appropriate exception,
|
|
* and return false; the caller should not emit any code for
|
|
* the instruction. Note that this check must happen after all
|
|
* unallocated-encoding checks (otherwise the syndrome information
|
|
* for the resulting exception will be incorrect).
|
|
*/
|
|
static bool fp_access_check_only(DisasContext *s)
|
|
{
|
|
if (s->fp_excp_el) {
|
|
assert(!s->fp_access_checked);
|
|
s->fp_access_checked = true;
|
|
|
|
gen_exception_insn_el(s, 0, EXCP_UDEF,
|
|
syn_fp_access_trap(1, 0xe, false, 0),
|
|
s->fp_excp_el);
|
|
return false;
|
|
}
|
|
s->fp_access_checked = true;
|
|
return true;
|
|
}
|
|
|
|
static bool fp_access_check(DisasContext *s)
|
|
{
|
|
if (!fp_access_check_only(s)) {
|
|
return false;
|
|
}
|
|
if (s->sme_trap_nonstreaming && s->is_nonstreaming) {
|
|
gen_exception_insn(s, 0, EXCP_UDEF,
|
|
syn_smetrap(SME_ET_Streaming, false));
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Check that SVE access is enabled. If it is, return true.
|
|
* If not, emit code to generate an appropriate exception and return false.
|
|
* This function corresponds to CheckSVEEnabled().
|
|
*/
|
|
bool sve_access_check(DisasContext *s)
|
|
{
|
|
if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) {
|
|
assert(dc_isar_feature(aa64_sme, s));
|
|
if (!sme_sm_enabled_check(s)) {
|
|
goto fail_exit;
|
|
}
|
|
} else if (s->sve_excp_el) {
|
|
gen_exception_insn_el(s, 0, EXCP_UDEF,
|
|
syn_sve_access_trap(), s->sve_excp_el);
|
|
goto fail_exit;
|
|
}
|
|
s->sve_access_checked = true;
|
|
return fp_access_check(s);
|
|
|
|
fail_exit:
|
|
/* Assert that we only raise one exception per instruction. */
|
|
assert(!s->sve_access_checked);
|
|
s->sve_access_checked = true;
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Check that SME access is enabled, raise an exception if not.
|
|
* Note that this function corresponds to CheckSMEAccess and is
|
|
* only used directly for cpregs.
|
|
*/
|
|
static bool sme_access_check(DisasContext *s)
|
|
{
|
|
if (s->sme_excp_el) {
|
|
gen_exception_insn_el(s, 0, EXCP_UDEF,
|
|
syn_smetrap(SME_ET_AccessTrap, false),
|
|
s->sme_excp_el);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* This function corresponds to CheckSMEEnabled. */
|
|
bool sme_enabled_check(DisasContext *s)
|
|
{
|
|
/*
|
|
* Note that unlike sve_excp_el, we have not constrained sme_excp_el
|
|
* to be zero when fp_excp_el has priority. This is because we need
|
|
* sme_excp_el by itself for cpregs access checks.
|
|
*/
|
|
if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) {
|
|
s->fp_access_checked = true;
|
|
return sme_access_check(s);
|
|
}
|
|
return fp_access_check_only(s);
|
|
}
|
|
|
|
/* Common subroutine for CheckSMEAnd*Enabled. */
|
|
bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req)
|
|
{
|
|
if (!sme_enabled_check(s)) {
|
|
return false;
|
|
}
|
|
if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) {
|
|
gen_exception_insn(s, 0, EXCP_UDEF,
|
|
syn_smetrap(SME_ET_NotStreaming, false));
|
|
return false;
|
|
}
|
|
if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) {
|
|
gen_exception_insn(s, 0, EXCP_UDEF,
|
|
syn_smetrap(SME_ET_InactiveZA, false));
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* This utility function is for doing register extension with an
|
|
* optional shift. You will likely want to pass a temporary for the
|
|
* destination register. See DecodeRegExtend() in the ARM ARM.
|
|
*/
|
|
static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
|
|
int option, unsigned int shift)
|
|
{
|
|
int extsize = extract32(option, 0, 2);
|
|
bool is_signed = extract32(option, 2, 1);
|
|
|
|
tcg_gen_ext_i64(tcg_out, tcg_in, extsize | (is_signed ? MO_SIGN : 0));
|
|
tcg_gen_shli_i64(tcg_out, tcg_out, shift);
|
|
}
|
|
|
|
static inline void gen_check_sp_alignment(DisasContext *s)
|
|
{
|
|
/* The AArch64 architecture mandates that (if enabled via PSTATE
|
|
* or SCTLR bits) there is a check that SP is 16-aligned on every
|
|
* SP-relative load or store (with an exception generated if it is not).
|
|
* In line with general QEMU practice regarding misaligned accesses,
|
|
* we omit these checks for the sake of guest program performance.
|
|
* This function is provided as a hook so we can more easily add these
|
|
* checks in future (possibly as a "favour catching guest program bugs
|
|
* over speed" user selectable option).
|
|
*/
|
|
}
|
|
|
|
/*
|
|
* This provides a simple table based table lookup decoder. It is
|
|
* intended to be used when the relevant bits for decode are too
|
|
* awkwardly placed and switch/if based logic would be confusing and
|
|
* deeply nested. Since it's a linear search through the table, tables
|
|
* should be kept small.
|
|
*
|
|
* It returns the first handler where insn & mask == pattern, or
|
|
* NULL if there is no match.
|
|
* The table is terminated by an empty mask (i.e. 0)
|
|
*/
|
|
static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
|
|
uint32_t insn)
|
|
{
|
|
const AArch64DecodeTable *tptr = table;
|
|
|
|
while (tptr->mask) {
|
|
if ((insn & tptr->mask) == tptr->pattern) {
|
|
return tptr->disas_fn;
|
|
}
|
|
tptr++;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* The instruction disassembly implemented here matches
|
|
* the instruction encoding classifications in chapter C4
|
|
* of the ARM Architecture Reference Manual (DDI0487B_a);
|
|
* classification names and decode diagrams here should generally
|
|
* match up with those in the manual.
|
|
*/
|
|
|
|
static bool trans_B(DisasContext *s, arg_i *a)
|
|
{
|
|
reset_btype(s);
|
|
gen_goto_tb(s, 0, a->imm);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_BL(DisasContext *s, arg_i *a)
|
|
{
|
|
gen_pc_plus_diff(s, cpu_reg(s, 30), curr_insn_len(s));
|
|
reset_btype(s);
|
|
gen_goto_tb(s, 0, a->imm);
|
|
return true;
|
|
}
|
|
|
|
|
|
static bool trans_CBZ(DisasContext *s, arg_cbz *a)
|
|
{
|
|
DisasLabel match;
|
|
TCGv_i64 tcg_cmp;
|
|
|
|
tcg_cmp = read_cpu_reg(s, a->rt, a->sf);
|
|
reset_btype(s);
|
|
|
|
match = gen_disas_label(s);
|
|
tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
|
|
tcg_cmp, 0, match.label);
|
|
gen_goto_tb(s, 0, 4);
|
|
set_disas_label(s, match);
|
|
gen_goto_tb(s, 1, a->imm);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_TBZ(DisasContext *s, arg_tbz *a)
|
|
{
|
|
DisasLabel match;
|
|
TCGv_i64 tcg_cmp;
|
|
|
|
tcg_cmp = tcg_temp_new_i64();
|
|
tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, a->rt), 1ULL << a->bitpos);
|
|
|
|
reset_btype(s);
|
|
|
|
match = gen_disas_label(s);
|
|
tcg_gen_brcondi_i64(a->nz ? TCG_COND_NE : TCG_COND_EQ,
|
|
tcg_cmp, 0, match.label);
|
|
gen_goto_tb(s, 0, 4);
|
|
set_disas_label(s, match);
|
|
gen_goto_tb(s, 1, a->imm);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_B_cond(DisasContext *s, arg_B_cond *a)
|
|
{
|
|
/* BC.cond is only present with FEAT_HBC */
|
|
if (a->c && !dc_isar_feature(aa64_hbc, s)) {
|
|
return false;
|
|
}
|
|
reset_btype(s);
|
|
if (a->cond < 0x0e) {
|
|
/* genuinely conditional branches */
|
|
DisasLabel match = gen_disas_label(s);
|
|
arm_gen_test_cc(a->cond, match.label);
|
|
gen_goto_tb(s, 0, 4);
|
|
set_disas_label(s, match);
|
|
gen_goto_tb(s, 1, a->imm);
|
|
} else {
|
|
/* 0xe and 0xf are both "always" conditions */
|
|
gen_goto_tb(s, 0, a->imm);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static void set_btype_for_br(DisasContext *s, int rn)
|
|
{
|
|
if (dc_isar_feature(aa64_bti, s)) {
|
|
/* BR to {x16,x17} or !guard -> 1, else 3. */
|
|
set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3);
|
|
}
|
|
}
|
|
|
|
static void set_btype_for_blr(DisasContext *s)
|
|
{
|
|
if (dc_isar_feature(aa64_bti, s)) {
|
|
/* BLR sets BTYPE to 2, regardless of source guarded page. */
|
|
set_btype(s, 2);
|
|
}
|
|
}
|
|
|
|
static bool trans_BR(DisasContext *s, arg_r *a)
|
|
{
|
|
gen_a64_set_pc(s, cpu_reg(s, a->rn));
|
|
set_btype_for_br(s, a->rn);
|
|
s->base.is_jmp = DISAS_JUMP;
|
|
return true;
|
|
}
|
|
|
|
static bool trans_BLR(DisasContext *s, arg_r *a)
|
|
{
|
|
TCGv_i64 dst = cpu_reg(s, a->rn);
|
|
TCGv_i64 lr = cpu_reg(s, 30);
|
|
if (dst == lr) {
|
|
TCGv_i64 tmp = tcg_temp_new_i64();
|
|
tcg_gen_mov_i64(tmp, dst);
|
|
dst = tmp;
|
|
}
|
|
gen_pc_plus_diff(s, lr, curr_insn_len(s));
|
|
gen_a64_set_pc(s, dst);
|
|
set_btype_for_blr(s);
|
|
s->base.is_jmp = DISAS_JUMP;
|
|
return true;
|
|
}
|
|
|
|
static bool trans_RET(DisasContext *s, arg_r *a)
|
|
{
|
|
gen_a64_set_pc(s, cpu_reg(s, a->rn));
|
|
s->base.is_jmp = DISAS_JUMP;
|
|
return true;
|
|
}
|
|
|
|
static TCGv_i64 auth_branch_target(DisasContext *s, TCGv_i64 dst,
|
|
TCGv_i64 modifier, bool use_key_a)
|
|
{
|
|
TCGv_i64 truedst;
|
|
/*
|
|
* Return the branch target for a BRAA/RETA/etc, which is either
|
|
* just the destination dst, or that value with the pauth check
|
|
* done and the code removed from the high bits.
|
|
*/
|
|
if (!s->pauth_active) {
|
|
return dst;
|
|
}
|
|
|
|
truedst = tcg_temp_new_i64();
|
|
if (use_key_a) {
|
|
gen_helper_autia_combined(truedst, tcg_env, dst, modifier);
|
|
} else {
|
|
gen_helper_autib_combined(truedst, tcg_env, dst, modifier);
|
|
}
|
|
return truedst;
|
|
}
|
|
|
|
static bool trans_BRAZ(DisasContext *s, arg_braz *a)
|
|
{
|
|
TCGv_i64 dst;
|
|
|
|
if (!dc_isar_feature(aa64_pauth, s)) {
|
|
return false;
|
|
}
|
|
|
|
dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
|
|
gen_a64_set_pc(s, dst);
|
|
set_btype_for_br(s, a->rn);
|
|
s->base.is_jmp = DISAS_JUMP;
|
|
return true;
|
|
}
|
|
|
|
static bool trans_BLRAZ(DisasContext *s, arg_braz *a)
|
|
{
|
|
TCGv_i64 dst, lr;
|
|
|
|
if (!dc_isar_feature(aa64_pauth, s)) {
|
|
return false;
|
|
}
|
|
|
|
dst = auth_branch_target(s, cpu_reg(s, a->rn), tcg_constant_i64(0), !a->m);
|
|
lr = cpu_reg(s, 30);
|
|
if (dst == lr) {
|
|
TCGv_i64 tmp = tcg_temp_new_i64();
|
|
tcg_gen_mov_i64(tmp, dst);
|
|
dst = tmp;
|
|
}
|
|
gen_pc_plus_diff(s, lr, curr_insn_len(s));
|
|
gen_a64_set_pc(s, dst);
|
|
set_btype_for_blr(s);
|
|
s->base.is_jmp = DISAS_JUMP;
|
|
return true;
|
|
}
|
|
|
|
static bool trans_RETA(DisasContext *s, arg_reta *a)
|
|
{
|
|
TCGv_i64 dst;
|
|
|
|
dst = auth_branch_target(s, cpu_reg(s, 30), cpu_X[31], !a->m);
|
|
gen_a64_set_pc(s, dst);
|
|
s->base.is_jmp = DISAS_JUMP;
|
|
return true;
|
|
}
|
|
|
|
static bool trans_BRA(DisasContext *s, arg_bra *a)
|
|
{
|
|
TCGv_i64 dst;
|
|
|
|
if (!dc_isar_feature(aa64_pauth, s)) {
|
|
return false;
|
|
}
|
|
dst = auth_branch_target(s, cpu_reg(s,a->rn), cpu_reg_sp(s, a->rm), !a->m);
|
|
gen_a64_set_pc(s, dst);
|
|
set_btype_for_br(s, a->rn);
|
|
s->base.is_jmp = DISAS_JUMP;
|
|
return true;
|
|
}
|
|
|
|
static bool trans_BLRA(DisasContext *s, arg_bra *a)
|
|
{
|
|
TCGv_i64 dst, lr;
|
|
|
|
if (!dc_isar_feature(aa64_pauth, s)) {
|
|
return false;
|
|
}
|
|
dst = auth_branch_target(s, cpu_reg(s, a->rn), cpu_reg_sp(s, a->rm), !a->m);
|
|
lr = cpu_reg(s, 30);
|
|
if (dst == lr) {
|
|
TCGv_i64 tmp = tcg_temp_new_i64();
|
|
tcg_gen_mov_i64(tmp, dst);
|
|
dst = tmp;
|
|
}
|
|
gen_pc_plus_diff(s, lr, curr_insn_len(s));
|
|
gen_a64_set_pc(s, dst);
|
|
set_btype_for_blr(s);
|
|
s->base.is_jmp = DISAS_JUMP;
|
|
return true;
|
|
}
|
|
|
|
static bool trans_ERET(DisasContext *s, arg_ERET *a)
|
|
{
|
|
TCGv_i64 dst;
|
|
|
|
if (s->current_el == 0) {
|
|
return false;
|
|
}
|
|
if (s->trap_eret) {
|
|
gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(0), 2);
|
|
return true;
|
|
}
|
|
dst = tcg_temp_new_i64();
|
|
tcg_gen_ld_i64(dst, tcg_env,
|
|
offsetof(CPUARMState, elr_el[s->current_el]));
|
|
|
|
translator_io_start(&s->base);
|
|
|
|
gen_helper_exception_return(tcg_env, dst);
|
|
/* Must exit loop to check un-masked IRQs */
|
|
s->base.is_jmp = DISAS_EXIT;
|
|
return true;
|
|
}
|
|
|
|
static bool trans_ERETA(DisasContext *s, arg_reta *a)
|
|
{
|
|
TCGv_i64 dst;
|
|
|
|
if (!dc_isar_feature(aa64_pauth, s)) {
|
|
return false;
|
|
}
|
|
if (s->current_el == 0) {
|
|
return false;
|
|
}
|
|
/* The FGT trap takes precedence over an auth trap. */
|
|
if (s->trap_eret) {
|
|
gen_exception_insn_el(s, 0, EXCP_UDEF, syn_erettrap(a->m ? 3 : 2), 2);
|
|
return true;
|
|
}
|
|
dst = tcg_temp_new_i64();
|
|
tcg_gen_ld_i64(dst, tcg_env,
|
|
offsetof(CPUARMState, elr_el[s->current_el]));
|
|
|
|
dst = auth_branch_target(s, dst, cpu_X[31], !a->m);
|
|
|
|
translator_io_start(&s->base);
|
|
|
|
gen_helper_exception_return(tcg_env, dst);
|
|
/* Must exit loop to check un-masked IRQs */
|
|
s->base.is_jmp = DISAS_EXIT;
|
|
return true;
|
|
}
|
|
|
|
static bool trans_NOP(DisasContext *s, arg_NOP *a)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
static bool trans_YIELD(DisasContext *s, arg_YIELD *a)
|
|
{
|
|
/*
|
|
* When running in MTTCG we don't generate jumps to the yield and
|
|
* WFE helpers as it won't affect the scheduling of other vCPUs.
|
|
* If we wanted to more completely model WFE/SEV so we don't busy
|
|
* spin unnecessarily we would need to do something more involved.
|
|
*/
|
|
if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
|
|
s->base.is_jmp = DISAS_YIELD;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool trans_WFI(DisasContext *s, arg_WFI *a)
|
|
{
|
|
s->base.is_jmp = DISAS_WFI;
|
|
return true;
|
|
}
|
|
|
|
static bool trans_WFE(DisasContext *s, arg_WFI *a)
|
|
{
|
|
/*
|
|
* When running in MTTCG we don't generate jumps to the yield and
|
|
* WFE helpers as it won't affect the scheduling of other vCPUs.
|
|
* If we wanted to more completely model WFE/SEV so we don't busy
|
|
* spin unnecessarily we would need to do something more involved.
|
|
*/
|
|
if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
|
|
s->base.is_jmp = DISAS_WFE;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool trans_XPACLRI(DisasContext *s, arg_XPACLRI *a)
|
|
{
|
|
if (s->pauth_active) {
|
|
gen_helper_xpaci(cpu_X[30], tcg_env, cpu_X[30]);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool trans_PACIA1716(DisasContext *s, arg_PACIA1716 *a)
|
|
{
|
|
if (s->pauth_active) {
|
|
gen_helper_pacia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool trans_PACIB1716(DisasContext *s, arg_PACIB1716 *a)
|
|
{
|
|
if (s->pauth_active) {
|
|
gen_helper_pacib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool trans_AUTIA1716(DisasContext *s, arg_AUTIA1716 *a)
|
|
{
|
|
if (s->pauth_active) {
|
|
gen_helper_autia(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool trans_AUTIB1716(DisasContext *s, arg_AUTIB1716 *a)
|
|
{
|
|
if (s->pauth_active) {
|
|
gen_helper_autib(cpu_X[17], tcg_env, cpu_X[17], cpu_X[16]);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool trans_ESB(DisasContext *s, arg_ESB *a)
|
|
{
|
|
/* Without RAS, we must implement this as NOP. */
|
|
if (dc_isar_feature(aa64_ras, s)) {
|
|
/*
|
|
* QEMU does not have a source of physical SErrors,
|
|
* so we are only concerned with virtual SErrors.
|
|
* The pseudocode in the ARM for this case is
|
|
* if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
|
|
* AArch64.vESBOperation();
|
|
* Most of the condition can be evaluated at translation time.
|
|
* Test for EL2 present, and defer test for SEL2 to runtime.
|
|
*/
|
|
if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) {
|
|
gen_helper_vesb(tcg_env);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool trans_PACIAZ(DisasContext *s, arg_PACIAZ *a)
|
|
{
|
|
if (s->pauth_active) {
|
|
gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool trans_PACIASP(DisasContext *s, arg_PACIASP *a)
|
|
{
|
|
if (s->pauth_active) {
|
|
gen_helper_pacia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool trans_PACIBZ(DisasContext *s, arg_PACIBZ *a)
|
|
{
|
|
if (s->pauth_active) {
|
|
gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool trans_PACIBSP(DisasContext *s, arg_PACIBSP *a)
|
|
{
|
|
if (s->pauth_active) {
|
|
gen_helper_pacib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool trans_AUTIAZ(DisasContext *s, arg_AUTIAZ *a)
|
|
{
|
|
if (s->pauth_active) {
|
|
gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool trans_AUTIASP(DisasContext *s, arg_AUTIASP *a)
|
|
{
|
|
if (s->pauth_active) {
|
|
gen_helper_autia(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool trans_AUTIBZ(DisasContext *s, arg_AUTIBZ *a)
|
|
{
|
|
if (s->pauth_active) {
|
|
gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], tcg_constant_i64(0));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool trans_AUTIBSP(DisasContext *s, arg_AUTIBSP *a)
|
|
{
|
|
if (s->pauth_active) {
|
|
gen_helper_autib(cpu_X[30], tcg_env, cpu_X[30], cpu_X[31]);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool trans_CLREX(DisasContext *s, arg_CLREX *a)
|
|
{
|
|
tcg_gen_movi_i64(cpu_exclusive_addr, -1);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_DSB_DMB(DisasContext *s, arg_DSB_DMB *a)
|
|
{
|
|
/* We handle DSB and DMB the same way */
|
|
TCGBar bar;
|
|
|
|
switch (a->types) {
|
|
case 1: /* MBReqTypes_Reads */
|
|
bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
|
|
break;
|
|
case 2: /* MBReqTypes_Writes */
|
|
bar = TCG_BAR_SC | TCG_MO_ST_ST;
|
|
break;
|
|
default: /* MBReqTypes_All */
|
|
bar = TCG_BAR_SC | TCG_MO_ALL;
|
|
break;
|
|
}
|
|
tcg_gen_mb(bar);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_ISB(DisasContext *s, arg_ISB *a)
|
|
{
|
|
/*
|
|
* We need to break the TB after this insn to execute
|
|
* self-modifying code correctly and also to take
|
|
* any pending interrupts immediately.
|
|
*/
|
|
reset_btype(s);
|
|
gen_goto_tb(s, 0, 4);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_SB(DisasContext *s, arg_SB *a)
|
|
{
|
|
if (!dc_isar_feature(aa64_sb, s)) {
|
|
return false;
|
|
}
|
|
/*
|
|
* TODO: There is no speculation barrier opcode for TCG;
|
|
* MB and end the TB instead.
|
|
*/
|
|
tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
|
|
gen_goto_tb(s, 0, 4);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_CFINV(DisasContext *s, arg_CFINV *a)
|
|
{
|
|
if (!dc_isar_feature(aa64_condm_4, s)) {
|
|
return false;
|
|
}
|
|
tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_XAFLAG(DisasContext *s, arg_XAFLAG *a)
|
|
{
|
|
TCGv_i32 z;
|
|
|
|
if (!dc_isar_feature(aa64_condm_5, s)) {
|
|
return false;
|
|
}
|
|
|
|
z = tcg_temp_new_i32();
|
|
|
|
tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
|
|
|
|
/*
|
|
* (!C & !Z) << 31
|
|
* (!(C | Z)) << 31
|
|
* ~((C | Z) << 31)
|
|
* ~-(C | Z)
|
|
* (C | Z) - 1
|
|
*/
|
|
tcg_gen_or_i32(cpu_NF, cpu_CF, z);
|
|
tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
|
|
|
|
/* !(Z & C) */
|
|
tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
|
|
tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
|
|
|
|
/* (!C & Z) << 31 -> -(Z & ~C) */
|
|
tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
|
|
tcg_gen_neg_i32(cpu_VF, cpu_VF);
|
|
|
|
/* C | Z */
|
|
tcg_gen_or_i32(cpu_CF, cpu_CF, z);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool trans_AXFLAG(DisasContext *s, arg_AXFLAG *a)
|
|
{
|
|
if (!dc_isar_feature(aa64_condm_5, s)) {
|
|
return false;
|
|
}
|
|
|
|
tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */
|
|
tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */
|
|
|
|
/* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
|
|
tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
|
|
|
|
tcg_gen_movi_i32(cpu_NF, 0);
|
|
tcg_gen_movi_i32(cpu_VF, 0);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool trans_MSR_i_UAO(DisasContext *s, arg_i *a)
|
|
{
|
|
if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
|
|
return false;
|
|
}
|
|
if (a->imm & 1) {
|
|
set_pstate_bits(PSTATE_UAO);
|
|
} else {
|
|
clear_pstate_bits(PSTATE_UAO);
|
|
}
|
|
gen_rebuild_hflags(s);
|
|
s->base.is_jmp = DISAS_TOO_MANY;
|
|
return true;
|
|
}
|
|
|
|
static bool trans_MSR_i_PAN(DisasContext *s, arg_i *a)
|
|
{
|
|
if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
|
|
return false;
|
|
}
|
|
if (a->imm & 1) {
|
|
set_pstate_bits(PSTATE_PAN);
|
|
} else {
|
|
clear_pstate_bits(PSTATE_PAN);
|
|
}
|
|
gen_rebuild_hflags(s);
|
|
s->base.is_jmp = DISAS_TOO_MANY;
|
|
return true;
|
|
}
|
|
|
|
static bool trans_MSR_i_SPSEL(DisasContext *s, arg_i *a)
|
|
{
|
|
if (s->current_el == 0) {
|
|
return false;
|
|
}
|
|
gen_helper_msr_i_spsel(tcg_env, tcg_constant_i32(a->imm & PSTATE_SP));
|
|
s->base.is_jmp = DISAS_TOO_MANY;
|
|
return true;
|
|
}
|
|
|
|
static bool trans_MSR_i_SBSS(DisasContext *s, arg_i *a)
|
|
{
|
|
if (!dc_isar_feature(aa64_ssbs, s)) {
|
|
return false;
|
|
}
|
|
if (a->imm & 1) {
|
|
set_pstate_bits(PSTATE_SSBS);
|
|
} else {
|
|
clear_pstate_bits(PSTATE_SSBS);
|
|
}
|
|
/* Don't need to rebuild hflags since SSBS is a nop */
|
|
s->base.is_jmp = DISAS_TOO_MANY;
|
|
return true;
|
|
}
|
|
|
|
static bool trans_MSR_i_DIT(DisasContext *s, arg_i *a)
|
|
{
|
|
if (!dc_isar_feature(aa64_dit, s)) {
|
|
return false;
|
|
}
|
|
if (a->imm & 1) {
|
|
set_pstate_bits(PSTATE_DIT);
|
|
} else {
|
|
clear_pstate_bits(PSTATE_DIT);
|
|
}
|
|
/* There's no need to rebuild hflags because DIT is a nop */
|
|
s->base.is_jmp = DISAS_TOO_MANY;
|
|
return true;
|
|
}
|
|
|
|
static bool trans_MSR_i_TCO(DisasContext *s, arg_i *a)
|
|
{
|
|
if (dc_isar_feature(aa64_mte, s)) {
|
|
/* Full MTE is enabled -- set the TCO bit as directed. */
|
|
if (a->imm & 1) {
|
|
set_pstate_bits(PSTATE_TCO);
|
|
} else {
|
|
clear_pstate_bits(PSTATE_TCO);
|
|
}
|
|
gen_rebuild_hflags(s);
|
|
/* Many factors, including TCO, go into MTE_ACTIVE. */
|
|
s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
|
|
return true;
|
|
} else if (dc_isar_feature(aa64_mte_insn_reg, s)) {
|
|
/* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */
|
|
return true;
|
|
} else {
|
|
/* Insn not present */
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static bool trans_MSR_i_DAIFSET(DisasContext *s, arg_i *a)
|
|
{
|
|
gen_helper_msr_i_daifset(tcg_env, tcg_constant_i32(a->imm));
|
|
s->base.is_jmp = DISAS_TOO_MANY;
|
|
return true;
|
|
}
|
|
|
|
static bool trans_MSR_i_DAIFCLEAR(DisasContext *s, arg_i *a)
|
|
{
|
|
gen_helper_msr_i_daifclear(tcg_env, tcg_constant_i32(a->imm));
|
|
/* Exit the cpu loop to re-evaluate pending IRQs. */
|
|
s->base.is_jmp = DISAS_UPDATE_EXIT;
|
|
return true;
|
|
}
|
|
|
|
static bool trans_MSR_i_SVCR(DisasContext *s, arg_MSR_i_SVCR *a)
|
|
{
|
|
if (!dc_isar_feature(aa64_sme, s) || a->mask == 0) {
|
|
return false;
|
|
}
|
|
if (sme_access_check(s)) {
|
|
int old = s->pstate_sm | (s->pstate_za << 1);
|
|
int new = a->imm * 3;
|
|
|
|
if ((old ^ new) & a->mask) {
|
|
/* At least one bit changes. */
|
|
gen_helper_set_svcr(tcg_env, tcg_constant_i32(new),
|
|
tcg_constant_i32(a->mask));
|
|
s->base.is_jmp = DISAS_TOO_MANY;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static void gen_get_nzcv(TCGv_i64 tcg_rt)
|
|
{
|
|
TCGv_i32 tmp = tcg_temp_new_i32();
|
|
TCGv_i32 nzcv = tcg_temp_new_i32();
|
|
|
|
/* build bit 31, N */
|
|
tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
|
|
/* build bit 30, Z */
|
|
tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
|
|
tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
|
|
/* build bit 29, C */
|
|
tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
|
|
/* build bit 28, V */
|
|
tcg_gen_shri_i32(tmp, cpu_VF, 31);
|
|
tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
|
|
/* generate result */
|
|
tcg_gen_extu_i32_i64(tcg_rt, nzcv);
|
|
}
|
|
|
|
static void gen_set_nzcv(TCGv_i64 tcg_rt)
|
|
{
|
|
TCGv_i32 nzcv = tcg_temp_new_i32();
|
|
|
|
/* take NZCV from R[t] */
|
|
tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
|
|
|
|
/* bit 31, N */
|
|
tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
|
|
/* bit 30, Z */
|
|
tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
|
|
tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
|
|
/* bit 29, C */
|
|
tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
|
|
tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
|
|
/* bit 28, V */
|
|
tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
|
|
tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
|
|
}
|
|
|
|
static void gen_sysreg_undef(DisasContext *s, bool isread,
|
|
uint8_t op0, uint8_t op1, uint8_t op2,
|
|
uint8_t crn, uint8_t crm, uint8_t rt)
|
|
{
|
|
/*
|
|
* Generate code to emit an UNDEF with correct syndrome
|
|
* information for a failed system register access.
|
|
* This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases,
|
|
* but if FEAT_IDST is implemented then read accesses to registers
|
|
* in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP
|
|
* syndrome.
|
|
*/
|
|
uint32_t syndrome;
|
|
|
|
if (isread && dc_isar_feature(aa64_ids, s) &&
|
|
arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) {
|
|
syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
|
|
} else {
|
|
syndrome = syn_uncategorized();
|
|
}
|
|
gen_exception_insn(s, 0, EXCP_UDEF, syndrome);
|
|
}
|
|
|
|
/* MRS - move from system register
|
|
* MSR (register) - move to system register
|
|
* SYS
|
|
* SYSL
|
|
* These are all essentially the same insn in 'read' and 'write'
|
|
* versions, with varying op0 fields.
|
|
*/
|
|
static void handle_sys(DisasContext *s, bool isread,
|
|
unsigned int op0, unsigned int op1, unsigned int op2,
|
|
unsigned int crn, unsigned int crm, unsigned int rt)
|
|
{
|
|
uint32_t key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
|
|
crn, crm, op0, op1, op2);
|
|
const ARMCPRegInfo *ri = get_arm_cp_reginfo(s->cp_regs, key);
|
|
bool need_exit_tb = false;
|
|
bool nv_trap_to_el2 = false;
|
|
bool nv_redirect_reg = false;
|
|
bool skip_fp_access_checks = false;
|
|
bool nv2_mem_redirect = false;
|
|
TCGv_ptr tcg_ri = NULL;
|
|
TCGv_i64 tcg_rt;
|
|
uint32_t syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
|
|
|
|
if (crn == 11 || crn == 15) {
|
|
/*
|
|
* Check for TIDCP trap, which must take precedence over
|
|
* the UNDEF for "no such register" etc.
|
|
*/
|
|
switch (s->current_el) {
|
|
case 0:
|
|
if (dc_isar_feature(aa64_tidcp1, s)) {
|
|
gen_helper_tidcp_el0(tcg_env, tcg_constant_i32(syndrome));
|
|
}
|
|
break;
|
|
case 1:
|
|
gen_helper_tidcp_el1(tcg_env, tcg_constant_i32(syndrome));
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!ri) {
|
|
/* Unknown register; this might be a guest error or a QEMU
|
|
* unimplemented feature.
|
|
*/
|
|
qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
|
|
"system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
|
|
isread ? "read" : "write", op0, op1, crn, crm, op2);
|
|
gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
|
|
return;
|
|
}
|
|
|
|
if (s->nv2 && ri->nv2_redirect_offset) {
|
|
/*
|
|
* Some registers always redirect to memory; some only do so if
|
|
* HCR_EL2.NV1 is 0, and some only if NV1 is 1 (these come in
|
|
* pairs which share an offset; see the table in R_CSRPQ).
|
|
*/
|
|
if (ri->nv2_redirect_offset & NV2_REDIR_NV1) {
|
|
nv2_mem_redirect = s->nv1;
|
|
} else if (ri->nv2_redirect_offset & NV2_REDIR_NO_NV1) {
|
|
nv2_mem_redirect = !s->nv1;
|
|
} else {
|
|
nv2_mem_redirect = true;
|
|
}
|
|
}
|
|
|
|
/* Check access permissions */
|
|
if (!cp_access_ok(s->current_el, ri, isread)) {
|
|
/*
|
|
* FEAT_NV/NV2 handling does not do the usual FP access checks
|
|
* for registers only accessible at EL2 (though it *does* do them
|
|
* for registers accessible at EL1).
|
|
*/
|
|
skip_fp_access_checks = true;
|
|
if (s->nv2 && (ri->type & ARM_CP_NV2_REDIRECT)) {
|
|
/*
|
|
* This is one of the few EL2 registers which should redirect
|
|
* to the equivalent EL1 register. We do that after running
|
|
* the EL2 register's accessfn.
|
|
*/
|
|
nv_redirect_reg = true;
|
|
assert(!nv2_mem_redirect);
|
|
} else if (nv2_mem_redirect) {
|
|
/*
|
|
* NV2 redirect-to-memory takes precedence over trap to EL2 or
|
|
* UNDEF to EL1.
|
|
*/
|
|
} else if (s->nv && arm_cpreg_traps_in_nv(ri)) {
|
|
/*
|
|
* This register / instruction exists and is an EL2 register, so
|
|
* we must trap to EL2 if accessed in nested virtualization EL1
|
|
* instead of UNDEFing. We'll do that after the usual access checks.
|
|
* (This makes a difference only for a couple of registers like
|
|
* VSTTBR_EL2 where the "UNDEF if NonSecure" should take priority
|
|
* over the trap-to-EL2. Most trapped-by-FEAT_NV registers have
|
|
* an accessfn which does nothing when called from EL1, because
|
|
* the trap-to-EL3 controls which would apply to that register
|
|
* at EL2 don't take priority over the FEAT_NV trap-to-EL2.)
|
|
*/
|
|
nv_trap_to_el2 = true;
|
|
} else {
|
|
gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (ri->accessfn || (ri->fgt && s->fgt_active)) {
|
|
/* Emit code to perform further access permissions checks at
|
|
* runtime; this may result in an exception.
|
|
*/
|
|
gen_a64_update_pc(s, 0);
|
|
tcg_ri = tcg_temp_new_ptr();
|
|
gen_helper_access_check_cp_reg(tcg_ri, tcg_env,
|
|
tcg_constant_i32(key),
|
|
tcg_constant_i32(syndrome),
|
|
tcg_constant_i32(isread));
|
|
} else if (ri->type & ARM_CP_RAISES_EXC) {
|
|
/*
|
|
* The readfn or writefn might raise an exception;
|
|
* synchronize the CPU state in case it does.
|
|
*/
|
|
gen_a64_update_pc(s, 0);
|
|
}
|
|
|
|
if (!skip_fp_access_checks) {
|
|
if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) {
|
|
return;
|
|
} else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
|
|
return;
|
|
} else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (nv_trap_to_el2) {
|
|
gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
|
|
return;
|
|
}
|
|
|
|
if (nv_redirect_reg) {
|
|
/*
|
|
* FEAT_NV2 redirection of an EL2 register to an EL1 register.
|
|
* Conveniently in all cases the encoding of the EL1 register is
|
|
* identical to the EL2 register except that opc1 is 0.
|
|
* Get the reginfo for the EL1 register to use for the actual access.
|
|
* We don't use the EL1 register's access function, and
|
|
* fine-grained-traps on EL1 also do not apply here.
|
|
*/
|
|
key = ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
|
|
crn, crm, op0, 0, op2);
|
|
ri = get_arm_cp_reginfo(s->cp_regs, key);
|
|
assert(ri);
|
|
assert(cp_access_ok(s->current_el, ri, isread));
|
|
/*
|
|
* We might not have done an update_pc earlier, so check we don't
|
|
* need it. We could support this in future if necessary.
|
|
*/
|
|
assert(!(ri->type & ARM_CP_RAISES_EXC));
|
|
}
|
|
|
|
if (nv2_mem_redirect) {
|
|
/*
|
|
* This system register is being redirected into an EL2 memory access.
|
|
* This means it is not an IO operation, doesn't change hflags,
|
|
* and need not end the TB, because it has no side effects.
|
|
*
|
|
* The access is 64-bit single copy atomic, guaranteed aligned because
|
|
* of the definition of VCNR_EL2. Its endianness depends on
|
|
* SCTLR_EL2.EE, not on the data endianness of EL1.
|
|
* It is done under either the EL2 translation regime or the EL2&0
|
|
* translation regime, depending on HCR_EL2.E2H. It behaves as if
|
|
* PSTATE.PAN is 0.
|
|
*/
|
|
TCGv_i64 ptr = tcg_temp_new_i64();
|
|
MemOp mop = MO_64 | MO_ALIGN | MO_ATOM_IFALIGN;
|
|
ARMMMUIdx armmemidx = s->nv2_mem_e20 ? ARMMMUIdx_E20_2 : ARMMMUIdx_E2;
|
|
int memidx = arm_to_core_mmu_idx(armmemidx);
|
|
uint32_t syn;
|
|
|
|
mop |= (s->nv2_mem_be ? MO_BE : MO_LE);
|
|
|
|
tcg_gen_ld_i64(ptr, tcg_env, offsetof(CPUARMState, cp15.vncr_el2));
|
|
tcg_gen_addi_i64(ptr, ptr,
|
|
(ri->nv2_redirect_offset & ~NV2_REDIR_FLAG_MASK));
|
|
tcg_rt = cpu_reg(s, rt);
|
|
|
|
syn = syn_data_abort_vncr(0, !isread, 0);
|
|
disas_set_insn_syndrome(s, syn);
|
|
if (isread) {
|
|
tcg_gen_qemu_ld_i64(tcg_rt, ptr, memidx, mop);
|
|
} else {
|
|
tcg_gen_qemu_st_i64(tcg_rt, ptr, memidx, mop);
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* Handle special cases first */
|
|
switch (ri->type & ARM_CP_SPECIAL_MASK) {
|
|
case 0:
|
|
break;
|
|
case ARM_CP_NOP:
|
|
return;
|
|
case ARM_CP_NZCV:
|
|
tcg_rt = cpu_reg(s, rt);
|
|
if (isread) {
|
|
gen_get_nzcv(tcg_rt);
|
|
} else {
|
|
gen_set_nzcv(tcg_rt);
|
|
}
|
|
return;
|
|
case ARM_CP_CURRENTEL:
|
|
{
|
|
/*
|
|
* Reads as current EL value from pstate, which is
|
|
* guaranteed to be constant by the tb flags.
|
|
* For nested virt we should report EL2.
|
|
*/
|
|
int el = s->nv ? 2 : s->current_el;
|
|
tcg_rt = cpu_reg(s, rt);
|
|
tcg_gen_movi_i64(tcg_rt, el << 2);
|
|
return;
|
|
}
|
|
case ARM_CP_DC_ZVA:
|
|
/* Writes clear the aligned block of memory which rt points into. */
|
|
if (s->mte_active[0]) {
|
|
int desc = 0;
|
|
|
|
desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
|
|
desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
|
|
desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
|
|
|
|
tcg_rt = tcg_temp_new_i64();
|
|
gen_helper_mte_check_zva(tcg_rt, tcg_env,
|
|
tcg_constant_i32(desc), cpu_reg(s, rt));
|
|
} else {
|
|
tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
|
|
}
|
|
gen_helper_dc_zva(tcg_env, tcg_rt);
|
|
return;
|
|
case ARM_CP_DC_GVA:
|
|
{
|
|
TCGv_i64 clean_addr, tag;
|
|
|
|
/*
|
|
* DC_GVA, like DC_ZVA, requires that we supply the original
|
|
* pointer for an invalid page. Probe that address first.
|
|
*/
|
|
tcg_rt = cpu_reg(s, rt);
|
|
clean_addr = clean_data_tbi(s, tcg_rt);
|
|
gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8);
|
|
|
|
if (s->ata[0]) {
|
|
/* Extract the tag from the register to match STZGM. */
|
|
tag = tcg_temp_new_i64();
|
|
tcg_gen_shri_i64(tag, tcg_rt, 56);
|
|
gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
|
|
}
|
|
}
|
|
return;
|
|
case ARM_CP_DC_GZVA:
|
|
{
|
|
TCGv_i64 clean_addr, tag;
|
|
|
|
/* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */
|
|
tcg_rt = cpu_reg(s, rt);
|
|
clean_addr = clean_data_tbi(s, tcg_rt);
|
|
gen_helper_dc_zva(tcg_env, clean_addr);
|
|
|
|
if (s->ata[0]) {
|
|
/* Extract the tag from the register to match STZGM. */
|
|
tag = tcg_temp_new_i64();
|
|
tcg_gen_shri_i64(tag, tcg_rt, 56);
|
|
gen_helper_stzgm_tags(tcg_env, clean_addr, tag);
|
|
}
|
|
}
|
|
return;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
if (ri->type & ARM_CP_IO) {
|
|
/* I/O operations must end the TB here (whether read or write) */
|
|
need_exit_tb = translator_io_start(&s->base);
|
|
}
|
|
|
|
tcg_rt = cpu_reg(s, rt);
|
|
|
|
if (isread) {
|
|
if (ri->type & ARM_CP_CONST) {
|
|
tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
|
|
} else if (ri->readfn) {
|
|
if (!tcg_ri) {
|
|
tcg_ri = gen_lookup_cp_reg(key);
|
|
}
|
|
gen_helper_get_cp_reg64(tcg_rt, tcg_env, tcg_ri);
|
|
} else {
|
|
tcg_gen_ld_i64(tcg_rt, tcg_env, ri->fieldoffset);
|
|
}
|
|
} else {
|
|
if (ri->type & ARM_CP_CONST) {
|
|
/* If not forbidden by access permissions, treat as WI */
|
|
return;
|
|
} else if (ri->writefn) {
|
|
if (!tcg_ri) {
|
|
tcg_ri = gen_lookup_cp_reg(key);
|
|
}
|
|
gen_helper_set_cp_reg64(tcg_env, tcg_ri, tcg_rt);
|
|
} else {
|
|
tcg_gen_st_i64(tcg_rt, tcg_env, ri->fieldoffset);
|
|
}
|
|
}
|
|
|
|
if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
|
|
/*
|
|
* A write to any coprocessor register that ends a TB
|
|
* must rebuild the hflags for the next TB.
|
|
*/
|
|
gen_rebuild_hflags(s);
|
|
/*
|
|
* We default to ending the TB on a coprocessor register write,
|
|
* but allow this to be suppressed by the register definition
|
|
* (usually only necessary to work around guest bugs).
|
|
*/
|
|
need_exit_tb = true;
|
|
}
|
|
if (need_exit_tb) {
|
|
s->base.is_jmp = DISAS_UPDATE_EXIT;
|
|
}
|
|
}
|
|
|
|
static bool trans_SYS(DisasContext *s, arg_SYS *a)
|
|
{
|
|
handle_sys(s, a->l, a->op0, a->op1, a->op2, a->crn, a->crm, a->rt);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_SVC(DisasContext *s, arg_i *a)
|
|
{
|
|
/*
|
|
* For SVC, HVC and SMC we advance the single-step state
|
|
* machine before taking the exception. This is architecturally
|
|
* mandated, to ensure that single-stepping a system call
|
|
* instruction works properly.
|
|
*/
|
|
uint32_t syndrome = syn_aa64_svc(a->imm);
|
|
if (s->fgt_svc) {
|
|
gen_exception_insn_el(s, 0, EXCP_UDEF, syndrome, 2);
|
|
return true;
|
|
}
|
|
gen_ss_advance(s);
|
|
gen_exception_insn(s, 4, EXCP_SWI, syndrome);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_HVC(DisasContext *s, arg_i *a)
|
|
{
|
|
int target_el = s->current_el == 3 ? 3 : 2;
|
|
|
|
if (s->current_el == 0) {
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
/*
|
|
* The pre HVC helper handles cases when HVC gets trapped
|
|
* as an undefined insn by runtime configuration.
|
|
*/
|
|
gen_a64_update_pc(s, 0);
|
|
gen_helper_pre_hvc(tcg_env);
|
|
/* Architecture requires ss advance before we do the actual work */
|
|
gen_ss_advance(s);
|
|
gen_exception_insn_el(s, 4, EXCP_HVC, syn_aa64_hvc(a->imm), target_el);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_SMC(DisasContext *s, arg_i *a)
|
|
{
|
|
if (s->current_el == 0) {
|
|
unallocated_encoding(s);
|
|
return true;
|
|
}
|
|
gen_a64_update_pc(s, 0);
|
|
gen_helper_pre_smc(tcg_env, tcg_constant_i32(syn_aa64_smc(a->imm)));
|
|
/* Architecture requires ss advance before we do the actual work */
|
|
gen_ss_advance(s);
|
|
gen_exception_insn_el(s, 4, EXCP_SMC, syn_aa64_smc(a->imm), 3);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_BRK(DisasContext *s, arg_i *a)
|
|
{
|
|
gen_exception_bkpt_insn(s, syn_aa64_bkpt(a->imm));
|
|
return true;
|
|
}
|
|
|
|
static bool trans_HLT(DisasContext *s, arg_i *a)
|
|
{
|
|
/*
|
|
* HLT. This has two purposes.
|
|
* Architecturally, it is an external halting debug instruction.
|
|
* Since QEMU doesn't implement external debug, we treat this as
|
|
* it is required for halting debug disabled: it will UNDEF.
|
|
* Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
|
|
*/
|
|
if (semihosting_enabled(s->current_el == 0) && a->imm == 0xf000) {
|
|
gen_exception_internal_insn(s, EXCP_SEMIHOST);
|
|
} else {
|
|
unallocated_encoding(s);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Load/Store exclusive instructions are implemented by remembering
|
|
* the value/address loaded, and seeing if these are the same
|
|
* when the store is performed. This is not actually the architecturally
|
|
* mandated semantics, but it works for typical guest code sequences
|
|
* and avoids having to monitor regular stores.
|
|
*
|
|
* The store exclusive uses the atomic cmpxchg primitives to avoid
|
|
* races in multi-threaded linux-user and when MTTCG softmmu is
|
|
* enabled.
|
|
*/
|
|
static void gen_load_exclusive(DisasContext *s, int rt, int rt2, int rn,
|
|
int size, bool is_pair)
|
|
{
|
|
int idx = get_mem_index(s);
|
|
TCGv_i64 dirty_addr, clean_addr;
|
|
MemOp memop = check_atomic_align(s, rn, size + is_pair);
|
|
|
|
s->is_ldex = true;
|
|
dirty_addr = cpu_reg_sp(s, rn);
|
|
clean_addr = gen_mte_check1(s, dirty_addr, false, rn != 31, memop);
|
|
|
|
g_assert(size <= 3);
|
|
if (is_pair) {
|
|
g_assert(size >= 2);
|
|
if (size == 2) {
|
|
tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
|
|
if (s->be_data == MO_LE) {
|
|
tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
|
|
tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
|
|
} else {
|
|
tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
|
|
tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
|
|
}
|
|
} else {
|
|
TCGv_i128 t16 = tcg_temp_new_i128();
|
|
|
|
tcg_gen_qemu_ld_i128(t16, clean_addr, idx, memop);
|
|
|
|
if (s->be_data == MO_LE) {
|
|
tcg_gen_extr_i128_i64(cpu_exclusive_val,
|
|
cpu_exclusive_high, t16);
|
|
} else {
|
|
tcg_gen_extr_i128_i64(cpu_exclusive_high,
|
|
cpu_exclusive_val, t16);
|
|
}
|
|
tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
|
|
tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
|
|
}
|
|
} else {
|
|
tcg_gen_qemu_ld_i64(cpu_exclusive_val, clean_addr, idx, memop);
|
|
tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
|
|
}
|
|
tcg_gen_mov_i64(cpu_exclusive_addr, clean_addr);
|
|
}
|
|
|
|
static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
|
|
int rn, int size, int is_pair)
|
|
{
|
|
/* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
|
|
* && (!is_pair || env->exclusive_high == [addr + datasize])) {
|
|
* [addr] = {Rt};
|
|
* if (is_pair) {
|
|
* [addr + datasize] = {Rt2};
|
|
* }
|
|
* {Rd} = 0;
|
|
* } else {
|
|
* {Rd} = 1;
|
|
* }
|
|
* env->exclusive_addr = -1;
|
|
*/
|
|
TCGLabel *fail_label = gen_new_label();
|
|
TCGLabel *done_label = gen_new_label();
|
|
TCGv_i64 tmp, clean_addr;
|
|
MemOp memop;
|
|
|
|
/*
|
|
* FIXME: We are out of spec here. We have recorded only the address
|
|
* from load_exclusive, not the entire range, and we assume that the
|
|
* size of the access on both sides match. The architecture allows the
|
|
* store to be smaller than the load, so long as the stored bytes are
|
|
* within the range recorded by the load.
|
|
*/
|
|
|
|
/* See AArch64.ExclusiveMonitorsPass() and AArch64.IsExclusiveVA(). */
|
|
clean_addr = clean_data_tbi(s, cpu_reg_sp(s, rn));
|
|
tcg_gen_brcond_i64(TCG_COND_NE, clean_addr, cpu_exclusive_addr, fail_label);
|
|
|
|
/*
|
|
* The write, and any associated faults, only happen if the virtual
|
|
* and physical addresses pass the exclusive monitor check. These
|
|
* faults are exceedingly unlikely, because normally the guest uses
|
|
* the exact same address register for the load_exclusive, and we
|
|
* would have recognized these faults there.
|
|
*
|
|
* It is possible to trigger an alignment fault pre-LSE2, e.g. with an
|
|
* unaligned 4-byte write within the range of an aligned 8-byte load.
|
|
* With LSE2, the store would need to cross a 16-byte boundary when the
|
|
* load did not, which would mean the store is outside the range
|
|
* recorded for the monitor, which would have failed a corrected monitor
|
|
* check above. For now, we assume no size change and retain the
|
|
* MO_ALIGN to let tcg know what we checked in the load_exclusive.
|
|
*
|
|
* It is possible to trigger an MTE fault, by performing the load with
|
|
* a virtual address with a valid tag and performing the store with the
|
|
* same virtual address and a different invalid tag.
|
|
*/
|
|
memop = size + is_pair;
|
|
if (memop == MO_128 || !dc_isar_feature(aa64_lse2, s)) {
|
|
memop |= MO_ALIGN;
|
|
}
|
|
memop = finalize_memop(s, memop);
|
|
gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
|
|
|
|
tmp = tcg_temp_new_i64();
|
|
if (is_pair) {
|
|
if (size == 2) {
|
|
if (s->be_data == MO_LE) {
|
|
tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
|
|
} else {
|
|
tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
|
|
}
|
|
tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
|
|
cpu_exclusive_val, tmp,
|
|
get_mem_index(s), memop);
|
|
tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
|
|
} else {
|
|
TCGv_i128 t16 = tcg_temp_new_i128();
|
|
TCGv_i128 c16 = tcg_temp_new_i128();
|
|
TCGv_i64 a, b;
|
|
|
|
if (s->be_data == MO_LE) {
|
|
tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt), cpu_reg(s, rt2));
|
|
tcg_gen_concat_i64_i128(c16, cpu_exclusive_val,
|
|
cpu_exclusive_high);
|
|
} else {
|
|
tcg_gen_concat_i64_i128(t16, cpu_reg(s, rt2), cpu_reg(s, rt));
|
|
tcg_gen_concat_i64_i128(c16, cpu_exclusive_high,
|
|
cpu_exclusive_val);
|
|
}
|
|
|
|
tcg_gen_atomic_cmpxchg_i128(t16, cpu_exclusive_addr, c16, t16,
|
|
get_mem_index(s), memop);
|
|
|
|
a = tcg_temp_new_i64();
|
|
b = tcg_temp_new_i64();
|
|
if (s->be_data == MO_LE) {
|
|
tcg_gen_extr_i128_i64(a, b, t16);
|
|
} else {
|
|
tcg_gen_extr_i128_i64(b, a, t16);
|
|
}
|
|
|
|
tcg_gen_xor_i64(a, a, cpu_exclusive_val);
|
|
tcg_gen_xor_i64(b, b, cpu_exclusive_high);
|
|
tcg_gen_or_i64(tmp, a, b);
|
|
|
|
tcg_gen_setcondi_i64(TCG_COND_NE, tmp, tmp, 0);
|
|
}
|
|
} else {
|
|
tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
|
|
cpu_reg(s, rt), get_mem_index(s), memop);
|
|
tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
|
|
}
|
|
tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
|
|
tcg_gen_br(done_label);
|
|
|
|
gen_set_label(fail_label);
|
|
tcg_gen_movi_i64(cpu_reg(s, rd), 1);
|
|
gen_set_label(done_label);
|
|
tcg_gen_movi_i64(cpu_exclusive_addr, -1);
|
|
}
|
|
|
|
static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
|
|
int rn, int size)
|
|
{
|
|
TCGv_i64 tcg_rs = cpu_reg(s, rs);
|
|
TCGv_i64 tcg_rt = cpu_reg(s, rt);
|
|
int memidx = get_mem_index(s);
|
|
TCGv_i64 clean_addr;
|
|
MemOp memop;
|
|
|
|
if (rn == 31) {
|
|
gen_check_sp_alignment(s);
|
|
}
|
|
memop = check_atomic_align(s, rn, size);
|
|
clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
|
|
tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt,
|
|
memidx, memop);
|
|
}
|
|
|
|
static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
|
|
int rn, int size)
|
|
{
|
|
TCGv_i64 s1 = cpu_reg(s, rs);
|
|
TCGv_i64 s2 = cpu_reg(s, rs + 1);
|
|
TCGv_i64 t1 = cpu_reg(s, rt);
|
|
TCGv_i64 t2 = cpu_reg(s, rt + 1);
|
|
TCGv_i64 clean_addr;
|
|
int memidx = get_mem_index(s);
|
|
MemOp memop;
|
|
|
|
if (rn == 31) {
|
|
gen_check_sp_alignment(s);
|
|
}
|
|
|
|
/* This is a single atomic access, despite the "pair". */
|
|
memop = check_atomic_align(s, rn, size + 1);
|
|
clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, memop);
|
|
|
|
if (size == 2) {
|
|
TCGv_i64 cmp = tcg_temp_new_i64();
|
|
TCGv_i64 val = tcg_temp_new_i64();
|
|
|
|
if (s->be_data == MO_LE) {
|
|
tcg_gen_concat32_i64(val, t1, t2);
|
|
tcg_gen_concat32_i64(cmp, s1, s2);
|
|
} else {
|
|
tcg_gen_concat32_i64(val, t2, t1);
|
|
tcg_gen_concat32_i64(cmp, s2, s1);
|
|
}
|
|
|
|
tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx, memop);
|
|
|
|
if (s->be_data == MO_LE) {
|
|
tcg_gen_extr32_i64(s1, s2, cmp);
|
|
} else {
|
|
tcg_gen_extr32_i64(s2, s1, cmp);
|
|
}
|
|
} else {
|
|
TCGv_i128 cmp = tcg_temp_new_i128();
|
|
TCGv_i128 val = tcg_temp_new_i128();
|
|
|
|
if (s->be_data == MO_LE) {
|
|
tcg_gen_concat_i64_i128(val, t1, t2);
|
|
tcg_gen_concat_i64_i128(cmp, s1, s2);
|
|
} else {
|
|
tcg_gen_concat_i64_i128(val, t2, t1);
|
|
tcg_gen_concat_i64_i128(cmp, s2, s1);
|
|
}
|
|
|
|
tcg_gen_atomic_cmpxchg_i128(cmp, clean_addr, cmp, val, memidx, memop);
|
|
|
|
if (s->be_data == MO_LE) {
|
|
tcg_gen_extr_i128_i64(s1, s2, cmp);
|
|
} else {
|
|
tcg_gen_extr_i128_i64(s2, s1, cmp);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Compute the ISS.SF bit for syndrome information if an exception
|
|
* is taken on a load or store. This indicates whether the instruction
|
|
* is accessing a 32-bit or 64-bit register. This logic is derived
|
|
* from the ARMv8 specs for LDR (Shared decode for all encodings).
|
|
*/
|
|
static bool ldst_iss_sf(int size, bool sign, bool ext)
|
|
{
|
|
|
|
if (sign) {
|
|
/*
|
|
* Signed loads are 64 bit results if we are not going to
|
|
* do a zero-extend from 32 to 64 after the load.
|
|
* (For a store, sign and ext are always false.)
|
|
*/
|
|
return !ext;
|
|
} else {
|
|
/* Unsigned loads/stores work at the specified size */
|
|
return size == MO_64;
|
|
}
|
|
}
|
|
|
|
static bool trans_STXR(DisasContext *s, arg_stxr *a)
|
|
{
|
|
if (a->rn == 31) {
|
|
gen_check_sp_alignment(s);
|
|
}
|
|
if (a->lasr) {
|
|
tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
|
|
}
|
|
gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, false);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_LDXR(DisasContext *s, arg_stxr *a)
|
|
{
|
|
if (a->rn == 31) {
|
|
gen_check_sp_alignment(s);
|
|
}
|
|
gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, false);
|
|
if (a->lasr) {
|
|
tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool trans_STLR(DisasContext *s, arg_stlr *a)
|
|
{
|
|
TCGv_i64 clean_addr;
|
|
MemOp memop;
|
|
bool iss_sf = ldst_iss_sf(a->sz, false, false);
|
|
|
|
/*
|
|
* StoreLORelease is the same as Store-Release for QEMU, but
|
|
* needs the feature-test.
|
|
*/
|
|
if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
|
|
return false;
|
|
}
|
|
/* Generate ISS for non-exclusive accesses including LASR. */
|
|
if (a->rn == 31) {
|
|
gen_check_sp_alignment(s);
|
|
}
|
|
tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
|
|
memop = check_ordered_align(s, a->rn, 0, true, a->sz);
|
|
clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
|
|
true, a->rn != 31, memop);
|
|
do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, memop, true, a->rt,
|
|
iss_sf, a->lasr);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_LDAR(DisasContext *s, arg_stlr *a)
|
|
{
|
|
TCGv_i64 clean_addr;
|
|
MemOp memop;
|
|
bool iss_sf = ldst_iss_sf(a->sz, false, false);
|
|
|
|
/* LoadLOAcquire is the same as Load-Acquire for QEMU. */
|
|
if (!a->lasr && !dc_isar_feature(aa64_lor, s)) {
|
|
return false;
|
|
}
|
|
/* Generate ISS for non-exclusive accesses including LASR. */
|
|
if (a->rn == 31) {
|
|
gen_check_sp_alignment(s);
|
|
}
|
|
memop = check_ordered_align(s, a->rn, 0, false, a->sz);
|
|
clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn),
|
|
false, a->rn != 31, memop);
|
|
do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, memop, false, true,
|
|
a->rt, iss_sf, a->lasr);
|
|
tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_STXP(DisasContext *s, arg_stxr *a)
|
|
{
|
|
if (a->rn == 31) {
|
|
gen_check_sp_alignment(s);
|
|
}
|
|
if (a->lasr) {
|
|
tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
|
|
}
|
|
gen_store_exclusive(s, a->rs, a->rt, a->rt2, a->rn, a->sz, true);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_LDXP(DisasContext *s, arg_stxr *a)
|
|
{
|
|
if (a->rn == 31) {
|
|
gen_check_sp_alignment(s);
|
|
}
|
|
gen_load_exclusive(s, a->rt, a->rt2, a->rn, a->sz, true);
|
|
if (a->lasr) {
|
|
tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool trans_CASP(DisasContext *s, arg_CASP *a)
|
|
{
|
|
if (!dc_isar_feature(aa64_atomics, s)) {
|
|
return false;
|
|
}
|
|
if (((a->rt | a->rs) & 1) != 0) {
|
|
return false;
|
|
}
|
|
|
|
gen_compare_and_swap_pair(s, a->rs, a->rt, a->rn, a->sz);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_CAS(DisasContext *s, arg_CAS *a)
|
|
{
|
|
if (!dc_isar_feature(aa64_atomics, s)) {
|
|
return false;
|
|
}
|
|
gen_compare_and_swap(s, a->rs, a->rt, a->rn, a->sz);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_LD_lit(DisasContext *s, arg_ldlit *a)
|
|
{
|
|
bool iss_sf = ldst_iss_sf(a->sz, a->sign, false);
|
|
TCGv_i64 tcg_rt = cpu_reg(s, a->rt);
|
|
TCGv_i64 clean_addr = tcg_temp_new_i64();
|
|
MemOp memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
|
|
|
|
gen_pc_plus_diff(s, clean_addr, a->imm);
|
|
do_gpr_ld(s, tcg_rt, clean_addr, memop,
|
|
false, true, a->rt, iss_sf, false);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_LD_lit_v(DisasContext *s, arg_ldlit *a)
|
|
{
|
|
/* Load register (literal), vector version */
|
|
TCGv_i64 clean_addr;
|
|
MemOp memop;
|
|
|
|
if (!fp_access_check(s)) {
|
|
return true;
|
|
}
|
|
memop = finalize_memop_asimd(s, a->sz);
|
|
clean_addr = tcg_temp_new_i64();
|
|
gen_pc_plus_diff(s, clean_addr, a->imm);
|
|
do_fp_ld(s, a->rt, clean_addr, memop);
|
|
return true;
|
|
}
|
|
|
|
static void op_addr_ldstpair_pre(DisasContext *s, arg_ldstpair *a,
|
|
TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
|
|
uint64_t offset, bool is_store, MemOp mop)
|
|
{
|
|
if (a->rn == 31) {
|
|
gen_check_sp_alignment(s);
|
|
}
|
|
|
|
*dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
|
|
if (!a->p) {
|
|
tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
|
|
}
|
|
|
|
*clean_addr = gen_mte_checkN(s, *dirty_addr, is_store,
|
|
(a->w || a->rn != 31), 2 << a->sz, mop);
|
|
}
|
|
|
|
static void op_addr_ldstpair_post(DisasContext *s, arg_ldstpair *a,
|
|
TCGv_i64 dirty_addr, uint64_t offset)
|
|
{
|
|
if (a->w) {
|
|
if (a->p) {
|
|
tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
|
|
}
|
|
tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
|
|
}
|
|
}
|
|
|
|
static bool trans_STP(DisasContext *s, arg_ldstpair *a)
|
|
{
|
|
uint64_t offset = a->imm << a->sz;
|
|
TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
|
|
MemOp mop = finalize_memop(s, a->sz);
|
|
|
|
op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
|
|
tcg_rt = cpu_reg(s, a->rt);
|
|
tcg_rt2 = cpu_reg(s, a->rt2);
|
|
/*
|
|
* We built mop above for the single logical access -- rebuild it
|
|
* now for the paired operation.
|
|
*
|
|
* With LSE2, non-sign-extending pairs are treated atomically if
|
|
* aligned, and if unaligned one of the pair will be completely
|
|
* within a 16-byte block and that element will be atomic.
|
|
* Otherwise each element is separately atomic.
|
|
* In all cases, issue one operation with the correct atomicity.
|
|
*/
|
|
mop = a->sz + 1;
|
|
if (s->align_mem) {
|
|
mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
|
|
}
|
|
mop = finalize_memop_pair(s, mop);
|
|
if (a->sz == 2) {
|
|
TCGv_i64 tmp = tcg_temp_new_i64();
|
|
|
|
if (s->be_data == MO_LE) {
|
|
tcg_gen_concat32_i64(tmp, tcg_rt, tcg_rt2);
|
|
} else {
|
|
tcg_gen_concat32_i64(tmp, tcg_rt2, tcg_rt);
|
|
}
|
|
tcg_gen_qemu_st_i64(tmp, clean_addr, get_mem_index(s), mop);
|
|
} else {
|
|
TCGv_i128 tmp = tcg_temp_new_i128();
|
|
|
|
if (s->be_data == MO_LE) {
|
|
tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
|
|
} else {
|
|
tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
|
|
}
|
|
tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
|
|
}
|
|
op_addr_ldstpair_post(s, a, dirty_addr, offset);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_LDP(DisasContext *s, arg_ldstpair *a)
|
|
{
|
|
uint64_t offset = a->imm << a->sz;
|
|
TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
|
|
MemOp mop = finalize_memop(s, a->sz);
|
|
|
|
op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
|
|
tcg_rt = cpu_reg(s, a->rt);
|
|
tcg_rt2 = cpu_reg(s, a->rt2);
|
|
|
|
/*
|
|
* We built mop above for the single logical access -- rebuild it
|
|
* now for the paired operation.
|
|
*
|
|
* With LSE2, non-sign-extending pairs are treated atomically if
|
|
* aligned, and if unaligned one of the pair will be completely
|
|
* within a 16-byte block and that element will be atomic.
|
|
* Otherwise each element is separately atomic.
|
|
* In all cases, issue one operation with the correct atomicity.
|
|
*
|
|
* This treats sign-extending loads like zero-extending loads,
|
|
* since that reuses the most code below.
|
|
*/
|
|
mop = a->sz + 1;
|
|
if (s->align_mem) {
|
|
mop |= (a->sz == 2 ? MO_ALIGN_4 : MO_ALIGN_8);
|
|
}
|
|
mop = finalize_memop_pair(s, mop);
|
|
if (a->sz == 2) {
|
|
int o2 = s->be_data == MO_LE ? 32 : 0;
|
|
int o1 = o2 ^ 32;
|
|
|
|
tcg_gen_qemu_ld_i64(tcg_rt, clean_addr, get_mem_index(s), mop);
|
|
if (a->sign) {
|
|
tcg_gen_sextract_i64(tcg_rt2, tcg_rt, o2, 32);
|
|
tcg_gen_sextract_i64(tcg_rt, tcg_rt, o1, 32);
|
|
} else {
|
|
tcg_gen_extract_i64(tcg_rt2, tcg_rt, o2, 32);
|
|
tcg_gen_extract_i64(tcg_rt, tcg_rt, o1, 32);
|
|
}
|
|
} else {
|
|
TCGv_i128 tmp = tcg_temp_new_i128();
|
|
|
|
tcg_gen_qemu_ld_i128(tmp, clean_addr, get_mem_index(s), mop);
|
|
if (s->be_data == MO_LE) {
|
|
tcg_gen_extr_i128_i64(tcg_rt, tcg_rt2, tmp);
|
|
} else {
|
|
tcg_gen_extr_i128_i64(tcg_rt2, tcg_rt, tmp);
|
|
}
|
|
}
|
|
op_addr_ldstpair_post(s, a, dirty_addr, offset);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_STP_v(DisasContext *s, arg_ldstpair *a)
|
|
{
|
|
uint64_t offset = a->imm << a->sz;
|
|
TCGv_i64 clean_addr, dirty_addr;
|
|
MemOp mop;
|
|
|
|
if (!fp_access_check(s)) {
|
|
return true;
|
|
}
|
|
|
|
/* LSE2 does not merge FP pairs; leave these as separate operations. */
|
|
mop = finalize_memop_asimd(s, a->sz);
|
|
op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, true, mop);
|
|
do_fp_st(s, a->rt, clean_addr, mop);
|
|
tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
|
|
do_fp_st(s, a->rt2, clean_addr, mop);
|
|
op_addr_ldstpair_post(s, a, dirty_addr, offset);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_LDP_v(DisasContext *s, arg_ldstpair *a)
|
|
{
|
|
uint64_t offset = a->imm << a->sz;
|
|
TCGv_i64 clean_addr, dirty_addr;
|
|
MemOp mop;
|
|
|
|
if (!fp_access_check(s)) {
|
|
return true;
|
|
}
|
|
|
|
/* LSE2 does not merge FP pairs; leave these as separate operations. */
|
|
mop = finalize_memop_asimd(s, a->sz);
|
|
op_addr_ldstpair_pre(s, a, &clean_addr, &dirty_addr, offset, false, mop);
|
|
do_fp_ld(s, a->rt, clean_addr, mop);
|
|
tcg_gen_addi_i64(clean_addr, clean_addr, 1 << a->sz);
|
|
do_fp_ld(s, a->rt2, clean_addr, mop);
|
|
op_addr_ldstpair_post(s, a, dirty_addr, offset);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_STGP(DisasContext *s, arg_ldstpair *a)
|
|
{
|
|
TCGv_i64 clean_addr, dirty_addr, tcg_rt, tcg_rt2;
|
|
uint64_t offset = a->imm << LOG2_TAG_GRANULE;
|
|
MemOp mop;
|
|
TCGv_i128 tmp;
|
|
|
|
/* STGP only comes in one size. */
|
|
tcg_debug_assert(a->sz == MO_64);
|
|
|
|
if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
|
|
return false;
|
|
}
|
|
|
|
if (a->rn == 31) {
|
|
gen_check_sp_alignment(s);
|
|
}
|
|
|
|
dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
|
|
if (!a->p) {
|
|
tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
|
|
}
|
|
|
|
clean_addr = clean_data_tbi(s, dirty_addr);
|
|
tcg_rt = cpu_reg(s, a->rt);
|
|
tcg_rt2 = cpu_reg(s, a->rt2);
|
|
|
|
/*
|
|
* STGP is defined as two 8-byte memory operations, aligned to TAG_GRANULE,
|
|
* and one tag operation. We implement it as one single aligned 16-byte
|
|
* memory operation for convenience. Note that the alignment ensures
|
|
* MO_ATOM_IFALIGN_PAIR produces 8-byte atomicity for the memory store.
|
|
*/
|
|
mop = finalize_memop_atom(s, MO_128 | MO_ALIGN, MO_ATOM_IFALIGN_PAIR);
|
|
|
|
tmp = tcg_temp_new_i128();
|
|
if (s->be_data == MO_LE) {
|
|
tcg_gen_concat_i64_i128(tmp, tcg_rt, tcg_rt2);
|
|
} else {
|
|
tcg_gen_concat_i64_i128(tmp, tcg_rt2, tcg_rt);
|
|
}
|
|
tcg_gen_qemu_st_i128(tmp, clean_addr, get_mem_index(s), mop);
|
|
|
|
/* Perform the tag store, if tag access enabled. */
|
|
if (s->ata[0]) {
|
|
if (tb_cflags(s->base.tb) & CF_PARALLEL) {
|
|
gen_helper_stg_parallel(tcg_env, dirty_addr, dirty_addr);
|
|
} else {
|
|
gen_helper_stg(tcg_env, dirty_addr, dirty_addr);
|
|
}
|
|
}
|
|
|
|
op_addr_ldstpair_post(s, a, dirty_addr, offset);
|
|
return true;
|
|
}
|
|
|
|
static void op_addr_ldst_imm_pre(DisasContext *s, arg_ldst_imm *a,
|
|
TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
|
|
uint64_t offset, bool is_store, MemOp mop)
|
|
{
|
|
int memidx;
|
|
|
|
if (a->rn == 31) {
|
|
gen_check_sp_alignment(s);
|
|
}
|
|
|
|
*dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
|
|
if (!a->p) {
|
|
tcg_gen_addi_i64(*dirty_addr, *dirty_addr, offset);
|
|
}
|
|
memidx = get_a64_user_mem_index(s, a->unpriv);
|
|
*clean_addr = gen_mte_check1_mmuidx(s, *dirty_addr, is_store,
|
|
a->w || a->rn != 31,
|
|
mop, a->unpriv, memidx);
|
|
}
|
|
|
|
static void op_addr_ldst_imm_post(DisasContext *s, arg_ldst_imm *a,
|
|
TCGv_i64 dirty_addr, uint64_t offset)
|
|
{
|
|
if (a->w) {
|
|
if (a->p) {
|
|
tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
|
|
}
|
|
tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
|
|
}
|
|
}
|
|
|
|
static bool trans_STR_i(DisasContext *s, arg_ldst_imm *a)
|
|
{
|
|
bool iss_sf, iss_valid = !a->w;
|
|
TCGv_i64 clean_addr, dirty_addr, tcg_rt;
|
|
int memidx = get_a64_user_mem_index(s, a->unpriv);
|
|
MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
|
|
|
|
op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
|
|
|
|
tcg_rt = cpu_reg(s, a->rt);
|
|
iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
|
|
|
|
do_gpr_st_memidx(s, tcg_rt, clean_addr, mop, memidx,
|
|
iss_valid, a->rt, iss_sf, false);
|
|
op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_LDR_i(DisasContext *s, arg_ldst_imm *a)
|
|
{
|
|
bool iss_sf, iss_valid = !a->w;
|
|
TCGv_i64 clean_addr, dirty_addr, tcg_rt;
|
|
int memidx = get_a64_user_mem_index(s, a->unpriv);
|
|
MemOp mop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
|
|
|
|
op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
|
|
|
|
tcg_rt = cpu_reg(s, a->rt);
|
|
iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
|
|
|
|
do_gpr_ld_memidx(s, tcg_rt, clean_addr, mop,
|
|
a->ext, memidx, iss_valid, a->rt, iss_sf, false);
|
|
op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_STR_v_i(DisasContext *s, arg_ldst_imm *a)
|
|
{
|
|
TCGv_i64 clean_addr, dirty_addr;
|
|
MemOp mop;
|
|
|
|
if (!fp_access_check(s)) {
|
|
return true;
|
|
}
|
|
mop = finalize_memop_asimd(s, a->sz);
|
|
op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, true, mop);
|
|
do_fp_st(s, a->rt, clean_addr, mop);
|
|
op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_LDR_v_i(DisasContext *s, arg_ldst_imm *a)
|
|
{
|
|
TCGv_i64 clean_addr, dirty_addr;
|
|
MemOp mop;
|
|
|
|
if (!fp_access_check(s)) {
|
|
return true;
|
|
}
|
|
mop = finalize_memop_asimd(s, a->sz);
|
|
op_addr_ldst_imm_pre(s, a, &clean_addr, &dirty_addr, a->imm, false, mop);
|
|
do_fp_ld(s, a->rt, clean_addr, mop);
|
|
op_addr_ldst_imm_post(s, a, dirty_addr, a->imm);
|
|
return true;
|
|
}
|
|
|
|
static void op_addr_ldst_pre(DisasContext *s, arg_ldst *a,
|
|
TCGv_i64 *clean_addr, TCGv_i64 *dirty_addr,
|
|
bool is_store, MemOp memop)
|
|
{
|
|
TCGv_i64 tcg_rm;
|
|
|
|
if (a->rn == 31) {
|
|
gen_check_sp_alignment(s);
|
|
}
|
|
*dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
|
|
|
|
tcg_rm = read_cpu_reg(s, a->rm, 1);
|
|
ext_and_shift_reg(tcg_rm, tcg_rm, a->opt, a->s ? a->sz : 0);
|
|
|
|
tcg_gen_add_i64(*dirty_addr, *dirty_addr, tcg_rm);
|
|
*clean_addr = gen_mte_check1(s, *dirty_addr, is_store, true, memop);
|
|
}
|
|
|
|
static bool trans_LDR(DisasContext *s, arg_ldst *a)
|
|
{
|
|
TCGv_i64 clean_addr, dirty_addr, tcg_rt;
|
|
bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
|
|
MemOp memop;
|
|
|
|
if (extract32(a->opt, 1, 1) == 0) {
|
|
return false;
|
|
}
|
|
|
|
memop = finalize_memop(s, a->sz + a->sign * MO_SIGN);
|
|
op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
|
|
tcg_rt = cpu_reg(s, a->rt);
|
|
do_gpr_ld(s, tcg_rt, clean_addr, memop,
|
|
a->ext, true, a->rt, iss_sf, false);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_STR(DisasContext *s, arg_ldst *a)
|
|
{
|
|
TCGv_i64 clean_addr, dirty_addr, tcg_rt;
|
|
bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
|
|
MemOp memop;
|
|
|
|
if (extract32(a->opt, 1, 1) == 0) {
|
|
return false;
|
|
}
|
|
|
|
memop = finalize_memop(s, a->sz);
|
|
op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
|
|
tcg_rt = cpu_reg(s, a->rt);
|
|
do_gpr_st(s, tcg_rt, clean_addr, memop, true, a->rt, iss_sf, false);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_LDR_v(DisasContext *s, arg_ldst *a)
|
|
{
|
|
TCGv_i64 clean_addr, dirty_addr;
|
|
MemOp memop;
|
|
|
|
if (extract32(a->opt, 1, 1) == 0) {
|
|
return false;
|
|
}
|
|
|
|
if (!fp_access_check(s)) {
|
|
return true;
|
|
}
|
|
|
|
memop = finalize_memop_asimd(s, a->sz);
|
|
op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, false, memop);
|
|
do_fp_ld(s, a->rt, clean_addr, memop);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_STR_v(DisasContext *s, arg_ldst *a)
|
|
{
|
|
TCGv_i64 clean_addr, dirty_addr;
|
|
MemOp memop;
|
|
|
|
if (extract32(a->opt, 1, 1) == 0) {
|
|
return false;
|
|
}
|
|
|
|
if (!fp_access_check(s)) {
|
|
return true;
|
|
}
|
|
|
|
memop = finalize_memop_asimd(s, a->sz);
|
|
op_addr_ldst_pre(s, a, &clean_addr, &dirty_addr, true, memop);
|
|
do_fp_st(s, a->rt, clean_addr, memop);
|
|
return true;
|
|
}
|
|
|
|
|
|
static bool do_atomic_ld(DisasContext *s, arg_atomic *a, AtomicThreeOpFn *fn,
|
|
int sign, bool invert)
|
|
{
|
|
MemOp mop = a->sz | sign;
|
|
TCGv_i64 clean_addr, tcg_rs, tcg_rt;
|
|
|
|
if (a->rn == 31) {
|
|
gen_check_sp_alignment(s);
|
|
}
|
|
mop = check_atomic_align(s, a->rn, mop);
|
|
clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
|
|
a->rn != 31, mop);
|
|
tcg_rs = read_cpu_reg(s, a->rs, true);
|
|
tcg_rt = cpu_reg(s, a->rt);
|
|
if (invert) {
|
|
tcg_gen_not_i64(tcg_rs, tcg_rs);
|
|
}
|
|
/*
|
|
* The tcg atomic primitives are all full barriers. Therefore we
|
|
* can ignore the Acquire and Release bits of this instruction.
|
|
*/
|
|
fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop);
|
|
|
|
if (mop & MO_SIGN) {
|
|
switch (a->sz) {
|
|
case MO_8:
|
|
tcg_gen_ext8u_i64(tcg_rt, tcg_rt);
|
|
break;
|
|
case MO_16:
|
|
tcg_gen_ext16u_i64(tcg_rt, tcg_rt);
|
|
break;
|
|
case MO_32:
|
|
tcg_gen_ext32u_i64(tcg_rt, tcg_rt);
|
|
break;
|
|
case MO_64:
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
TRANS_FEAT(LDADD, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_add_i64, 0, false)
|
|
TRANS_FEAT(LDCLR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_and_i64, 0, true)
|
|
TRANS_FEAT(LDEOR, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_xor_i64, 0, false)
|
|
TRANS_FEAT(LDSET, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_or_i64, 0, false)
|
|
TRANS_FEAT(LDSMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smax_i64, MO_SIGN, false)
|
|
TRANS_FEAT(LDSMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_smin_i64, MO_SIGN, false)
|
|
TRANS_FEAT(LDUMAX, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umax_i64, 0, false)
|
|
TRANS_FEAT(LDUMIN, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_fetch_umin_i64, 0, false)
|
|
TRANS_FEAT(SWP, aa64_atomics, do_atomic_ld, a, tcg_gen_atomic_xchg_i64, 0, false)
|
|
|
|
static bool trans_LDAPR(DisasContext *s, arg_LDAPR *a)
|
|
{
|
|
bool iss_sf = ldst_iss_sf(a->sz, false, false);
|
|
TCGv_i64 clean_addr;
|
|
MemOp mop;
|
|
|
|
if (!dc_isar_feature(aa64_atomics, s) ||
|
|
!dc_isar_feature(aa64_rcpc_8_3, s)) {
|
|
return false;
|
|
}
|
|
if (a->rn == 31) {
|
|
gen_check_sp_alignment(s);
|
|
}
|
|
mop = check_atomic_align(s, a->rn, a->sz);
|
|
clean_addr = gen_mte_check1(s, cpu_reg_sp(s, a->rn), false,
|
|
a->rn != 31, mop);
|
|
/*
|
|
* LDAPR* are a special case because they are a simple load, not a
|
|
* fetch-and-do-something op.
|
|
* The architectural consistency requirements here are weaker than
|
|
* full load-acquire (we only need "load-acquire processor consistent"),
|
|
* but we choose to implement them as full LDAQ.
|
|
*/
|
|
do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, false,
|
|
true, a->rt, iss_sf, true);
|
|
tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_LDRA(DisasContext *s, arg_LDRA *a)
|
|
{
|
|
TCGv_i64 clean_addr, dirty_addr, tcg_rt;
|
|
MemOp memop;
|
|
|
|
/* Load with pointer authentication */
|
|
if (!dc_isar_feature(aa64_pauth, s)) {
|
|
return false;
|
|
}
|
|
|
|
if (a->rn == 31) {
|
|
gen_check_sp_alignment(s);
|
|
}
|
|
dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
|
|
|
|
if (s->pauth_active) {
|
|
if (!a->m) {
|
|
gen_helper_autda_combined(dirty_addr, tcg_env, dirty_addr,
|
|
tcg_constant_i64(0));
|
|
} else {
|
|
gen_helper_autdb_combined(dirty_addr, tcg_env, dirty_addr,
|
|
tcg_constant_i64(0));
|
|
}
|
|
}
|
|
|
|
tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
|
|
|
|
memop = finalize_memop(s, MO_64);
|
|
|
|
/* Note that "clean" and "dirty" here refer to TBI not PAC. */
|
|
clean_addr = gen_mte_check1(s, dirty_addr, false,
|
|
a->w || a->rn != 31, memop);
|
|
|
|
tcg_rt = cpu_reg(s, a->rt);
|
|
do_gpr_ld(s, tcg_rt, clean_addr, memop,
|
|
/* extend */ false, /* iss_valid */ !a->w,
|
|
/* iss_srt */ a->rt, /* iss_sf */ true, /* iss_ar */ false);
|
|
|
|
if (a->w) {
|
|
tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), dirty_addr);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool trans_LDAPR_i(DisasContext *s, arg_ldapr_stlr_i *a)
|
|
{
|
|
TCGv_i64 clean_addr, dirty_addr;
|
|
MemOp mop = a->sz | (a->sign ? MO_SIGN : 0);
|
|
bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
|
|
|
|
if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
|
|
return false;
|
|
}
|
|
|
|
if (a->rn == 31) {
|
|
gen_check_sp_alignment(s);
|
|
}
|
|
|
|
mop = check_ordered_align(s, a->rn, a->imm, false, mop);
|
|
dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
|
|
tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
|
|
clean_addr = clean_data_tbi(s, dirty_addr);
|
|
|
|
/*
|
|
* Load-AcquirePC semantics; we implement as the slightly more
|
|
* restrictive Load-Acquire.
|
|
*/
|
|
do_gpr_ld(s, cpu_reg(s, a->rt), clean_addr, mop, a->ext, true,
|
|
a->rt, iss_sf, true);
|
|
tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_STLR_i(DisasContext *s, arg_ldapr_stlr_i *a)
|
|
{
|
|
TCGv_i64 clean_addr, dirty_addr;
|
|
MemOp mop = a->sz;
|
|
bool iss_sf = ldst_iss_sf(a->sz, a->sign, a->ext);
|
|
|
|
if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
|
|
return false;
|
|
}
|
|
|
|
/* TODO: ARMv8.4-LSE SCTLR.nAA */
|
|
|
|
if (a->rn == 31) {
|
|
gen_check_sp_alignment(s);
|
|
}
|
|
|
|
mop = check_ordered_align(s, a->rn, a->imm, true, mop);
|
|
dirty_addr = read_cpu_reg_sp(s, a->rn, 1);
|
|
tcg_gen_addi_i64(dirty_addr, dirty_addr, a->imm);
|
|
clean_addr = clean_data_tbi(s, dirty_addr);
|
|
|
|
/* Store-Release semantics */
|
|
tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
|
|
do_gpr_st(s, cpu_reg(s, a->rt), clean_addr, mop, true, a->rt, iss_sf, true);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_LD_mult(DisasContext *s, arg_ldst_mult *a)
|
|
{
|
|
TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
|
|
MemOp endian, align, mop;
|
|
|
|
int total; /* total bytes */
|
|
int elements; /* elements per vector */
|
|
int r;
|
|
int size = a->sz;
|
|
|
|
if (!a->p && a->rm != 0) {
|
|
/* For non-postindexed accesses the Rm field must be 0 */
|
|
return false;
|
|
}
|
|
if (size == 3 && !a->q && a->selem != 1) {
|
|
return false;
|
|
}
|
|
if (!fp_access_check(s)) {
|
|
return true;
|
|
}
|
|
|
|
if (a->rn == 31) {
|
|
gen_check_sp_alignment(s);
|
|
}
|
|
|
|
/* For our purposes, bytes are always little-endian. */
|
|
endian = s->be_data;
|
|
if (size == 0) {
|
|
endian = MO_LE;
|
|
}
|
|
|
|
total = a->rpt * a->selem * (a->q ? 16 : 8);
|
|
tcg_rn = cpu_reg_sp(s, a->rn);
|
|
|
|
/*
|
|
* Issue the MTE check vs the logical repeat count, before we
|
|
* promote consecutive little-endian elements below.
|
|
*/
|
|
clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31, total,
|
|
finalize_memop_asimd(s, size));
|
|
|
|
/*
|
|
* Consecutive little-endian elements from a single register
|
|
* can be promoted to a larger little-endian operation.
|
|
*/
|
|
align = MO_ALIGN;
|
|
if (a->selem == 1 && endian == MO_LE) {
|
|
align = pow2_align(size);
|
|
size = 3;
|
|
}
|
|
if (!s->align_mem) {
|
|
align = 0;
|
|
}
|
|
mop = endian | size | align;
|
|
|
|
elements = (a->q ? 16 : 8) >> size;
|
|
tcg_ebytes = tcg_constant_i64(1 << size);
|
|
for (r = 0; r < a->rpt; r++) {
|
|
int e;
|
|
for (e = 0; e < elements; e++) {
|
|
int xs;
|
|
for (xs = 0; xs < a->selem; xs++) {
|
|
int tt = (a->rt + r + xs) % 32;
|
|
do_vec_ld(s, tt, e, clean_addr, mop);
|
|
tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* For non-quad operations, setting a slice of the low 64 bits of
|
|
* the register clears the high 64 bits (in the ARM ARM pseudocode
|
|
* this is implicit in the fact that 'rval' is a 64 bit wide
|
|
* variable). For quad operations, we might still need to zero
|
|
* the high bits of SVE.
|
|
*/
|
|
for (r = 0; r < a->rpt * a->selem; r++) {
|
|
int tt = (a->rt + r) % 32;
|
|
clear_vec_high(s, a->q, tt);
|
|
}
|
|
|
|
if (a->p) {
|
|
if (a->rm == 31) {
|
|
tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
|
|
} else {
|
|
tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool trans_ST_mult(DisasContext *s, arg_ldst_mult *a)
|
|
{
|
|
TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
|
|
MemOp endian, align, mop;
|
|
|
|
int total; /* total bytes */
|
|
int elements; /* elements per vector */
|
|
int r;
|
|
int size = a->sz;
|
|
|
|
if (!a->p && a->rm != 0) {
|
|
/* For non-postindexed accesses the Rm field must be 0 */
|
|
return false;
|
|
}
|
|
if (size == 3 && !a->q && a->selem != 1) {
|
|
return false;
|
|
}
|
|
if (!fp_access_check(s)) {
|
|
return true;
|
|
}
|
|
|
|
if (a->rn == 31) {
|
|
gen_check_sp_alignment(s);
|
|
}
|
|
|
|
/* For our purposes, bytes are always little-endian. */
|
|
endian = s->be_data;
|
|
if (size == 0) {
|
|
endian = MO_LE;
|
|
}
|
|
|
|
total = a->rpt * a->selem * (a->q ? 16 : 8);
|
|
tcg_rn = cpu_reg_sp(s, a->rn);
|
|
|
|
/*
|
|
* Issue the MTE check vs the logical repeat count, before we
|
|
* promote consecutive little-endian elements below.
|
|
*/
|
|
clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31, total,
|
|
finalize_memop_asimd(s, size));
|
|
|
|
/*
|
|
* Consecutive little-endian elements from a single register
|
|
* can be promoted to a larger little-endian operation.
|
|
*/
|
|
align = MO_ALIGN;
|
|
if (a->selem == 1 && endian == MO_LE) {
|
|
align = pow2_align(size);
|
|
size = 3;
|
|
}
|
|
if (!s->align_mem) {
|
|
align = 0;
|
|
}
|
|
mop = endian | size | align;
|
|
|
|
elements = (a->q ? 16 : 8) >> size;
|
|
tcg_ebytes = tcg_constant_i64(1 << size);
|
|
for (r = 0; r < a->rpt; r++) {
|
|
int e;
|
|
for (e = 0; e < elements; e++) {
|
|
int xs;
|
|
for (xs = 0; xs < a->selem; xs++) {
|
|
int tt = (a->rt + r + xs) % 32;
|
|
do_vec_st(s, tt, e, clean_addr, mop);
|
|
tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (a->p) {
|
|
if (a->rm == 31) {
|
|
tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
|
|
} else {
|
|
tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool trans_ST_single(DisasContext *s, arg_ldst_single *a)
|
|
{
|
|
int xs, total, rt;
|
|
TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
|
|
MemOp mop;
|
|
|
|
if (!a->p && a->rm != 0) {
|
|
return false;
|
|
}
|
|
if (!fp_access_check(s)) {
|
|
return true;
|
|
}
|
|
|
|
if (a->rn == 31) {
|
|
gen_check_sp_alignment(s);
|
|
}
|
|
|
|
total = a->selem << a->scale;
|
|
tcg_rn = cpu_reg_sp(s, a->rn);
|
|
|
|
mop = finalize_memop_asimd(s, a->scale);
|
|
clean_addr = gen_mte_checkN(s, tcg_rn, true, a->p || a->rn != 31,
|
|
total, mop);
|
|
|
|
tcg_ebytes = tcg_constant_i64(1 << a->scale);
|
|
for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
|
|
do_vec_st(s, rt, a->index, clean_addr, mop);
|
|
tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
|
|
}
|
|
|
|
if (a->p) {
|
|
if (a->rm == 31) {
|
|
tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
|
|
} else {
|
|
tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool trans_LD_single(DisasContext *s, arg_ldst_single *a)
|
|
{
|
|
int xs, total, rt;
|
|
TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
|
|
MemOp mop;
|
|
|
|
if (!a->p && a->rm != 0) {
|
|
return false;
|
|
}
|
|
if (!fp_access_check(s)) {
|
|
return true;
|
|
}
|
|
|
|
if (a->rn == 31) {
|
|
gen_check_sp_alignment(s);
|
|
}
|
|
|
|
total = a->selem << a->scale;
|
|
tcg_rn = cpu_reg_sp(s, a->rn);
|
|
|
|
mop = finalize_memop_asimd(s, a->scale);
|
|
clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
|
|
total, mop);
|
|
|
|
tcg_ebytes = tcg_constant_i64(1 << a->scale);
|
|
for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
|
|
do_vec_ld(s, rt, a->index, clean_addr, mop);
|
|
tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
|
|
}
|
|
|
|
if (a->p) {
|
|
if (a->rm == 31) {
|
|
tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
|
|
} else {
|
|
tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool trans_LD_single_repl(DisasContext *s, arg_LD_single_repl *a)
|
|
{
|
|
int xs, total, rt;
|
|
TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
|
|
MemOp mop;
|
|
|
|
if (!a->p && a->rm != 0) {
|
|
return false;
|
|
}
|
|
if (!fp_access_check(s)) {
|
|
return true;
|
|
}
|
|
|
|
if (a->rn == 31) {
|
|
gen_check_sp_alignment(s);
|
|
}
|
|
|
|
total = a->selem << a->scale;
|
|
tcg_rn = cpu_reg_sp(s, a->rn);
|
|
|
|
mop = finalize_memop_asimd(s, a->scale);
|
|
clean_addr = gen_mte_checkN(s, tcg_rn, false, a->p || a->rn != 31,
|
|
total, mop);
|
|
|
|
tcg_ebytes = tcg_constant_i64(1 << a->scale);
|
|
for (xs = 0, rt = a->rt; xs < a->selem; xs++, rt = (rt + 1) % 32) {
|
|
/* Load and replicate to all elements */
|
|
TCGv_i64 tcg_tmp = tcg_temp_new_i64();
|
|
|
|
tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop);
|
|
tcg_gen_gvec_dup_i64(a->scale, vec_full_reg_offset(s, rt),
|
|
(a->q + 1) * 8, vec_full_reg_size(s), tcg_tmp);
|
|
tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
|
|
}
|
|
|
|
if (a->p) {
|
|
if (a->rm == 31) {
|
|
tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
|
|
} else {
|
|
tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, a->rm));
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool trans_STZGM(DisasContext *s, arg_ldst_tag *a)
|
|
{
|
|
TCGv_i64 addr, clean_addr, tcg_rt;
|
|
int size = 4 << s->dcz_blocksize;
|
|
|
|
if (!dc_isar_feature(aa64_mte, s)) {
|
|
return false;
|
|
}
|
|
if (s->current_el == 0) {
|
|
return false;
|
|
}
|
|
|
|
if (a->rn == 31) {
|
|
gen_check_sp_alignment(s);
|
|
}
|
|
|
|
addr = read_cpu_reg_sp(s, a->rn, true);
|
|
tcg_gen_addi_i64(addr, addr, a->imm);
|
|
tcg_rt = cpu_reg(s, a->rt);
|
|
|
|
if (s->ata[0]) {
|
|
gen_helper_stzgm_tags(tcg_env, addr, tcg_rt);
|
|
}
|
|
/*
|
|
* The non-tags portion of STZGM is mostly like DC_ZVA,
|
|
* except the alignment happens before the access.
|
|
*/
|
|
clean_addr = clean_data_tbi(s, addr);
|
|
tcg_gen_andi_i64(clean_addr, clean_addr, -size);
|
|
gen_helper_dc_zva(tcg_env, clean_addr);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_STGM(DisasContext *s, arg_ldst_tag *a)
|
|
{
|
|
TCGv_i64 addr, clean_addr, tcg_rt;
|
|
|
|
if (!dc_isar_feature(aa64_mte, s)) {
|
|
return false;
|
|
}
|
|
if (s->current_el == 0) {
|
|
return false;
|
|
}
|
|
|
|
if (a->rn == 31) {
|
|
gen_check_sp_alignment(s);
|
|
}
|
|
|
|
addr = read_cpu_reg_sp(s, a->rn, true);
|
|
tcg_gen_addi_i64(addr, addr, a->imm);
|
|
tcg_rt = cpu_reg(s, a->rt);
|
|
|
|
if (s->ata[0]) {
|
|
gen_helper_stgm(tcg_env, addr, tcg_rt);
|
|
} else {
|
|
MMUAccessType acc = MMU_DATA_STORE;
|
|
int size = 4 << s->gm_blocksize;
|
|
|
|
clean_addr = clean_data_tbi(s, addr);
|
|
tcg_gen_andi_i64(clean_addr, clean_addr, -size);
|
|
gen_probe_access(s, clean_addr, acc, size);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool trans_LDGM(DisasContext *s, arg_ldst_tag *a)
|
|
{
|
|
TCGv_i64 addr, clean_addr, tcg_rt;
|
|
|
|
if (!dc_isar_feature(aa64_mte, s)) {
|
|
return false;
|
|
}
|
|
if (s->current_el == 0) {
|
|
return false;
|
|
}
|
|
|
|
if (a->rn == 31) {
|
|
gen_check_sp_alignment(s);
|
|
}
|
|
|
|
addr = read_cpu_reg_sp(s, a->rn, true);
|
|
tcg_gen_addi_i64(addr, addr, a->imm);
|
|
tcg_rt = cpu_reg(s, a->rt);
|
|
|
|
if (s->ata[0]) {
|
|
gen_helper_ldgm(tcg_rt, tcg_env, addr);
|
|
} else {
|
|
MMUAccessType acc = MMU_DATA_LOAD;
|
|
int size = 4 << s->gm_blocksize;
|
|
|
|
clean_addr = clean_data_tbi(s, addr);
|
|
tcg_gen_andi_i64(clean_addr, clean_addr, -size);
|
|
gen_probe_access(s, clean_addr, acc, size);
|
|
/* The result tags are zeros. */
|
|
tcg_gen_movi_i64(tcg_rt, 0);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool trans_LDG(DisasContext *s, arg_ldst_tag *a)
|
|
{
|
|
TCGv_i64 addr, clean_addr, tcg_rt;
|
|
|
|
if (!dc_isar_feature(aa64_mte_insn_reg, s)) {
|
|
return false;
|
|
}
|
|
|
|
if (a->rn == 31) {
|
|
gen_check_sp_alignment(s);
|
|
}
|
|
|
|
addr = read_cpu_reg_sp(s, a->rn, true);
|
|
if (!a->p) {
|
|
/* pre-index or signed offset */
|
|
tcg_gen_addi_i64(addr, addr, a->imm);
|
|
}
|
|
|
|
tcg_gen_andi_i64(addr, addr, -TAG_GRANULE);
|
|
tcg_rt = cpu_reg(s, a->rt);
|
|
if (s->ata[0]) {
|
|
gen_helper_ldg(tcg_rt, tcg_env, addr, tcg_rt);
|
|
} else {
|
|
/*
|
|
* Tag access disabled: we must check for aborts on the load
|
|
* load from [rn+offset], and then insert a 0 tag into rt.
|
|
*/
|
|
clean_addr = clean_data_tbi(s, addr);
|
|
gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8);
|
|
gen_address_with_allocation_tag0(tcg_rt, tcg_rt);
|
|
}
|
|
|
|
if (a->w) {
|
|
/* pre-index or post-index */
|
|
if (a->p) {
|
|
/* post-index */
|
|
tcg_gen_addi_i64(addr, addr, a->imm);
|
|
}
|
|
tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool do_STG(DisasContext *s, arg_ldst_tag *a, bool is_zero, bool is_pair)
|
|
{
|
|
TCGv_i64 addr, tcg_rt;
|
|
|
|
if (a->rn == 31) {
|
|
gen_check_sp_alignment(s);
|
|
}
|
|
|
|
addr = read_cpu_reg_sp(s, a->rn, true);
|
|
if (!a->p) {
|
|
/* pre-index or signed offset */
|
|
tcg_gen_addi_i64(addr, addr, a->imm);
|
|
}
|
|
tcg_rt = cpu_reg_sp(s, a->rt);
|
|
if (!s->ata[0]) {
|
|
/*
|
|
* For STG and ST2G, we need to check alignment and probe memory.
|
|
* TODO: For STZG and STZ2G, we could rely on the stores below,
|
|
* at least for system mode; user-only won't enforce alignment.
|
|
*/
|
|
if (is_pair) {
|
|
gen_helper_st2g_stub(tcg_env, addr);
|
|
} else {
|
|
gen_helper_stg_stub(tcg_env, addr);
|
|
}
|
|
} else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
|
|
if (is_pair) {
|
|
gen_helper_st2g_parallel(tcg_env, addr, tcg_rt);
|
|
} else {
|
|
gen_helper_stg_parallel(tcg_env, addr, tcg_rt);
|
|
}
|
|
} else {
|
|
if (is_pair) {
|
|
gen_helper_st2g(tcg_env, addr, tcg_rt);
|
|
} else {
|
|
gen_helper_stg(tcg_env, addr, tcg_rt);
|
|
}
|
|
}
|
|
|
|
if (is_zero) {
|
|
TCGv_i64 clean_addr = clean_data_tbi(s, addr);
|
|
TCGv_i64 zero64 = tcg_constant_i64(0);
|
|
TCGv_i128 zero128 = tcg_temp_new_i128();
|
|
int mem_index = get_mem_index(s);
|
|
MemOp mop = finalize_memop(s, MO_128 | MO_ALIGN);
|
|
|
|
tcg_gen_concat_i64_i128(zero128, zero64, zero64);
|
|
|
|
/* This is 1 or 2 atomic 16-byte operations. */
|
|
tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
|
|
if (is_pair) {
|
|
tcg_gen_addi_i64(clean_addr, clean_addr, 16);
|
|
tcg_gen_qemu_st_i128(zero128, clean_addr, mem_index, mop);
|
|
}
|
|
}
|
|
|
|
if (a->w) {
|
|
/* pre-index or post-index */
|
|
if (a->p) {
|
|
/* post-index */
|
|
tcg_gen_addi_i64(addr, addr, a->imm);
|
|
}
|
|
tcg_gen_mov_i64(cpu_reg_sp(s, a->rn), addr);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
TRANS_FEAT(STG, aa64_mte_insn_reg, do_STG, a, false, false)
|
|
TRANS_FEAT(STZG, aa64_mte_insn_reg, do_STG, a, true, false)
|
|
TRANS_FEAT(ST2G, aa64_mte_insn_reg, do_STG, a, false, true)
|
|
TRANS_FEAT(STZ2G, aa64_mte_insn_reg, do_STG, a, true, true)
|
|
|
|
typedef void SetFn(TCGv_env, TCGv_i32, TCGv_i32);
|
|
|
|
static bool do_SET(DisasContext *s, arg_set *a, bool is_epilogue,
|
|
bool is_setg, SetFn fn)
|
|
{
|
|
int memidx;
|
|
uint32_t syndrome, desc = 0;
|
|
|
|
if (is_setg && !dc_isar_feature(aa64_mte, s)) {
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* UNPREDICTABLE cases: we choose to UNDEF, which allows
|
|
* us to pull this check before the CheckMOPSEnabled() test
|
|
* (which we do in the helper function)
|
|
*/
|
|
if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
|
|
a->rd == 31 || a->rn == 31) {
|
|
return false;
|
|
}
|
|
|
|
memidx = get_a64_user_mem_index(s, a->unpriv);
|
|
|
|
/*
|
|
* We pass option_a == true, matching our implementation;
|
|
* we pass wrong_option == false: helper function may set that bit.
|
|
*/
|
|
syndrome = syn_mop(true, is_setg, (a->nontemp << 1) | a->unpriv,
|
|
is_epilogue, false, true, a->rd, a->rs, a->rn);
|
|
|
|
if (is_setg ? s->ata[a->unpriv] : s->mte_active[a->unpriv]) {
|
|
/* We may need to do MTE tag checking, so assemble the descriptor */
|
|
desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
|
|
desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
|
|
desc = FIELD_DP32(desc, MTEDESC, WRITE, true);
|
|
/* SIZEM1 and ALIGN we leave 0 (byte write) */
|
|
}
|
|
/* The helper function always needs the memidx even with MTE disabled */
|
|
desc = FIELD_DP32(desc, MTEDESC, MIDX, memidx);
|
|
|
|
/*
|
|
* The helper needs the register numbers, but since they're in
|
|
* the syndrome anyway, we let it extract them from there rather
|
|
* than passing in an extra three integer arguments.
|
|
*/
|
|
fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(desc));
|
|
return true;
|
|
}
|
|
|
|
TRANS_FEAT(SETP, aa64_mops, do_SET, a, false, false, gen_helper_setp)
|
|
TRANS_FEAT(SETM, aa64_mops, do_SET, a, false, false, gen_helper_setm)
|
|
TRANS_FEAT(SETE, aa64_mops, do_SET, a, true, false, gen_helper_sete)
|
|
TRANS_FEAT(SETGP, aa64_mops, do_SET, a, false, true, gen_helper_setgp)
|
|
TRANS_FEAT(SETGM, aa64_mops, do_SET, a, false, true, gen_helper_setgm)
|
|
TRANS_FEAT(SETGE, aa64_mops, do_SET, a, true, true, gen_helper_setge)
|
|
|
|
typedef void CpyFn(TCGv_env, TCGv_i32, TCGv_i32, TCGv_i32);
|
|
|
|
static bool do_CPY(DisasContext *s, arg_cpy *a, bool is_epilogue, CpyFn fn)
|
|
{
|
|
int rmemidx, wmemidx;
|
|
uint32_t syndrome, rdesc = 0, wdesc = 0;
|
|
bool wunpriv = extract32(a->options, 0, 1);
|
|
bool runpriv = extract32(a->options, 1, 1);
|
|
|
|
/*
|
|
* UNPREDICTABLE cases: we choose to UNDEF, which allows
|
|
* us to pull this check before the CheckMOPSEnabled() test
|
|
* (which we do in the helper function)
|
|
*/
|
|
if (a->rs == a->rn || a->rs == a->rd || a->rn == a->rd ||
|
|
a->rd == 31 || a->rs == 31 || a->rn == 31) {
|
|
return false;
|
|
}
|
|
|
|
rmemidx = get_a64_user_mem_index(s, runpriv);
|
|
wmemidx = get_a64_user_mem_index(s, wunpriv);
|
|
|
|
/*
|
|
* We pass option_a == true, matching our implementation;
|
|
* we pass wrong_option == false: helper function may set that bit.
|
|
*/
|
|
syndrome = syn_mop(false, false, a->options, is_epilogue,
|
|
false, true, a->rd, a->rs, a->rn);
|
|
|
|
/* If we need to do MTE tag checking, assemble the descriptors */
|
|
if (s->mte_active[runpriv]) {
|
|
rdesc = FIELD_DP32(rdesc, MTEDESC, TBI, s->tbid);
|
|
rdesc = FIELD_DP32(rdesc, MTEDESC, TCMA, s->tcma);
|
|
}
|
|
if (s->mte_active[wunpriv]) {
|
|
wdesc = FIELD_DP32(wdesc, MTEDESC, TBI, s->tbid);
|
|
wdesc = FIELD_DP32(wdesc, MTEDESC, TCMA, s->tcma);
|
|
wdesc = FIELD_DP32(wdesc, MTEDESC, WRITE, true);
|
|
}
|
|
/* The helper function needs these parts of the descriptor regardless */
|
|
rdesc = FIELD_DP32(rdesc, MTEDESC, MIDX, rmemidx);
|
|
wdesc = FIELD_DP32(wdesc, MTEDESC, MIDX, wmemidx);
|
|
|
|
/*
|
|
* The helper needs the register numbers, but since they're in
|
|
* the syndrome anyway, we let it extract them from there rather
|
|
* than passing in an extra three integer arguments.
|
|
*/
|
|
fn(tcg_env, tcg_constant_i32(syndrome), tcg_constant_i32(wdesc),
|
|
tcg_constant_i32(rdesc));
|
|
return true;
|
|
}
|
|
|
|
TRANS_FEAT(CPYP, aa64_mops, do_CPY, a, false, gen_helper_cpyp)
|
|
TRANS_FEAT(CPYM, aa64_mops, do_CPY, a, false, gen_helper_cpym)
|
|
TRANS_FEAT(CPYE, aa64_mops, do_CPY, a, true, gen_helper_cpye)
|
|
TRANS_FEAT(CPYFP, aa64_mops, do_CPY, a, false, gen_helper_cpyfp)
|
|
TRANS_FEAT(CPYFM, aa64_mops, do_CPY, a, false, gen_helper_cpyfm)
|
|
TRANS_FEAT(CPYFE, aa64_mops, do_CPY, a, true, gen_helper_cpyfe)
|
|
|
|
typedef void ArithTwoOp(TCGv_i64, TCGv_i64, TCGv_i64);
|
|
|
|
static bool gen_rri(DisasContext *s, arg_rri_sf *a,
|
|
bool rd_sp, bool rn_sp, ArithTwoOp *fn)
|
|
{
|
|
TCGv_i64 tcg_rn = rn_sp ? cpu_reg_sp(s, a->rn) : cpu_reg(s, a->rn);
|
|
TCGv_i64 tcg_rd = rd_sp ? cpu_reg_sp(s, a->rd) : cpu_reg(s, a->rd);
|
|
TCGv_i64 tcg_imm = tcg_constant_i64(a->imm);
|
|
|
|
fn(tcg_rd, tcg_rn, tcg_imm);
|
|
if (!a->sf) {
|
|
tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* PC-rel. addressing
|
|
*/
|
|
|
|
static bool trans_ADR(DisasContext *s, arg_ri *a)
|
|
{
|
|
gen_pc_plus_diff(s, cpu_reg(s, a->rd), a->imm);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_ADRP(DisasContext *s, arg_ri *a)
|
|
{
|
|
int64_t offset = (int64_t)a->imm << 12;
|
|
|
|
/* The page offset is ok for CF_PCREL. */
|
|
offset -= s->pc_curr & 0xfff;
|
|
gen_pc_plus_diff(s, cpu_reg(s, a->rd), offset);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Add/subtract (immediate)
|
|
*/
|
|
TRANS(ADD_i, gen_rri, a, 1, 1, tcg_gen_add_i64)
|
|
TRANS(SUB_i, gen_rri, a, 1, 1, tcg_gen_sub_i64)
|
|
TRANS(ADDS_i, gen_rri, a, 0, 1, a->sf ? gen_add64_CC : gen_add32_CC)
|
|
TRANS(SUBS_i, gen_rri, a, 0, 1, a->sf ? gen_sub64_CC : gen_sub32_CC)
|
|
|
|
/*
|
|
* Add/subtract (immediate, with tags)
|
|
*/
|
|
|
|
static bool gen_add_sub_imm_with_tags(DisasContext *s, arg_rri_tag *a,
|
|
bool sub_op)
|
|
{
|
|
TCGv_i64 tcg_rn, tcg_rd;
|
|
int imm;
|
|
|
|
imm = a->uimm6 << LOG2_TAG_GRANULE;
|
|
if (sub_op) {
|
|
imm = -imm;
|
|
}
|
|
|
|
tcg_rn = cpu_reg_sp(s, a->rn);
|
|
tcg_rd = cpu_reg_sp(s, a->rd);
|
|
|
|
if (s->ata[0]) {
|
|
gen_helper_addsubg(tcg_rd, tcg_env, tcg_rn,
|
|
tcg_constant_i32(imm),
|
|
tcg_constant_i32(a->uimm4));
|
|
} else {
|
|
tcg_gen_addi_i64(tcg_rd, tcg_rn, imm);
|
|
gen_address_with_allocation_tag0(tcg_rd, tcg_rd);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
TRANS_FEAT(ADDG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, false)
|
|
TRANS_FEAT(SUBG_i, aa64_mte_insn_reg, gen_add_sub_imm_with_tags, a, true)
|
|
|
|
/* The input should be a value in the bottom e bits (with higher
|
|
* bits zero); returns that value replicated into every element
|
|
* of size e in a 64 bit integer.
|
|
*/
|
|
static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
|
|
{
|
|
assert(e != 0);
|
|
while (e < 64) {
|
|
mask |= mask << e;
|
|
e *= 2;
|
|
}
|
|
return mask;
|
|
}
|
|
|
|
/*
|
|
* Logical (immediate)
|
|
*/
|
|
|
|
/*
|
|
* Simplified variant of pseudocode DecodeBitMasks() for the case where we
|
|
* only require the wmask. Returns false if the imms/immr/immn are a reserved
|
|
* value (ie should cause a guest UNDEF exception), and true if they are
|
|
* valid, in which case the decoded bit pattern is written to result.
|
|
*/
|
|
bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
|
|
unsigned int imms, unsigned int immr)
|
|
{
|
|
uint64_t mask;
|
|
unsigned e, levels, s, r;
|
|
int len;
|
|
|
|
assert(immn < 2 && imms < 64 && immr < 64);
|
|
|
|
/* The bit patterns we create here are 64 bit patterns which
|
|
* are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
|
|
* 64 bits each. Each element contains the same value: a run
|
|
* of between 1 and e-1 non-zero bits, rotated within the
|
|
* element by between 0 and e-1 bits.
|
|
*
|
|
* The element size and run length are encoded into immn (1 bit)
|
|
* and imms (6 bits) as follows:
|
|
* 64 bit elements: immn = 1, imms = <length of run - 1>
|
|
* 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
|
|
* 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
|
|
* 8 bit elements: immn = 0, imms = 110 : <length of run - 1>
|
|
* 4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
|
|
* 2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
|
|
* Notice that immn = 0, imms = 11111x is the only combination
|
|
* not covered by one of the above options; this is reserved.
|
|
* Further, <length of run - 1> all-ones is a reserved pattern.
|
|
*
|
|
* In all cases the rotation is by immr % e (and immr is 6 bits).
|
|
*/
|
|
|
|
/* First determine the element size */
|
|
len = 31 - clz32((immn << 6) | (~imms & 0x3f));
|
|
if (len < 1) {
|
|
/* This is the immn == 0, imms == 0x11111x case */
|
|
return false;
|
|
}
|
|
e = 1 << len;
|
|
|
|
levels = e - 1;
|
|
s = imms & levels;
|
|
r = immr & levels;
|
|
|
|
if (s == levels) {
|
|
/* <length of run - 1> mustn't be all-ones. */
|
|
return false;
|
|
}
|
|
|
|
/* Create the value of one element: s+1 set bits rotated
|
|
* by r within the element (which is e bits wide)...
|
|
*/
|
|
mask = MAKE_64BIT_MASK(0, s + 1);
|
|
if (r) {
|
|
mask = (mask >> r) | (mask << (e - r));
|
|
mask &= MAKE_64BIT_MASK(0, e);
|
|
}
|
|
/* ...then replicate the element over the whole 64 bit value */
|
|
mask = bitfield_replicate(mask, e);
|
|
*result = mask;
|
|
return true;
|
|
}
|
|
|
|
static bool gen_rri_log(DisasContext *s, arg_rri_log *a, bool set_cc,
|
|
void (*fn)(TCGv_i64, TCGv_i64, int64_t))
|
|
{
|
|
TCGv_i64 tcg_rd, tcg_rn;
|
|
uint64_t imm;
|
|
|
|
/* Some immediate field values are reserved. */
|
|
if (!logic_imm_decode_wmask(&imm, extract32(a->dbm, 12, 1),
|
|
extract32(a->dbm, 0, 6),
|
|
extract32(a->dbm, 6, 6))) {
|
|
return false;
|
|
}
|
|
if (!a->sf) {
|
|
imm &= 0xffffffffull;
|
|
}
|
|
|
|
tcg_rd = set_cc ? cpu_reg(s, a->rd) : cpu_reg_sp(s, a->rd);
|
|
tcg_rn = cpu_reg(s, a->rn);
|
|
|
|
fn(tcg_rd, tcg_rn, imm);
|
|
if (set_cc) {
|
|
gen_logic_CC(a->sf, tcg_rd);
|
|
}
|
|
if (!a->sf) {
|
|
tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
TRANS(AND_i, gen_rri_log, a, false, tcg_gen_andi_i64)
|
|
TRANS(ORR_i, gen_rri_log, a, false, tcg_gen_ori_i64)
|
|
TRANS(EOR_i, gen_rri_log, a, false, tcg_gen_xori_i64)
|
|
TRANS(ANDS_i, gen_rri_log, a, true, tcg_gen_andi_i64)
|
|
|
|
/*
|
|
* Move wide (immediate)
|
|
*/
|
|
|
|
static bool trans_MOVZ(DisasContext *s, arg_movw *a)
|
|
{
|
|
int pos = a->hw << 4;
|
|
tcg_gen_movi_i64(cpu_reg(s, a->rd), (uint64_t)a->imm << pos);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_MOVN(DisasContext *s, arg_movw *a)
|
|
{
|
|
int pos = a->hw << 4;
|
|
uint64_t imm = a->imm;
|
|
|
|
imm = ~(imm << pos);
|
|
if (!a->sf) {
|
|
imm = (uint32_t)imm;
|
|
}
|
|
tcg_gen_movi_i64(cpu_reg(s, a->rd), imm);
|
|
return true;
|
|
}
|
|
|
|
static bool trans_MOVK(DisasContext *s, arg_movw *a)
|
|
{
|
|
int pos = a->hw << 4;
|
|
TCGv_i64 tcg_rd, tcg_im;
|
|
|
|
tcg_rd = cpu_reg(s, a->rd);
|
|
tcg_im = tcg_constant_i64(a->imm);
|
|
tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_im, pos, 16);
|
|
if (!a->sf) {
|
|
tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Bitfield
|
|
*/
|
|
|
|
static bool trans_SBFM(DisasContext *s, arg_SBFM *a)
|
|
{
|
|
TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
|
|
TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
|
|
unsigned int bitsize = a->sf ? 64 : 32;
|
|
unsigned int ri = a->immr;
|
|
unsigned int si = a->imms;
|
|
unsigned int pos, len;
|
|
|
|
if (si >= ri) {
|
|
/* Wd<s-r:0> = Wn<s:r> */
|
|
len = (si - ri) + 1;
|
|
tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
|
|
if (!a->sf) {
|
|
tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
|
|
}
|
|
} else {
|
|
/* Wd<32+s-r,32-r> = Wn<s:0> */
|
|
len = si + 1;
|
|
pos = (bitsize - ri) & (bitsize - 1);
|
|
|
|
if (len < ri) {
|
|
/*
|
|
* Sign extend the destination field from len to fill the
|
|
* balance of the word. Let the deposit below insert all
|
|
* of those sign bits.
|
|
*/
|
|
tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
|
|
len = ri;
|
|
}
|
|
|
|
/*
|
|
* We start with zero, and we haven't modified any bits outside
|
|
* bitsize, therefore no final zero-extension is unneeded for !sf.
|
|
*/
|
|
tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool trans_UBFM(DisasContext *s, arg_UBFM *a)
|
|
{
|
|
TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
|
|
TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
|
|
unsigned int bitsize = a->sf ? 64 : 32;
|
|
unsigned int ri = a->immr;
|
|
unsigned int si = a->imms;
|
|
unsigned int pos, len;
|
|
|
|
tcg_rd = cpu_reg(s, a->rd);
|
|
tcg_tmp = read_cpu_reg(s, a->rn, 1);
|
|
|
|
if (si >= ri) {
|
|
/* Wd<s-r:0> = Wn<s:r> */
|
|
len = (si - ri) + 1;
|
|
tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
|
|
} else {
|
|
/* Wd<32+s-r,32-r> = Wn<s:0> */
|
|
len = si + 1;
|
|
pos = (bitsize - ri) & (bitsize - 1);
|
|
tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool trans_BFM(DisasContext *s, arg_BFM *a)
|
|
{
|
|
TCGv_i64 tcg_rd = cpu_reg(s, a->rd);
|
|
TCGv_i64 tcg_tmp = read_cpu_reg(s, a->rn, 1);
|
|
unsigned int bitsize = a->sf ? 64 : 32;
|
|
unsigned int ri = a->immr;
|
|
unsigned int si = a->imms;
|
|
unsigned int pos, len;
|
|
|
|
tcg_rd = cpu_reg(s, a->rd);
|
|
tcg_tmp = read_cpu_reg(s, a->rn, 1);
|
|
|
|
if (si >= ri) {
|
|
/* Wd<s-r:0> = Wn<s:r> */
|
|
tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
|
|
len = (si - ri) + 1;
|
|
pos = 0;
|
|
} else {
|
|
/* Wd<32+s-r,32-r> = Wn<s:0> */
|
|
len = si + 1;
|
|
pos = (bitsize - ri) & (bitsize - 1);
|
|
}
|
|
|
|
tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
|
|
if (!a->sf) {
|
|
tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool trans_EXTR(DisasContext *s, arg_extract *a)
|
|
{
|
|
TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
|
|
|
|
tcg_rd = cpu_reg(s, a->rd);
|
|
|
|
if (unlikely(a->imm == 0)) {
|
|
/*
|
|
* tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
|
|
* so an extract from bit 0 is a special case.
|
|
*/
|
|
if (a->sf) {
|
|
tcg_gen_mov_i64(tcg_rd, cpu_reg(s, a->rm));
|
|
} else {
|
|
tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, a->rm));
|
|
}
|
|
} else {
|
|
tcg_rm = cpu_reg(s, a->rm);
|
|
tcg_rn = cpu_reg(s, a->rn);
|
|
|
|
if (a->sf) {
|
|
/* Specialization to ROR happens in EXTRACT2. */
|
|
tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, a->imm);
|
|
} else {
|
|
TCGv_i32 t0 = tcg_temp_new_i32();
|
|
|
|
tcg_gen_extrl_i64_i32(t0, tcg_rm);
|
|
if (a->rm == a->rn) {
|
|
tcg_gen_rotri_i32(t0, t0, a->imm);
|
|
} else {
|
|
TCGv_i32 t1 = tcg_temp_new_i32();
|
|
tcg_gen_extrl_i64_i32(t1, tcg_rn);
|
|
tcg_gen_extract2_i32(t0, t0, t1, a->imm);
|
|
}
|
|
tcg_gen_extu_i32_i64(tcg_rd, t0);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Shift a TCGv src by TCGv shift_amount, put result in dst.
|
|
* Note that it is the caller's responsibility to ensure that the
|
|
* shift amount is in range (ie 0..31 or 0..63) and provide the ARM
|
|
* mandated semantics for out of range shifts.
|
|
*/
|
|
static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
|
|
enum a64_shift_type shift_type, TCGv_i64 shift_amount)
|
|
{
|
|
switch (shift_type) {
|
|
case A64_SHIFT_TYPE_LSL:
|
|
tcg_gen_shl_i64(dst, src, shift_amount);
|
|
break;
|
|
case A64_SHIFT_TYPE_LSR:
|
|
tcg_gen_shr_i64(dst, src, shift_amount);
|
|
break;
|
|
case A64_SHIFT_TYPE_ASR:
|
|
if (!sf) {
|
|
tcg_gen_ext32s_i64(dst, src);
|
|
}
|
|
tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
|
|
break;
|
|
case A64_SHIFT_TYPE_ROR:
|
|
if (sf) {
|
|
tcg_gen_rotr_i64(dst, src, shift_amount);
|
|
} else {
|
|
TCGv_i32 t0, t1;
|
|
t0 = tcg_temp_new_i32();
|
|
t1 = tcg_temp_new_i32();
|
|
tcg_gen_extrl_i64_i32(t0, src);
|
|
tcg_gen_extrl_i64_i32(t1, shift_amount);
|
|
tcg_gen_rotr_i32(t0, t0, t1);
|
|
tcg_gen_extu_i32_i64(dst, t0);
|
|
}
|
|
break;
|
|
default:
|
|
assert(FALSE); /* all shift types should be handled */
|
|
break;
|
|
}
|
|
|
|
if (!sf) { /* zero extend final result */
|
|
tcg_gen_ext32u_i64(dst, dst);
|
|
}
|
|
}
|
|
|
|
/* Shift a TCGv src by immediate, put result in dst.
|
|
* The shift amount must be in range (this should always be true as the
|
|
* relevant instructions will UNDEF on bad shift immediates).
|
|
*/
|
|
static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
|
|
enum a64_shift_type shift_type, unsigned int shift_i)
|
|
{
|
|
assert(shift_i < (sf ? 64 : 32));
|
|
|
|
if (shift_i == 0) {
|
|
tcg_gen_mov_i64(dst, src);
|
|
} else {
|
|
shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i));
|
|
}
|
|
}
|
|
|
|
/* Logical (shifted register)
|
|
* 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
|
|
* +----+-----+-----------+-------+---+------+--------+------+------+
|
|
* | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd |
|
|
* +----+-----+-----------+-------+---+------+--------+------+------+
|
|
*/
|
|
static void disas_logic_reg(DisasContext *s, uint32_t insn)
|
|
{
|
|
TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
|
|
unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
|
|
|
|
sf = extract32(insn, 31, 1);
|
|
opc = extract32(insn, 29, 2);
|
|
shift_type = extract32(insn, 22, 2);
|
|
invert = extract32(insn, 21, 1);
|
|
rm = extract32(insn, 16, 5);
|
|
shift_amount = extract32(insn, 10, 6);
|
|
rn = extract32(insn, 5, 5);
|
|
rd = extract32(insn, 0, 5);
|
|
|
|
if (!sf && (shift_amount & (1 << 5))) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
tcg_rd = cpu_reg(s, rd);
|
|
|
|
if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
|
|
/* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
|
|
* register-register MOV and MVN, so it is worth special casing.
|
|
*/
|
|
tcg_rm = cpu_reg(s, rm);
|
|
if (invert) {
|
|
tcg_gen_not_i64(tcg_rd, tcg_rm);
|
|
if (!sf) {
|
|
tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
|
|
}
|
|
} else {
|
|
if (sf) {
|
|
tcg_gen_mov_i64(tcg_rd, tcg_rm);
|
|
} else {
|
|
tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
tcg_rm = read_cpu_reg(s, rm, sf);
|
|
|
|
if (shift_amount) {
|
|
shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
|
|
}
|
|
|
|
tcg_rn = cpu_reg(s, rn);
|
|
|
|
switch (opc | (invert << 2)) {
|
|
case 0: /* AND */
|
|
case 3: /* ANDS */
|
|
tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
|
|
break;
|
|
case 1: /* ORR */
|
|
tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
|
|
break;
|
|
case 2: /* EOR */
|
|
tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
|
|
break;
|
|
case 4: /* BIC */
|
|
case 7: /* BICS */
|
|
tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
|
|
break;
|
|
case 5: /* ORN */
|
|
tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
|
|
break;
|
|
case 6: /* EON */
|
|
tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
|
|
break;
|
|
default:
|
|
assert(FALSE);
|
|
break;
|
|
}
|
|
|
|
if (!sf) {
|
|
tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
|
|
}
|
|
|
|
if (opc == 3) {
|
|
gen_logic_CC(sf, tcg_rd);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Add/subtract (extended register)
|
|
*
|
|
* 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0|
|
|
* +--+--+--+-----------+-----+--+-------+------+------+----+----+
|
|
* |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd |
|
|
* +--+--+--+-----------+-----+--+-------+------+------+----+----+
|
|
*
|
|
* sf: 0 -> 32bit, 1 -> 64bit
|
|
* op: 0 -> add , 1 -> sub
|
|
* S: 1 -> set flags
|
|
* opt: 00
|
|
* option: extension type (see DecodeRegExtend)
|
|
* imm3: optional shift to Rm
|
|
*
|
|
* Rd = Rn + LSL(extend(Rm), amount)
|
|
*/
|
|
static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
|
|
{
|
|
int rd = extract32(insn, 0, 5);
|
|
int rn = extract32(insn, 5, 5);
|
|
int imm3 = extract32(insn, 10, 3);
|
|
int option = extract32(insn, 13, 3);
|
|
int rm = extract32(insn, 16, 5);
|
|
int opt = extract32(insn, 22, 2);
|
|
bool setflags = extract32(insn, 29, 1);
|
|
bool sub_op = extract32(insn, 30, 1);
|
|
bool sf = extract32(insn, 31, 1);
|
|
|
|
TCGv_i64 tcg_rm, tcg_rn; /* temps */
|
|
TCGv_i64 tcg_rd;
|
|
TCGv_i64 tcg_result;
|
|
|
|
if (imm3 > 4 || opt != 0) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
/* non-flag setting ops may use SP */
|
|
if (!setflags) {
|
|
tcg_rd = cpu_reg_sp(s, rd);
|
|
} else {
|
|
tcg_rd = cpu_reg(s, rd);
|
|
}
|
|
tcg_rn = read_cpu_reg_sp(s, rn, sf);
|
|
|
|
tcg_rm = read_cpu_reg(s, rm, sf);
|
|
ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
|
|
|
|
tcg_result = tcg_temp_new_i64();
|
|
|
|
if (!setflags) {
|
|
if (sub_op) {
|
|
tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
|
|
} else {
|
|
tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
|
|
}
|
|
} else {
|
|
if (sub_op) {
|
|
gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
|
|
} else {
|
|
gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
|
|
}
|
|
}
|
|
|
|
if (sf) {
|
|
tcg_gen_mov_i64(tcg_rd, tcg_result);
|
|
} else {
|
|
tcg_gen_ext32u_i64(tcg_rd, tcg_result);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Add/subtract (shifted register)
|
|
*
|
|
* 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
|
|
* +--+--+--+-----------+-----+--+-------+---------+------+------+
|
|
* |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd |
|
|
* +--+--+--+-----------+-----+--+-------+---------+------+------+
|
|
*
|
|
* sf: 0 -> 32bit, 1 -> 64bit
|
|
* op: 0 -> add , 1 -> sub
|
|
* S: 1 -> set flags
|
|
* shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
|
|
* imm6: Shift amount to apply to Rm before the add/sub
|
|
*/
|
|
static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
|
|
{
|
|
int rd = extract32(insn, 0, 5);
|
|
int rn = extract32(insn, 5, 5);
|
|
int imm6 = extract32(insn, 10, 6);
|
|
int rm = extract32(insn, 16, 5);
|
|
int shift_type = extract32(insn, 22, 2);
|
|
bool setflags = extract32(insn, 29, 1);
|
|
bool sub_op = extract32(insn, 30, 1);
|
|
bool sf = extract32(insn, 31, 1);
|
|
|
|
TCGv_i64 tcg_rd = cpu_reg(s, rd);
|
|
TCGv_i64 tcg_rn, tcg_rm;
|
|
TCGv_i64 tcg_result;
|
|
|
|
if ((shift_type == 3) || (!sf && (imm6 > 31))) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
tcg_rn = read_cpu_reg(s, rn, sf);
|
|
tcg_rm = read_cpu_reg(s, rm, sf);
|
|
|
|
shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
|
|
|
|
tcg_result = tcg_temp_new_i64();
|
|
|
|
if (!setflags) {
|
|
if (sub_op) {
|
|
tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
|
|
} else {
|
|
tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
|
|
}
|
|
} else {
|
|
if (sub_op) {
|
|
gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
|
|
} else {
|
|
gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
|
|
}
|
|
}
|
|
|
|
if (sf) {
|
|
tcg_gen_mov_i64(tcg_rd, tcg_result);
|
|
} else {
|
|
tcg_gen_ext32u_i64(tcg_rd, tcg_result);
|
|
}
|
|
}
|
|
|
|
/* Data-processing (3 source)
|
|
*
|
|
* 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0
|
|
* +--+------+-----------+------+------+----+------+------+------+
|
|
* |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd |
|
|
* +--+------+-----------+------+------+----+------+------+------+
|
|
*/
|
|
static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
|
|
{
|
|
int rd = extract32(insn, 0, 5);
|
|
int rn = extract32(insn, 5, 5);
|
|
int ra = extract32(insn, 10, 5);
|
|
int rm = extract32(insn, 16, 5);
|
|
int op_id = (extract32(insn, 29, 3) << 4) |
|
|
(extract32(insn, 21, 3) << 1) |
|
|
extract32(insn, 15, 1);
|
|
bool sf = extract32(insn, 31, 1);
|
|
bool is_sub = extract32(op_id, 0, 1);
|
|
bool is_high = extract32(op_id, 2, 1);
|
|
bool is_signed = false;
|
|
TCGv_i64 tcg_op1;
|
|
TCGv_i64 tcg_op2;
|
|
TCGv_i64 tcg_tmp;
|
|
|
|
/* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
|
|
switch (op_id) {
|
|
case 0x42: /* SMADDL */
|
|
case 0x43: /* SMSUBL */
|
|
case 0x44: /* SMULH */
|
|
is_signed = true;
|
|
break;
|
|
case 0x0: /* MADD (32bit) */
|
|
case 0x1: /* MSUB (32bit) */
|
|
case 0x40: /* MADD (64bit) */
|
|
case 0x41: /* MSUB (64bit) */
|
|
case 0x4a: /* UMADDL */
|
|
case 0x4b: /* UMSUBL */
|
|
case 0x4c: /* UMULH */
|
|
break;
|
|
default:
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
if (is_high) {
|
|
TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
|
|
TCGv_i64 tcg_rd = cpu_reg(s, rd);
|
|
TCGv_i64 tcg_rn = cpu_reg(s, rn);
|
|
TCGv_i64 tcg_rm = cpu_reg(s, rm);
|
|
|
|
if (is_signed) {
|
|
tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
|
|
} else {
|
|
tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
|
|
}
|
|
return;
|
|
}
|
|
|
|
tcg_op1 = tcg_temp_new_i64();
|
|
tcg_op2 = tcg_temp_new_i64();
|
|
tcg_tmp = tcg_temp_new_i64();
|
|
|
|
if (op_id < 0x42) {
|
|
tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
|
|
tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
|
|
} else {
|
|
if (is_signed) {
|
|
tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
|
|
tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
|
|
} else {
|
|
tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
|
|
tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
|
|
}
|
|
}
|
|
|
|
if (ra == 31 && !is_sub) {
|
|
/* Special-case MADD with rA == XZR; it is the standard MUL alias */
|
|
tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
|
|
} else {
|
|
tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
|
|
if (is_sub) {
|
|
tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
|
|
} else {
|
|
tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
|
|
}
|
|
}
|
|
|
|
if (!sf) {
|
|
tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
|
|
}
|
|
}
|
|
|
|
/* Add/subtract (with carry)
|
|
* 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
|
|
* +--+--+--+------------------------+------+-------------+------+-----+
|
|
* |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd |
|
|
* +--+--+--+------------------------+------+-------------+------+-----+
|
|
*/
|
|
|
|
static void disas_adc_sbc(DisasContext *s, uint32_t insn)
|
|
{
|
|
unsigned int sf, op, setflags, rm, rn, rd;
|
|
TCGv_i64 tcg_y, tcg_rn, tcg_rd;
|
|
|
|
sf = extract32(insn, 31, 1);
|
|
op = extract32(insn, 30, 1);
|
|
setflags = extract32(insn, 29, 1);
|
|
rm = extract32(insn, 16, 5);
|
|
rn = extract32(insn, 5, 5);
|
|
rd = extract32(insn, 0, 5);
|
|
|
|
tcg_rd = cpu_reg(s, rd);
|
|
tcg_rn = cpu_reg(s, rn);
|
|
|
|
if (op) {
|
|
tcg_y = tcg_temp_new_i64();
|
|
tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
|
|
} else {
|
|
tcg_y = cpu_reg(s, rm);
|
|
}
|
|
|
|
if (setflags) {
|
|
gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
|
|
} else {
|
|
gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Rotate right into flags
|
|
* 31 30 29 21 15 10 5 4 0
|
|
* +--+--+--+-----------------+--------+-----------+------+--+------+
|
|
* |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask |
|
|
* +--+--+--+-----------------+--------+-----------+------+--+------+
|
|
*/
|
|
static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn)
|
|
{
|
|
int mask = extract32(insn, 0, 4);
|
|
int o2 = extract32(insn, 4, 1);
|
|
int rn = extract32(insn, 5, 5);
|
|
int imm6 = extract32(insn, 15, 6);
|
|
int sf_op_s = extract32(insn, 29, 3);
|
|
TCGv_i64 tcg_rn;
|
|
TCGv_i32 nzcv;
|
|
|
|
if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
tcg_rn = read_cpu_reg(s, rn, 1);
|
|
tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6);
|
|
|
|
nzcv = tcg_temp_new_i32();
|
|
tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
|
|
|
|
if (mask & 8) { /* N */
|
|
tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
|
|
}
|
|
if (mask & 4) { /* Z */
|
|
tcg_gen_not_i32(cpu_ZF, nzcv);
|
|
tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
|
|
}
|
|
if (mask & 2) { /* C */
|
|
tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
|
|
}
|
|
if (mask & 1) { /* V */
|
|
tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Evaluate into flags
|
|
* 31 30 29 21 15 14 10 5 4 0
|
|
* +--+--+--+-----------------+---------+----+---------+------+--+------+
|
|
* |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask |
|
|
* +--+--+--+-----------------+---------+----+---------+------+--+------+
|
|
*/
|
|
static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn)
|
|
{
|
|
int o3_mask = extract32(insn, 0, 5);
|
|
int rn = extract32(insn, 5, 5);
|
|
int o2 = extract32(insn, 15, 6);
|
|
int sz = extract32(insn, 14, 1);
|
|
int sf_op_s = extract32(insn, 29, 3);
|
|
TCGv_i32 tmp;
|
|
int shift;
|
|
|
|
if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd ||
|
|
!dc_isar_feature(aa64_condm_4, s)) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
shift = sz ? 16 : 24; /* SETF16 or SETF8 */
|
|
|
|
tmp = tcg_temp_new_i32();
|
|
tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
|
|
tcg_gen_shli_i32(cpu_NF, tmp, shift);
|
|
tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
|
|
tcg_gen_mov_i32(cpu_ZF, cpu_NF);
|
|
tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
|
|
}
|
|
|
|
/* Conditional compare (immediate / register)
|
|
* 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
|
|
* +--+--+--+------------------------+--------+------+----+--+------+--+-----+
|
|
* |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv |
|
|
* +--+--+--+------------------------+--------+------+----+--+------+--+-----+
|
|
* [1] y [0] [0]
|
|
*/
|
|
static void disas_cc(DisasContext *s, uint32_t insn)
|
|
{
|
|
unsigned int sf, op, y, cond, rn, nzcv, is_imm;
|
|
TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
|
|
TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
|
|
DisasCompare c;
|
|
|
|
if (!extract32(insn, 29, 1)) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
if (insn & (1 << 10 | 1 << 4)) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
sf = extract32(insn, 31, 1);
|
|
op = extract32(insn, 30, 1);
|
|
is_imm = extract32(insn, 11, 1);
|
|
y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
|
|
cond = extract32(insn, 12, 4);
|
|
rn = extract32(insn, 5, 5);
|
|
nzcv = extract32(insn, 0, 4);
|
|
|
|
/* Set T0 = !COND. */
|
|
tcg_t0 = tcg_temp_new_i32();
|
|
arm_test_cc(&c, cond);
|
|
tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
|
|
|
|
/* Load the arguments for the new comparison. */
|
|
if (is_imm) {
|
|
tcg_y = tcg_temp_new_i64();
|
|
tcg_gen_movi_i64(tcg_y, y);
|
|
} else {
|
|
tcg_y = cpu_reg(s, y);
|
|
}
|
|
tcg_rn = cpu_reg(s, rn);
|
|
|
|
/* Set the flags for the new comparison. */
|
|
tcg_tmp = tcg_temp_new_i64();
|
|
if (op) {
|
|
gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
|
|
} else {
|
|
gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
|
|
}
|
|
|
|
/* If COND was false, force the flags to #nzcv. Compute two masks
|
|
* to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
|
|
* For tcg hosts that support ANDC, we can make do with just T1.
|
|
* In either case, allow the tcg optimizer to delete any unused mask.
|
|
*/
|
|
tcg_t1 = tcg_temp_new_i32();
|
|
tcg_t2 = tcg_temp_new_i32();
|
|
tcg_gen_neg_i32(tcg_t1, tcg_t0);
|
|
tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
|
|
|
|
if (nzcv & 8) { /* N */
|
|
tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
|
|
} else {
|
|
if (TCG_TARGET_HAS_andc_i32) {
|
|
tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
|
|
} else {
|
|
tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
|
|
}
|
|
}
|
|
if (nzcv & 4) { /* Z */
|
|
if (TCG_TARGET_HAS_andc_i32) {
|
|
tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
|
|
} else {
|
|
tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
|
|
}
|
|
} else {
|
|
tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
|
|
}
|
|
if (nzcv & 2) { /* C */
|
|
tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
|
|
} else {
|
|
if (TCG_TARGET_HAS_andc_i32) {
|
|
tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
|
|
} else {
|
|
tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
|
|
}
|
|
}
|
|
if (nzcv & 1) { /* V */
|
|
tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
|
|
} else {
|
|
if (TCG_TARGET_HAS_andc_i32) {
|
|
tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
|
|
} else {
|
|
tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Conditional select
|
|
* 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0
|
|
* +----+----+---+-----------------+------+------+-----+------+------+
|
|
* | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd |
|
|
* +----+----+---+-----------------+------+------+-----+------+------+
|
|
*/
|
|
static void disas_cond_select(DisasContext *s, uint32_t insn)
|
|
{
|
|
unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
|
|
TCGv_i64 tcg_rd, zero;
|
|
DisasCompare64 c;
|
|
|
|
if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
|
|
/* S == 1 or op2<1> == 1 */
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
sf = extract32(insn, 31, 1);
|
|
else_inv = extract32(insn, 30, 1);
|
|
rm = extract32(insn, 16, 5);
|
|
cond = extract32(insn, 12, 4);
|
|
else_inc = extract32(insn, 10, 1);
|
|
rn = extract32(insn, 5, 5);
|
|
rd = extract32(insn, 0, 5);
|
|
|
|
tcg_rd = cpu_reg(s, rd);
|
|
|
|
a64_test_cc(&c, cond);
|
|
zero = tcg_constant_i64(0);
|
|
|
|
if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
|
|
/* CSET & CSETM. */
|
|
if (else_inv) {
|
|
tcg_gen_negsetcond_i64(tcg_invert_cond(c.cond),
|
|
tcg_rd, c.value, zero);
|
|
} else {
|
|
tcg_gen_setcond_i64(tcg_invert_cond(c.cond),
|
|
tcg_rd, c.value, zero);
|
|
}
|
|
} else {
|
|
TCGv_i64 t_true = cpu_reg(s, rn);
|
|
TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
|
|
if (else_inv && else_inc) {
|
|
tcg_gen_neg_i64(t_false, t_false);
|
|
} else if (else_inv) {
|
|
tcg_gen_not_i64(t_false, t_false);
|
|
} else if (else_inc) {
|
|
tcg_gen_addi_i64(t_false, t_false, 1);
|
|
}
|
|
tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
|
|
}
|
|
|
|
if (!sf) {
|
|
tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
|
|
}
|
|
}
|
|
|
|
static void handle_clz(DisasContext *s, unsigned int sf,
|
|
unsigned int rn, unsigned int rd)
|
|
{
|
|
TCGv_i64 tcg_rd, tcg_rn;
|
|
tcg_rd = cpu_reg(s, rd);
|
|
tcg_rn = cpu_reg(s, rn);
|
|
|
|
if (sf) {
|
|
tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
|
|
} else {
|
|
TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
|
|
tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
|
|
tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
|
|
tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
|
|
}
|
|
}
|
|
|
|
static void handle_cls(DisasContext *s, unsigned int sf,
|
|
unsigned int rn, unsigned int rd)
|
|
{
|
|
TCGv_i64 tcg_rd, tcg_rn;
|
|
tcg_rd = cpu_reg(s, rd);
|
|
tcg_rn = cpu_reg(s, rn);
|
|
|
|
if (sf) {
|
|
tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
|
|
} else {
|
|
TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
|
|
tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
|
|
tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
|
|
tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
|
|
}
|
|
}
|
|
|
|
static void handle_rbit(DisasContext *s, unsigned int sf,
|
|
unsigned int rn, unsigned int rd)
|
|
{
|
|
TCGv_i64 tcg_rd, tcg_rn;
|
|
tcg_rd = cpu_reg(s, rd);
|
|
tcg_rn = cpu_reg(s, rn);
|
|
|
|
if (sf) {
|
|
gen_helper_rbit64(tcg_rd, tcg_rn);
|
|
} else {
|
|
TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
|
|
tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
|
|
gen_helper_rbit(tcg_tmp32, tcg_tmp32);
|
|
tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
|
|
}
|
|
}
|
|
|
|
/* REV with sf==1, opcode==3 ("REV64") */
|
|
static void handle_rev64(DisasContext *s, unsigned int sf,
|
|
unsigned int rn, unsigned int rd)
|
|
{
|
|
if (!sf) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
|
|
}
|
|
|
|
/* REV with sf==0, opcode==2
|
|
* REV32 (sf==1, opcode==2)
|
|
*/
|
|
static void handle_rev32(DisasContext *s, unsigned int sf,
|
|
unsigned int rn, unsigned int rd)
|
|
{
|
|
TCGv_i64 tcg_rd = cpu_reg(s, rd);
|
|
TCGv_i64 tcg_rn = cpu_reg(s, rn);
|
|
|
|
if (sf) {
|
|
tcg_gen_bswap64_i64(tcg_rd, tcg_rn);
|
|
tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32);
|
|
} else {
|
|
tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ);
|
|
}
|
|
}
|
|
|
|
/* REV16 (opcode==1) */
|
|
static void handle_rev16(DisasContext *s, unsigned int sf,
|
|
unsigned int rn, unsigned int rd)
|
|
{
|
|
TCGv_i64 tcg_rd = cpu_reg(s, rd);
|
|
TCGv_i64 tcg_tmp = tcg_temp_new_i64();
|
|
TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
|
|
TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
|
|
|
|
tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
|
|
tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
|
|
tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
|
|
tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
|
|
tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
|
|
}
|
|
|
|
/* Data-processing (1 source)
|
|
* 31 30 29 28 21 20 16 15 10 9 5 4 0
|
|
* +----+---+---+-----------------+---------+--------+------+------+
|
|
* | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd |
|
|
* +----+---+---+-----------------+---------+--------+------+------+
|
|
*/
|
|
static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
|
|
{
|
|
unsigned int sf, opcode, opcode2, rn, rd;
|
|
TCGv_i64 tcg_rd;
|
|
|
|
if (extract32(insn, 29, 1)) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
sf = extract32(insn, 31, 1);
|
|
opcode = extract32(insn, 10, 6);
|
|
opcode2 = extract32(insn, 16, 5);
|
|
rn = extract32(insn, 5, 5);
|
|
rd = extract32(insn, 0, 5);
|
|
|
|
#define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
|
|
|
|
switch (MAP(sf, opcode2, opcode)) {
|
|
case MAP(0, 0x00, 0x00): /* RBIT */
|
|
case MAP(1, 0x00, 0x00):
|
|
handle_rbit(s, sf, rn, rd);
|
|
break;
|
|
case MAP(0, 0x00, 0x01): /* REV16 */
|
|
case MAP(1, 0x00, 0x01):
|
|
handle_rev16(s, sf, rn, rd);
|
|
break;
|
|
case MAP(0, 0x00, 0x02): /* REV/REV32 */
|
|
case MAP(1, 0x00, 0x02):
|
|
handle_rev32(s, sf, rn, rd);
|
|
break;
|
|
case MAP(1, 0x00, 0x03): /* REV64 */
|
|
handle_rev64(s, sf, rn, rd);
|
|
break;
|
|
case MAP(0, 0x00, 0x04): /* CLZ */
|
|
case MAP(1, 0x00, 0x04):
|
|
handle_clz(s, sf, rn, rd);
|
|
break;
|
|
case MAP(0, 0x00, 0x05): /* CLS */
|
|
case MAP(1, 0x00, 0x05):
|
|
handle_cls(s, sf, rn, rd);
|
|
break;
|
|
case MAP(1, 0x01, 0x00): /* PACIA */
|
|
if (s->pauth_active) {
|
|
tcg_rd = cpu_reg(s, rd);
|
|
gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
|
|
} else if (!dc_isar_feature(aa64_pauth, s)) {
|
|
goto do_unallocated;
|
|
}
|
|
break;
|
|
case MAP(1, 0x01, 0x01): /* PACIB */
|
|
if (s->pauth_active) {
|
|
tcg_rd = cpu_reg(s, rd);
|
|
gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
|
|
} else if (!dc_isar_feature(aa64_pauth, s)) {
|
|
goto do_unallocated;
|
|
}
|
|
break;
|
|
case MAP(1, 0x01, 0x02): /* PACDA */
|
|
if (s->pauth_active) {
|
|
tcg_rd = cpu_reg(s, rd);
|
|
gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
|
|
} else if (!dc_isar_feature(aa64_pauth, s)) {
|
|
goto do_unallocated;
|
|
}
|
|
break;
|
|
case MAP(1, 0x01, 0x03): /* PACDB */
|
|
if (s->pauth_active) {
|
|
tcg_rd = cpu_reg(s, rd);
|
|
gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
|
|
} else if (!dc_isar_feature(aa64_pauth, s)) {
|
|
goto do_unallocated;
|
|
}
|
|
break;
|
|
case MAP(1, 0x01, 0x04): /* AUTIA */
|
|
if (s->pauth_active) {
|
|
tcg_rd = cpu_reg(s, rd);
|
|
gen_helper_autia(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
|
|
} else if (!dc_isar_feature(aa64_pauth, s)) {
|
|
goto do_unallocated;
|
|
}
|
|
break;
|
|
case MAP(1, 0x01, 0x05): /* AUTIB */
|
|
if (s->pauth_active) {
|
|
tcg_rd = cpu_reg(s, rd);
|
|
gen_helper_autib(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
|
|
} else if (!dc_isar_feature(aa64_pauth, s)) {
|
|
goto do_unallocated;
|
|
}
|
|
break;
|
|
case MAP(1, 0x01, 0x06): /* AUTDA */
|
|
if (s->pauth_active) {
|
|
tcg_rd = cpu_reg(s, rd);
|
|
gen_helper_autda(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
|
|
} else if (!dc_isar_feature(aa64_pauth, s)) {
|
|
goto do_unallocated;
|
|
}
|
|
break;
|
|
case MAP(1, 0x01, 0x07): /* AUTDB */
|
|
if (s->pauth_active) {
|
|
tcg_rd = cpu_reg(s, rd);
|
|
gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, cpu_reg_sp(s, rn));
|
|
} else if (!dc_isar_feature(aa64_pauth, s)) {
|
|
goto do_unallocated;
|
|
}
|
|
break;
|
|
case MAP(1, 0x01, 0x08): /* PACIZA */
|
|
if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
|
|
goto do_unallocated;
|
|
} else if (s->pauth_active) {
|
|
tcg_rd = cpu_reg(s, rd);
|
|
gen_helper_pacia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
|
|
}
|
|
break;
|
|
case MAP(1, 0x01, 0x09): /* PACIZB */
|
|
if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
|
|
goto do_unallocated;
|
|
} else if (s->pauth_active) {
|
|
tcg_rd = cpu_reg(s, rd);
|
|
gen_helper_pacib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
|
|
}
|
|
break;
|
|
case MAP(1, 0x01, 0x0a): /* PACDZA */
|
|
if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
|
|
goto do_unallocated;
|
|
} else if (s->pauth_active) {
|
|
tcg_rd = cpu_reg(s, rd);
|
|
gen_helper_pacda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
|
|
}
|
|
break;
|
|
case MAP(1, 0x01, 0x0b): /* PACDZB */
|
|
if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
|
|
goto do_unallocated;
|
|
} else if (s->pauth_active) {
|
|
tcg_rd = cpu_reg(s, rd);
|
|
gen_helper_pacdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
|
|
}
|
|
break;
|
|
case MAP(1, 0x01, 0x0c): /* AUTIZA */
|
|
if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
|
|
goto do_unallocated;
|
|
} else if (s->pauth_active) {
|
|
tcg_rd = cpu_reg(s, rd);
|
|
gen_helper_autia(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
|
|
}
|
|
break;
|
|
case MAP(1, 0x01, 0x0d): /* AUTIZB */
|
|
if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
|
|
goto do_unallocated;
|
|
} else if (s->pauth_active) {
|
|
tcg_rd = cpu_reg(s, rd);
|
|
gen_helper_autib(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
|
|
}
|
|
break;
|
|
case MAP(1, 0x01, 0x0e): /* AUTDZA */
|
|
if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
|
|
goto do_unallocated;
|
|
} else if (s->pauth_active) {
|
|
tcg_rd = cpu_reg(s, rd);
|
|
gen_helper_autda(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
|
|
}
|
|
break;
|
|
case MAP(1, 0x01, 0x0f): /* AUTDZB */
|
|
if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
|
|
goto do_unallocated;
|
|
} else if (s->pauth_active) {
|
|
tcg_rd = cpu_reg(s, rd);
|
|
gen_helper_autdb(tcg_rd, tcg_env, tcg_rd, tcg_constant_i64(0));
|
|
}
|
|
break;
|
|
case MAP(1, 0x01, 0x10): /* XPACI */
|
|
if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
|
|
goto do_unallocated;
|
|
} else if (s->pauth_active) {
|
|
tcg_rd = cpu_reg(s, rd);
|
|
gen_helper_xpaci(tcg_rd, tcg_env, tcg_rd);
|
|
}
|
|
break;
|
|
case MAP(1, 0x01, 0x11): /* XPACD */
|
|
if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
|
|
goto do_unallocated;
|
|
} else if (s->pauth_active) {
|
|
tcg_rd = cpu_reg(s, rd);
|
|
gen_helper_xpacd(tcg_rd, tcg_env, tcg_rd);
|
|
}
|
|
break;
|
|
default:
|
|
do_unallocated:
|
|
unallocated_encoding(s);
|
|
break;
|
|
}
|
|
|
|
#undef MAP
|
|
}
|
|
|
|
static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
|
|
unsigned int rm, unsigned int rn, unsigned int rd)
|
|
{
|
|
TCGv_i64 tcg_n, tcg_m, tcg_rd;
|
|
tcg_rd = cpu_reg(s, rd);
|
|
|
|
if (!sf && is_signed) {
|
|
tcg_n = tcg_temp_new_i64();
|
|
tcg_m = tcg_temp_new_i64();
|
|
tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
|
|
tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
|
|
} else {
|
|
tcg_n = read_cpu_reg(s, rn, sf);
|
|
tcg_m = read_cpu_reg(s, rm, sf);
|
|
}
|
|
|
|
if (is_signed) {
|
|
gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
|
|
} else {
|
|
gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
|
|
}
|
|
|
|
if (!sf) { /* zero extend final result */
|
|
tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
|
|
}
|
|
}
|
|
|
|
/* LSLV, LSRV, ASRV, RORV */
|
|
static void handle_shift_reg(DisasContext *s,
|
|
enum a64_shift_type shift_type, unsigned int sf,
|
|
unsigned int rm, unsigned int rn, unsigned int rd)
|
|
{
|
|
TCGv_i64 tcg_shift = tcg_temp_new_i64();
|
|
TCGv_i64 tcg_rd = cpu_reg(s, rd);
|
|
TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
|
|
|
|
tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
|
|
shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
|
|
}
|
|
|
|
/* CRC32[BHWX], CRC32C[BHWX] */
|
|
static void handle_crc32(DisasContext *s,
|
|
unsigned int sf, unsigned int sz, bool crc32c,
|
|
unsigned int rm, unsigned int rn, unsigned int rd)
|
|
{
|
|
TCGv_i64 tcg_acc, tcg_val;
|
|
TCGv_i32 tcg_bytes;
|
|
|
|
if (!dc_isar_feature(aa64_crc32, s)
|
|
|| (sf == 1 && sz != 3)
|
|
|| (sf == 0 && sz == 3)) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
if (sz == 3) {
|
|
tcg_val = cpu_reg(s, rm);
|
|
} else {
|
|
uint64_t mask;
|
|
switch (sz) {
|
|
case 0:
|
|
mask = 0xFF;
|
|
break;
|
|
case 1:
|
|
mask = 0xFFFF;
|
|
break;
|
|
case 2:
|
|
mask = 0xFFFFFFFF;
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
tcg_val = tcg_temp_new_i64();
|
|
tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
|
|
}
|
|
|
|
tcg_acc = cpu_reg(s, rn);
|
|
tcg_bytes = tcg_constant_i32(1 << sz);
|
|
|
|
if (crc32c) {
|
|
gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
|
|
} else {
|
|
gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
|
|
}
|
|
}
|
|
|
|
/* Data-processing (2 source)
|
|
* 31 30 29 28 21 20 16 15 10 9 5 4 0
|
|
* +----+---+---+-----------------+------+--------+------+------+
|
|
* | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd |
|
|
* +----+---+---+-----------------+------+--------+------+------+
|
|
*/
|
|
static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
|
|
{
|
|
unsigned int sf, rm, opcode, rn, rd, setflag;
|
|
sf = extract32(insn, 31, 1);
|
|
setflag = extract32(insn, 29, 1);
|
|
rm = extract32(insn, 16, 5);
|
|
opcode = extract32(insn, 10, 6);
|
|
rn = extract32(insn, 5, 5);
|
|
rd = extract32(insn, 0, 5);
|
|
|
|
if (setflag && opcode != 0) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
switch (opcode) {
|
|
case 0: /* SUBP(S) */
|
|
if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
|
|
goto do_unallocated;
|
|
} else {
|
|
TCGv_i64 tcg_n, tcg_m, tcg_d;
|
|
|
|
tcg_n = read_cpu_reg_sp(s, rn, true);
|
|
tcg_m = read_cpu_reg_sp(s, rm, true);
|
|
tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56);
|
|
tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56);
|
|
tcg_d = cpu_reg(s, rd);
|
|
|
|
if (setflag) {
|
|
gen_sub_CC(true, tcg_d, tcg_n, tcg_m);
|
|
} else {
|
|
tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m);
|
|
}
|
|
}
|
|
break;
|
|
case 2: /* UDIV */
|
|
handle_div(s, false, sf, rm, rn, rd);
|
|
break;
|
|
case 3: /* SDIV */
|
|
handle_div(s, true, sf, rm, rn, rd);
|
|
break;
|
|
case 4: /* IRG */
|
|
if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
|
|
goto do_unallocated;
|
|
}
|
|
if (s->ata[0]) {
|
|
gen_helper_irg(cpu_reg_sp(s, rd), tcg_env,
|
|
cpu_reg_sp(s, rn), cpu_reg(s, rm));
|
|
} else {
|
|
gen_address_with_allocation_tag0(cpu_reg_sp(s, rd),
|
|
cpu_reg_sp(s, rn));
|
|
}
|
|
break;
|
|
case 5: /* GMI */
|
|
if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
|
|
goto do_unallocated;
|
|
} else {
|
|
TCGv_i64 t = tcg_temp_new_i64();
|
|
|
|
tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4);
|
|
tcg_gen_shl_i64(t, tcg_constant_i64(1), t);
|
|
tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t);
|
|
}
|
|
break;
|
|
case 8: /* LSLV */
|
|
handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
|
|
break;
|
|
case 9: /* LSRV */
|
|
handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
|
|
break;
|
|
case 10: /* ASRV */
|
|
handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
|
|
break;
|
|
case 11: /* RORV */
|
|
handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
|
|
break;
|
|
case 12: /* PACGA */
|
|
if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
|
|
goto do_unallocated;
|
|
}
|
|
gen_helper_pacga(cpu_reg(s, rd), tcg_env,
|
|
cpu_reg(s, rn), cpu_reg_sp(s, rm));
|
|
break;
|
|
case 16:
|
|
case 17:
|
|
case 18:
|
|
case 19:
|
|
case 20:
|
|
case 21:
|
|
case 22:
|
|
case 23: /* CRC32 */
|
|
{
|
|
int sz = extract32(opcode, 0, 2);
|
|
bool crc32c = extract32(opcode, 2, 1);
|
|
handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
|
|
break;
|
|
}
|
|
default:
|
|
do_unallocated:
|
|
unallocated_encoding(s);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Data processing - register
|
|
* 31 30 29 28 25 21 20 16 10 0
|
|
* +--+---+--+---+-------+-----+-------+-------+---------+
|
|
* | |op0| |op1| 1 0 1 | op2 | | op3 | |
|
|
* +--+---+--+---+-------+-----+-------+-------+---------+
|
|
*/
|
|
static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
|
|
{
|
|
int op0 = extract32(insn, 30, 1);
|
|
int op1 = extract32(insn, 28, 1);
|
|
int op2 = extract32(insn, 21, 4);
|
|
int op3 = extract32(insn, 10, 6);
|
|
|
|
if (!op1) {
|
|
if (op2 & 8) {
|
|
if (op2 & 1) {
|
|
/* Add/sub (extended register) */
|
|
disas_add_sub_ext_reg(s, insn);
|
|
} else {
|
|
/* Add/sub (shifted register) */
|
|
disas_add_sub_reg(s, insn);
|
|
}
|
|
} else {
|
|
/* Logical (shifted register) */
|
|
disas_logic_reg(s, insn);
|
|
}
|
|
return;
|
|
}
|
|
|
|
switch (op2) {
|
|
case 0x0:
|
|
switch (op3) {
|
|
case 0x00: /* Add/subtract (with carry) */
|
|
disas_adc_sbc(s, insn);
|
|
break;
|
|
|
|
case 0x01: /* Rotate right into flags */
|
|
case 0x21:
|
|
disas_rotate_right_into_flags(s, insn);
|
|
break;
|
|
|
|
case 0x02: /* Evaluate into flags */
|
|
case 0x12:
|
|
case 0x22:
|
|
case 0x32:
|
|
disas_evaluate_into_flags(s, insn);
|
|
break;
|
|
|
|
default:
|
|
goto do_unallocated;
|
|
}
|
|
break;
|
|
|
|
case 0x2: /* Conditional compare */
|
|
disas_cc(s, insn); /* both imm and reg forms */
|
|
break;
|
|
|
|
case 0x4: /* Conditional select */
|
|
disas_cond_select(s, insn);
|
|
break;
|
|
|
|
case 0x6: /* Data-processing */
|
|
if (op0) { /* (1 source) */
|
|
disas_data_proc_1src(s, insn);
|
|
} else { /* (2 source) */
|
|
disas_data_proc_2src(s, insn);
|
|
}
|
|
break;
|
|
case 0x8 ... 0xf: /* (3 source) */
|
|
disas_data_proc_3src(s, insn);
|
|
break;
|
|
|
|
default:
|
|
do_unallocated:
|
|
unallocated_encoding(s);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void handle_fp_compare(DisasContext *s, int size,
|
|
unsigned int rn, unsigned int rm,
|
|
bool cmp_with_zero, bool signal_all_nans)
|
|
{
|
|
TCGv_i64 tcg_flags = tcg_temp_new_i64();
|
|
TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
|
|
|
|
if (size == MO_64) {
|
|
TCGv_i64 tcg_vn, tcg_vm;
|
|
|
|
tcg_vn = read_fp_dreg(s, rn);
|
|
if (cmp_with_zero) {
|
|
tcg_vm = tcg_constant_i64(0);
|
|
} else {
|
|
tcg_vm = read_fp_dreg(s, rm);
|
|
}
|
|
if (signal_all_nans) {
|
|
gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
|
|
} else {
|
|
gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
|
|
}
|
|
} else {
|
|
TCGv_i32 tcg_vn = tcg_temp_new_i32();
|
|
TCGv_i32 tcg_vm = tcg_temp_new_i32();
|
|
|
|
read_vec_element_i32(s, tcg_vn, rn, 0, size);
|
|
if (cmp_with_zero) {
|
|
tcg_gen_movi_i32(tcg_vm, 0);
|
|
} else {
|
|
read_vec_element_i32(s, tcg_vm, rm, 0, size);
|
|
}
|
|
|
|
switch (size) {
|
|
case MO_32:
|
|
if (signal_all_nans) {
|
|
gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
|
|
} else {
|
|
gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
|
|
}
|
|
break;
|
|
case MO_16:
|
|
if (signal_all_nans) {
|
|
gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
|
|
} else {
|
|
gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
|
|
}
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
gen_set_nzcv(tcg_flags);
|
|
}
|
|
|
|
/* Floating point compare
|
|
* 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0
|
|
* +---+---+---+-----------+------+---+------+-----+---------+------+-------+
|
|
* | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 |
|
|
* +---+---+---+-----------+------+---+------+-----+---------+------+-------+
|
|
*/
|
|
static void disas_fp_compare(DisasContext *s, uint32_t insn)
|
|
{
|
|
unsigned int mos, type, rm, op, rn, opc, op2r;
|
|
int size;
|
|
|
|
mos = extract32(insn, 29, 3);
|
|
type = extract32(insn, 22, 2);
|
|
rm = extract32(insn, 16, 5);
|
|
op = extract32(insn, 14, 2);
|
|
rn = extract32(insn, 5, 5);
|
|
opc = extract32(insn, 3, 2);
|
|
op2r = extract32(insn, 0, 3);
|
|
|
|
if (mos || op || op2r) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
switch (type) {
|
|
case 0:
|
|
size = MO_32;
|
|
break;
|
|
case 1:
|
|
size = MO_64;
|
|
break;
|
|
case 3:
|
|
size = MO_16;
|
|
if (dc_isar_feature(aa64_fp16, s)) {
|
|
break;
|
|
}
|
|
/* fallthru */
|
|
default:
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
|
|
handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
|
|
}
|
|
|
|
/* Floating point conditional compare
|
|
* 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
|
|
* +---+---+---+-----------+------+---+------+------+-----+------+----+------+
|
|
* | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv |
|
|
* +---+---+---+-----------+------+---+------+------+-----+------+----+------+
|
|
*/
|
|
static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
|
|
{
|
|
unsigned int mos, type, rm, cond, rn, op, nzcv;
|
|
TCGLabel *label_continue = NULL;
|
|
int size;
|
|
|
|
mos = extract32(insn, 29, 3);
|
|
type = extract32(insn, 22, 2);
|
|
rm = extract32(insn, 16, 5);
|
|
cond = extract32(insn, 12, 4);
|
|
rn = extract32(insn, 5, 5);
|
|
op = extract32(insn, 4, 1);
|
|
nzcv = extract32(insn, 0, 4);
|
|
|
|
if (mos) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
switch (type) {
|
|
case 0:
|
|
size = MO_32;
|
|
break;
|
|
case 1:
|
|
size = MO_64;
|
|
break;
|
|
case 3:
|
|
size = MO_16;
|
|
if (dc_isar_feature(aa64_fp16, s)) {
|
|
break;
|
|
}
|
|
/* fallthru */
|
|
default:
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
|
|
if (cond < 0x0e) { /* not always */
|
|
TCGLabel *label_match = gen_new_label();
|
|
label_continue = gen_new_label();
|
|
arm_gen_test_cc(cond, label_match);
|
|
/* nomatch: */
|
|
gen_set_nzcv(tcg_constant_i64(nzcv << 28));
|
|
tcg_gen_br(label_continue);
|
|
gen_set_label(label_match);
|
|
}
|
|
|
|
handle_fp_compare(s, size, rn, rm, false, op);
|
|
|
|
if (cond < 0x0e) {
|
|
gen_set_label(label_continue);
|
|
}
|
|
}
|
|
|
|
/* Floating point conditional select
|
|
* 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
|
|
* +---+---+---+-----------+------+---+------+------+-----+------+------+
|
|
* | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd |
|
|
* +---+---+---+-----------+------+---+------+------+-----+------+------+
|
|
*/
|
|
static void disas_fp_csel(DisasContext *s, uint32_t insn)
|
|
{
|
|
unsigned int mos, type, rm, cond, rn, rd;
|
|
TCGv_i64 t_true, t_false;
|
|
DisasCompare64 c;
|
|
MemOp sz;
|
|
|
|
mos = extract32(insn, 29, 3);
|
|
type = extract32(insn, 22, 2);
|
|
rm = extract32(insn, 16, 5);
|
|
cond = extract32(insn, 12, 4);
|
|
rn = extract32(insn, 5, 5);
|
|
rd = extract32(insn, 0, 5);
|
|
|
|
if (mos) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
switch (type) {
|
|
case 0:
|
|
sz = MO_32;
|
|
break;
|
|
case 1:
|
|
sz = MO_64;
|
|
break;
|
|
case 3:
|
|
sz = MO_16;
|
|
if (dc_isar_feature(aa64_fp16, s)) {
|
|
break;
|
|
}
|
|
/* fallthru */
|
|
default:
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
|
|
/* Zero extend sreg & hreg inputs to 64 bits now. */
|
|
t_true = tcg_temp_new_i64();
|
|
t_false = tcg_temp_new_i64();
|
|
read_vec_element(s, t_true, rn, 0, sz);
|
|
read_vec_element(s, t_false, rm, 0, sz);
|
|
|
|
a64_test_cc(&c, cond);
|
|
tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0),
|
|
t_true, t_false);
|
|
|
|
/* Note that sregs & hregs write back zeros to the high bits,
|
|
and we've already done the zero-extension. */
|
|
write_fp_dreg(s, rd, t_true);
|
|
}
|
|
|
|
/* Floating-point data-processing (1 source) - half precision */
|
|
static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
|
|
{
|
|
TCGv_ptr fpst = NULL;
|
|
TCGv_i32 tcg_op = read_fp_hreg(s, rn);
|
|
TCGv_i32 tcg_res = tcg_temp_new_i32();
|
|
|
|
switch (opcode) {
|
|
case 0x0: /* FMOV */
|
|
tcg_gen_mov_i32(tcg_res, tcg_op);
|
|
break;
|
|
case 0x1: /* FABS */
|
|
tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
|
|
break;
|
|
case 0x2: /* FNEG */
|
|
tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
|
|
break;
|
|
case 0x3: /* FSQRT */
|
|
fpst = fpstatus_ptr(FPST_FPCR_F16);
|
|
gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
|
|
break;
|
|
case 0x8: /* FRINTN */
|
|
case 0x9: /* FRINTP */
|
|
case 0xa: /* FRINTM */
|
|
case 0xb: /* FRINTZ */
|
|
case 0xc: /* FRINTA */
|
|
{
|
|
TCGv_i32 tcg_rmode;
|
|
|
|
fpst = fpstatus_ptr(FPST_FPCR_F16);
|
|
tcg_rmode = gen_set_rmode(opcode & 7, fpst);
|
|
gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
|
|
gen_restore_rmode(tcg_rmode, fpst);
|
|
break;
|
|
}
|
|
case 0xe: /* FRINTX */
|
|
fpst = fpstatus_ptr(FPST_FPCR_F16);
|
|
gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
|
|
break;
|
|
case 0xf: /* FRINTI */
|
|
fpst = fpstatus_ptr(FPST_FPCR_F16);
|
|
gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
write_fp_sreg(s, rd, tcg_res);
|
|
}
|
|
|
|
/* Floating-point data-processing (1 source) - single precision */
|
|
static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
|
|
{
|
|
void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr);
|
|
TCGv_i32 tcg_op, tcg_res;
|
|
TCGv_ptr fpst;
|
|
int rmode = -1;
|
|
|
|
tcg_op = read_fp_sreg(s, rn);
|
|
tcg_res = tcg_temp_new_i32();
|
|
|
|
switch (opcode) {
|
|
case 0x0: /* FMOV */
|
|
tcg_gen_mov_i32(tcg_res, tcg_op);
|
|
goto done;
|
|
case 0x1: /* FABS */
|
|
gen_helper_vfp_abss(tcg_res, tcg_op);
|
|
goto done;
|
|
case 0x2: /* FNEG */
|
|
gen_helper_vfp_negs(tcg_res, tcg_op);
|
|
goto done;
|
|
case 0x3: /* FSQRT */
|
|
gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
|
|
goto done;
|
|
case 0x6: /* BFCVT */
|
|
gen_fpst = gen_helper_bfcvt;
|
|
break;
|
|
case 0x8: /* FRINTN */
|
|
case 0x9: /* FRINTP */
|
|
case 0xa: /* FRINTM */
|
|
case 0xb: /* FRINTZ */
|
|
case 0xc: /* FRINTA */
|
|
rmode = opcode & 7;
|
|
gen_fpst = gen_helper_rints;
|
|
break;
|
|
case 0xe: /* FRINTX */
|
|
gen_fpst = gen_helper_rints_exact;
|
|
break;
|
|
case 0xf: /* FRINTI */
|
|
gen_fpst = gen_helper_rints;
|
|
break;
|
|
case 0x10: /* FRINT32Z */
|
|
rmode = FPROUNDING_ZERO;
|
|
gen_fpst = gen_helper_frint32_s;
|
|
break;
|
|
case 0x11: /* FRINT32X */
|
|
gen_fpst = gen_helper_frint32_s;
|
|
break;
|
|
case 0x12: /* FRINT64Z */
|
|
rmode = FPROUNDING_ZERO;
|
|
gen_fpst = gen_helper_frint64_s;
|
|
break;
|
|
case 0x13: /* FRINT64X */
|
|
gen_fpst = gen_helper_frint64_s;
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
fpst = fpstatus_ptr(FPST_FPCR);
|
|
if (rmode >= 0) {
|
|
TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
|
|
gen_fpst(tcg_res, tcg_op, fpst);
|
|
gen_restore_rmode(tcg_rmode, fpst);
|
|
} else {
|
|
gen_fpst(tcg_res, tcg_op, fpst);
|
|
}
|
|
|
|
done:
|
|
write_fp_sreg(s, rd, tcg_res);
|
|
}
|
|
|
|
/* Floating-point data-processing (1 source) - double precision */
|
|
static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
|
|
{
|
|
void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr);
|
|
TCGv_i64 tcg_op, tcg_res;
|
|
TCGv_ptr fpst;
|
|
int rmode = -1;
|
|
|
|
switch (opcode) {
|
|
case 0x0: /* FMOV */
|
|
gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
|
|
return;
|
|
}
|
|
|
|
tcg_op = read_fp_dreg(s, rn);
|
|
tcg_res = tcg_temp_new_i64();
|
|
|
|
switch (opcode) {
|
|
case 0x1: /* FABS */
|
|
gen_helper_vfp_absd(tcg_res, tcg_op);
|
|
goto done;
|
|
case 0x2: /* FNEG */
|
|
gen_helper_vfp_negd(tcg_res, tcg_op);
|
|
goto done;
|
|
case 0x3: /* FSQRT */
|
|
gen_helper_vfp_sqrtd(tcg_res, tcg_op, tcg_env);
|
|
goto done;
|
|
case 0x8: /* FRINTN */
|
|
case 0x9: /* FRINTP */
|
|
case 0xa: /* FRINTM */
|
|
case 0xb: /* FRINTZ */
|
|
case 0xc: /* FRINTA */
|
|
rmode = opcode & 7;
|
|
gen_fpst = gen_helper_rintd;
|
|
break;
|
|
case 0xe: /* FRINTX */
|
|
gen_fpst = gen_helper_rintd_exact;
|
|
break;
|
|
case 0xf: /* FRINTI */
|
|
gen_fpst = gen_helper_rintd;
|
|
break;
|
|
case 0x10: /* FRINT32Z */
|
|
rmode = FPROUNDING_ZERO;
|
|
gen_fpst = gen_helper_frint32_d;
|
|
break;
|
|
case 0x11: /* FRINT32X */
|
|
gen_fpst = gen_helper_frint32_d;
|
|
break;
|
|
case 0x12: /* FRINT64Z */
|
|
rmode = FPROUNDING_ZERO;
|
|
gen_fpst = gen_helper_frint64_d;
|
|
break;
|
|
case 0x13: /* FRINT64X */
|
|
gen_fpst = gen_helper_frint64_d;
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
fpst = fpstatus_ptr(FPST_FPCR);
|
|
if (rmode >= 0) {
|
|
TCGv_i32 tcg_rmode = gen_set_rmode(rmode, fpst);
|
|
gen_fpst(tcg_res, tcg_op, fpst);
|
|
gen_restore_rmode(tcg_rmode, fpst);
|
|
} else {
|
|
gen_fpst(tcg_res, tcg_op, fpst);
|
|
}
|
|
|
|
done:
|
|
write_fp_dreg(s, rd, tcg_res);
|
|
}
|
|
|
|
static void handle_fp_fcvt(DisasContext *s, int opcode,
|
|
int rd, int rn, int dtype, int ntype)
|
|
{
|
|
switch (ntype) {
|
|
case 0x0:
|
|
{
|
|
TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
|
|
if (dtype == 1) {
|
|
/* Single to double */
|
|
TCGv_i64 tcg_rd = tcg_temp_new_i64();
|
|
gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, tcg_env);
|
|
write_fp_dreg(s, rd, tcg_rd);
|
|
} else {
|
|
/* Single to half */
|
|
TCGv_i32 tcg_rd = tcg_temp_new_i32();
|
|
TCGv_i32 ahp = get_ahp_flag();
|
|
TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
|
|
|
|
gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
|
|
/* write_fp_sreg is OK here because top half of tcg_rd is zero */
|
|
write_fp_sreg(s, rd, tcg_rd);
|
|
}
|
|
break;
|
|
}
|
|
case 0x1:
|
|
{
|
|
TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
|
|
TCGv_i32 tcg_rd = tcg_temp_new_i32();
|
|
if (dtype == 0) {
|
|
/* Double to single */
|
|
gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, tcg_env);
|
|
} else {
|
|
TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
|
|
TCGv_i32 ahp = get_ahp_flag();
|
|
/* Double to half */
|
|
gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
|
|
/* write_fp_sreg is OK here because top half of tcg_rd is zero */
|
|
}
|
|
write_fp_sreg(s, rd, tcg_rd);
|
|
break;
|
|
}
|
|
case 0x3:
|
|
{
|
|
TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
|
|
TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR);
|
|
TCGv_i32 tcg_ahp = get_ahp_flag();
|
|
tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
|
|
if (dtype == 0) {
|
|
/* Half to single */
|
|
TCGv_i32 tcg_rd = tcg_temp_new_i32();
|
|
gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
|
|
write_fp_sreg(s, rd, tcg_rd);
|
|
} else {
|
|
/* Half to double */
|
|
TCGv_i64 tcg_rd = tcg_temp_new_i64();
|
|
gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
|
|
write_fp_dreg(s, rd, tcg_rd);
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
/* Floating point data-processing (1 source)
|
|
* 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0
|
|
* +---+---+---+-----------+------+---+--------+-----------+------+------+
|
|
* | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd |
|
|
* +---+---+---+-----------+------+---+--------+-----------+------+------+
|
|
*/
|
|
static void disas_fp_1src(DisasContext *s, uint32_t insn)
|
|
{
|
|
int mos = extract32(insn, 29, 3);
|
|
int type = extract32(insn, 22, 2);
|
|
int opcode = extract32(insn, 15, 6);
|
|
int rn = extract32(insn, 5, 5);
|
|
int rd = extract32(insn, 0, 5);
|
|
|
|
if (mos) {
|
|
goto do_unallocated;
|
|
}
|
|
|
|
switch (opcode) {
|
|
case 0x4: case 0x5: case 0x7:
|
|
{
|
|
/* FCVT between half, single and double precision */
|
|
int dtype = extract32(opcode, 0, 2);
|
|
if (type == 2 || dtype == type) {
|
|
goto do_unallocated;
|
|
}
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
|
|
handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
|
|
break;
|
|
}
|
|
|
|
case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
|
|
if (type > 1 || !dc_isar_feature(aa64_frint, s)) {
|
|
goto do_unallocated;
|
|
}
|
|
/* fall through */
|
|
case 0x0 ... 0x3:
|
|
case 0x8 ... 0xc:
|
|
case 0xe ... 0xf:
|
|
/* 32-to-32 and 64-to-64 ops */
|
|
switch (type) {
|
|
case 0:
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
handle_fp_1src_single(s, opcode, rd, rn);
|
|
break;
|
|
case 1:
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
handle_fp_1src_double(s, opcode, rd, rn);
|
|
break;
|
|
case 3:
|
|
if (!dc_isar_feature(aa64_fp16, s)) {
|
|
goto do_unallocated;
|
|
}
|
|
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
handle_fp_1src_half(s, opcode, rd, rn);
|
|
break;
|
|
default:
|
|
goto do_unallocated;
|
|
}
|
|
break;
|
|
|
|
case 0x6:
|
|
switch (type) {
|
|
case 1: /* BFCVT */
|
|
if (!dc_isar_feature(aa64_bf16, s)) {
|
|
goto do_unallocated;
|
|
}
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
handle_fp_1src_single(s, opcode, rd, rn);
|
|
break;
|
|
default:
|
|
goto do_unallocated;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
do_unallocated:
|
|
unallocated_encoding(s);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Floating-point data-processing (2 source) - single precision */
|
|
static void handle_fp_2src_single(DisasContext *s, int opcode,
|
|
int rd, int rn, int rm)
|
|
{
|
|
TCGv_i32 tcg_op1;
|
|
TCGv_i32 tcg_op2;
|
|
TCGv_i32 tcg_res;
|
|
TCGv_ptr fpst;
|
|
|
|
tcg_res = tcg_temp_new_i32();
|
|
fpst = fpstatus_ptr(FPST_FPCR);
|
|
tcg_op1 = read_fp_sreg(s, rn);
|
|
tcg_op2 = read_fp_sreg(s, rm);
|
|
|
|
switch (opcode) {
|
|
case 0x0: /* FMUL */
|
|
gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x1: /* FDIV */
|
|
gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x2: /* FADD */
|
|
gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x3: /* FSUB */
|
|
gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x4: /* FMAX */
|
|
gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x5: /* FMIN */
|
|
gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x6: /* FMAXNM */
|
|
gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x7: /* FMINNM */
|
|
gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x8: /* FNMUL */
|
|
gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
gen_helper_vfp_negs(tcg_res, tcg_res);
|
|
break;
|
|
}
|
|
|
|
write_fp_sreg(s, rd, tcg_res);
|
|
}
|
|
|
|
/* Floating-point data-processing (2 source) - double precision */
|
|
static void handle_fp_2src_double(DisasContext *s, int opcode,
|
|
int rd, int rn, int rm)
|
|
{
|
|
TCGv_i64 tcg_op1;
|
|
TCGv_i64 tcg_op2;
|
|
TCGv_i64 tcg_res;
|
|
TCGv_ptr fpst;
|
|
|
|
tcg_res = tcg_temp_new_i64();
|
|
fpst = fpstatus_ptr(FPST_FPCR);
|
|
tcg_op1 = read_fp_dreg(s, rn);
|
|
tcg_op2 = read_fp_dreg(s, rm);
|
|
|
|
switch (opcode) {
|
|
case 0x0: /* FMUL */
|
|
gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x1: /* FDIV */
|
|
gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x2: /* FADD */
|
|
gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x3: /* FSUB */
|
|
gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x4: /* FMAX */
|
|
gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x5: /* FMIN */
|
|
gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x6: /* FMAXNM */
|
|
gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x7: /* FMINNM */
|
|
gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x8: /* FNMUL */
|
|
gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
gen_helper_vfp_negd(tcg_res, tcg_res);
|
|
break;
|
|
}
|
|
|
|
write_fp_dreg(s, rd, tcg_res);
|
|
}
|
|
|
|
/* Floating-point data-processing (2 source) - half precision */
|
|
static void handle_fp_2src_half(DisasContext *s, int opcode,
|
|
int rd, int rn, int rm)
|
|
{
|
|
TCGv_i32 tcg_op1;
|
|
TCGv_i32 tcg_op2;
|
|
TCGv_i32 tcg_res;
|
|
TCGv_ptr fpst;
|
|
|
|
tcg_res = tcg_temp_new_i32();
|
|
fpst = fpstatus_ptr(FPST_FPCR_F16);
|
|
tcg_op1 = read_fp_hreg(s, rn);
|
|
tcg_op2 = read_fp_hreg(s, rm);
|
|
|
|
switch (opcode) {
|
|
case 0x0: /* FMUL */
|
|
gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x1: /* FDIV */
|
|
gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x2: /* FADD */
|
|
gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x3: /* FSUB */
|
|
gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x4: /* FMAX */
|
|
gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x5: /* FMIN */
|
|
gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x6: /* FMAXNM */
|
|
gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x7: /* FMINNM */
|
|
gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x8: /* FNMUL */
|
|
gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
write_fp_sreg(s, rd, tcg_res);
|
|
}
|
|
|
|
/* Floating point data-processing (2 source)
|
|
* 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
|
|
* +---+---+---+-----------+------+---+------+--------+-----+------+------+
|
|
* | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd |
|
|
* +---+---+---+-----------+------+---+------+--------+-----+------+------+
|
|
*/
|
|
static void disas_fp_2src(DisasContext *s, uint32_t insn)
|
|
{
|
|
int mos = extract32(insn, 29, 3);
|
|
int type = extract32(insn, 22, 2);
|
|
int rd = extract32(insn, 0, 5);
|
|
int rn = extract32(insn, 5, 5);
|
|
int rm = extract32(insn, 16, 5);
|
|
int opcode = extract32(insn, 12, 4);
|
|
|
|
if (opcode > 8 || mos) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
switch (type) {
|
|
case 0:
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
handle_fp_2src_single(s, opcode, rd, rn, rm);
|
|
break;
|
|
case 1:
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
handle_fp_2src_double(s, opcode, rd, rn, rm);
|
|
break;
|
|
case 3:
|
|
if (!dc_isar_feature(aa64_fp16, s)) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
handle_fp_2src_half(s, opcode, rd, rn, rm);
|
|
break;
|
|
default:
|
|
unallocated_encoding(s);
|
|
}
|
|
}
|
|
|
|
/* Floating-point data-processing (3 source) - single precision */
|
|
static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
|
|
int rd, int rn, int rm, int ra)
|
|
{
|
|
TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
|
|
TCGv_i32 tcg_res = tcg_temp_new_i32();
|
|
TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
|
|
|
|
tcg_op1 = read_fp_sreg(s, rn);
|
|
tcg_op2 = read_fp_sreg(s, rm);
|
|
tcg_op3 = read_fp_sreg(s, ra);
|
|
|
|
/* These are fused multiply-add, and must be done as one
|
|
* floating point operation with no rounding between the
|
|
* multiplication and addition steps.
|
|
* NB that doing the negations here as separate steps is
|
|
* correct : an input NaN should come out with its sign bit
|
|
* flipped if it is a negated-input.
|
|
*/
|
|
if (o1 == true) {
|
|
gen_helper_vfp_negs(tcg_op3, tcg_op3);
|
|
}
|
|
|
|
if (o0 != o1) {
|
|
gen_helper_vfp_negs(tcg_op1, tcg_op1);
|
|
}
|
|
|
|
gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
|
|
|
|
write_fp_sreg(s, rd, tcg_res);
|
|
}
|
|
|
|
/* Floating-point data-processing (3 source) - double precision */
|
|
static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
|
|
int rd, int rn, int rm, int ra)
|
|
{
|
|
TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
|
|
TCGv_i64 tcg_res = tcg_temp_new_i64();
|
|
TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
|
|
|
|
tcg_op1 = read_fp_dreg(s, rn);
|
|
tcg_op2 = read_fp_dreg(s, rm);
|
|
tcg_op3 = read_fp_dreg(s, ra);
|
|
|
|
/* These are fused multiply-add, and must be done as one
|
|
* floating point operation with no rounding between the
|
|
* multiplication and addition steps.
|
|
* NB that doing the negations here as separate steps is
|
|
* correct : an input NaN should come out with its sign bit
|
|
* flipped if it is a negated-input.
|
|
*/
|
|
if (o1 == true) {
|
|
gen_helper_vfp_negd(tcg_op3, tcg_op3);
|
|
}
|
|
|
|
if (o0 != o1) {
|
|
gen_helper_vfp_negd(tcg_op1, tcg_op1);
|
|
}
|
|
|
|
gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
|
|
|
|
write_fp_dreg(s, rd, tcg_res);
|
|
}
|
|
|
|
/* Floating-point data-processing (3 source) - half precision */
|
|
static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1,
|
|
int rd, int rn, int rm, int ra)
|
|
{
|
|
TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
|
|
TCGv_i32 tcg_res = tcg_temp_new_i32();
|
|
TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16);
|
|
|
|
tcg_op1 = read_fp_hreg(s, rn);
|
|
tcg_op2 = read_fp_hreg(s, rm);
|
|
tcg_op3 = read_fp_hreg(s, ra);
|
|
|
|
/* These are fused multiply-add, and must be done as one
|
|
* floating point operation with no rounding between the
|
|
* multiplication and addition steps.
|
|
* NB that doing the negations here as separate steps is
|
|
* correct : an input NaN should come out with its sign bit
|
|
* flipped if it is a negated-input.
|
|
*/
|
|
if (o1 == true) {
|
|
tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000);
|
|
}
|
|
|
|
if (o0 != o1) {
|
|
tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
|
|
}
|
|
|
|
gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
|
|
|
|
write_fp_sreg(s, rd, tcg_res);
|
|
}
|
|
|
|
/* Floating point data-processing (3 source)
|
|
* 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0
|
|
* +---+---+---+-----------+------+----+------+----+------+------+------+
|
|
* | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd |
|
|
* +---+---+---+-----------+------+----+------+----+------+------+------+
|
|
*/
|
|
static void disas_fp_3src(DisasContext *s, uint32_t insn)
|
|
{
|
|
int mos = extract32(insn, 29, 3);
|
|
int type = extract32(insn, 22, 2);
|
|
int rd = extract32(insn, 0, 5);
|
|
int rn = extract32(insn, 5, 5);
|
|
int ra = extract32(insn, 10, 5);
|
|
int rm = extract32(insn, 16, 5);
|
|
bool o0 = extract32(insn, 15, 1);
|
|
bool o1 = extract32(insn, 21, 1);
|
|
|
|
if (mos) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
switch (type) {
|
|
case 0:
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
|
|
break;
|
|
case 1:
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
|
|
break;
|
|
case 3:
|
|
if (!dc_isar_feature(aa64_fp16, s)) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra);
|
|
break;
|
|
default:
|
|
unallocated_encoding(s);
|
|
}
|
|
}
|
|
|
|
/* Floating point immediate
|
|
* 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0
|
|
* +---+---+---+-----------+------+---+------------+-------+------+------+
|
|
* | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd |
|
|
* +---+---+---+-----------+------+---+------------+-------+------+------+
|
|
*/
|
|
static void disas_fp_imm(DisasContext *s, uint32_t insn)
|
|
{
|
|
int rd = extract32(insn, 0, 5);
|
|
int imm5 = extract32(insn, 5, 5);
|
|
int imm8 = extract32(insn, 13, 8);
|
|
int type = extract32(insn, 22, 2);
|
|
int mos = extract32(insn, 29, 3);
|
|
uint64_t imm;
|
|
MemOp sz;
|
|
|
|
if (mos || imm5) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
switch (type) {
|
|
case 0:
|
|
sz = MO_32;
|
|
break;
|
|
case 1:
|
|
sz = MO_64;
|
|
break;
|
|
case 3:
|
|
sz = MO_16;
|
|
if (dc_isar_feature(aa64_fp16, s)) {
|
|
break;
|
|
}
|
|
/* fallthru */
|
|
default:
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
|
|
imm = vfp_expand_imm(sz, imm8);
|
|
write_fp_dreg(s, rd, tcg_constant_i64(imm));
|
|
}
|
|
|
|
/* Handle floating point <=> fixed point conversions. Note that we can
|
|
* also deal with fp <=> integer conversions as a special case (scale == 64)
|
|
* OPTME: consider handling that special case specially or at least skipping
|
|
* the call to scalbn in the helpers for zero shifts.
|
|
*/
|
|
static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
|
|
bool itof, int rmode, int scale, int sf, int type)
|
|
{
|
|
bool is_signed = !(opcode & 1);
|
|
TCGv_ptr tcg_fpstatus;
|
|
TCGv_i32 tcg_shift, tcg_single;
|
|
TCGv_i64 tcg_double;
|
|
|
|
tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR);
|
|
|
|
tcg_shift = tcg_constant_i32(64 - scale);
|
|
|
|
if (itof) {
|
|
TCGv_i64 tcg_int = cpu_reg(s, rn);
|
|
if (!sf) {
|
|
TCGv_i64 tcg_extend = tcg_temp_new_i64();
|
|
|
|
if (is_signed) {
|
|
tcg_gen_ext32s_i64(tcg_extend, tcg_int);
|
|
} else {
|
|
tcg_gen_ext32u_i64(tcg_extend, tcg_int);
|
|
}
|
|
|
|
tcg_int = tcg_extend;
|
|
}
|
|
|
|
switch (type) {
|
|
case 1: /* float64 */
|
|
tcg_double = tcg_temp_new_i64();
|
|
if (is_signed) {
|
|
gen_helper_vfp_sqtod(tcg_double, tcg_int,
|
|
tcg_shift, tcg_fpstatus);
|
|
} else {
|
|
gen_helper_vfp_uqtod(tcg_double, tcg_int,
|
|
tcg_shift, tcg_fpstatus);
|
|
}
|
|
write_fp_dreg(s, rd, tcg_double);
|
|
break;
|
|
|
|
case 0: /* float32 */
|
|
tcg_single = tcg_temp_new_i32();
|
|
if (is_signed) {
|
|
gen_helper_vfp_sqtos(tcg_single, tcg_int,
|
|
tcg_shift, tcg_fpstatus);
|
|
} else {
|
|
gen_helper_vfp_uqtos(tcg_single, tcg_int,
|
|
tcg_shift, tcg_fpstatus);
|
|
}
|
|
write_fp_sreg(s, rd, tcg_single);
|
|
break;
|
|
|
|
case 3: /* float16 */
|
|
tcg_single = tcg_temp_new_i32();
|
|
if (is_signed) {
|
|
gen_helper_vfp_sqtoh(tcg_single, tcg_int,
|
|
tcg_shift, tcg_fpstatus);
|
|
} else {
|
|
gen_helper_vfp_uqtoh(tcg_single, tcg_int,
|
|
tcg_shift, tcg_fpstatus);
|
|
}
|
|
write_fp_sreg(s, rd, tcg_single);
|
|
break;
|
|
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
} else {
|
|
TCGv_i64 tcg_int = cpu_reg(s, rd);
|
|
TCGv_i32 tcg_rmode;
|
|
|
|
if (extract32(opcode, 2, 1)) {
|
|
/* There are too many rounding modes to all fit into rmode,
|
|
* so FCVTA[US] is a special case.
|
|
*/
|
|
rmode = FPROUNDING_TIEAWAY;
|
|
}
|
|
|
|
tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
|
|
|
|
switch (type) {
|
|
case 1: /* float64 */
|
|
tcg_double = read_fp_dreg(s, rn);
|
|
if (is_signed) {
|
|
if (!sf) {
|
|
gen_helper_vfp_tosld(tcg_int, tcg_double,
|
|
tcg_shift, tcg_fpstatus);
|
|
} else {
|
|
gen_helper_vfp_tosqd(tcg_int, tcg_double,
|
|
tcg_shift, tcg_fpstatus);
|
|
}
|
|
} else {
|
|
if (!sf) {
|
|
gen_helper_vfp_tould(tcg_int, tcg_double,
|
|
tcg_shift, tcg_fpstatus);
|
|
} else {
|
|
gen_helper_vfp_touqd(tcg_int, tcg_double,
|
|
tcg_shift, tcg_fpstatus);
|
|
}
|
|
}
|
|
if (!sf) {
|
|
tcg_gen_ext32u_i64(tcg_int, tcg_int);
|
|
}
|
|
break;
|
|
|
|
case 0: /* float32 */
|
|
tcg_single = read_fp_sreg(s, rn);
|
|
if (sf) {
|
|
if (is_signed) {
|
|
gen_helper_vfp_tosqs(tcg_int, tcg_single,
|
|
tcg_shift, tcg_fpstatus);
|
|
} else {
|
|
gen_helper_vfp_touqs(tcg_int, tcg_single,
|
|
tcg_shift, tcg_fpstatus);
|
|
}
|
|
} else {
|
|
TCGv_i32 tcg_dest = tcg_temp_new_i32();
|
|
if (is_signed) {
|
|
gen_helper_vfp_tosls(tcg_dest, tcg_single,
|
|
tcg_shift, tcg_fpstatus);
|
|
} else {
|
|
gen_helper_vfp_touls(tcg_dest, tcg_single,
|
|
tcg_shift, tcg_fpstatus);
|
|
}
|
|
tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
|
|
}
|
|
break;
|
|
|
|
case 3: /* float16 */
|
|
tcg_single = read_fp_sreg(s, rn);
|
|
if (sf) {
|
|
if (is_signed) {
|
|
gen_helper_vfp_tosqh(tcg_int, tcg_single,
|
|
tcg_shift, tcg_fpstatus);
|
|
} else {
|
|
gen_helper_vfp_touqh(tcg_int, tcg_single,
|
|
tcg_shift, tcg_fpstatus);
|
|
}
|
|
} else {
|
|
TCGv_i32 tcg_dest = tcg_temp_new_i32();
|
|
if (is_signed) {
|
|
gen_helper_vfp_toslh(tcg_dest, tcg_single,
|
|
tcg_shift, tcg_fpstatus);
|
|
} else {
|
|
gen_helper_vfp_toulh(tcg_dest, tcg_single,
|
|
tcg_shift, tcg_fpstatus);
|
|
}
|
|
tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
gen_restore_rmode(tcg_rmode, tcg_fpstatus);
|
|
}
|
|
}
|
|
|
|
/* Floating point <-> fixed point conversions
|
|
* 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
|
|
* +----+---+---+-----------+------+---+-------+--------+-------+------+------+
|
|
* | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd |
|
|
* +----+---+---+-----------+------+---+-------+--------+-------+------+------+
|
|
*/
|
|
static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
|
|
{
|
|
int rd = extract32(insn, 0, 5);
|
|
int rn = extract32(insn, 5, 5);
|
|
int scale = extract32(insn, 10, 6);
|
|
int opcode = extract32(insn, 16, 3);
|
|
int rmode = extract32(insn, 19, 2);
|
|
int type = extract32(insn, 22, 2);
|
|
bool sbit = extract32(insn, 29, 1);
|
|
bool sf = extract32(insn, 31, 1);
|
|
bool itof;
|
|
|
|
if (sbit || (!sf && scale < 32)) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
switch (type) {
|
|
case 0: /* float32 */
|
|
case 1: /* float64 */
|
|
break;
|
|
case 3: /* float16 */
|
|
if (dc_isar_feature(aa64_fp16, s)) {
|
|
break;
|
|
}
|
|
/* fallthru */
|
|
default:
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
switch ((rmode << 3) | opcode) {
|
|
case 0x2: /* SCVTF */
|
|
case 0x3: /* UCVTF */
|
|
itof = true;
|
|
break;
|
|
case 0x18: /* FCVTZS */
|
|
case 0x19: /* FCVTZU */
|
|
itof = false;
|
|
break;
|
|
default:
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
|
|
handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
|
|
}
|
|
|
|
static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
|
|
{
|
|
/* FMOV: gpr to or from float, double, or top half of quad fp reg,
|
|
* without conversion.
|
|
*/
|
|
|
|
if (itof) {
|
|
TCGv_i64 tcg_rn = cpu_reg(s, rn);
|
|
TCGv_i64 tmp;
|
|
|
|
switch (type) {
|
|
case 0:
|
|
/* 32 bit */
|
|
tmp = tcg_temp_new_i64();
|
|
tcg_gen_ext32u_i64(tmp, tcg_rn);
|
|
write_fp_dreg(s, rd, tmp);
|
|
break;
|
|
case 1:
|
|
/* 64 bit */
|
|
write_fp_dreg(s, rd, tcg_rn);
|
|
break;
|
|
case 2:
|
|
/* 64 bit to top half. */
|
|
tcg_gen_st_i64(tcg_rn, tcg_env, fp_reg_hi_offset(s, rd));
|
|
clear_vec_high(s, true, rd);
|
|
break;
|
|
case 3:
|
|
/* 16 bit */
|
|
tmp = tcg_temp_new_i64();
|
|
tcg_gen_ext16u_i64(tmp, tcg_rn);
|
|
write_fp_dreg(s, rd, tmp);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
} else {
|
|
TCGv_i64 tcg_rd = cpu_reg(s, rd);
|
|
|
|
switch (type) {
|
|
case 0:
|
|
/* 32 bit */
|
|
tcg_gen_ld32u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_32));
|
|
break;
|
|
case 1:
|
|
/* 64 bit */
|
|
tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_64));
|
|
break;
|
|
case 2:
|
|
/* 64 bits from top half */
|
|
tcg_gen_ld_i64(tcg_rd, tcg_env, fp_reg_hi_offset(s, rn));
|
|
break;
|
|
case 3:
|
|
/* 16 bit */
|
|
tcg_gen_ld16u_i64(tcg_rd, tcg_env, fp_reg_offset(s, rn, MO_16));
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
}
|
|
|
|
static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
|
|
{
|
|
TCGv_i64 t = read_fp_dreg(s, rn);
|
|
TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR);
|
|
|
|
gen_helper_fjcvtzs(t, t, fpstatus);
|
|
|
|
tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
|
|
tcg_gen_extrh_i64_i32(cpu_ZF, t);
|
|
tcg_gen_movi_i32(cpu_CF, 0);
|
|
tcg_gen_movi_i32(cpu_NF, 0);
|
|
tcg_gen_movi_i32(cpu_VF, 0);
|
|
}
|
|
|
|
/* Floating point <-> integer conversions
|
|
* 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
|
|
* +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
|
|
* | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
|
|
* +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
|
|
*/
|
|
static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
|
|
{
|
|
int rd = extract32(insn, 0, 5);
|
|
int rn = extract32(insn, 5, 5);
|
|
int opcode = extract32(insn, 16, 3);
|
|
int rmode = extract32(insn, 19, 2);
|
|
int type = extract32(insn, 22, 2);
|
|
bool sbit = extract32(insn, 29, 1);
|
|
bool sf = extract32(insn, 31, 1);
|
|
bool itof = false;
|
|
|
|
if (sbit) {
|
|
goto do_unallocated;
|
|
}
|
|
|
|
switch (opcode) {
|
|
case 2: /* SCVTF */
|
|
case 3: /* UCVTF */
|
|
itof = true;
|
|
/* fallthru */
|
|
case 4: /* FCVTAS */
|
|
case 5: /* FCVTAU */
|
|
if (rmode != 0) {
|
|
goto do_unallocated;
|
|
}
|
|
/* fallthru */
|
|
case 0: /* FCVT[NPMZ]S */
|
|
case 1: /* FCVT[NPMZ]U */
|
|
switch (type) {
|
|
case 0: /* float32 */
|
|
case 1: /* float64 */
|
|
break;
|
|
case 3: /* float16 */
|
|
if (!dc_isar_feature(aa64_fp16, s)) {
|
|
goto do_unallocated;
|
|
}
|
|
break;
|
|
default:
|
|
goto do_unallocated;
|
|
}
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
|
|
break;
|
|
|
|
default:
|
|
switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
|
|
case 0b01100110: /* FMOV half <-> 32-bit int */
|
|
case 0b01100111:
|
|
case 0b11100110: /* FMOV half <-> 64-bit int */
|
|
case 0b11100111:
|
|
if (!dc_isar_feature(aa64_fp16, s)) {
|
|
goto do_unallocated;
|
|
}
|
|
/* fallthru */
|
|
case 0b00000110: /* FMOV 32-bit */
|
|
case 0b00000111:
|
|
case 0b10100110: /* FMOV 64-bit */
|
|
case 0b10100111:
|
|
case 0b11001110: /* FMOV top half of 128-bit */
|
|
case 0b11001111:
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
itof = opcode & 1;
|
|
handle_fmov(s, rd, rn, type, itof);
|
|
break;
|
|
|
|
case 0b00111110: /* FJCVTZS */
|
|
if (!dc_isar_feature(aa64_jscvt, s)) {
|
|
goto do_unallocated;
|
|
} else if (fp_access_check(s)) {
|
|
handle_fjcvtzs(s, rd, rn);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
do_unallocated:
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* FP-specific subcases of table C3-6 (SIMD and FP data processing)
|
|
* 31 30 29 28 25 24 0
|
|
* +---+---+---+---------+-----------------------------+
|
|
* | | 0 | | 1 1 1 1 | |
|
|
* +---+---+---+---------+-----------------------------+
|
|
*/
|
|
static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
|
|
{
|
|
if (extract32(insn, 24, 1)) {
|
|
/* Floating point data-processing (3 source) */
|
|
disas_fp_3src(s, insn);
|
|
} else if (extract32(insn, 21, 1) == 0) {
|
|
/* Floating point to fixed point conversions */
|
|
disas_fp_fixed_conv(s, insn);
|
|
} else {
|
|
switch (extract32(insn, 10, 2)) {
|
|
case 1:
|
|
/* Floating point conditional compare */
|
|
disas_fp_ccomp(s, insn);
|
|
break;
|
|
case 2:
|
|
/* Floating point data-processing (2 source) */
|
|
disas_fp_2src(s, insn);
|
|
break;
|
|
case 3:
|
|
/* Floating point conditional select */
|
|
disas_fp_csel(s, insn);
|
|
break;
|
|
case 0:
|
|
switch (ctz32(extract32(insn, 12, 4))) {
|
|
case 0: /* [15:12] == xxx1 */
|
|
/* Floating point immediate */
|
|
disas_fp_imm(s, insn);
|
|
break;
|
|
case 1: /* [15:12] == xx10 */
|
|
/* Floating point compare */
|
|
disas_fp_compare(s, insn);
|
|
break;
|
|
case 2: /* [15:12] == x100 */
|
|
/* Floating point data-processing (1 source) */
|
|
disas_fp_1src(s, insn);
|
|
break;
|
|
case 3: /* [15:12] == 1000 */
|
|
unallocated_encoding(s);
|
|
break;
|
|
default: /* [15:12] == 0000 */
|
|
/* Floating point <-> integer conversions */
|
|
disas_fp_int_conv(s, insn);
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
|
|
int pos)
|
|
{
|
|
/* Extract 64 bits from the middle of two concatenated 64 bit
|
|
* vector register slices left:right. The extracted bits start
|
|
* at 'pos' bits into the right (least significant) side.
|
|
* We return the result in tcg_right, and guarantee not to
|
|
* trash tcg_left.
|
|
*/
|
|
TCGv_i64 tcg_tmp = tcg_temp_new_i64();
|
|
assert(pos > 0 && pos < 64);
|
|
|
|
tcg_gen_shri_i64(tcg_right, tcg_right, pos);
|
|
tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
|
|
tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
|
|
}
|
|
|
|
/* EXT
|
|
* 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0
|
|
* +---+---+-------------+-----+---+------+---+------+---+------+------+
|
|
* | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd |
|
|
* +---+---+-------------+-----+---+------+---+------+---+------+------+
|
|
*/
|
|
static void disas_simd_ext(DisasContext *s, uint32_t insn)
|
|
{
|
|
int is_q = extract32(insn, 30, 1);
|
|
int op2 = extract32(insn, 22, 2);
|
|
int imm4 = extract32(insn, 11, 4);
|
|
int rm = extract32(insn, 16, 5);
|
|
int rn = extract32(insn, 5, 5);
|
|
int rd = extract32(insn, 0, 5);
|
|
int pos = imm4 << 3;
|
|
TCGv_i64 tcg_resl, tcg_resh;
|
|
|
|
if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
|
|
tcg_resh = tcg_temp_new_i64();
|
|
tcg_resl = tcg_temp_new_i64();
|
|
|
|
/* Vd gets bits starting at pos bits into Vm:Vn. This is
|
|
* either extracting 128 bits from a 128:128 concatenation, or
|
|
* extracting 64 bits from a 64:64 concatenation.
|
|
*/
|
|
if (!is_q) {
|
|
read_vec_element(s, tcg_resl, rn, 0, MO_64);
|
|
if (pos != 0) {
|
|
read_vec_element(s, tcg_resh, rm, 0, MO_64);
|
|
do_ext64(s, tcg_resh, tcg_resl, pos);
|
|
}
|
|
} else {
|
|
TCGv_i64 tcg_hh;
|
|
typedef struct {
|
|
int reg;
|
|
int elt;
|
|
} EltPosns;
|
|
EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
|
|
EltPosns *elt = eltposns;
|
|
|
|
if (pos >= 64) {
|
|
elt++;
|
|
pos -= 64;
|
|
}
|
|
|
|
read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
|
|
elt++;
|
|
read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
|
|
elt++;
|
|
if (pos != 0) {
|
|
do_ext64(s, tcg_resh, tcg_resl, pos);
|
|
tcg_hh = tcg_temp_new_i64();
|
|
read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
|
|
do_ext64(s, tcg_hh, tcg_resh, pos);
|
|
}
|
|
}
|
|
|
|
write_vec_element(s, tcg_resl, rd, 0, MO_64);
|
|
if (is_q) {
|
|
write_vec_element(s, tcg_resh, rd, 1, MO_64);
|
|
}
|
|
clear_vec_high(s, is_q, rd);
|
|
}
|
|
|
|
/* TBL/TBX
|
|
* 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
|
|
* +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
|
|
* | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd |
|
|
* +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
|
|
*/
|
|
static void disas_simd_tb(DisasContext *s, uint32_t insn)
|
|
{
|
|
int op2 = extract32(insn, 22, 2);
|
|
int is_q = extract32(insn, 30, 1);
|
|
int rm = extract32(insn, 16, 5);
|
|
int rn = extract32(insn, 5, 5);
|
|
int rd = extract32(insn, 0, 5);
|
|
int is_tbx = extract32(insn, 12, 1);
|
|
int len = (extract32(insn, 13, 2) + 1) * 16;
|
|
|
|
if (op2 != 0) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
|
|
tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd),
|
|
vec_full_reg_offset(s, rm), tcg_env,
|
|
is_q ? 16 : 8, vec_full_reg_size(s),
|
|
(len << 6) | (is_tbx << 5) | rn,
|
|
gen_helper_simd_tblx);
|
|
}
|
|
|
|
/* ZIP/UZP/TRN
|
|
* 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
|
|
* +---+---+-------------+------+---+------+---+------------------+------+
|
|
* | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd |
|
|
* +---+---+-------------+------+---+------+---+------------------+------+
|
|
*/
|
|
static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
|
|
{
|
|
int rd = extract32(insn, 0, 5);
|
|
int rn = extract32(insn, 5, 5);
|
|
int rm = extract32(insn, 16, 5);
|
|
int size = extract32(insn, 22, 2);
|
|
/* opc field bits [1:0] indicate ZIP/UZP/TRN;
|
|
* bit 2 indicates 1 vs 2 variant of the insn.
|
|
*/
|
|
int opcode = extract32(insn, 12, 2);
|
|
bool part = extract32(insn, 14, 1);
|
|
bool is_q = extract32(insn, 30, 1);
|
|
int esize = 8 << size;
|
|
int i;
|
|
int datasize = is_q ? 128 : 64;
|
|
int elements = datasize / esize;
|
|
TCGv_i64 tcg_res[2], tcg_ele;
|
|
|
|
if (opcode == 0 || (size == 3 && !is_q)) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
|
|
tcg_res[0] = tcg_temp_new_i64();
|
|
tcg_res[1] = is_q ? tcg_temp_new_i64() : NULL;
|
|
tcg_ele = tcg_temp_new_i64();
|
|
|
|
for (i = 0; i < elements; i++) {
|
|
int o, w;
|
|
|
|
switch (opcode) {
|
|
case 1: /* UZP1/2 */
|
|
{
|
|
int midpoint = elements / 2;
|
|
if (i < midpoint) {
|
|
read_vec_element(s, tcg_ele, rn, 2 * i + part, size);
|
|
} else {
|
|
read_vec_element(s, tcg_ele, rm,
|
|
2 * (i - midpoint) + part, size);
|
|
}
|
|
break;
|
|
}
|
|
case 2: /* TRN1/2 */
|
|
if (i & 1) {
|
|
read_vec_element(s, tcg_ele, rm, (i & ~1) + part, size);
|
|
} else {
|
|
read_vec_element(s, tcg_ele, rn, (i & ~1) + part, size);
|
|
}
|
|
break;
|
|
case 3: /* ZIP1/2 */
|
|
{
|
|
int base = part * elements / 2;
|
|
if (i & 1) {
|
|
read_vec_element(s, tcg_ele, rm, base + (i >> 1), size);
|
|
} else {
|
|
read_vec_element(s, tcg_ele, rn, base + (i >> 1), size);
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
w = (i * esize) / 64;
|
|
o = (i * esize) % 64;
|
|
if (o == 0) {
|
|
tcg_gen_mov_i64(tcg_res[w], tcg_ele);
|
|
} else {
|
|
tcg_gen_shli_i64(tcg_ele, tcg_ele, o);
|
|
tcg_gen_or_i64(tcg_res[w], tcg_res[w], tcg_ele);
|
|
}
|
|
}
|
|
|
|
for (i = 0; i <= is_q; ++i) {
|
|
write_vec_element(s, tcg_res[i], rd, i, MO_64);
|
|
}
|
|
clear_vec_high(s, is_q, rd);
|
|
}
|
|
|
|
/*
|
|
* do_reduction_op helper
|
|
*
|
|
* This mirrors the Reduce() pseudocode in the ARM ARM. It is
|
|
* important for correct NaN propagation that we do these
|
|
* operations in exactly the order specified by the pseudocode.
|
|
*
|
|
* This is a recursive function, TCG temps should be freed by the
|
|
* calling function once it is done with the values.
|
|
*/
|
|
static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
|
|
int esize, int size, int vmap, TCGv_ptr fpst)
|
|
{
|
|
if (esize == size) {
|
|
int element;
|
|
MemOp msize = esize == 16 ? MO_16 : MO_32;
|
|
TCGv_i32 tcg_elem;
|
|
|
|
/* We should have one register left here */
|
|
assert(ctpop8(vmap) == 1);
|
|
element = ctz32(vmap);
|
|
assert(element < 8);
|
|
|
|
tcg_elem = tcg_temp_new_i32();
|
|
read_vec_element_i32(s, tcg_elem, rn, element, msize);
|
|
return tcg_elem;
|
|
} else {
|
|
int bits = size / 2;
|
|
int shift = ctpop8(vmap) / 2;
|
|
int vmap_lo = (vmap >> shift) & vmap;
|
|
int vmap_hi = (vmap & ~vmap_lo);
|
|
TCGv_i32 tcg_hi, tcg_lo, tcg_res;
|
|
|
|
tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
|
|
tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
|
|
tcg_res = tcg_temp_new_i32();
|
|
|
|
switch (fpopcode) {
|
|
case 0x0c: /* fmaxnmv half-precision */
|
|
gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
|
|
break;
|
|
case 0x0f: /* fmaxv half-precision */
|
|
gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
|
|
break;
|
|
case 0x1c: /* fminnmv half-precision */
|
|
gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
|
|
break;
|
|
case 0x1f: /* fminv half-precision */
|
|
gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
|
|
break;
|
|
case 0x2c: /* fmaxnmv */
|
|
gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
|
|
break;
|
|
case 0x2f: /* fmaxv */
|
|
gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
|
|
break;
|
|
case 0x3c: /* fminnmv */
|
|
gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
|
|
break;
|
|
case 0x3f: /* fminv */
|
|
gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
return tcg_res;
|
|
}
|
|
}
|
|
|
|
/* AdvSIMD across lanes
|
|
* 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
|
|
* +---+---+---+-----------+------+-----------+--------+-----+------+------+
|
|
* | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
|
|
* +---+---+---+-----------+------+-----------+--------+-----+------+------+
|
|
*/
|
|
static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
|
|
{
|
|
int rd = extract32(insn, 0, 5);
|
|
int rn = extract32(insn, 5, 5);
|
|
int size = extract32(insn, 22, 2);
|
|
int opcode = extract32(insn, 12, 5);
|
|
bool is_q = extract32(insn, 30, 1);
|
|
bool is_u = extract32(insn, 29, 1);
|
|
bool is_fp = false;
|
|
bool is_min = false;
|
|
int esize;
|
|
int elements;
|
|
int i;
|
|
TCGv_i64 tcg_res, tcg_elt;
|
|
|
|
switch (opcode) {
|
|
case 0x1b: /* ADDV */
|
|
if (is_u) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
/* fall through */
|
|
case 0x3: /* SADDLV, UADDLV */
|
|
case 0xa: /* SMAXV, UMAXV */
|
|
case 0x1a: /* SMINV, UMINV */
|
|
if (size == 3 || (size == 2 && !is_q)) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
break;
|
|
case 0xc: /* FMAXNMV, FMINNMV */
|
|
case 0xf: /* FMAXV, FMINV */
|
|
/* Bit 1 of size field encodes min vs max and the actual size
|
|
* depends on the encoding of the U bit. If not set (and FP16
|
|
* enabled) then we do half-precision float instead of single
|
|
* precision.
|
|
*/
|
|
is_min = extract32(size, 1, 1);
|
|
is_fp = true;
|
|
if (!is_u && dc_isar_feature(aa64_fp16, s)) {
|
|
size = 1;
|
|
} else if (!is_u || !is_q || extract32(size, 0, 1)) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
} else {
|
|
size = 2;
|
|
}
|
|
break;
|
|
default:
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
|
|
esize = 8 << size;
|
|
elements = (is_q ? 128 : 64) / esize;
|
|
|
|
tcg_res = tcg_temp_new_i64();
|
|
tcg_elt = tcg_temp_new_i64();
|
|
|
|
/* These instructions operate across all lanes of a vector
|
|
* to produce a single result. We can guarantee that a 64
|
|
* bit intermediate is sufficient:
|
|
* + for [US]ADDLV the maximum element size is 32 bits, and
|
|
* the result type is 64 bits
|
|
* + for FMAX*V, FMIN*V, ADDV the intermediate type is the
|
|
* same as the element size, which is 32 bits at most
|
|
* For the integer operations we can choose to work at 64
|
|
* or 32 bits and truncate at the end; for simplicity
|
|
* we use 64 bits always. The floating point
|
|
* ops do require 32 bit intermediates, though.
|
|
*/
|
|
if (!is_fp) {
|
|
read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
|
|
|
|
for (i = 1; i < elements; i++) {
|
|
read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
|
|
|
|
switch (opcode) {
|
|
case 0x03: /* SADDLV / UADDLV */
|
|
case 0x1b: /* ADDV */
|
|
tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
|
|
break;
|
|
case 0x0a: /* SMAXV / UMAXV */
|
|
if (is_u) {
|
|
tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
|
|
} else {
|
|
tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
|
|
}
|
|
break;
|
|
case 0x1a: /* SMINV / UMINV */
|
|
if (is_u) {
|
|
tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
|
|
} else {
|
|
tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
|
|
}
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
}
|
|
} else {
|
|
/* Floating point vector reduction ops which work across 32
|
|
* bit (single) or 16 bit (half-precision) intermediates.
|
|
* Note that correct NaN propagation requires that we do these
|
|
* operations in exactly the order specified by the pseudocode.
|
|
*/
|
|
TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
|
|
int fpopcode = opcode | is_min << 4 | is_u << 5;
|
|
int vmap = (1 << elements) - 1;
|
|
TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
|
|
(is_q ? 128 : 64), vmap, fpst);
|
|
tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
|
|
}
|
|
|
|
/* Now truncate the result to the width required for the final output */
|
|
if (opcode == 0x03) {
|
|
/* SADDLV, UADDLV: result is 2*esize */
|
|
size++;
|
|
}
|
|
|
|
switch (size) {
|
|
case 0:
|
|
tcg_gen_ext8u_i64(tcg_res, tcg_res);
|
|
break;
|
|
case 1:
|
|
tcg_gen_ext16u_i64(tcg_res, tcg_res);
|
|
break;
|
|
case 2:
|
|
tcg_gen_ext32u_i64(tcg_res, tcg_res);
|
|
break;
|
|
case 3:
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
write_fp_dreg(s, rd, tcg_res);
|
|
}
|
|
|
|
/* DUP (Element, Vector)
|
|
*
|
|
* 31 30 29 21 20 16 15 10 9 5 4 0
|
|
* +---+---+-------------------+--------+-------------+------+------+
|
|
* | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
|
|
* +---+---+-------------------+--------+-------------+------+------+
|
|
*
|
|
* size: encoded in imm5 (see ARM ARM LowestSetBit())
|
|
*/
|
|
static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn,
|
|
int imm5)
|
|
{
|
|
int size = ctz32(imm5);
|
|
int index;
|
|
|
|
if (size > 3 || (size == 3 && !is_q)) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
|
|
index = imm5 >> (size + 1);
|
|
tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd),
|
|
vec_reg_offset(s, rn, index, size),
|
|
is_q ? 16 : 8, vec_full_reg_size(s));
|
|
}
|
|
|
|
/* DUP (element, scalar)
|
|
* 31 21 20 16 15 10 9 5 4 0
|
|
* +-----------------------+--------+-------------+------+------+
|
|
* | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
|
|
* +-----------------------+--------+-------------+------+------+
|
|
*/
|
|
static void handle_simd_dupes(DisasContext *s, int rd, int rn,
|
|
int imm5)
|
|
{
|
|
int size = ctz32(imm5);
|
|
int index;
|
|
TCGv_i64 tmp;
|
|
|
|
if (size > 3) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
|
|
index = imm5 >> (size + 1);
|
|
|
|
/* This instruction just extracts the specified element and
|
|
* zero-extends it into the bottom of the destination register.
|
|
*/
|
|
tmp = tcg_temp_new_i64();
|
|
read_vec_element(s, tmp, rn, index, size);
|
|
write_fp_dreg(s, rd, tmp);
|
|
}
|
|
|
|
/* DUP (General)
|
|
*
|
|
* 31 30 29 21 20 16 15 10 9 5 4 0
|
|
* +---+---+-------------------+--------+-------------+------+------+
|
|
* | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd |
|
|
* +---+---+-------------------+--------+-------------+------+------+
|
|
*
|
|
* size: encoded in imm5 (see ARM ARM LowestSetBit())
|
|
*/
|
|
static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn,
|
|
int imm5)
|
|
{
|
|
int size = ctz32(imm5);
|
|
uint32_t dofs, oprsz, maxsz;
|
|
|
|
if (size > 3 || ((size == 3) && !is_q)) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
|
|
dofs = vec_full_reg_offset(s, rd);
|
|
oprsz = is_q ? 16 : 8;
|
|
maxsz = vec_full_reg_size(s);
|
|
|
|
tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn));
|
|
}
|
|
|
|
/* INS (Element)
|
|
*
|
|
* 31 21 20 16 15 14 11 10 9 5 4 0
|
|
* +-----------------------+--------+------------+---+------+------+
|
|
* | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
|
|
* +-----------------------+--------+------------+---+------+------+
|
|
*
|
|
* size: encoded in imm5 (see ARM ARM LowestSetBit())
|
|
* index: encoded in imm5<4:size+1>
|
|
*/
|
|
static void handle_simd_inse(DisasContext *s, int rd, int rn,
|
|
int imm4, int imm5)
|
|
{
|
|
int size = ctz32(imm5);
|
|
int src_index, dst_index;
|
|
TCGv_i64 tmp;
|
|
|
|
if (size > 3) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
|
|
dst_index = extract32(imm5, 1+size, 5);
|
|
src_index = extract32(imm4, size, 4);
|
|
|
|
tmp = tcg_temp_new_i64();
|
|
|
|
read_vec_element(s, tmp, rn, src_index, size);
|
|
write_vec_element(s, tmp, rd, dst_index, size);
|
|
|
|
/* INS is considered a 128-bit write for SVE. */
|
|
clear_vec_high(s, true, rd);
|
|
}
|
|
|
|
|
|
/* INS (General)
|
|
*
|
|
* 31 21 20 16 15 10 9 5 4 0
|
|
* +-----------------------+--------+-------------+------+------+
|
|
* | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd |
|
|
* +-----------------------+--------+-------------+------+------+
|
|
*
|
|
* size: encoded in imm5 (see ARM ARM LowestSetBit())
|
|
* index: encoded in imm5<4:size+1>
|
|
*/
|
|
static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5)
|
|
{
|
|
int size = ctz32(imm5);
|
|
int idx;
|
|
|
|
if (size > 3) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
|
|
idx = extract32(imm5, 1 + size, 4 - size);
|
|
write_vec_element(s, cpu_reg(s, rn), rd, idx, size);
|
|
|
|
/* INS is considered a 128-bit write for SVE. */
|
|
clear_vec_high(s, true, rd);
|
|
}
|
|
|
|
/*
|
|
* UMOV (General)
|
|
* SMOV (General)
|
|
*
|
|
* 31 30 29 21 20 16 15 12 10 9 5 4 0
|
|
* +---+---+-------------------+--------+-------------+------+------+
|
|
* | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd |
|
|
* +---+---+-------------------+--------+-------------+------+------+
|
|
*
|
|
* U: unsigned when set
|
|
* size: encoded in imm5 (see ARM ARM LowestSetBit())
|
|
*/
|
|
static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed,
|
|
int rn, int rd, int imm5)
|
|
{
|
|
int size = ctz32(imm5);
|
|
int element;
|
|
TCGv_i64 tcg_rd;
|
|
|
|
/* Check for UnallocatedEncodings */
|
|
if (is_signed) {
|
|
if (size > 2 || (size == 2 && !is_q)) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
} else {
|
|
if (size > 3
|
|
|| (size < 3 && is_q)
|
|
|| (size == 3 && !is_q)) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
|
|
element = extract32(imm5, 1+size, 4);
|
|
|
|
tcg_rd = cpu_reg(s, rd);
|
|
read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0));
|
|
if (is_signed && !is_q) {
|
|
tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
|
|
}
|
|
}
|
|
|
|
/* AdvSIMD copy
|
|
* 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
|
|
* +---+---+----+-----------------+------+---+------+---+------+------+
|
|
* | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
|
|
* +---+---+----+-----------------+------+---+------+---+------+------+
|
|
*/
|
|
static void disas_simd_copy(DisasContext *s, uint32_t insn)
|
|
{
|
|
int rd = extract32(insn, 0, 5);
|
|
int rn = extract32(insn, 5, 5);
|
|
int imm4 = extract32(insn, 11, 4);
|
|
int op = extract32(insn, 29, 1);
|
|
int is_q = extract32(insn, 30, 1);
|
|
int imm5 = extract32(insn, 16, 5);
|
|
|
|
if (op) {
|
|
if (is_q) {
|
|
/* INS (element) */
|
|
handle_simd_inse(s, rd, rn, imm4, imm5);
|
|
} else {
|
|
unallocated_encoding(s);
|
|
}
|
|
} else {
|
|
switch (imm4) {
|
|
case 0:
|
|
/* DUP (element - vector) */
|
|
handle_simd_dupe(s, is_q, rd, rn, imm5);
|
|
break;
|
|
case 1:
|
|
/* DUP (general) */
|
|
handle_simd_dupg(s, is_q, rd, rn, imm5);
|
|
break;
|
|
case 3:
|
|
if (is_q) {
|
|
/* INS (general) */
|
|
handle_simd_insg(s, rd, rn, imm5);
|
|
} else {
|
|
unallocated_encoding(s);
|
|
}
|
|
break;
|
|
case 5:
|
|
case 7:
|
|
/* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */
|
|
handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5);
|
|
break;
|
|
default:
|
|
unallocated_encoding(s);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* AdvSIMD modified immediate
|
|
* 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0
|
|
* +---+---+----+---------------------+-----+-------+----+---+-------+------+
|
|
* | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd |
|
|
* +---+---+----+---------------------+-----+-------+----+---+-------+------+
|
|
*
|
|
* There are a number of operations that can be carried out here:
|
|
* MOVI - move (shifted) imm into register
|
|
* MVNI - move inverted (shifted) imm into register
|
|
* ORR - bitwise OR of (shifted) imm with register
|
|
* BIC - bitwise clear of (shifted) imm with register
|
|
* With ARMv8.2 we also have:
|
|
* FMOV half-precision
|
|
*/
|
|
static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
|
|
{
|
|
int rd = extract32(insn, 0, 5);
|
|
int cmode = extract32(insn, 12, 4);
|
|
int o2 = extract32(insn, 11, 1);
|
|
uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
|
|
bool is_neg = extract32(insn, 29, 1);
|
|
bool is_q = extract32(insn, 30, 1);
|
|
uint64_t imm = 0;
|
|
|
|
if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) {
|
|
/* Check for FMOV (vector, immediate) - half-precision */
|
|
if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
|
|
if (cmode == 15 && o2 && !is_neg) {
|
|
/* FMOV (vector, immediate) - half-precision */
|
|
imm = vfp_expand_imm(MO_16, abcdefgh);
|
|
/* now duplicate across the lanes */
|
|
imm = dup_const(MO_16, imm);
|
|
} else {
|
|
imm = asimd_imm_const(abcdefgh, cmode, is_neg);
|
|
}
|
|
|
|
if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
|
|
/* MOVI or MVNI, with MVNI negation handled above. */
|
|
tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8,
|
|
vec_full_reg_size(s), imm);
|
|
} else {
|
|
/* ORR or BIC, with BIC negation to AND handled above. */
|
|
if (is_neg) {
|
|
gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
|
|
} else {
|
|
gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* AdvSIMD scalar copy
|
|
* 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
|
|
* +-----+----+-----------------+------+---+------+---+------+------+
|
|
* | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
|
|
* +-----+----+-----------------+------+---+------+---+------+------+
|
|
*/
|
|
static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn)
|
|
{
|
|
int rd = extract32(insn, 0, 5);
|
|
int rn = extract32(insn, 5, 5);
|
|
int imm4 = extract32(insn, 11, 4);
|
|
int imm5 = extract32(insn, 16, 5);
|
|
int op = extract32(insn, 29, 1);
|
|
|
|
if (op != 0 || imm4 != 0) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
/* DUP (element, scalar) */
|
|
handle_simd_dupes(s, rd, rn, imm5);
|
|
}
|
|
|
|
/* AdvSIMD scalar pairwise
|
|
* 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
|
|
* +-----+---+-----------+------+-----------+--------+-----+------+------+
|
|
* | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
|
|
* +-----+---+-----------+------+-----------+--------+-----+------+------+
|
|
*/
|
|
static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
|
|
{
|
|
int u = extract32(insn, 29, 1);
|
|
int size = extract32(insn, 22, 2);
|
|
int opcode = extract32(insn, 12, 5);
|
|
int rn = extract32(insn, 5, 5);
|
|
int rd = extract32(insn, 0, 5);
|
|
TCGv_ptr fpst;
|
|
|
|
/* For some ops (the FP ones), size[1] is part of the encoding.
|
|
* For ADDP strictly it is not but size[1] is always 1 for valid
|
|
* encodings.
|
|
*/
|
|
opcode |= (extract32(size, 1, 1) << 5);
|
|
|
|
switch (opcode) {
|
|
case 0x3b: /* ADDP */
|
|
if (u || size != 3) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
|
|
fpst = NULL;
|
|
break;
|
|
case 0xc: /* FMAXNMP */
|
|
case 0xd: /* FADDP */
|
|
case 0xf: /* FMAXP */
|
|
case 0x2c: /* FMINNMP */
|
|
case 0x2f: /* FMINP */
|
|
/* FP op, size[0] is 32 or 64 bit*/
|
|
if (!u) {
|
|
if (!dc_isar_feature(aa64_fp16, s)) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
} else {
|
|
size = MO_16;
|
|
}
|
|
} else {
|
|
size = extract32(size, 0, 1) ? MO_64 : MO_32;
|
|
}
|
|
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
|
|
fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
|
|
break;
|
|
default:
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
if (size == MO_64) {
|
|
TCGv_i64 tcg_op1 = tcg_temp_new_i64();
|
|
TCGv_i64 tcg_op2 = tcg_temp_new_i64();
|
|
TCGv_i64 tcg_res = tcg_temp_new_i64();
|
|
|
|
read_vec_element(s, tcg_op1, rn, 0, MO_64);
|
|
read_vec_element(s, tcg_op2, rn, 1, MO_64);
|
|
|
|
switch (opcode) {
|
|
case 0x3b: /* ADDP */
|
|
tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
|
|
break;
|
|
case 0xc: /* FMAXNMP */
|
|
gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0xd: /* FADDP */
|
|
gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0xf: /* FMAXP */
|
|
gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x2c: /* FMINNMP */
|
|
gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x2f: /* FMINP */
|
|
gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
write_fp_dreg(s, rd, tcg_res);
|
|
} else {
|
|
TCGv_i32 tcg_op1 = tcg_temp_new_i32();
|
|
TCGv_i32 tcg_op2 = tcg_temp_new_i32();
|
|
TCGv_i32 tcg_res = tcg_temp_new_i32();
|
|
|
|
read_vec_element_i32(s, tcg_op1, rn, 0, size);
|
|
read_vec_element_i32(s, tcg_op2, rn, 1, size);
|
|
|
|
if (size == MO_16) {
|
|
switch (opcode) {
|
|
case 0xc: /* FMAXNMP */
|
|
gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0xd: /* FADDP */
|
|
gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0xf: /* FMAXP */
|
|
gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x2c: /* FMINNMP */
|
|
gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x2f: /* FMINP */
|
|
gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
} else {
|
|
switch (opcode) {
|
|
case 0xc: /* FMAXNMP */
|
|
gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0xd: /* FADDP */
|
|
gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0xf: /* FMAXP */
|
|
gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x2c: /* FMINNMP */
|
|
gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x2f: /* FMINP */
|
|
gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
write_fp_sreg(s, rd, tcg_res);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
|
|
*
|
|
* This code is handles the common shifting code and is used by both
|
|
* the vector and scalar code.
|
|
*/
|
|
static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
|
|
TCGv_i64 tcg_rnd, bool accumulate,
|
|
bool is_u, int size, int shift)
|
|
{
|
|
bool extended_result = false;
|
|
bool round = tcg_rnd != NULL;
|
|
int ext_lshift = 0;
|
|
TCGv_i64 tcg_src_hi;
|
|
|
|
if (round && size == 3) {
|
|
extended_result = true;
|
|
ext_lshift = 64 - shift;
|
|
tcg_src_hi = tcg_temp_new_i64();
|
|
} else if (shift == 64) {
|
|
if (!accumulate && is_u) {
|
|
/* result is zero */
|
|
tcg_gen_movi_i64(tcg_res, 0);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Deal with the rounding step */
|
|
if (round) {
|
|
if (extended_result) {
|
|
TCGv_i64 tcg_zero = tcg_constant_i64(0);
|
|
if (!is_u) {
|
|
/* take care of sign extending tcg_res */
|
|
tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
|
|
tcg_gen_add2_i64(tcg_src, tcg_src_hi,
|
|
tcg_src, tcg_src_hi,
|
|
tcg_rnd, tcg_zero);
|
|
} else {
|
|
tcg_gen_add2_i64(tcg_src, tcg_src_hi,
|
|
tcg_src, tcg_zero,
|
|
tcg_rnd, tcg_zero);
|
|
}
|
|
} else {
|
|
tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
|
|
}
|
|
}
|
|
|
|
/* Now do the shift right */
|
|
if (round && extended_result) {
|
|
/* extended case, >64 bit precision required */
|
|
if (ext_lshift == 0) {
|
|
/* special case, only high bits matter */
|
|
tcg_gen_mov_i64(tcg_src, tcg_src_hi);
|
|
} else {
|
|
tcg_gen_shri_i64(tcg_src, tcg_src, shift);
|
|
tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
|
|
tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
|
|
}
|
|
} else {
|
|
if (is_u) {
|
|
if (shift == 64) {
|
|
/* essentially shifting in 64 zeros */
|
|
tcg_gen_movi_i64(tcg_src, 0);
|
|
} else {
|
|
tcg_gen_shri_i64(tcg_src, tcg_src, shift);
|
|
}
|
|
} else {
|
|
if (shift == 64) {
|
|
/* effectively extending the sign-bit */
|
|
tcg_gen_sari_i64(tcg_src, tcg_src, 63);
|
|
} else {
|
|
tcg_gen_sari_i64(tcg_src, tcg_src, shift);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (accumulate) {
|
|
tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
|
|
} else {
|
|
tcg_gen_mov_i64(tcg_res, tcg_src);
|
|
}
|
|
}
|
|
|
|
/* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
|
|
static void handle_scalar_simd_shri(DisasContext *s,
|
|
bool is_u, int immh, int immb,
|
|
int opcode, int rn, int rd)
|
|
{
|
|
const int size = 3;
|
|
int immhb = immh << 3 | immb;
|
|
int shift = 2 * (8 << size) - immhb;
|
|
bool accumulate = false;
|
|
bool round = false;
|
|
bool insert = false;
|
|
TCGv_i64 tcg_rn;
|
|
TCGv_i64 tcg_rd;
|
|
TCGv_i64 tcg_round;
|
|
|
|
if (!extract32(immh, 3, 1)) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
|
|
switch (opcode) {
|
|
case 0x02: /* SSRA / USRA (accumulate) */
|
|
accumulate = true;
|
|
break;
|
|
case 0x04: /* SRSHR / URSHR (rounding) */
|
|
round = true;
|
|
break;
|
|
case 0x06: /* SRSRA / URSRA (accum + rounding) */
|
|
accumulate = round = true;
|
|
break;
|
|
case 0x08: /* SRI */
|
|
insert = true;
|
|
break;
|
|
}
|
|
|
|
if (round) {
|
|
tcg_round = tcg_constant_i64(1ULL << (shift - 1));
|
|
} else {
|
|
tcg_round = NULL;
|
|
}
|
|
|
|
tcg_rn = read_fp_dreg(s, rn);
|
|
tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
|
|
|
|
if (insert) {
|
|
/* shift count same as element size is valid but does nothing;
|
|
* special case to avoid potential shift by 64.
|
|
*/
|
|
int esize = 8 << size;
|
|
if (shift != esize) {
|
|
tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
|
|
tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
|
|
}
|
|
} else {
|
|
handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
|
|
accumulate, is_u, size, shift);
|
|
}
|
|
|
|
write_fp_dreg(s, rd, tcg_rd);
|
|
}
|
|
|
|
/* SHL/SLI - Scalar shift left */
|
|
static void handle_scalar_simd_shli(DisasContext *s, bool insert,
|
|
int immh, int immb, int opcode,
|
|
int rn, int rd)
|
|
{
|
|
int size = 32 - clz32(immh) - 1;
|
|
int immhb = immh << 3 | immb;
|
|
int shift = immhb - (8 << size);
|
|
TCGv_i64 tcg_rn;
|
|
TCGv_i64 tcg_rd;
|
|
|
|
if (!extract32(immh, 3, 1)) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
|
|
tcg_rn = read_fp_dreg(s, rn);
|
|
tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
|
|
|
|
if (insert) {
|
|
tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
|
|
} else {
|
|
tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
|
|
}
|
|
|
|
write_fp_dreg(s, rd, tcg_rd);
|
|
}
|
|
|
|
/* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
|
|
* (signed/unsigned) narrowing */
|
|
static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
|
|
bool is_u_shift, bool is_u_narrow,
|
|
int immh, int immb, int opcode,
|
|
int rn, int rd)
|
|
{
|
|
int immhb = immh << 3 | immb;
|
|
int size = 32 - clz32(immh) - 1;
|
|
int esize = 8 << size;
|
|
int shift = (2 * esize) - immhb;
|
|
int elements = is_scalar ? 1 : (64 / esize);
|
|
bool round = extract32(opcode, 0, 1);
|
|
MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
|
|
TCGv_i64 tcg_rn, tcg_rd, tcg_round;
|
|
TCGv_i32 tcg_rd_narrowed;
|
|
TCGv_i64 tcg_final;
|
|
|
|
static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
|
|
{ gen_helper_neon_narrow_sat_s8,
|
|
gen_helper_neon_unarrow_sat8 },
|
|
{ gen_helper_neon_narrow_sat_s16,
|
|
gen_helper_neon_unarrow_sat16 },
|
|
{ gen_helper_neon_narrow_sat_s32,
|
|
gen_helper_neon_unarrow_sat32 },
|
|
{ NULL, NULL },
|
|
};
|
|
static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
|
|
gen_helper_neon_narrow_sat_u8,
|
|
gen_helper_neon_narrow_sat_u16,
|
|
gen_helper_neon_narrow_sat_u32,
|
|
NULL
|
|
};
|
|
NeonGenNarrowEnvFn *narrowfn;
|
|
|
|
int i;
|
|
|
|
assert(size < 4);
|
|
|
|
if (extract32(immh, 3, 1)) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
|
|
if (is_u_shift) {
|
|
narrowfn = unsigned_narrow_fns[size];
|
|
} else {
|
|
narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
|
|
}
|
|
|
|
tcg_rn = tcg_temp_new_i64();
|
|
tcg_rd = tcg_temp_new_i64();
|
|
tcg_rd_narrowed = tcg_temp_new_i32();
|
|
tcg_final = tcg_temp_new_i64();
|
|
|
|
if (round) {
|
|
tcg_round = tcg_constant_i64(1ULL << (shift - 1));
|
|
} else {
|
|
tcg_round = NULL;
|
|
}
|
|
|
|
for (i = 0; i < elements; i++) {
|
|
read_vec_element(s, tcg_rn, rn, i, ldop);
|
|
handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
|
|
false, is_u_shift, size+1, shift);
|
|
narrowfn(tcg_rd_narrowed, tcg_env, tcg_rd);
|
|
tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
|
|
if (i == 0) {
|
|
tcg_gen_mov_i64(tcg_final, tcg_rd);
|
|
} else {
|
|
tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
|
|
}
|
|
}
|
|
|
|
if (!is_q) {
|
|
write_vec_element(s, tcg_final, rd, 0, MO_64);
|
|
} else {
|
|
write_vec_element(s, tcg_final, rd, 1, MO_64);
|
|
}
|
|
clear_vec_high(s, is_q, rd);
|
|
}
|
|
|
|
/* SQSHLU, UQSHL, SQSHL: saturating left shifts */
|
|
static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
|
|
bool src_unsigned, bool dst_unsigned,
|
|
int immh, int immb, int rn, int rd)
|
|
{
|
|
int immhb = immh << 3 | immb;
|
|
int size = 32 - clz32(immh) - 1;
|
|
int shift = immhb - (8 << size);
|
|
int pass;
|
|
|
|
assert(immh != 0);
|
|
assert(!(scalar && is_q));
|
|
|
|
if (!scalar) {
|
|
if (!is_q && extract32(immh, 3, 1)) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
/* Since we use the variable-shift helpers we must
|
|
* replicate the shift count into each element of
|
|
* the tcg_shift value.
|
|
*/
|
|
switch (size) {
|
|
case 0:
|
|
shift |= shift << 8;
|
|
/* fall through */
|
|
case 1:
|
|
shift |= shift << 16;
|
|
break;
|
|
case 2:
|
|
case 3:
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
|
|
if (size == 3) {
|
|
TCGv_i64 tcg_shift = tcg_constant_i64(shift);
|
|
static NeonGenTwo64OpEnvFn * const fns[2][2] = {
|
|
{ gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
|
|
{ NULL, gen_helper_neon_qshl_u64 },
|
|
};
|
|
NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
|
|
int maxpass = is_q ? 2 : 1;
|
|
|
|
for (pass = 0; pass < maxpass; pass++) {
|
|
TCGv_i64 tcg_op = tcg_temp_new_i64();
|
|
|
|
read_vec_element(s, tcg_op, rn, pass, MO_64);
|
|
genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
|
|
write_vec_element(s, tcg_op, rd, pass, MO_64);
|
|
}
|
|
clear_vec_high(s, is_q, rd);
|
|
} else {
|
|
TCGv_i32 tcg_shift = tcg_constant_i32(shift);
|
|
static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
|
|
{
|
|
{ gen_helper_neon_qshl_s8,
|
|
gen_helper_neon_qshl_s16,
|
|
gen_helper_neon_qshl_s32 },
|
|
{ gen_helper_neon_qshlu_s8,
|
|
gen_helper_neon_qshlu_s16,
|
|
gen_helper_neon_qshlu_s32 }
|
|
}, {
|
|
{ NULL, NULL, NULL },
|
|
{ gen_helper_neon_qshl_u8,
|
|
gen_helper_neon_qshl_u16,
|
|
gen_helper_neon_qshl_u32 }
|
|
}
|
|
};
|
|
NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
|
|
MemOp memop = scalar ? size : MO_32;
|
|
int maxpass = scalar ? 1 : is_q ? 4 : 2;
|
|
|
|
for (pass = 0; pass < maxpass; pass++) {
|
|
TCGv_i32 tcg_op = tcg_temp_new_i32();
|
|
|
|
read_vec_element_i32(s, tcg_op, rn, pass, memop);
|
|
genfn(tcg_op, tcg_env, tcg_op, tcg_shift);
|
|
if (scalar) {
|
|
switch (size) {
|
|
case 0:
|
|
tcg_gen_ext8u_i32(tcg_op, tcg_op);
|
|
break;
|
|
case 1:
|
|
tcg_gen_ext16u_i32(tcg_op, tcg_op);
|
|
break;
|
|
case 2:
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
write_fp_sreg(s, rd, tcg_op);
|
|
} else {
|
|
write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
|
|
}
|
|
}
|
|
|
|
if (!scalar) {
|
|
clear_vec_high(s, is_q, rd);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Common vector code for handling integer to FP conversion */
|
|
static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
|
|
int elements, int is_signed,
|
|
int fracbits, int size)
|
|
{
|
|
TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
|
|
TCGv_i32 tcg_shift = NULL;
|
|
|
|
MemOp mop = size | (is_signed ? MO_SIGN : 0);
|
|
int pass;
|
|
|
|
if (fracbits || size == MO_64) {
|
|
tcg_shift = tcg_constant_i32(fracbits);
|
|
}
|
|
|
|
if (size == MO_64) {
|
|
TCGv_i64 tcg_int64 = tcg_temp_new_i64();
|
|
TCGv_i64 tcg_double = tcg_temp_new_i64();
|
|
|
|
for (pass = 0; pass < elements; pass++) {
|
|
read_vec_element(s, tcg_int64, rn, pass, mop);
|
|
|
|
if (is_signed) {
|
|
gen_helper_vfp_sqtod(tcg_double, tcg_int64,
|
|
tcg_shift, tcg_fpst);
|
|
} else {
|
|
gen_helper_vfp_uqtod(tcg_double, tcg_int64,
|
|
tcg_shift, tcg_fpst);
|
|
}
|
|
if (elements == 1) {
|
|
write_fp_dreg(s, rd, tcg_double);
|
|
} else {
|
|
write_vec_element(s, tcg_double, rd, pass, MO_64);
|
|
}
|
|
}
|
|
} else {
|
|
TCGv_i32 tcg_int32 = tcg_temp_new_i32();
|
|
TCGv_i32 tcg_float = tcg_temp_new_i32();
|
|
|
|
for (pass = 0; pass < elements; pass++) {
|
|
read_vec_element_i32(s, tcg_int32, rn, pass, mop);
|
|
|
|
switch (size) {
|
|
case MO_32:
|
|
if (fracbits) {
|
|
if (is_signed) {
|
|
gen_helper_vfp_sltos(tcg_float, tcg_int32,
|
|
tcg_shift, tcg_fpst);
|
|
} else {
|
|
gen_helper_vfp_ultos(tcg_float, tcg_int32,
|
|
tcg_shift, tcg_fpst);
|
|
}
|
|
} else {
|
|
if (is_signed) {
|
|
gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
|
|
} else {
|
|
gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
|
|
}
|
|
}
|
|
break;
|
|
case MO_16:
|
|
if (fracbits) {
|
|
if (is_signed) {
|
|
gen_helper_vfp_sltoh(tcg_float, tcg_int32,
|
|
tcg_shift, tcg_fpst);
|
|
} else {
|
|
gen_helper_vfp_ultoh(tcg_float, tcg_int32,
|
|
tcg_shift, tcg_fpst);
|
|
}
|
|
} else {
|
|
if (is_signed) {
|
|
gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
|
|
} else {
|
|
gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
if (elements == 1) {
|
|
write_fp_sreg(s, rd, tcg_float);
|
|
} else {
|
|
write_vec_element_i32(s, tcg_float, rd, pass, size);
|
|
}
|
|
}
|
|
}
|
|
|
|
clear_vec_high(s, elements << size == 16, rd);
|
|
}
|
|
|
|
/* UCVTF/SCVTF - Integer to FP conversion */
|
|
static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
|
|
bool is_q, bool is_u,
|
|
int immh, int immb, int opcode,
|
|
int rn, int rd)
|
|
{
|
|
int size, elements, fracbits;
|
|
int immhb = immh << 3 | immb;
|
|
|
|
if (immh & 8) {
|
|
size = MO_64;
|
|
if (!is_scalar && !is_q) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
} else if (immh & 4) {
|
|
size = MO_32;
|
|
} else if (immh & 2) {
|
|
size = MO_16;
|
|
if (!dc_isar_feature(aa64_fp16, s)) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
} else {
|
|
/* immh == 0 would be a failure of the decode logic */
|
|
g_assert(immh == 1);
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
if (is_scalar) {
|
|
elements = 1;
|
|
} else {
|
|
elements = (8 << is_q) >> size;
|
|
}
|
|
fracbits = (16 << size) - immhb;
|
|
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
|
|
handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
|
|
}
|
|
|
|
/* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
|
|
static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
|
|
bool is_q, bool is_u,
|
|
int immh, int immb, int rn, int rd)
|
|
{
|
|
int immhb = immh << 3 | immb;
|
|
int pass, size, fracbits;
|
|
TCGv_ptr tcg_fpstatus;
|
|
TCGv_i32 tcg_rmode, tcg_shift;
|
|
|
|
if (immh & 0x8) {
|
|
size = MO_64;
|
|
if (!is_scalar && !is_q) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
} else if (immh & 0x4) {
|
|
size = MO_32;
|
|
} else if (immh & 0x2) {
|
|
size = MO_16;
|
|
if (!dc_isar_feature(aa64_fp16, s)) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
} else {
|
|
/* Should have split out AdvSIMD modified immediate earlier. */
|
|
assert(immh == 1);
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
|
|
assert(!(is_scalar && is_q));
|
|
|
|
tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
|
|
tcg_rmode = gen_set_rmode(FPROUNDING_ZERO, tcg_fpstatus);
|
|
fracbits = (16 << size) - immhb;
|
|
tcg_shift = tcg_constant_i32(fracbits);
|
|
|
|
if (size == MO_64) {
|
|
int maxpass = is_scalar ? 1 : 2;
|
|
|
|
for (pass = 0; pass < maxpass; pass++) {
|
|
TCGv_i64 tcg_op = tcg_temp_new_i64();
|
|
|
|
read_vec_element(s, tcg_op, rn, pass, MO_64);
|
|
if (is_u) {
|
|
gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
|
|
} else {
|
|
gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
|
|
}
|
|
write_vec_element(s, tcg_op, rd, pass, MO_64);
|
|
}
|
|
clear_vec_high(s, is_q, rd);
|
|
} else {
|
|
void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
|
|
int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
|
|
|
|
switch (size) {
|
|
case MO_16:
|
|
if (is_u) {
|
|
fn = gen_helper_vfp_touhh;
|
|
} else {
|
|
fn = gen_helper_vfp_toshh;
|
|
}
|
|
break;
|
|
case MO_32:
|
|
if (is_u) {
|
|
fn = gen_helper_vfp_touls;
|
|
} else {
|
|
fn = gen_helper_vfp_tosls;
|
|
}
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
for (pass = 0; pass < maxpass; pass++) {
|
|
TCGv_i32 tcg_op = tcg_temp_new_i32();
|
|
|
|
read_vec_element_i32(s, tcg_op, rn, pass, size);
|
|
fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
|
|
if (is_scalar) {
|
|
write_fp_sreg(s, rd, tcg_op);
|
|
} else {
|
|
write_vec_element_i32(s, tcg_op, rd, pass, size);
|
|
}
|
|
}
|
|
if (!is_scalar) {
|
|
clear_vec_high(s, is_q, rd);
|
|
}
|
|
}
|
|
|
|
gen_restore_rmode(tcg_rmode, tcg_fpstatus);
|
|
}
|
|
|
|
/* AdvSIMD scalar shift by immediate
|
|
* 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
|
|
* +-----+---+-------------+------+------+--------+---+------+------+
|
|
* | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
|
|
* +-----+---+-------------+------+------+--------+---+------+------+
|
|
*
|
|
* This is the scalar version so it works on a fixed sized registers
|
|
*/
|
|
static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
|
|
{
|
|
int rd = extract32(insn, 0, 5);
|
|
int rn = extract32(insn, 5, 5);
|
|
int opcode = extract32(insn, 11, 5);
|
|
int immb = extract32(insn, 16, 3);
|
|
int immh = extract32(insn, 19, 4);
|
|
bool is_u = extract32(insn, 29, 1);
|
|
|
|
if (immh == 0) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
switch (opcode) {
|
|
case 0x08: /* SRI */
|
|
if (!is_u) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
/* fall through */
|
|
case 0x00: /* SSHR / USHR */
|
|
case 0x02: /* SSRA / USRA */
|
|
case 0x04: /* SRSHR / URSHR */
|
|
case 0x06: /* SRSRA / URSRA */
|
|
handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
|
|
break;
|
|
case 0x0a: /* SHL / SLI */
|
|
handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
|
|
break;
|
|
case 0x1c: /* SCVTF, UCVTF */
|
|
handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
|
|
opcode, rn, rd);
|
|
break;
|
|
case 0x10: /* SQSHRUN, SQSHRUN2 */
|
|
case 0x11: /* SQRSHRUN, SQRSHRUN2 */
|
|
if (!is_u) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
handle_vec_simd_sqshrn(s, true, false, false, true,
|
|
immh, immb, opcode, rn, rd);
|
|
break;
|
|
case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
|
|
case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
|
|
handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
|
|
immh, immb, opcode, rn, rd);
|
|
break;
|
|
case 0xc: /* SQSHLU */
|
|
if (!is_u) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
|
|
break;
|
|
case 0xe: /* SQSHL, UQSHL */
|
|
handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
|
|
break;
|
|
case 0x1f: /* FCVTZS, FCVTZU */
|
|
handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
|
|
break;
|
|
default:
|
|
unallocated_encoding(s);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* AdvSIMD scalar three different
|
|
* 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
|
|
* +-----+---+-----------+------+---+------+--------+-----+------+------+
|
|
* | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
|
|
* +-----+---+-----------+------+---+------+--------+-----+------+------+
|
|
*/
|
|
static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
|
|
{
|
|
bool is_u = extract32(insn, 29, 1);
|
|
int size = extract32(insn, 22, 2);
|
|
int opcode = extract32(insn, 12, 4);
|
|
int rm = extract32(insn, 16, 5);
|
|
int rn = extract32(insn, 5, 5);
|
|
int rd = extract32(insn, 0, 5);
|
|
|
|
if (is_u) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
switch (opcode) {
|
|
case 0x9: /* SQDMLAL, SQDMLAL2 */
|
|
case 0xb: /* SQDMLSL, SQDMLSL2 */
|
|
case 0xd: /* SQDMULL, SQDMULL2 */
|
|
if (size == 0 || size == 3) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
break;
|
|
default:
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
|
|
if (size == 2) {
|
|
TCGv_i64 tcg_op1 = tcg_temp_new_i64();
|
|
TCGv_i64 tcg_op2 = tcg_temp_new_i64();
|
|
TCGv_i64 tcg_res = tcg_temp_new_i64();
|
|
|
|
read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
|
|
read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
|
|
|
|
tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
|
|
gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env, tcg_res, tcg_res);
|
|
|
|
switch (opcode) {
|
|
case 0xd: /* SQDMULL, SQDMULL2 */
|
|
break;
|
|
case 0xb: /* SQDMLSL, SQDMLSL2 */
|
|
tcg_gen_neg_i64(tcg_res, tcg_res);
|
|
/* fall through */
|
|
case 0x9: /* SQDMLAL, SQDMLAL2 */
|
|
read_vec_element(s, tcg_op1, rd, 0, MO_64);
|
|
gen_helper_neon_addl_saturate_s64(tcg_res, tcg_env,
|
|
tcg_res, tcg_op1);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
write_fp_dreg(s, rd, tcg_res);
|
|
} else {
|
|
TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
|
|
TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
|
|
TCGv_i64 tcg_res = tcg_temp_new_i64();
|
|
|
|
gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
|
|
gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env, tcg_res, tcg_res);
|
|
|
|
switch (opcode) {
|
|
case 0xd: /* SQDMULL, SQDMULL2 */
|
|
break;
|
|
case 0xb: /* SQDMLSL, SQDMLSL2 */
|
|
gen_helper_neon_negl_u32(tcg_res, tcg_res);
|
|
/* fall through */
|
|
case 0x9: /* SQDMLAL, SQDMLAL2 */
|
|
{
|
|
TCGv_i64 tcg_op3 = tcg_temp_new_i64();
|
|
read_vec_element(s, tcg_op3, rd, 0, MO_32);
|
|
gen_helper_neon_addl_saturate_s32(tcg_res, tcg_env,
|
|
tcg_res, tcg_op3);
|
|
break;
|
|
}
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
tcg_gen_ext32u_i64(tcg_res, tcg_res);
|
|
write_fp_dreg(s, rd, tcg_res);
|
|
}
|
|
}
|
|
|
|
static void handle_3same_64(DisasContext *s, int opcode, bool u,
|
|
TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
|
|
{
|
|
/* Handle 64x64->64 opcodes which are shared between the scalar
|
|
* and vector 3-same groups. We cover every opcode where size == 3
|
|
* is valid in either the three-reg-same (integer, not pairwise)
|
|
* or scalar-three-reg-same groups.
|
|
*/
|
|
TCGCond cond;
|
|
|
|
switch (opcode) {
|
|
case 0x1: /* SQADD */
|
|
if (u) {
|
|
gen_helper_neon_qadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
|
|
} else {
|
|
gen_helper_neon_qadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
|
|
}
|
|
break;
|
|
case 0x5: /* SQSUB */
|
|
if (u) {
|
|
gen_helper_neon_qsub_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
|
|
} else {
|
|
gen_helper_neon_qsub_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
|
|
}
|
|
break;
|
|
case 0x6: /* CMGT, CMHI */
|
|
cond = u ? TCG_COND_GTU : TCG_COND_GT;
|
|
do_cmop:
|
|
/* 64 bit integer comparison, result = test ? -1 : 0. */
|
|
tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
|
|
break;
|
|
case 0x7: /* CMGE, CMHS */
|
|
cond = u ? TCG_COND_GEU : TCG_COND_GE;
|
|
goto do_cmop;
|
|
case 0x11: /* CMTST, CMEQ */
|
|
if (u) {
|
|
cond = TCG_COND_EQ;
|
|
goto do_cmop;
|
|
}
|
|
gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm);
|
|
break;
|
|
case 0x8: /* SSHL, USHL */
|
|
if (u) {
|
|
gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm);
|
|
} else {
|
|
gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm);
|
|
}
|
|
break;
|
|
case 0x9: /* SQSHL, UQSHL */
|
|
if (u) {
|
|
gen_helper_neon_qshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
|
|
} else {
|
|
gen_helper_neon_qshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
|
|
}
|
|
break;
|
|
case 0xa: /* SRSHL, URSHL */
|
|
if (u) {
|
|
gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
|
|
} else {
|
|
gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
|
|
}
|
|
break;
|
|
case 0xb: /* SQRSHL, UQRSHL */
|
|
if (u) {
|
|
gen_helper_neon_qrshl_u64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
|
|
} else {
|
|
gen_helper_neon_qrshl_s64(tcg_rd, tcg_env, tcg_rn, tcg_rm);
|
|
}
|
|
break;
|
|
case 0x10: /* ADD, SUB */
|
|
if (u) {
|
|
tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
|
|
} else {
|
|
tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
|
|
}
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
/* Handle the 3-same-operands float operations; shared by the scalar
|
|
* and vector encodings. The caller must filter out any encodings
|
|
* not allocated for the encoding it is dealing with.
|
|
*/
|
|
static void handle_3same_float(DisasContext *s, int size, int elements,
|
|
int fpopcode, int rd, int rn, int rm)
|
|
{
|
|
int pass;
|
|
TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
|
|
|
|
for (pass = 0; pass < elements; pass++) {
|
|
if (size) {
|
|
/* Double */
|
|
TCGv_i64 tcg_op1 = tcg_temp_new_i64();
|
|
TCGv_i64 tcg_op2 = tcg_temp_new_i64();
|
|
TCGv_i64 tcg_res = tcg_temp_new_i64();
|
|
|
|
read_vec_element(s, tcg_op1, rn, pass, MO_64);
|
|
read_vec_element(s, tcg_op2, rm, pass, MO_64);
|
|
|
|
switch (fpopcode) {
|
|
case 0x39: /* FMLS */
|
|
/* As usual for ARM, separate negation for fused multiply-add */
|
|
gen_helper_vfp_negd(tcg_op1, tcg_op1);
|
|
/* fall through */
|
|
case 0x19: /* FMLA */
|
|
read_vec_element(s, tcg_res, rd, pass, MO_64);
|
|
gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2,
|
|
tcg_res, fpst);
|
|
break;
|
|
case 0x18: /* FMAXNM */
|
|
gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x1a: /* FADD */
|
|
gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x1b: /* FMULX */
|
|
gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x1c: /* FCMEQ */
|
|
gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x1e: /* FMAX */
|
|
gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x1f: /* FRECPS */
|
|
gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x38: /* FMINNM */
|
|
gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x3a: /* FSUB */
|
|
gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x3e: /* FMIN */
|
|
gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x3f: /* FRSQRTS */
|
|
gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x5b: /* FMUL */
|
|
gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x5c: /* FCMGE */
|
|
gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x5d: /* FACGE */
|
|
gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x5f: /* FDIV */
|
|
gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x7a: /* FABD */
|
|
gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
gen_helper_vfp_absd(tcg_res, tcg_res);
|
|
break;
|
|
case 0x7c: /* FCMGT */
|
|
gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x7d: /* FACGT */
|
|
gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
write_vec_element(s, tcg_res, rd, pass, MO_64);
|
|
} else {
|
|
/* Single */
|
|
TCGv_i32 tcg_op1 = tcg_temp_new_i32();
|
|
TCGv_i32 tcg_op2 = tcg_temp_new_i32();
|
|
TCGv_i32 tcg_res = tcg_temp_new_i32();
|
|
|
|
read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
|
|
read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
|
|
|
|
switch (fpopcode) {
|
|
case 0x39: /* FMLS */
|
|
/* As usual for ARM, separate negation for fused multiply-add */
|
|
gen_helper_vfp_negs(tcg_op1, tcg_op1);
|
|
/* fall through */
|
|
case 0x19: /* FMLA */
|
|
read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
|
|
gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2,
|
|
tcg_res, fpst);
|
|
break;
|
|
case 0x1a: /* FADD */
|
|
gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x1b: /* FMULX */
|
|
gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x1c: /* FCMEQ */
|
|
gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x1e: /* FMAX */
|
|
gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x1f: /* FRECPS */
|
|
gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x18: /* FMAXNM */
|
|
gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x38: /* FMINNM */
|
|
gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x3a: /* FSUB */
|
|
gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x3e: /* FMIN */
|
|
gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x3f: /* FRSQRTS */
|
|
gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x5b: /* FMUL */
|
|
gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x5c: /* FCMGE */
|
|
gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x5d: /* FACGE */
|
|
gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x5f: /* FDIV */
|
|
gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x7a: /* FABD */
|
|
gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
gen_helper_vfp_abss(tcg_res, tcg_res);
|
|
break;
|
|
case 0x7c: /* FCMGT */
|
|
gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x7d: /* FACGT */
|
|
gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
if (elements == 1) {
|
|
/* scalar single so clear high part */
|
|
TCGv_i64 tcg_tmp = tcg_temp_new_i64();
|
|
|
|
tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
|
|
write_vec_element(s, tcg_tmp, rd, pass, MO_64);
|
|
} else {
|
|
write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
|
|
}
|
|
}
|
|
}
|
|
|
|
clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd);
|
|
}
|
|
|
|
/* AdvSIMD scalar three same
|
|
* 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
|
|
* +-----+---+-----------+------+---+------+--------+---+------+------+
|
|
* | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
|
|
* +-----+---+-----------+------+---+------+--------+---+------+------+
|
|
*/
|
|
static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
|
|
{
|
|
int rd = extract32(insn, 0, 5);
|
|
int rn = extract32(insn, 5, 5);
|
|
int opcode = extract32(insn, 11, 5);
|
|
int rm = extract32(insn, 16, 5);
|
|
int size = extract32(insn, 22, 2);
|
|
bool u = extract32(insn, 29, 1);
|
|
TCGv_i64 tcg_rd;
|
|
|
|
if (opcode >= 0x18) {
|
|
/* Floating point: U, size[1] and opcode indicate operation */
|
|
int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
|
|
switch (fpopcode) {
|
|
case 0x1b: /* FMULX */
|
|
case 0x1f: /* FRECPS */
|
|
case 0x3f: /* FRSQRTS */
|
|
case 0x5d: /* FACGE */
|
|
case 0x7d: /* FACGT */
|
|
case 0x1c: /* FCMEQ */
|
|
case 0x5c: /* FCMGE */
|
|
case 0x7c: /* FCMGT */
|
|
case 0x7a: /* FABD */
|
|
break;
|
|
default:
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
|
|
handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
|
|
return;
|
|
}
|
|
|
|
switch (opcode) {
|
|
case 0x1: /* SQADD, UQADD */
|
|
case 0x5: /* SQSUB, UQSUB */
|
|
case 0x9: /* SQSHL, UQSHL */
|
|
case 0xb: /* SQRSHL, UQRSHL */
|
|
break;
|
|
case 0x8: /* SSHL, USHL */
|
|
case 0xa: /* SRSHL, URSHL */
|
|
case 0x6: /* CMGT, CMHI */
|
|
case 0x7: /* CMGE, CMHS */
|
|
case 0x11: /* CMTST, CMEQ */
|
|
case 0x10: /* ADD, SUB (vector) */
|
|
if (size != 3) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
break;
|
|
case 0x16: /* SQDMULH, SQRDMULH (vector) */
|
|
if (size != 1 && size != 2) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
break;
|
|
default:
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
|
|
tcg_rd = tcg_temp_new_i64();
|
|
|
|
if (size == 3) {
|
|
TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
|
|
TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
|
|
|
|
handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
|
|
} else {
|
|
/* Do a single operation on the lowest element in the vector.
|
|
* We use the standard Neon helpers and rely on 0 OP 0 == 0 with
|
|
* no side effects for all these operations.
|
|
* OPTME: special-purpose helpers would avoid doing some
|
|
* unnecessary work in the helper for the 8 and 16 bit cases.
|
|
*/
|
|
NeonGenTwoOpEnvFn *genenvfn;
|
|
TCGv_i32 tcg_rn = tcg_temp_new_i32();
|
|
TCGv_i32 tcg_rm = tcg_temp_new_i32();
|
|
TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
|
|
|
|
read_vec_element_i32(s, tcg_rn, rn, 0, size);
|
|
read_vec_element_i32(s, tcg_rm, rm, 0, size);
|
|
|
|
switch (opcode) {
|
|
case 0x1: /* SQADD, UQADD */
|
|
{
|
|
static NeonGenTwoOpEnvFn * const fns[3][2] = {
|
|
{ gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
|
|
{ gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
|
|
{ gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
|
|
};
|
|
genenvfn = fns[size][u];
|
|
break;
|
|
}
|
|
case 0x5: /* SQSUB, UQSUB */
|
|
{
|
|
static NeonGenTwoOpEnvFn * const fns[3][2] = {
|
|
{ gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
|
|
{ gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
|
|
{ gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
|
|
};
|
|
genenvfn = fns[size][u];
|
|
break;
|
|
}
|
|
case 0x9: /* SQSHL, UQSHL */
|
|
{
|
|
static NeonGenTwoOpEnvFn * const fns[3][2] = {
|
|
{ gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
|
|
{ gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
|
|
{ gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
|
|
};
|
|
genenvfn = fns[size][u];
|
|
break;
|
|
}
|
|
case 0xb: /* SQRSHL, UQRSHL */
|
|
{
|
|
static NeonGenTwoOpEnvFn * const fns[3][2] = {
|
|
{ gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
|
|
{ gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
|
|
{ gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
|
|
};
|
|
genenvfn = fns[size][u];
|
|
break;
|
|
}
|
|
case 0x16: /* SQDMULH, SQRDMULH */
|
|
{
|
|
static NeonGenTwoOpEnvFn * const fns[2][2] = {
|
|
{ gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
|
|
{ gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
|
|
};
|
|
assert(size == 1 || size == 2);
|
|
genenvfn = fns[size - 1][u];
|
|
break;
|
|
}
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
genenvfn(tcg_rd32, tcg_env, tcg_rn, tcg_rm);
|
|
tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
|
|
}
|
|
|
|
write_fp_dreg(s, rd, tcg_rd);
|
|
}
|
|
|
|
/* AdvSIMD scalar three same FP16
|
|
* 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
|
|
* +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
|
|
* | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
|
|
* +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
|
|
* v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400
|
|
* m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400
|
|
*/
|
|
static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s,
|
|
uint32_t insn)
|
|
{
|
|
int rd = extract32(insn, 0, 5);
|
|
int rn = extract32(insn, 5, 5);
|
|
int opcode = extract32(insn, 11, 3);
|
|
int rm = extract32(insn, 16, 5);
|
|
bool u = extract32(insn, 29, 1);
|
|
bool a = extract32(insn, 23, 1);
|
|
int fpopcode = opcode | (a << 3) | (u << 4);
|
|
TCGv_ptr fpst;
|
|
TCGv_i32 tcg_op1;
|
|
TCGv_i32 tcg_op2;
|
|
TCGv_i32 tcg_res;
|
|
|
|
switch (fpopcode) {
|
|
case 0x03: /* FMULX */
|
|
case 0x04: /* FCMEQ (reg) */
|
|
case 0x07: /* FRECPS */
|
|
case 0x0f: /* FRSQRTS */
|
|
case 0x14: /* FCMGE (reg) */
|
|
case 0x15: /* FACGE */
|
|
case 0x1a: /* FABD */
|
|
case 0x1c: /* FCMGT (reg) */
|
|
case 0x1d: /* FACGT */
|
|
break;
|
|
default:
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
if (!dc_isar_feature(aa64_fp16, s)) {
|
|
unallocated_encoding(s);
|
|
}
|
|
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
|
|
fpst = fpstatus_ptr(FPST_FPCR_F16);
|
|
|
|
tcg_op1 = read_fp_hreg(s, rn);
|
|
tcg_op2 = read_fp_hreg(s, rm);
|
|
tcg_res = tcg_temp_new_i32();
|
|
|
|
switch (fpopcode) {
|
|
case 0x03: /* FMULX */
|
|
gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x04: /* FCMEQ (reg) */
|
|
gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x07: /* FRECPS */
|
|
gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x0f: /* FRSQRTS */
|
|
gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x14: /* FCMGE (reg) */
|
|
gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x15: /* FACGE */
|
|
gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x1a: /* FABD */
|
|
gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
|
|
break;
|
|
case 0x1c: /* FCMGT (reg) */
|
|
gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x1d: /* FACGT */
|
|
gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
write_fp_sreg(s, rd, tcg_res);
|
|
}
|
|
|
|
/* AdvSIMD scalar three same extra
|
|
* 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
|
|
* +-----+---+-----------+------+---+------+---+--------+---+----+----+
|
|
* | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
|
|
* +-----+---+-----------+------+---+------+---+--------+---+----+----+
|
|
*/
|
|
static void disas_simd_scalar_three_reg_same_extra(DisasContext *s,
|
|
uint32_t insn)
|
|
{
|
|
int rd = extract32(insn, 0, 5);
|
|
int rn = extract32(insn, 5, 5);
|
|
int opcode = extract32(insn, 11, 4);
|
|
int rm = extract32(insn, 16, 5);
|
|
int size = extract32(insn, 22, 2);
|
|
bool u = extract32(insn, 29, 1);
|
|
TCGv_i32 ele1, ele2, ele3;
|
|
TCGv_i64 res;
|
|
bool feature;
|
|
|
|
switch (u * 16 + opcode) {
|
|
case 0x10: /* SQRDMLAH (vector) */
|
|
case 0x11: /* SQRDMLSH (vector) */
|
|
if (size != 1 && size != 2) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
feature = dc_isar_feature(aa64_rdm, s);
|
|
break;
|
|
default:
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
if (!feature) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
|
|
/* Do a single operation on the lowest element in the vector.
|
|
* We use the standard Neon helpers and rely on 0 OP 0 == 0
|
|
* with no side effects for all these operations.
|
|
* OPTME: special-purpose helpers would avoid doing some
|
|
* unnecessary work in the helper for the 16 bit cases.
|
|
*/
|
|
ele1 = tcg_temp_new_i32();
|
|
ele2 = tcg_temp_new_i32();
|
|
ele3 = tcg_temp_new_i32();
|
|
|
|
read_vec_element_i32(s, ele1, rn, 0, size);
|
|
read_vec_element_i32(s, ele2, rm, 0, size);
|
|
read_vec_element_i32(s, ele3, rd, 0, size);
|
|
|
|
switch (opcode) {
|
|
case 0x0: /* SQRDMLAH */
|
|
if (size == 1) {
|
|
gen_helper_neon_qrdmlah_s16(ele3, tcg_env, ele1, ele2, ele3);
|
|
} else {
|
|
gen_helper_neon_qrdmlah_s32(ele3, tcg_env, ele1, ele2, ele3);
|
|
}
|
|
break;
|
|
case 0x1: /* SQRDMLSH */
|
|
if (size == 1) {
|
|
gen_helper_neon_qrdmlsh_s16(ele3, tcg_env, ele1, ele2, ele3);
|
|
} else {
|
|
gen_helper_neon_qrdmlsh_s32(ele3, tcg_env, ele1, ele2, ele3);
|
|
}
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
res = tcg_temp_new_i64();
|
|
tcg_gen_extu_i32_i64(res, ele3);
|
|
write_fp_dreg(s, rd, res);
|
|
}
|
|
|
|
static void handle_2misc_64(DisasContext *s, int opcode, bool u,
|
|
TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
|
|
TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
|
|
{
|
|
/* Handle 64->64 opcodes which are shared between the scalar and
|
|
* vector 2-reg-misc groups. We cover every integer opcode where size == 3
|
|
* is valid in either group and also the double-precision fp ops.
|
|
* The caller only need provide tcg_rmode and tcg_fpstatus if the op
|
|
* requires them.
|
|
*/
|
|
TCGCond cond;
|
|
|
|
switch (opcode) {
|
|
case 0x4: /* CLS, CLZ */
|
|
if (u) {
|
|
tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
|
|
} else {
|
|
tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
|
|
}
|
|
break;
|
|
case 0x5: /* NOT */
|
|
/* This opcode is shared with CNT and RBIT but we have earlier
|
|
* enforced that size == 3 if and only if this is the NOT insn.
|
|
*/
|
|
tcg_gen_not_i64(tcg_rd, tcg_rn);
|
|
break;
|
|
case 0x7: /* SQABS, SQNEG */
|
|
if (u) {
|
|
gen_helper_neon_qneg_s64(tcg_rd, tcg_env, tcg_rn);
|
|
} else {
|
|
gen_helper_neon_qabs_s64(tcg_rd, tcg_env, tcg_rn);
|
|
}
|
|
break;
|
|
case 0xa: /* CMLT */
|
|
cond = TCG_COND_LT;
|
|
do_cmop:
|
|
/* 64 bit integer comparison against zero, result is test ? -1 : 0. */
|
|
tcg_gen_negsetcond_i64(cond, tcg_rd, tcg_rn, tcg_constant_i64(0));
|
|
break;
|
|
case 0x8: /* CMGT, CMGE */
|
|
cond = u ? TCG_COND_GE : TCG_COND_GT;
|
|
goto do_cmop;
|
|
case 0x9: /* CMEQ, CMLE */
|
|
cond = u ? TCG_COND_LE : TCG_COND_EQ;
|
|
goto do_cmop;
|
|
case 0xb: /* ABS, NEG */
|
|
if (u) {
|
|
tcg_gen_neg_i64(tcg_rd, tcg_rn);
|
|
} else {
|
|
tcg_gen_abs_i64(tcg_rd, tcg_rn);
|
|
}
|
|
break;
|
|
case 0x2f: /* FABS */
|
|
gen_helper_vfp_absd(tcg_rd, tcg_rn);
|
|
break;
|
|
case 0x6f: /* FNEG */
|
|
gen_helper_vfp_negd(tcg_rd, tcg_rn);
|
|
break;
|
|
case 0x7f: /* FSQRT */
|
|
gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, tcg_env);
|
|
break;
|
|
case 0x1a: /* FCVTNS */
|
|
case 0x1b: /* FCVTMS */
|
|
case 0x1c: /* FCVTAS */
|
|
case 0x3a: /* FCVTPS */
|
|
case 0x3b: /* FCVTZS */
|
|
gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
|
|
break;
|
|
case 0x5a: /* FCVTNU */
|
|
case 0x5b: /* FCVTMU */
|
|
case 0x5c: /* FCVTAU */
|
|
case 0x7a: /* FCVTPU */
|
|
case 0x7b: /* FCVTZU */
|
|
gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
|
|
break;
|
|
case 0x18: /* FRINTN */
|
|
case 0x19: /* FRINTM */
|
|
case 0x38: /* FRINTP */
|
|
case 0x39: /* FRINTZ */
|
|
case 0x58: /* FRINTA */
|
|
case 0x79: /* FRINTI */
|
|
gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
|
|
break;
|
|
case 0x59: /* FRINTX */
|
|
gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
|
|
break;
|
|
case 0x1e: /* FRINT32Z */
|
|
case 0x5e: /* FRINT32X */
|
|
gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus);
|
|
break;
|
|
case 0x1f: /* FRINT64Z */
|
|
case 0x5f: /* FRINT64X */
|
|
gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
|
|
bool is_scalar, bool is_u, bool is_q,
|
|
int size, int rn, int rd)
|
|
{
|
|
bool is_double = (size == MO_64);
|
|
TCGv_ptr fpst;
|
|
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
|
|
fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
|
|
|
|
if (is_double) {
|
|
TCGv_i64 tcg_op = tcg_temp_new_i64();
|
|
TCGv_i64 tcg_zero = tcg_constant_i64(0);
|
|
TCGv_i64 tcg_res = tcg_temp_new_i64();
|
|
NeonGenTwoDoubleOpFn *genfn;
|
|
bool swap = false;
|
|
int pass;
|
|
|
|
switch (opcode) {
|
|
case 0x2e: /* FCMLT (zero) */
|
|
swap = true;
|
|
/* fallthrough */
|
|
case 0x2c: /* FCMGT (zero) */
|
|
genfn = gen_helper_neon_cgt_f64;
|
|
break;
|
|
case 0x2d: /* FCMEQ (zero) */
|
|
genfn = gen_helper_neon_ceq_f64;
|
|
break;
|
|
case 0x6d: /* FCMLE (zero) */
|
|
swap = true;
|
|
/* fall through */
|
|
case 0x6c: /* FCMGE (zero) */
|
|
genfn = gen_helper_neon_cge_f64;
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
|
|
read_vec_element(s, tcg_op, rn, pass, MO_64);
|
|
if (swap) {
|
|
genfn(tcg_res, tcg_zero, tcg_op, fpst);
|
|
} else {
|
|
genfn(tcg_res, tcg_op, tcg_zero, fpst);
|
|
}
|
|
write_vec_element(s, tcg_res, rd, pass, MO_64);
|
|
}
|
|
|
|
clear_vec_high(s, !is_scalar, rd);
|
|
} else {
|
|
TCGv_i32 tcg_op = tcg_temp_new_i32();
|
|
TCGv_i32 tcg_zero = tcg_constant_i32(0);
|
|
TCGv_i32 tcg_res = tcg_temp_new_i32();
|
|
NeonGenTwoSingleOpFn *genfn;
|
|
bool swap = false;
|
|
int pass, maxpasses;
|
|
|
|
if (size == MO_16) {
|
|
switch (opcode) {
|
|
case 0x2e: /* FCMLT (zero) */
|
|
swap = true;
|
|
/* fall through */
|
|
case 0x2c: /* FCMGT (zero) */
|
|
genfn = gen_helper_advsimd_cgt_f16;
|
|
break;
|
|
case 0x2d: /* FCMEQ (zero) */
|
|
genfn = gen_helper_advsimd_ceq_f16;
|
|
break;
|
|
case 0x6d: /* FCMLE (zero) */
|
|
swap = true;
|
|
/* fall through */
|
|
case 0x6c: /* FCMGE (zero) */
|
|
genfn = gen_helper_advsimd_cge_f16;
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
} else {
|
|
switch (opcode) {
|
|
case 0x2e: /* FCMLT (zero) */
|
|
swap = true;
|
|
/* fall through */
|
|
case 0x2c: /* FCMGT (zero) */
|
|
genfn = gen_helper_neon_cgt_f32;
|
|
break;
|
|
case 0x2d: /* FCMEQ (zero) */
|
|
genfn = gen_helper_neon_ceq_f32;
|
|
break;
|
|
case 0x6d: /* FCMLE (zero) */
|
|
swap = true;
|
|
/* fall through */
|
|
case 0x6c: /* FCMGE (zero) */
|
|
genfn = gen_helper_neon_cge_f32;
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
if (is_scalar) {
|
|
maxpasses = 1;
|
|
} else {
|
|
int vector_size = 8 << is_q;
|
|
maxpasses = vector_size >> size;
|
|
}
|
|
|
|
for (pass = 0; pass < maxpasses; pass++) {
|
|
read_vec_element_i32(s, tcg_op, rn, pass, size);
|
|
if (swap) {
|
|
genfn(tcg_res, tcg_zero, tcg_op, fpst);
|
|
} else {
|
|
genfn(tcg_res, tcg_op, tcg_zero, fpst);
|
|
}
|
|
if (is_scalar) {
|
|
write_fp_sreg(s, rd, tcg_res);
|
|
} else {
|
|
write_vec_element_i32(s, tcg_res, rd, pass, size);
|
|
}
|
|
}
|
|
|
|
if (!is_scalar) {
|
|
clear_vec_high(s, is_q, rd);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void handle_2misc_reciprocal(DisasContext *s, int opcode,
|
|
bool is_scalar, bool is_u, bool is_q,
|
|
int size, int rn, int rd)
|
|
{
|
|
bool is_double = (size == 3);
|
|
TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
|
|
|
|
if (is_double) {
|
|
TCGv_i64 tcg_op = tcg_temp_new_i64();
|
|
TCGv_i64 tcg_res = tcg_temp_new_i64();
|
|
int pass;
|
|
|
|
for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
|
|
read_vec_element(s, tcg_op, rn, pass, MO_64);
|
|
switch (opcode) {
|
|
case 0x3d: /* FRECPE */
|
|
gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
|
|
break;
|
|
case 0x3f: /* FRECPX */
|
|
gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
|
|
break;
|
|
case 0x7d: /* FRSQRTE */
|
|
gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
write_vec_element(s, tcg_res, rd, pass, MO_64);
|
|
}
|
|
clear_vec_high(s, !is_scalar, rd);
|
|
} else {
|
|
TCGv_i32 tcg_op = tcg_temp_new_i32();
|
|
TCGv_i32 tcg_res = tcg_temp_new_i32();
|
|
int pass, maxpasses;
|
|
|
|
if (is_scalar) {
|
|
maxpasses = 1;
|
|
} else {
|
|
maxpasses = is_q ? 4 : 2;
|
|
}
|
|
|
|
for (pass = 0; pass < maxpasses; pass++) {
|
|
read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
|
|
|
|
switch (opcode) {
|
|
case 0x3c: /* URECPE */
|
|
gen_helper_recpe_u32(tcg_res, tcg_op);
|
|
break;
|
|
case 0x3d: /* FRECPE */
|
|
gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
|
|
break;
|
|
case 0x3f: /* FRECPX */
|
|
gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
|
|
break;
|
|
case 0x7d: /* FRSQRTE */
|
|
gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
if (is_scalar) {
|
|
write_fp_sreg(s, rd, tcg_res);
|
|
} else {
|
|
write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
|
|
}
|
|
}
|
|
if (!is_scalar) {
|
|
clear_vec_high(s, is_q, rd);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void handle_2misc_narrow(DisasContext *s, bool scalar,
|
|
int opcode, bool u, bool is_q,
|
|
int size, int rn, int rd)
|
|
{
|
|
/* Handle 2-reg-misc ops which are narrowing (so each 2*size element
|
|
* in the source becomes a size element in the destination).
|
|
*/
|
|
int pass;
|
|
TCGv_i32 tcg_res[2];
|
|
int destelt = is_q ? 2 : 0;
|
|
int passes = scalar ? 1 : 2;
|
|
|
|
if (scalar) {
|
|
tcg_res[1] = tcg_constant_i32(0);
|
|
}
|
|
|
|
for (pass = 0; pass < passes; pass++) {
|
|
TCGv_i64 tcg_op = tcg_temp_new_i64();
|
|
NeonGenNarrowFn *genfn = NULL;
|
|
NeonGenNarrowEnvFn *genenvfn = NULL;
|
|
|
|
if (scalar) {
|
|
read_vec_element(s, tcg_op, rn, pass, size + 1);
|
|
} else {
|
|
read_vec_element(s, tcg_op, rn, pass, MO_64);
|
|
}
|
|
tcg_res[pass] = tcg_temp_new_i32();
|
|
|
|
switch (opcode) {
|
|
case 0x12: /* XTN, SQXTUN */
|
|
{
|
|
static NeonGenNarrowFn * const xtnfns[3] = {
|
|
gen_helper_neon_narrow_u8,
|
|
gen_helper_neon_narrow_u16,
|
|
tcg_gen_extrl_i64_i32,
|
|
};
|
|
static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
|
|
gen_helper_neon_unarrow_sat8,
|
|
gen_helper_neon_unarrow_sat16,
|
|
gen_helper_neon_unarrow_sat32,
|
|
};
|
|
if (u) {
|
|
genenvfn = sqxtunfns[size];
|
|
} else {
|
|
genfn = xtnfns[size];
|
|
}
|
|
break;
|
|
}
|
|
case 0x14: /* SQXTN, UQXTN */
|
|
{
|
|
static NeonGenNarrowEnvFn * const fns[3][2] = {
|
|
{ gen_helper_neon_narrow_sat_s8,
|
|
gen_helper_neon_narrow_sat_u8 },
|
|
{ gen_helper_neon_narrow_sat_s16,
|
|
gen_helper_neon_narrow_sat_u16 },
|
|
{ gen_helper_neon_narrow_sat_s32,
|
|
gen_helper_neon_narrow_sat_u32 },
|
|
};
|
|
genenvfn = fns[size][u];
|
|
break;
|
|
}
|
|
case 0x16: /* FCVTN, FCVTN2 */
|
|
/* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
|
|
if (size == 2) {
|
|
gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, tcg_env);
|
|
} else {
|
|
TCGv_i32 tcg_lo = tcg_temp_new_i32();
|
|
TCGv_i32 tcg_hi = tcg_temp_new_i32();
|
|
TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
|
|
TCGv_i32 ahp = get_ahp_flag();
|
|
|
|
tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
|
|
gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
|
|
gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
|
|
tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
|
|
}
|
|
break;
|
|
case 0x36: /* BFCVTN, BFCVTN2 */
|
|
{
|
|
TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
|
|
gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst);
|
|
}
|
|
break;
|
|
case 0x56: /* FCVTXN, FCVTXN2 */
|
|
/* 64 bit to 32 bit float conversion
|
|
* with von Neumann rounding (round to odd)
|
|
*/
|
|
assert(size == 2);
|
|
gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, tcg_env);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
if (genfn) {
|
|
genfn(tcg_res[pass], tcg_op);
|
|
} else if (genenvfn) {
|
|
genenvfn(tcg_res[pass], tcg_env, tcg_op);
|
|
}
|
|
}
|
|
|
|
for (pass = 0; pass < 2; pass++) {
|
|
write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
|
|
}
|
|
clear_vec_high(s, is_q, rd);
|
|
}
|
|
|
|
/* Remaining saturating accumulating ops */
|
|
static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
|
|
bool is_q, int size, int rn, int rd)
|
|
{
|
|
bool is_double = (size == 3);
|
|
|
|
if (is_double) {
|
|
TCGv_i64 tcg_rn = tcg_temp_new_i64();
|
|
TCGv_i64 tcg_rd = tcg_temp_new_i64();
|
|
int pass;
|
|
|
|
for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
|
|
read_vec_element(s, tcg_rn, rn, pass, MO_64);
|
|
read_vec_element(s, tcg_rd, rd, pass, MO_64);
|
|
|
|
if (is_u) { /* USQADD */
|
|
gen_helper_neon_uqadd_s64(tcg_rd, tcg_env, tcg_rn, tcg_rd);
|
|
} else { /* SUQADD */
|
|
gen_helper_neon_sqadd_u64(tcg_rd, tcg_env, tcg_rn, tcg_rd);
|
|
}
|
|
write_vec_element(s, tcg_rd, rd, pass, MO_64);
|
|
}
|
|
clear_vec_high(s, !is_scalar, rd);
|
|
} else {
|
|
TCGv_i32 tcg_rn = tcg_temp_new_i32();
|
|
TCGv_i32 tcg_rd = tcg_temp_new_i32();
|
|
int pass, maxpasses;
|
|
|
|
if (is_scalar) {
|
|
maxpasses = 1;
|
|
} else {
|
|
maxpasses = is_q ? 4 : 2;
|
|
}
|
|
|
|
for (pass = 0; pass < maxpasses; pass++) {
|
|
if (is_scalar) {
|
|
read_vec_element_i32(s, tcg_rn, rn, pass, size);
|
|
read_vec_element_i32(s, tcg_rd, rd, pass, size);
|
|
} else {
|
|
read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
|
|
read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
|
|
}
|
|
|
|
if (is_u) { /* USQADD */
|
|
switch (size) {
|
|
case 0:
|
|
gen_helper_neon_uqadd_s8(tcg_rd, tcg_env, tcg_rn, tcg_rd);
|
|
break;
|
|
case 1:
|
|
gen_helper_neon_uqadd_s16(tcg_rd, tcg_env, tcg_rn, tcg_rd);
|
|
break;
|
|
case 2:
|
|
gen_helper_neon_uqadd_s32(tcg_rd, tcg_env, tcg_rn, tcg_rd);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
} else { /* SUQADD */
|
|
switch (size) {
|
|
case 0:
|
|
gen_helper_neon_sqadd_u8(tcg_rd, tcg_env, tcg_rn, tcg_rd);
|
|
break;
|
|
case 1:
|
|
gen_helper_neon_sqadd_u16(tcg_rd, tcg_env, tcg_rn, tcg_rd);
|
|
break;
|
|
case 2:
|
|
gen_helper_neon_sqadd_u32(tcg_rd, tcg_env, tcg_rn, tcg_rd);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
if (is_scalar) {
|
|
write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64);
|
|
}
|
|
write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
|
|
}
|
|
clear_vec_high(s, is_q, rd);
|
|
}
|
|
}
|
|
|
|
/* AdvSIMD scalar two reg misc
|
|
* 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
|
|
* +-----+---+-----------+------+-----------+--------+-----+------+------+
|
|
* | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
|
|
* +-----+---+-----------+------+-----------+--------+-----+------+------+
|
|
*/
|
|
static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
|
|
{
|
|
int rd = extract32(insn, 0, 5);
|
|
int rn = extract32(insn, 5, 5);
|
|
int opcode = extract32(insn, 12, 5);
|
|
int size = extract32(insn, 22, 2);
|
|
bool u = extract32(insn, 29, 1);
|
|
bool is_fcvt = false;
|
|
int rmode;
|
|
TCGv_i32 tcg_rmode;
|
|
TCGv_ptr tcg_fpstatus;
|
|
|
|
switch (opcode) {
|
|
case 0x3: /* USQADD / SUQADD*/
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
handle_2misc_satacc(s, true, u, false, size, rn, rd);
|
|
return;
|
|
case 0x7: /* SQABS / SQNEG */
|
|
break;
|
|
case 0xa: /* CMLT */
|
|
if (u) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
/* fall through */
|
|
case 0x8: /* CMGT, CMGE */
|
|
case 0x9: /* CMEQ, CMLE */
|
|
case 0xb: /* ABS, NEG */
|
|
if (size != 3) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
break;
|
|
case 0x12: /* SQXTUN */
|
|
if (!u) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
/* fall through */
|
|
case 0x14: /* SQXTN, UQXTN */
|
|
if (size == 3) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
|
|
return;
|
|
case 0xc ... 0xf:
|
|
case 0x16 ... 0x1d:
|
|
case 0x1f:
|
|
/* Floating point: U, size[1] and opcode indicate operation;
|
|
* size[0] indicates single or double precision.
|
|
*/
|
|
opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
|
|
size = extract32(size, 0, 1) ? 3 : 2;
|
|
switch (opcode) {
|
|
case 0x2c: /* FCMGT (zero) */
|
|
case 0x2d: /* FCMEQ (zero) */
|
|
case 0x2e: /* FCMLT (zero) */
|
|
case 0x6c: /* FCMGE (zero) */
|
|
case 0x6d: /* FCMLE (zero) */
|
|
handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
|
|
return;
|
|
case 0x1d: /* SCVTF */
|
|
case 0x5d: /* UCVTF */
|
|
{
|
|
bool is_signed = (opcode == 0x1d);
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
|
|
return;
|
|
}
|
|
case 0x3d: /* FRECPE */
|
|
case 0x3f: /* FRECPX */
|
|
case 0x7d: /* FRSQRTE */
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
|
|
return;
|
|
case 0x1a: /* FCVTNS */
|
|
case 0x1b: /* FCVTMS */
|
|
case 0x3a: /* FCVTPS */
|
|
case 0x3b: /* FCVTZS */
|
|
case 0x5a: /* FCVTNU */
|
|
case 0x5b: /* FCVTMU */
|
|
case 0x7a: /* FCVTPU */
|
|
case 0x7b: /* FCVTZU */
|
|
is_fcvt = true;
|
|
rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
|
|
break;
|
|
case 0x1c: /* FCVTAS */
|
|
case 0x5c: /* FCVTAU */
|
|
/* TIEAWAY doesn't fit in the usual rounding mode encoding */
|
|
is_fcvt = true;
|
|
rmode = FPROUNDING_TIEAWAY;
|
|
break;
|
|
case 0x56: /* FCVTXN, FCVTXN2 */
|
|
if (size == 2) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
|
|
return;
|
|
default:
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
break;
|
|
default:
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
|
|
if (is_fcvt) {
|
|
tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
|
|
tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
|
|
} else {
|
|
tcg_fpstatus = NULL;
|
|
tcg_rmode = NULL;
|
|
}
|
|
|
|
if (size == 3) {
|
|
TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
|
|
TCGv_i64 tcg_rd = tcg_temp_new_i64();
|
|
|
|
handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
|
|
write_fp_dreg(s, rd, tcg_rd);
|
|
} else {
|
|
TCGv_i32 tcg_rn = tcg_temp_new_i32();
|
|
TCGv_i32 tcg_rd = tcg_temp_new_i32();
|
|
|
|
read_vec_element_i32(s, tcg_rn, rn, 0, size);
|
|
|
|
switch (opcode) {
|
|
case 0x7: /* SQABS, SQNEG */
|
|
{
|
|
NeonGenOneOpEnvFn *genfn;
|
|
static NeonGenOneOpEnvFn * const fns[3][2] = {
|
|
{ gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
|
|
{ gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
|
|
{ gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
|
|
};
|
|
genfn = fns[size][u];
|
|
genfn(tcg_rd, tcg_env, tcg_rn);
|
|
break;
|
|
}
|
|
case 0x1a: /* FCVTNS */
|
|
case 0x1b: /* FCVTMS */
|
|
case 0x1c: /* FCVTAS */
|
|
case 0x3a: /* FCVTPS */
|
|
case 0x3b: /* FCVTZS */
|
|
gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0),
|
|
tcg_fpstatus);
|
|
break;
|
|
case 0x5a: /* FCVTNU */
|
|
case 0x5b: /* FCVTMU */
|
|
case 0x5c: /* FCVTAU */
|
|
case 0x7a: /* FCVTPU */
|
|
case 0x7b: /* FCVTZU */
|
|
gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0),
|
|
tcg_fpstatus);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
write_fp_sreg(s, rd, tcg_rd);
|
|
}
|
|
|
|
if (is_fcvt) {
|
|
gen_restore_rmode(tcg_rmode, tcg_fpstatus);
|
|
}
|
|
}
|
|
|
|
/* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
|
|
static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
|
|
int immh, int immb, int opcode, int rn, int rd)
|
|
{
|
|
int size = 32 - clz32(immh) - 1;
|
|
int immhb = immh << 3 | immb;
|
|
int shift = 2 * (8 << size) - immhb;
|
|
GVecGen2iFn *gvec_fn;
|
|
|
|
if (extract32(immh, 3, 1) && !is_q) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
tcg_debug_assert(size <= 3);
|
|
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
|
|
switch (opcode) {
|
|
case 0x02: /* SSRA / USRA (accumulate) */
|
|
gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra;
|
|
break;
|
|
|
|
case 0x08: /* SRI */
|
|
gvec_fn = gen_gvec_sri;
|
|
break;
|
|
|
|
case 0x00: /* SSHR / USHR */
|
|
if (is_u) {
|
|
if (shift == 8 << size) {
|
|
/* Shift count the same size as element size produces zero. */
|
|
tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd),
|
|
is_q ? 16 : 8, vec_full_reg_size(s), 0);
|
|
return;
|
|
}
|
|
gvec_fn = tcg_gen_gvec_shri;
|
|
} else {
|
|
/* Shift count the same size as element size produces all sign. */
|
|
if (shift == 8 << size) {
|
|
shift -= 1;
|
|
}
|
|
gvec_fn = tcg_gen_gvec_sari;
|
|
}
|
|
break;
|
|
|
|
case 0x04: /* SRSHR / URSHR (rounding) */
|
|
gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr;
|
|
break;
|
|
|
|
case 0x06: /* SRSRA / URSRA (accum + rounding) */
|
|
gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra;
|
|
break;
|
|
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size);
|
|
}
|
|
|
|
/* SHL/SLI - Vector shift left */
|
|
static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
|
|
int immh, int immb, int opcode, int rn, int rd)
|
|
{
|
|
int size = 32 - clz32(immh) - 1;
|
|
int immhb = immh << 3 | immb;
|
|
int shift = immhb - (8 << size);
|
|
|
|
/* Range of size is limited by decode: immh is a non-zero 4 bit field */
|
|
assert(size >= 0 && size <= 3);
|
|
|
|
if (extract32(immh, 3, 1) && !is_q) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
|
|
if (insert) {
|
|
gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size);
|
|
} else {
|
|
gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
|
|
}
|
|
}
|
|
|
|
/* USHLL/SHLL - Vector shift left with widening */
|
|
static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
|
|
int immh, int immb, int opcode, int rn, int rd)
|
|
{
|
|
int size = 32 - clz32(immh) - 1;
|
|
int immhb = immh << 3 | immb;
|
|
int shift = immhb - (8 << size);
|
|
int dsize = 64;
|
|
int esize = 8 << size;
|
|
int elements = dsize/esize;
|
|
TCGv_i64 tcg_rn = tcg_temp_new_i64();
|
|
TCGv_i64 tcg_rd = tcg_temp_new_i64();
|
|
int i;
|
|
|
|
if (size >= 3) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
|
|
/* For the LL variants the store is larger than the load,
|
|
* so if rd == rn we would overwrite parts of our input.
|
|
* So load everything right now and use shifts in the main loop.
|
|
*/
|
|
read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
|
|
|
|
for (i = 0; i < elements; i++) {
|
|
tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
|
|
ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
|
|
tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
|
|
write_vec_element(s, tcg_rd, rd, i, size + 1);
|
|
}
|
|
}
|
|
|
|
/* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
|
|
static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
|
|
int immh, int immb, int opcode, int rn, int rd)
|
|
{
|
|
int immhb = immh << 3 | immb;
|
|
int size = 32 - clz32(immh) - 1;
|
|
int dsize = 64;
|
|
int esize = 8 << size;
|
|
int elements = dsize/esize;
|
|
int shift = (2 * esize) - immhb;
|
|
bool round = extract32(opcode, 0, 1);
|
|
TCGv_i64 tcg_rn, tcg_rd, tcg_final;
|
|
TCGv_i64 tcg_round;
|
|
int i;
|
|
|
|
if (extract32(immh, 3, 1)) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
|
|
tcg_rn = tcg_temp_new_i64();
|
|
tcg_rd = tcg_temp_new_i64();
|
|
tcg_final = tcg_temp_new_i64();
|
|
read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
|
|
|
|
if (round) {
|
|
tcg_round = tcg_constant_i64(1ULL << (shift - 1));
|
|
} else {
|
|
tcg_round = NULL;
|
|
}
|
|
|
|
for (i = 0; i < elements; i++) {
|
|
read_vec_element(s, tcg_rn, rn, i, size+1);
|
|
handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
|
|
false, true, size+1, shift);
|
|
|
|
tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
|
|
}
|
|
|
|
if (!is_q) {
|
|
write_vec_element(s, tcg_final, rd, 0, MO_64);
|
|
} else {
|
|
write_vec_element(s, tcg_final, rd, 1, MO_64);
|
|
}
|
|
|
|
clear_vec_high(s, is_q, rd);
|
|
}
|
|
|
|
|
|
/* AdvSIMD shift by immediate
|
|
* 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
|
|
* +---+---+---+-------------+------+------+--------+---+------+------+
|
|
* | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
|
|
* +---+---+---+-------------+------+------+--------+---+------+------+
|
|
*/
|
|
static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
|
|
{
|
|
int rd = extract32(insn, 0, 5);
|
|
int rn = extract32(insn, 5, 5);
|
|
int opcode = extract32(insn, 11, 5);
|
|
int immb = extract32(insn, 16, 3);
|
|
int immh = extract32(insn, 19, 4);
|
|
bool is_u = extract32(insn, 29, 1);
|
|
bool is_q = extract32(insn, 30, 1);
|
|
|
|
/* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */
|
|
assert(immh != 0);
|
|
|
|
switch (opcode) {
|
|
case 0x08: /* SRI */
|
|
if (!is_u) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
/* fall through */
|
|
case 0x00: /* SSHR / USHR */
|
|
case 0x02: /* SSRA / USRA (accumulate) */
|
|
case 0x04: /* SRSHR / URSHR (rounding) */
|
|
case 0x06: /* SRSRA / URSRA (accum + rounding) */
|
|
handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
|
|
break;
|
|
case 0x0a: /* SHL / SLI */
|
|
handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
|
|
break;
|
|
case 0x10: /* SHRN */
|
|
case 0x11: /* RSHRN / SQRSHRUN */
|
|
if (is_u) {
|
|
handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
|
|
opcode, rn, rd);
|
|
} else {
|
|
handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
|
|
}
|
|
break;
|
|
case 0x12: /* SQSHRN / UQSHRN */
|
|
case 0x13: /* SQRSHRN / UQRSHRN */
|
|
handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
|
|
opcode, rn, rd);
|
|
break;
|
|
case 0x14: /* SSHLL / USHLL */
|
|
handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
|
|
break;
|
|
case 0x1c: /* SCVTF / UCVTF */
|
|
handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
|
|
opcode, rn, rd);
|
|
break;
|
|
case 0xc: /* SQSHLU */
|
|
if (!is_u) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
|
|
break;
|
|
case 0xe: /* SQSHL, UQSHL */
|
|
handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
|
|
break;
|
|
case 0x1f: /* FCVTZS/ FCVTZU */
|
|
handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
|
|
return;
|
|
default:
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Generate code to do a "long" addition or subtraction, ie one done in
|
|
* TCGv_i64 on vector lanes twice the width specified by size.
|
|
*/
|
|
static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
|
|
TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
|
|
{
|
|
static NeonGenTwo64OpFn * const fns[3][2] = {
|
|
{ gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
|
|
{ gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
|
|
{ tcg_gen_add_i64, tcg_gen_sub_i64 },
|
|
};
|
|
NeonGenTwo64OpFn *genfn;
|
|
assert(size < 3);
|
|
|
|
genfn = fns[size][is_sub];
|
|
genfn(tcg_res, tcg_op1, tcg_op2);
|
|
}
|
|
|
|
static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
|
|
int opcode, int rd, int rn, int rm)
|
|
{
|
|
/* 3-reg-different widening insns: 64 x 64 -> 128 */
|
|
TCGv_i64 tcg_res[2];
|
|
int pass, accop;
|
|
|
|
tcg_res[0] = tcg_temp_new_i64();
|
|
tcg_res[1] = tcg_temp_new_i64();
|
|
|
|
/* Does this op do an adding accumulate, a subtracting accumulate,
|
|
* or no accumulate at all?
|
|
*/
|
|
switch (opcode) {
|
|
case 5:
|
|
case 8:
|
|
case 9:
|
|
accop = 1;
|
|
break;
|
|
case 10:
|
|
case 11:
|
|
accop = -1;
|
|
break;
|
|
default:
|
|
accop = 0;
|
|
break;
|
|
}
|
|
|
|
if (accop != 0) {
|
|
read_vec_element(s, tcg_res[0], rd, 0, MO_64);
|
|
read_vec_element(s, tcg_res[1], rd, 1, MO_64);
|
|
}
|
|
|
|
/* size == 2 means two 32x32->64 operations; this is worth special
|
|
* casing because we can generally handle it inline.
|
|
*/
|
|
if (size == 2) {
|
|
for (pass = 0; pass < 2; pass++) {
|
|
TCGv_i64 tcg_op1 = tcg_temp_new_i64();
|
|
TCGv_i64 tcg_op2 = tcg_temp_new_i64();
|
|
TCGv_i64 tcg_passres;
|
|
MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
|
|
|
|
int elt = pass + is_q * 2;
|
|
|
|
read_vec_element(s, tcg_op1, rn, elt, memop);
|
|
read_vec_element(s, tcg_op2, rm, elt, memop);
|
|
|
|
if (accop == 0) {
|
|
tcg_passres = tcg_res[pass];
|
|
} else {
|
|
tcg_passres = tcg_temp_new_i64();
|
|
}
|
|
|
|
switch (opcode) {
|
|
case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
|
|
tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
|
|
break;
|
|
case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
|
|
tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
|
|
break;
|
|
case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
|
|
case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
|
|
{
|
|
TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
|
|
TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
|
|
|
|
tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
|
|
tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
|
|
tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
|
|
tcg_passres,
|
|
tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
|
|
break;
|
|
}
|
|
case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
|
|
case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
|
|
case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
|
|
tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
|
|
break;
|
|
case 9: /* SQDMLAL, SQDMLAL2 */
|
|
case 11: /* SQDMLSL, SQDMLSL2 */
|
|
case 13: /* SQDMULL, SQDMULL2 */
|
|
tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
|
|
gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env,
|
|
tcg_passres, tcg_passres);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
if (opcode == 9 || opcode == 11) {
|
|
/* saturating accumulate ops */
|
|
if (accop < 0) {
|
|
tcg_gen_neg_i64(tcg_passres, tcg_passres);
|
|
}
|
|
gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env,
|
|
tcg_res[pass], tcg_passres);
|
|
} else if (accop > 0) {
|
|
tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
|
|
} else if (accop < 0) {
|
|
tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
|
|
}
|
|
}
|
|
} else {
|
|
/* size 0 or 1, generally helper functions */
|
|
for (pass = 0; pass < 2; pass++) {
|
|
TCGv_i32 tcg_op1 = tcg_temp_new_i32();
|
|
TCGv_i32 tcg_op2 = tcg_temp_new_i32();
|
|
TCGv_i64 tcg_passres;
|
|
int elt = pass + is_q * 2;
|
|
|
|
read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
|
|
read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
|
|
|
|
if (accop == 0) {
|
|
tcg_passres = tcg_res[pass];
|
|
} else {
|
|
tcg_passres = tcg_temp_new_i64();
|
|
}
|
|
|
|
switch (opcode) {
|
|
case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
|
|
case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
|
|
{
|
|
TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
|
|
static NeonGenWidenFn * const widenfns[2][2] = {
|
|
{ gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
|
|
{ gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
|
|
};
|
|
NeonGenWidenFn *widenfn = widenfns[size][is_u];
|
|
|
|
widenfn(tcg_op2_64, tcg_op2);
|
|
widenfn(tcg_passres, tcg_op1);
|
|
gen_neon_addl(size, (opcode == 2), tcg_passres,
|
|
tcg_passres, tcg_op2_64);
|
|
break;
|
|
}
|
|
case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
|
|
case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
|
|
if (size == 0) {
|
|
if (is_u) {
|
|
gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
|
|
} else {
|
|
gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
|
|
}
|
|
} else {
|
|
if (is_u) {
|
|
gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
|
|
} else {
|
|
gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
|
|
}
|
|
}
|
|
break;
|
|
case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
|
|
case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
|
|
case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
|
|
if (size == 0) {
|
|
if (is_u) {
|
|
gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
|
|
} else {
|
|
gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
|
|
}
|
|
} else {
|
|
if (is_u) {
|
|
gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
|
|
} else {
|
|
gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
|
|
}
|
|
}
|
|
break;
|
|
case 9: /* SQDMLAL, SQDMLAL2 */
|
|
case 11: /* SQDMLSL, SQDMLSL2 */
|
|
case 13: /* SQDMULL, SQDMULL2 */
|
|
assert(size == 1);
|
|
gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
|
|
gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env,
|
|
tcg_passres, tcg_passres);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
if (accop != 0) {
|
|
if (opcode == 9 || opcode == 11) {
|
|
/* saturating accumulate ops */
|
|
if (accop < 0) {
|
|
gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
|
|
}
|
|
gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env,
|
|
tcg_res[pass],
|
|
tcg_passres);
|
|
} else {
|
|
gen_neon_addl(size, (accop < 0), tcg_res[pass],
|
|
tcg_res[pass], tcg_passres);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
write_vec_element(s, tcg_res[0], rd, 0, MO_64);
|
|
write_vec_element(s, tcg_res[1], rd, 1, MO_64);
|
|
}
|
|
|
|
static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
|
|
int opcode, int rd, int rn, int rm)
|
|
{
|
|
TCGv_i64 tcg_res[2];
|
|
int part = is_q ? 2 : 0;
|
|
int pass;
|
|
|
|
for (pass = 0; pass < 2; pass++) {
|
|
TCGv_i64 tcg_op1 = tcg_temp_new_i64();
|
|
TCGv_i32 tcg_op2 = tcg_temp_new_i32();
|
|
TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
|
|
static NeonGenWidenFn * const widenfns[3][2] = {
|
|
{ gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
|
|
{ gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
|
|
{ tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
|
|
};
|
|
NeonGenWidenFn *widenfn = widenfns[size][is_u];
|
|
|
|
read_vec_element(s, tcg_op1, rn, pass, MO_64);
|
|
read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
|
|
widenfn(tcg_op2_wide, tcg_op2);
|
|
tcg_res[pass] = tcg_temp_new_i64();
|
|
gen_neon_addl(size, (opcode == 3),
|
|
tcg_res[pass], tcg_op1, tcg_op2_wide);
|
|
}
|
|
|
|
for (pass = 0; pass < 2; pass++) {
|
|
write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
|
|
}
|
|
}
|
|
|
|
static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
|
|
{
|
|
tcg_gen_addi_i64(in, in, 1U << 31);
|
|
tcg_gen_extrh_i64_i32(res, in);
|
|
}
|
|
|
|
static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
|
|
int opcode, int rd, int rn, int rm)
|
|
{
|
|
TCGv_i32 tcg_res[2];
|
|
int part = is_q ? 2 : 0;
|
|
int pass;
|
|
|
|
for (pass = 0; pass < 2; pass++) {
|
|
TCGv_i64 tcg_op1 = tcg_temp_new_i64();
|
|
TCGv_i64 tcg_op2 = tcg_temp_new_i64();
|
|
TCGv_i64 tcg_wideres = tcg_temp_new_i64();
|
|
static NeonGenNarrowFn * const narrowfns[3][2] = {
|
|
{ gen_helper_neon_narrow_high_u8,
|
|
gen_helper_neon_narrow_round_high_u8 },
|
|
{ gen_helper_neon_narrow_high_u16,
|
|
gen_helper_neon_narrow_round_high_u16 },
|
|
{ tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
|
|
};
|
|
NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
|
|
|
|
read_vec_element(s, tcg_op1, rn, pass, MO_64);
|
|
read_vec_element(s, tcg_op2, rm, pass, MO_64);
|
|
|
|
gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
|
|
|
|
tcg_res[pass] = tcg_temp_new_i32();
|
|
gennarrow(tcg_res[pass], tcg_wideres);
|
|
}
|
|
|
|
for (pass = 0; pass < 2; pass++) {
|
|
write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
|
|
}
|
|
clear_vec_high(s, is_q, rd);
|
|
}
|
|
|
|
/* AdvSIMD three different
|
|
* 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
|
|
* +---+---+---+-----------+------+---+------+--------+-----+------+------+
|
|
* | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
|
|
* +---+---+---+-----------+------+---+------+--------+-----+------+------+
|
|
*/
|
|
static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
|
|
{
|
|
/* Instructions in this group fall into three basic classes
|
|
* (in each case with the operation working on each element in
|
|
* the input vectors):
|
|
* (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
|
|
* 128 bit input)
|
|
* (2) wide 64 x 128 -> 128
|
|
* (3) narrowing 128 x 128 -> 64
|
|
* Here we do initial decode, catch unallocated cases and
|
|
* dispatch to separate functions for each class.
|
|
*/
|
|
int is_q = extract32(insn, 30, 1);
|
|
int is_u = extract32(insn, 29, 1);
|
|
int size = extract32(insn, 22, 2);
|
|
int opcode = extract32(insn, 12, 4);
|
|
int rm = extract32(insn, 16, 5);
|
|
int rn = extract32(insn, 5, 5);
|
|
int rd = extract32(insn, 0, 5);
|
|
|
|
switch (opcode) {
|
|
case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
|
|
case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
|
|
/* 64 x 128 -> 128 */
|
|
if (size == 3) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
|
|
break;
|
|
case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
|
|
case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
|
|
/* 128 x 128 -> 64 */
|
|
if (size == 3) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
|
|
break;
|
|
case 14: /* PMULL, PMULL2 */
|
|
if (is_u) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
switch (size) {
|
|
case 0: /* PMULL.P8 */
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
/* The Q field specifies lo/hi half input for this insn. */
|
|
gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
|
|
gen_helper_neon_pmull_h);
|
|
break;
|
|
|
|
case 3: /* PMULL.P64 */
|
|
if (!dc_isar_feature(aa64_pmull, s)) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
/* The Q field specifies lo/hi half input for this insn. */
|
|
gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
|
|
gen_helper_gvec_pmull_q);
|
|
break;
|
|
|
|
default:
|
|
unallocated_encoding(s);
|
|
break;
|
|
}
|
|
return;
|
|
case 9: /* SQDMLAL, SQDMLAL2 */
|
|
case 11: /* SQDMLSL, SQDMLSL2 */
|
|
case 13: /* SQDMULL, SQDMULL2 */
|
|
if (is_u || size == 0) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
/* fall through */
|
|
case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
|
|
case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
|
|
case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
|
|
case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
|
|
case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
|
|
case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
|
|
case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
|
|
/* 64 x 64 -> 128 */
|
|
if (size == 3) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
|
|
handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
|
|
break;
|
|
default:
|
|
/* opcode 15 not allocated */
|
|
unallocated_encoding(s);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Logic op (opcode == 3) subgroup of C3.6.16. */
|
|
static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
|
|
{
|
|
int rd = extract32(insn, 0, 5);
|
|
int rn = extract32(insn, 5, 5);
|
|
int rm = extract32(insn, 16, 5);
|
|
int size = extract32(insn, 22, 2);
|
|
bool is_u = extract32(insn, 29, 1);
|
|
bool is_q = extract32(insn, 30, 1);
|
|
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
|
|
switch (size + 4 * is_u) {
|
|
case 0: /* AND */
|
|
gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0);
|
|
return;
|
|
case 1: /* BIC */
|
|
gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0);
|
|
return;
|
|
case 2: /* ORR */
|
|
gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0);
|
|
return;
|
|
case 3: /* ORN */
|
|
gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0);
|
|
return;
|
|
case 4: /* EOR */
|
|
gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0);
|
|
return;
|
|
|
|
case 5: /* BSL bitwise select */
|
|
gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0);
|
|
return;
|
|
case 6: /* BIT, bitwise insert if true */
|
|
gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0);
|
|
return;
|
|
case 7: /* BIF, bitwise insert if false */
|
|
gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0);
|
|
return;
|
|
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
/* Pairwise op subgroup of C3.6.16.
|
|
*
|
|
* This is called directly or via the handle_3same_float for float pairwise
|
|
* operations where the opcode and size are calculated differently.
|
|
*/
|
|
static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
|
|
int size, int rn, int rm, int rd)
|
|
{
|
|
TCGv_ptr fpst;
|
|
int pass;
|
|
|
|
/* Floating point operations need fpst */
|
|
if (opcode >= 0x58) {
|
|
fpst = fpstatus_ptr(FPST_FPCR);
|
|
} else {
|
|
fpst = NULL;
|
|
}
|
|
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
|
|
/* These operations work on the concatenated rm:rn, with each pair of
|
|
* adjacent elements being operated on to produce an element in the result.
|
|
*/
|
|
if (size == 3) {
|
|
TCGv_i64 tcg_res[2];
|
|
|
|
for (pass = 0; pass < 2; pass++) {
|
|
TCGv_i64 tcg_op1 = tcg_temp_new_i64();
|
|
TCGv_i64 tcg_op2 = tcg_temp_new_i64();
|
|
int passreg = (pass == 0) ? rn : rm;
|
|
|
|
read_vec_element(s, tcg_op1, passreg, 0, MO_64);
|
|
read_vec_element(s, tcg_op2, passreg, 1, MO_64);
|
|
tcg_res[pass] = tcg_temp_new_i64();
|
|
|
|
switch (opcode) {
|
|
case 0x17: /* ADDP */
|
|
tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
|
|
break;
|
|
case 0x58: /* FMAXNMP */
|
|
gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x5a: /* FADDP */
|
|
gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x5e: /* FMAXP */
|
|
gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x78: /* FMINNMP */
|
|
gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x7e: /* FMINP */
|
|
gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
for (pass = 0; pass < 2; pass++) {
|
|
write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
|
|
}
|
|
} else {
|
|
int maxpass = is_q ? 4 : 2;
|
|
TCGv_i32 tcg_res[4];
|
|
|
|
for (pass = 0; pass < maxpass; pass++) {
|
|
TCGv_i32 tcg_op1 = tcg_temp_new_i32();
|
|
TCGv_i32 tcg_op2 = tcg_temp_new_i32();
|
|
NeonGenTwoOpFn *genfn = NULL;
|
|
int passreg = pass < (maxpass / 2) ? rn : rm;
|
|
int passelt = (is_q && (pass & 1)) ? 2 : 0;
|
|
|
|
read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
|
|
read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
|
|
tcg_res[pass] = tcg_temp_new_i32();
|
|
|
|
switch (opcode) {
|
|
case 0x17: /* ADDP */
|
|
{
|
|
static NeonGenTwoOpFn * const fns[3] = {
|
|
gen_helper_neon_padd_u8,
|
|
gen_helper_neon_padd_u16,
|
|
tcg_gen_add_i32,
|
|
};
|
|
genfn = fns[size];
|
|
break;
|
|
}
|
|
case 0x14: /* SMAXP, UMAXP */
|
|
{
|
|
static NeonGenTwoOpFn * const fns[3][2] = {
|
|
{ gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
|
|
{ gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
|
|
{ tcg_gen_smax_i32, tcg_gen_umax_i32 },
|
|
};
|
|
genfn = fns[size][u];
|
|
break;
|
|
}
|
|
case 0x15: /* SMINP, UMINP */
|
|
{
|
|
static NeonGenTwoOpFn * const fns[3][2] = {
|
|
{ gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
|
|
{ gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
|
|
{ tcg_gen_smin_i32, tcg_gen_umin_i32 },
|
|
};
|
|
genfn = fns[size][u];
|
|
break;
|
|
}
|
|
/* The FP operations are all on single floats (32 bit) */
|
|
case 0x58: /* FMAXNMP */
|
|
gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x5a: /* FADDP */
|
|
gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x5e: /* FMAXP */
|
|
gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x78: /* FMINNMP */
|
|
gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x7e: /* FMINP */
|
|
gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
/* FP ops called directly, otherwise call now */
|
|
if (genfn) {
|
|
genfn(tcg_res[pass], tcg_op1, tcg_op2);
|
|
}
|
|
}
|
|
|
|
for (pass = 0; pass < maxpass; pass++) {
|
|
write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
|
|
}
|
|
clear_vec_high(s, is_q, rd);
|
|
}
|
|
}
|
|
|
|
/* Floating point op subgroup of C3.6.16. */
|
|
static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
|
|
{
|
|
/* For floating point ops, the U, size[1] and opcode bits
|
|
* together indicate the operation. size[0] indicates single
|
|
* or double.
|
|
*/
|
|
int fpopcode = extract32(insn, 11, 5)
|
|
| (extract32(insn, 23, 1) << 5)
|
|
| (extract32(insn, 29, 1) << 6);
|
|
int is_q = extract32(insn, 30, 1);
|
|
int size = extract32(insn, 22, 1);
|
|
int rm = extract32(insn, 16, 5);
|
|
int rn = extract32(insn, 5, 5);
|
|
int rd = extract32(insn, 0, 5);
|
|
|
|
int datasize = is_q ? 128 : 64;
|
|
int esize = 32 << size;
|
|
int elements = datasize / esize;
|
|
|
|
if (size == 1 && !is_q) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
switch (fpopcode) {
|
|
case 0x58: /* FMAXNMP */
|
|
case 0x5a: /* FADDP */
|
|
case 0x5e: /* FMAXP */
|
|
case 0x78: /* FMINNMP */
|
|
case 0x7e: /* FMINP */
|
|
if (size && !is_q) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
|
|
rn, rm, rd);
|
|
return;
|
|
case 0x1b: /* FMULX */
|
|
case 0x1f: /* FRECPS */
|
|
case 0x3f: /* FRSQRTS */
|
|
case 0x5d: /* FACGE */
|
|
case 0x7d: /* FACGT */
|
|
case 0x19: /* FMLA */
|
|
case 0x39: /* FMLS */
|
|
case 0x18: /* FMAXNM */
|
|
case 0x1a: /* FADD */
|
|
case 0x1c: /* FCMEQ */
|
|
case 0x1e: /* FMAX */
|
|
case 0x38: /* FMINNM */
|
|
case 0x3a: /* FSUB */
|
|
case 0x3e: /* FMIN */
|
|
case 0x5b: /* FMUL */
|
|
case 0x5c: /* FCMGE */
|
|
case 0x5f: /* FDIV */
|
|
case 0x7a: /* FABD */
|
|
case 0x7c: /* FCMGT */
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
|
|
return;
|
|
|
|
case 0x1d: /* FMLAL */
|
|
case 0x3d: /* FMLSL */
|
|
case 0x59: /* FMLAL2 */
|
|
case 0x79: /* FMLSL2 */
|
|
if (size & 1 || !dc_isar_feature(aa64_fhm, s)) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
if (fp_access_check(s)) {
|
|
int is_s = extract32(insn, 23, 1);
|
|
int is_2 = extract32(insn, 29, 1);
|
|
int data = (is_2 << 1) | is_s;
|
|
tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
|
|
vec_full_reg_offset(s, rn),
|
|
vec_full_reg_offset(s, rm), tcg_env,
|
|
is_q ? 16 : 8, vec_full_reg_size(s),
|
|
data, gen_helper_gvec_fmlal_a64);
|
|
}
|
|
return;
|
|
|
|
default:
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Integer op subgroup of C3.6.16. */
|
|
static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
|
|
{
|
|
int is_q = extract32(insn, 30, 1);
|
|
int u = extract32(insn, 29, 1);
|
|
int size = extract32(insn, 22, 2);
|
|
int opcode = extract32(insn, 11, 5);
|
|
int rm = extract32(insn, 16, 5);
|
|
int rn = extract32(insn, 5, 5);
|
|
int rd = extract32(insn, 0, 5);
|
|
int pass;
|
|
TCGCond cond;
|
|
|
|
switch (opcode) {
|
|
case 0x13: /* MUL, PMUL */
|
|
if (u && size != 0) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
/* fall through */
|
|
case 0x0: /* SHADD, UHADD */
|
|
case 0x2: /* SRHADD, URHADD */
|
|
case 0x4: /* SHSUB, UHSUB */
|
|
case 0xc: /* SMAX, UMAX */
|
|
case 0xd: /* SMIN, UMIN */
|
|
case 0xe: /* SABD, UABD */
|
|
case 0xf: /* SABA, UABA */
|
|
case 0x12: /* MLA, MLS */
|
|
if (size == 3) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
break;
|
|
case 0x16: /* SQDMULH, SQRDMULH */
|
|
if (size == 0 || size == 3) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
break;
|
|
default:
|
|
if (size == 3 && !is_q) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
|
|
switch (opcode) {
|
|
case 0x01: /* SQADD, UQADD */
|
|
if (u) {
|
|
gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size);
|
|
} else {
|
|
gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size);
|
|
}
|
|
return;
|
|
case 0x05: /* SQSUB, UQSUB */
|
|
if (u) {
|
|
gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size);
|
|
} else {
|
|
gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size);
|
|
}
|
|
return;
|
|
case 0x08: /* SSHL, USHL */
|
|
if (u) {
|
|
gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size);
|
|
} else {
|
|
gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size);
|
|
}
|
|
return;
|
|
case 0x0c: /* SMAX, UMAX */
|
|
if (u) {
|
|
gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size);
|
|
} else {
|
|
gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size);
|
|
}
|
|
return;
|
|
case 0x0d: /* SMIN, UMIN */
|
|
if (u) {
|
|
gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size);
|
|
} else {
|
|
gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size);
|
|
}
|
|
return;
|
|
case 0xe: /* SABD, UABD */
|
|
if (u) {
|
|
gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size);
|
|
} else {
|
|
gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size);
|
|
}
|
|
return;
|
|
case 0xf: /* SABA, UABA */
|
|
if (u) {
|
|
gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size);
|
|
} else {
|
|
gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size);
|
|
}
|
|
return;
|
|
case 0x10: /* ADD, SUB */
|
|
if (u) {
|
|
gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size);
|
|
} else {
|
|
gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size);
|
|
}
|
|
return;
|
|
case 0x13: /* MUL, PMUL */
|
|
if (!u) { /* MUL */
|
|
gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size);
|
|
} else { /* PMUL */
|
|
gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b);
|
|
}
|
|
return;
|
|
case 0x12: /* MLA, MLS */
|
|
if (u) {
|
|
gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size);
|
|
} else {
|
|
gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size);
|
|
}
|
|
return;
|
|
case 0x16: /* SQDMULH, SQRDMULH */
|
|
{
|
|
static gen_helper_gvec_3_ptr * const fns[2][2] = {
|
|
{ gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h },
|
|
{ gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s },
|
|
};
|
|
gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]);
|
|
}
|
|
return;
|
|
case 0x11:
|
|
if (!u) { /* CMTST */
|
|
gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size);
|
|
return;
|
|
}
|
|
/* else CMEQ */
|
|
cond = TCG_COND_EQ;
|
|
goto do_gvec_cmp;
|
|
case 0x06: /* CMGT, CMHI */
|
|
cond = u ? TCG_COND_GTU : TCG_COND_GT;
|
|
goto do_gvec_cmp;
|
|
case 0x07: /* CMGE, CMHS */
|
|
cond = u ? TCG_COND_GEU : TCG_COND_GE;
|
|
do_gvec_cmp:
|
|
tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd),
|
|
vec_full_reg_offset(s, rn),
|
|
vec_full_reg_offset(s, rm),
|
|
is_q ? 16 : 8, vec_full_reg_size(s));
|
|
return;
|
|
}
|
|
|
|
if (size == 3) {
|
|
assert(is_q);
|
|
for (pass = 0; pass < 2; pass++) {
|
|
TCGv_i64 tcg_op1 = tcg_temp_new_i64();
|
|
TCGv_i64 tcg_op2 = tcg_temp_new_i64();
|
|
TCGv_i64 tcg_res = tcg_temp_new_i64();
|
|
|
|
read_vec_element(s, tcg_op1, rn, pass, MO_64);
|
|
read_vec_element(s, tcg_op2, rm, pass, MO_64);
|
|
|
|
handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
|
|
|
|
write_vec_element(s, tcg_res, rd, pass, MO_64);
|
|
}
|
|
} else {
|
|
for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
|
|
TCGv_i32 tcg_op1 = tcg_temp_new_i32();
|
|
TCGv_i32 tcg_op2 = tcg_temp_new_i32();
|
|
TCGv_i32 tcg_res = tcg_temp_new_i32();
|
|
NeonGenTwoOpFn *genfn = NULL;
|
|
NeonGenTwoOpEnvFn *genenvfn = NULL;
|
|
|
|
read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
|
|
read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
|
|
|
|
switch (opcode) {
|
|
case 0x0: /* SHADD, UHADD */
|
|
{
|
|
static NeonGenTwoOpFn * const fns[3][2] = {
|
|
{ gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
|
|
{ gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
|
|
{ gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
|
|
};
|
|
genfn = fns[size][u];
|
|
break;
|
|
}
|
|
case 0x2: /* SRHADD, URHADD */
|
|
{
|
|
static NeonGenTwoOpFn * const fns[3][2] = {
|
|
{ gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
|
|
{ gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
|
|
{ gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
|
|
};
|
|
genfn = fns[size][u];
|
|
break;
|
|
}
|
|
case 0x4: /* SHSUB, UHSUB */
|
|
{
|
|
static NeonGenTwoOpFn * const fns[3][2] = {
|
|
{ gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
|
|
{ gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
|
|
{ gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
|
|
};
|
|
genfn = fns[size][u];
|
|
break;
|
|
}
|
|
case 0x9: /* SQSHL, UQSHL */
|
|
{
|
|
static NeonGenTwoOpEnvFn * const fns[3][2] = {
|
|
{ gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
|
|
{ gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
|
|
{ gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
|
|
};
|
|
genenvfn = fns[size][u];
|
|
break;
|
|
}
|
|
case 0xa: /* SRSHL, URSHL */
|
|
{
|
|
static NeonGenTwoOpFn * const fns[3][2] = {
|
|
{ gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
|
|
{ gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
|
|
{ gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
|
|
};
|
|
genfn = fns[size][u];
|
|
break;
|
|
}
|
|
case 0xb: /* SQRSHL, UQRSHL */
|
|
{
|
|
static NeonGenTwoOpEnvFn * const fns[3][2] = {
|
|
{ gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
|
|
{ gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
|
|
{ gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
|
|
};
|
|
genenvfn = fns[size][u];
|
|
break;
|
|
}
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
if (genenvfn) {
|
|
genenvfn(tcg_res, tcg_env, tcg_op1, tcg_op2);
|
|
} else {
|
|
genfn(tcg_res, tcg_op1, tcg_op2);
|
|
}
|
|
|
|
write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
|
|
}
|
|
}
|
|
clear_vec_high(s, is_q, rd);
|
|
}
|
|
|
|
/* AdvSIMD three same
|
|
* 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
|
|
* +---+---+---+-----------+------+---+------+--------+---+------+------+
|
|
* | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
|
|
* +---+---+---+-----------+------+---+------+--------+---+------+------+
|
|
*/
|
|
static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
|
|
{
|
|
int opcode = extract32(insn, 11, 5);
|
|
|
|
switch (opcode) {
|
|
case 0x3: /* logic ops */
|
|
disas_simd_3same_logic(s, insn);
|
|
break;
|
|
case 0x17: /* ADDP */
|
|
case 0x14: /* SMAXP, UMAXP */
|
|
case 0x15: /* SMINP, UMINP */
|
|
{
|
|
/* Pairwise operations */
|
|
int is_q = extract32(insn, 30, 1);
|
|
int u = extract32(insn, 29, 1);
|
|
int size = extract32(insn, 22, 2);
|
|
int rm = extract32(insn, 16, 5);
|
|
int rn = extract32(insn, 5, 5);
|
|
int rd = extract32(insn, 0, 5);
|
|
if (opcode == 0x17) {
|
|
if (u || (size == 3 && !is_q)) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
} else {
|
|
if (size == 3) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
}
|
|
handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
|
|
break;
|
|
}
|
|
case 0x18 ... 0x31:
|
|
/* floating point ops, sz[1] and U are part of opcode */
|
|
disas_simd_3same_float(s, insn);
|
|
break;
|
|
default:
|
|
disas_simd_3same_int(s, insn);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Advanced SIMD three same (ARMv8.2 FP16 variants)
|
|
*
|
|
* 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
|
|
* +---+---+---+-----------+---------+------+-----+--------+---+------+------+
|
|
* | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
|
|
* +---+---+---+-----------+---------+------+-----+--------+---+------+------+
|
|
*
|
|
* This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE
|
|
* (register), FACGE, FABD, FCMGT (register) and FACGT.
|
|
*
|
|
*/
|
|
static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn)
|
|
{
|
|
int opcode = extract32(insn, 11, 3);
|
|
int u = extract32(insn, 29, 1);
|
|
int a = extract32(insn, 23, 1);
|
|
int is_q = extract32(insn, 30, 1);
|
|
int rm = extract32(insn, 16, 5);
|
|
int rn = extract32(insn, 5, 5);
|
|
int rd = extract32(insn, 0, 5);
|
|
/*
|
|
* For these floating point ops, the U, a and opcode bits
|
|
* together indicate the operation.
|
|
*/
|
|
int fpopcode = opcode | (a << 3) | (u << 4);
|
|
int datasize = is_q ? 128 : 64;
|
|
int elements = datasize / 16;
|
|
bool pairwise;
|
|
TCGv_ptr fpst;
|
|
int pass;
|
|
|
|
switch (fpopcode) {
|
|
case 0x0: /* FMAXNM */
|
|
case 0x1: /* FMLA */
|
|
case 0x2: /* FADD */
|
|
case 0x3: /* FMULX */
|
|
case 0x4: /* FCMEQ */
|
|
case 0x6: /* FMAX */
|
|
case 0x7: /* FRECPS */
|
|
case 0x8: /* FMINNM */
|
|
case 0x9: /* FMLS */
|
|
case 0xa: /* FSUB */
|
|
case 0xe: /* FMIN */
|
|
case 0xf: /* FRSQRTS */
|
|
case 0x13: /* FMUL */
|
|
case 0x14: /* FCMGE */
|
|
case 0x15: /* FACGE */
|
|
case 0x17: /* FDIV */
|
|
case 0x1a: /* FABD */
|
|
case 0x1c: /* FCMGT */
|
|
case 0x1d: /* FACGT */
|
|
pairwise = false;
|
|
break;
|
|
case 0x10: /* FMAXNMP */
|
|
case 0x12: /* FADDP */
|
|
case 0x16: /* FMAXP */
|
|
case 0x18: /* FMINNMP */
|
|
case 0x1e: /* FMINP */
|
|
pairwise = true;
|
|
break;
|
|
default:
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
if (!dc_isar_feature(aa64_fp16, s)) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
|
|
fpst = fpstatus_ptr(FPST_FPCR_F16);
|
|
|
|
if (pairwise) {
|
|
int maxpass = is_q ? 8 : 4;
|
|
TCGv_i32 tcg_op1 = tcg_temp_new_i32();
|
|
TCGv_i32 tcg_op2 = tcg_temp_new_i32();
|
|
TCGv_i32 tcg_res[8];
|
|
|
|
for (pass = 0; pass < maxpass; pass++) {
|
|
int passreg = pass < (maxpass / 2) ? rn : rm;
|
|
int passelt = (pass << 1) & (maxpass - 1);
|
|
|
|
read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16);
|
|
read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16);
|
|
tcg_res[pass] = tcg_temp_new_i32();
|
|
|
|
switch (fpopcode) {
|
|
case 0x10: /* FMAXNMP */
|
|
gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2,
|
|
fpst);
|
|
break;
|
|
case 0x12: /* FADDP */
|
|
gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x16: /* FMAXP */
|
|
gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x18: /* FMINNMP */
|
|
gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2,
|
|
fpst);
|
|
break;
|
|
case 0x1e: /* FMINP */
|
|
gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
for (pass = 0; pass < maxpass; pass++) {
|
|
write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16);
|
|
}
|
|
} else {
|
|
for (pass = 0; pass < elements; pass++) {
|
|
TCGv_i32 tcg_op1 = tcg_temp_new_i32();
|
|
TCGv_i32 tcg_op2 = tcg_temp_new_i32();
|
|
TCGv_i32 tcg_res = tcg_temp_new_i32();
|
|
|
|
read_vec_element_i32(s, tcg_op1, rn, pass, MO_16);
|
|
read_vec_element_i32(s, tcg_op2, rm, pass, MO_16);
|
|
|
|
switch (fpopcode) {
|
|
case 0x0: /* FMAXNM */
|
|
gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x1: /* FMLA */
|
|
read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
|
|
gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
|
|
fpst);
|
|
break;
|
|
case 0x2: /* FADD */
|
|
gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x3: /* FMULX */
|
|
gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x4: /* FCMEQ */
|
|
gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x6: /* FMAX */
|
|
gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x7: /* FRECPS */
|
|
gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x8: /* FMINNM */
|
|
gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x9: /* FMLS */
|
|
/* As usual for ARM, separate negation for fused multiply-add */
|
|
tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
|
|
read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
|
|
gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
|
|
fpst);
|
|
break;
|
|
case 0xa: /* FSUB */
|
|
gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0xe: /* FMIN */
|
|
gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0xf: /* FRSQRTS */
|
|
gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x13: /* FMUL */
|
|
gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x14: /* FCMGE */
|
|
gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x15: /* FACGE */
|
|
gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x17: /* FDIV */
|
|
gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x1a: /* FABD */
|
|
gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
|
|
break;
|
|
case 0x1c: /* FCMGT */
|
|
gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
case 0x1d: /* FACGT */
|
|
gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
|
|
}
|
|
}
|
|
|
|
clear_vec_high(s, is_q, rd);
|
|
}
|
|
|
|
/* AdvSIMD three same extra
|
|
* 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
|
|
* +---+---+---+-----------+------+---+------+---+--------+---+----+----+
|
|
* | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
|
|
* +---+---+---+-----------+------+---+------+---+--------+---+----+----+
|
|
*/
|
|
static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
|
|
{
|
|
int rd = extract32(insn, 0, 5);
|
|
int rn = extract32(insn, 5, 5);
|
|
int opcode = extract32(insn, 11, 4);
|
|
int rm = extract32(insn, 16, 5);
|
|
int size = extract32(insn, 22, 2);
|
|
bool u = extract32(insn, 29, 1);
|
|
bool is_q = extract32(insn, 30, 1);
|
|
bool feature;
|
|
int rot;
|
|
|
|
switch (u * 16 + opcode) {
|
|
case 0x10: /* SQRDMLAH (vector) */
|
|
case 0x11: /* SQRDMLSH (vector) */
|
|
if (size != 1 && size != 2) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
feature = dc_isar_feature(aa64_rdm, s);
|
|
break;
|
|
case 0x02: /* SDOT (vector) */
|
|
case 0x12: /* UDOT (vector) */
|
|
if (size != MO_32) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
feature = dc_isar_feature(aa64_dp, s);
|
|
break;
|
|
case 0x03: /* USDOT */
|
|
if (size != MO_32) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
feature = dc_isar_feature(aa64_i8mm, s);
|
|
break;
|
|
case 0x04: /* SMMLA */
|
|
case 0x14: /* UMMLA */
|
|
case 0x05: /* USMMLA */
|
|
if (!is_q || size != MO_32) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
feature = dc_isar_feature(aa64_i8mm, s);
|
|
break;
|
|
case 0x18: /* FCMLA, #0 */
|
|
case 0x19: /* FCMLA, #90 */
|
|
case 0x1a: /* FCMLA, #180 */
|
|
case 0x1b: /* FCMLA, #270 */
|
|
case 0x1c: /* FCADD, #90 */
|
|
case 0x1e: /* FCADD, #270 */
|
|
if (size == 0
|
|
|| (size == 1 && !dc_isar_feature(aa64_fp16, s))
|
|
|| (size == 3 && !is_q)) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
feature = dc_isar_feature(aa64_fcma, s);
|
|
break;
|
|
case 0x1d: /* BFMMLA */
|
|
if (size != MO_16 || !is_q) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
feature = dc_isar_feature(aa64_bf16, s);
|
|
break;
|
|
case 0x1f:
|
|
switch (size) {
|
|
case 1: /* BFDOT */
|
|
case 3: /* BFMLAL{B,T} */
|
|
feature = dc_isar_feature(aa64_bf16, s);
|
|
break;
|
|
default:
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
break;
|
|
default:
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
if (!feature) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
|
|
switch (opcode) {
|
|
case 0x0: /* SQRDMLAH (vector) */
|
|
gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size);
|
|
return;
|
|
|
|
case 0x1: /* SQRDMLSH (vector) */
|
|
gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size);
|
|
return;
|
|
|
|
case 0x2: /* SDOT / UDOT */
|
|
gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0,
|
|
u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b);
|
|
return;
|
|
|
|
case 0x3: /* USDOT */
|
|
gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b);
|
|
return;
|
|
|
|
case 0x04: /* SMMLA, UMMLA */
|
|
gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0,
|
|
u ? gen_helper_gvec_ummla_b
|
|
: gen_helper_gvec_smmla_b);
|
|
return;
|
|
case 0x05: /* USMMLA */
|
|
gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b);
|
|
return;
|
|
|
|
case 0x8: /* FCMLA, #0 */
|
|
case 0x9: /* FCMLA, #90 */
|
|
case 0xa: /* FCMLA, #180 */
|
|
case 0xb: /* FCMLA, #270 */
|
|
rot = extract32(opcode, 0, 2);
|
|
switch (size) {
|
|
case 1:
|
|
gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot,
|
|
gen_helper_gvec_fcmlah);
|
|
break;
|
|
case 2:
|
|
gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
|
|
gen_helper_gvec_fcmlas);
|
|
break;
|
|
case 3:
|
|
gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
|
|
gen_helper_gvec_fcmlad);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
return;
|
|
|
|
case 0xc: /* FCADD, #90 */
|
|
case 0xe: /* FCADD, #270 */
|
|
rot = extract32(opcode, 1, 1);
|
|
switch (size) {
|
|
case 1:
|
|
gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
|
|
gen_helper_gvec_fcaddh);
|
|
break;
|
|
case 2:
|
|
gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
|
|
gen_helper_gvec_fcadds);
|
|
break;
|
|
case 3:
|
|
gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
|
|
gen_helper_gvec_fcaddd);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
return;
|
|
|
|
case 0xd: /* BFMMLA */
|
|
gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla);
|
|
return;
|
|
case 0xf:
|
|
switch (size) {
|
|
case 1: /* BFDOT */
|
|
gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot);
|
|
break;
|
|
case 3: /* BFMLAL{B,T} */
|
|
gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q,
|
|
gen_helper_gvec_bfmlal);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
return;
|
|
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
|
|
int size, int rn, int rd)
|
|
{
|
|
/* Handle 2-reg-misc ops which are widening (so each size element
|
|
* in the source becomes a 2*size element in the destination.
|
|
* The only instruction like this is FCVTL.
|
|
*/
|
|
int pass;
|
|
|
|
if (size == 3) {
|
|
/* 32 -> 64 bit fp conversion */
|
|
TCGv_i64 tcg_res[2];
|
|
int srcelt = is_q ? 2 : 0;
|
|
|
|
for (pass = 0; pass < 2; pass++) {
|
|
TCGv_i32 tcg_op = tcg_temp_new_i32();
|
|
tcg_res[pass] = tcg_temp_new_i64();
|
|
|
|
read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
|
|
gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, tcg_env);
|
|
}
|
|
for (pass = 0; pass < 2; pass++) {
|
|
write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
|
|
}
|
|
} else {
|
|
/* 16 -> 32 bit fp conversion */
|
|
int srcelt = is_q ? 4 : 0;
|
|
TCGv_i32 tcg_res[4];
|
|
TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
|
|
TCGv_i32 ahp = get_ahp_flag();
|
|
|
|
for (pass = 0; pass < 4; pass++) {
|
|
tcg_res[pass] = tcg_temp_new_i32();
|
|
|
|
read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
|
|
gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
|
|
fpst, ahp);
|
|
}
|
|
for (pass = 0; pass < 4; pass++) {
|
|
write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void handle_rev(DisasContext *s, int opcode, bool u,
|
|
bool is_q, int size, int rn, int rd)
|
|
{
|
|
int op = (opcode << 1) | u;
|
|
int opsz = op + size;
|
|
int grp_size = 3 - opsz;
|
|
int dsize = is_q ? 128 : 64;
|
|
int i;
|
|
|
|
if (opsz >= 3) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
|
|
if (size == 0) {
|
|
/* Special case bytes, use bswap op on each group of elements */
|
|
int groups = dsize / (8 << grp_size);
|
|
|
|
for (i = 0; i < groups; i++) {
|
|
TCGv_i64 tcg_tmp = tcg_temp_new_i64();
|
|
|
|
read_vec_element(s, tcg_tmp, rn, i, grp_size);
|
|
switch (grp_size) {
|
|
case MO_16:
|
|
tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
|
|
break;
|
|
case MO_32:
|
|
tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
|
|
break;
|
|
case MO_64:
|
|
tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
write_vec_element(s, tcg_tmp, rd, i, grp_size);
|
|
}
|
|
clear_vec_high(s, is_q, rd);
|
|
} else {
|
|
int revmask = (1 << grp_size) - 1;
|
|
int esize = 8 << size;
|
|
int elements = dsize / esize;
|
|
TCGv_i64 tcg_rn = tcg_temp_new_i64();
|
|
TCGv_i64 tcg_rd[2];
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
tcg_rd[i] = tcg_temp_new_i64();
|
|
tcg_gen_movi_i64(tcg_rd[i], 0);
|
|
}
|
|
|
|
for (i = 0; i < elements; i++) {
|
|
int e_rev = (i & 0xf) ^ revmask;
|
|
int w = (e_rev * esize) / 64;
|
|
int o = (e_rev * esize) % 64;
|
|
|
|
read_vec_element(s, tcg_rn, rn, i, size);
|
|
tcg_gen_deposit_i64(tcg_rd[w], tcg_rd[w], tcg_rn, o, esize);
|
|
}
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
write_vec_element(s, tcg_rd[i], rd, i, MO_64);
|
|
}
|
|
clear_vec_high(s, true, rd);
|
|
}
|
|
}
|
|
|
|
static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
|
|
bool is_q, int size, int rn, int rd)
|
|
{
|
|
/* Implement the pairwise operations from 2-misc:
|
|
* SADDLP, UADDLP, SADALP, UADALP.
|
|
* These all add pairs of elements in the input to produce a
|
|
* double-width result element in the output (possibly accumulating).
|
|
*/
|
|
bool accum = (opcode == 0x6);
|
|
int maxpass = is_q ? 2 : 1;
|
|
int pass;
|
|
TCGv_i64 tcg_res[2];
|
|
|
|
if (size == 2) {
|
|
/* 32 + 32 -> 64 op */
|
|
MemOp memop = size + (u ? 0 : MO_SIGN);
|
|
|
|
for (pass = 0; pass < maxpass; pass++) {
|
|
TCGv_i64 tcg_op1 = tcg_temp_new_i64();
|
|
TCGv_i64 tcg_op2 = tcg_temp_new_i64();
|
|
|
|
tcg_res[pass] = tcg_temp_new_i64();
|
|
|
|
read_vec_element(s, tcg_op1, rn, pass * 2, memop);
|
|
read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
|
|
tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
|
|
if (accum) {
|
|
read_vec_element(s, tcg_op1, rd, pass, MO_64);
|
|
tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
|
|
}
|
|
}
|
|
} else {
|
|
for (pass = 0; pass < maxpass; pass++) {
|
|
TCGv_i64 tcg_op = tcg_temp_new_i64();
|
|
NeonGenOne64OpFn *genfn;
|
|
static NeonGenOne64OpFn * const fns[2][2] = {
|
|
{ gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 },
|
|
{ gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 },
|
|
};
|
|
|
|
genfn = fns[size][u];
|
|
|
|
tcg_res[pass] = tcg_temp_new_i64();
|
|
|
|
read_vec_element(s, tcg_op, rn, pass, MO_64);
|
|
genfn(tcg_res[pass], tcg_op);
|
|
|
|
if (accum) {
|
|
read_vec_element(s, tcg_op, rd, pass, MO_64);
|
|
if (size == 0) {
|
|
gen_helper_neon_addl_u16(tcg_res[pass],
|
|
tcg_res[pass], tcg_op);
|
|
} else {
|
|
gen_helper_neon_addl_u32(tcg_res[pass],
|
|
tcg_res[pass], tcg_op);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (!is_q) {
|
|
tcg_res[1] = tcg_constant_i64(0);
|
|
}
|
|
for (pass = 0; pass < 2; pass++) {
|
|
write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
|
|
}
|
|
}
|
|
|
|
static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
|
|
{
|
|
/* Implement SHLL and SHLL2 */
|
|
int pass;
|
|
int part = is_q ? 2 : 0;
|
|
TCGv_i64 tcg_res[2];
|
|
|
|
for (pass = 0; pass < 2; pass++) {
|
|
static NeonGenWidenFn * const widenfns[3] = {
|
|
gen_helper_neon_widen_u8,
|
|
gen_helper_neon_widen_u16,
|
|
tcg_gen_extu_i32_i64,
|
|
};
|
|
NeonGenWidenFn *widenfn = widenfns[size];
|
|
TCGv_i32 tcg_op = tcg_temp_new_i32();
|
|
|
|
read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
|
|
tcg_res[pass] = tcg_temp_new_i64();
|
|
widenfn(tcg_res[pass], tcg_op);
|
|
tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
|
|
}
|
|
|
|
for (pass = 0; pass < 2; pass++) {
|
|
write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
|
|
}
|
|
}
|
|
|
|
/* AdvSIMD two reg misc
|
|
* 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
|
|
* +---+---+---+-----------+------+-----------+--------+-----+------+------+
|
|
* | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
|
|
* +---+---+---+-----------+------+-----------+--------+-----+------+------+
|
|
*/
|
|
static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
|
|
{
|
|
int size = extract32(insn, 22, 2);
|
|
int opcode = extract32(insn, 12, 5);
|
|
bool u = extract32(insn, 29, 1);
|
|
bool is_q = extract32(insn, 30, 1);
|
|
int rn = extract32(insn, 5, 5);
|
|
int rd = extract32(insn, 0, 5);
|
|
bool need_fpstatus = false;
|
|
int rmode = -1;
|
|
TCGv_i32 tcg_rmode;
|
|
TCGv_ptr tcg_fpstatus;
|
|
|
|
switch (opcode) {
|
|
case 0x0: /* REV64, REV32 */
|
|
case 0x1: /* REV16 */
|
|
handle_rev(s, opcode, u, is_q, size, rn, rd);
|
|
return;
|
|
case 0x5: /* CNT, NOT, RBIT */
|
|
if (u && size == 0) {
|
|
/* NOT */
|
|
break;
|
|
} else if (u && size == 1) {
|
|
/* RBIT */
|
|
break;
|
|
} else if (!u && size == 0) {
|
|
/* CNT */
|
|
break;
|
|
}
|
|
unallocated_encoding(s);
|
|
return;
|
|
case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
|
|
case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
|
|
if (size == 3) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
|
|
handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
|
|
return;
|
|
case 0x4: /* CLS, CLZ */
|
|
if (size == 3) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
break;
|
|
case 0x2: /* SADDLP, UADDLP */
|
|
case 0x6: /* SADALP, UADALP */
|
|
if (size == 3) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
|
|
return;
|
|
case 0x13: /* SHLL, SHLL2 */
|
|
if (u == 0 || size == 3) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
handle_shll(s, is_q, size, rn, rd);
|
|
return;
|
|
case 0xa: /* CMLT */
|
|
if (u == 1) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
/* fall through */
|
|
case 0x8: /* CMGT, CMGE */
|
|
case 0x9: /* CMEQ, CMLE */
|
|
case 0xb: /* ABS, NEG */
|
|
if (size == 3 && !is_q) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
break;
|
|
case 0x3: /* SUQADD, USQADD */
|
|
if (size == 3 && !is_q) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
|
|
return;
|
|
case 0x7: /* SQABS, SQNEG */
|
|
if (size == 3 && !is_q) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
break;
|
|
case 0xc ... 0xf:
|
|
case 0x16 ... 0x1f:
|
|
{
|
|
/* Floating point: U, size[1] and opcode indicate operation;
|
|
* size[0] indicates single or double precision.
|
|
*/
|
|
int is_double = extract32(size, 0, 1);
|
|
opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
|
|
size = is_double ? 3 : 2;
|
|
switch (opcode) {
|
|
case 0x2f: /* FABS */
|
|
case 0x6f: /* FNEG */
|
|
if (size == 3 && !is_q) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
break;
|
|
case 0x1d: /* SCVTF */
|
|
case 0x5d: /* UCVTF */
|
|
{
|
|
bool is_signed = (opcode == 0x1d) ? true : false;
|
|
int elements = is_double ? 2 : is_q ? 4 : 2;
|
|
if (is_double && !is_q) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
|
|
return;
|
|
}
|
|
case 0x2c: /* FCMGT (zero) */
|
|
case 0x2d: /* FCMEQ (zero) */
|
|
case 0x2e: /* FCMLT (zero) */
|
|
case 0x6c: /* FCMGE (zero) */
|
|
case 0x6d: /* FCMLE (zero) */
|
|
if (size == 3 && !is_q) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
|
|
return;
|
|
case 0x7f: /* FSQRT */
|
|
if (size == 3 && !is_q) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
break;
|
|
case 0x1a: /* FCVTNS */
|
|
case 0x1b: /* FCVTMS */
|
|
case 0x3a: /* FCVTPS */
|
|
case 0x3b: /* FCVTZS */
|
|
case 0x5a: /* FCVTNU */
|
|
case 0x5b: /* FCVTMU */
|
|
case 0x7a: /* FCVTPU */
|
|
case 0x7b: /* FCVTZU */
|
|
need_fpstatus = true;
|
|
rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
|
|
if (size == 3 && !is_q) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
break;
|
|
case 0x5c: /* FCVTAU */
|
|
case 0x1c: /* FCVTAS */
|
|
need_fpstatus = true;
|
|
rmode = FPROUNDING_TIEAWAY;
|
|
if (size == 3 && !is_q) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
break;
|
|
case 0x3c: /* URECPE */
|
|
if (size == 3) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
/* fall through */
|
|
case 0x3d: /* FRECPE */
|
|
case 0x7d: /* FRSQRTE */
|
|
if (size == 3 && !is_q) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
|
|
return;
|
|
case 0x56: /* FCVTXN, FCVTXN2 */
|
|
if (size == 2) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
/* fall through */
|
|
case 0x16: /* FCVTN, FCVTN2 */
|
|
/* handle_2misc_narrow does a 2*size -> size operation, but these
|
|
* instructions encode the source size rather than dest size.
|
|
*/
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
|
|
return;
|
|
case 0x36: /* BFCVTN, BFCVTN2 */
|
|
if (!dc_isar_feature(aa64_bf16, s) || size != 2) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
|
|
return;
|
|
case 0x17: /* FCVTL, FCVTL2 */
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
handle_2misc_widening(s, opcode, is_q, size, rn, rd);
|
|
return;
|
|
case 0x18: /* FRINTN */
|
|
case 0x19: /* FRINTM */
|
|
case 0x38: /* FRINTP */
|
|
case 0x39: /* FRINTZ */
|
|
rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
|
|
/* fall through */
|
|
case 0x59: /* FRINTX */
|
|
case 0x79: /* FRINTI */
|
|
need_fpstatus = true;
|
|
if (size == 3 && !is_q) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
break;
|
|
case 0x58: /* FRINTA */
|
|
rmode = FPROUNDING_TIEAWAY;
|
|
need_fpstatus = true;
|
|
if (size == 3 && !is_q) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
break;
|
|
case 0x7c: /* URSQRTE */
|
|
if (size == 3) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
break;
|
|
case 0x1e: /* FRINT32Z */
|
|
case 0x1f: /* FRINT64Z */
|
|
rmode = FPROUNDING_ZERO;
|
|
/* fall through */
|
|
case 0x5e: /* FRINT32X */
|
|
case 0x5f: /* FRINT64X */
|
|
need_fpstatus = true;
|
|
if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
break;
|
|
default:
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
|
|
if (need_fpstatus || rmode >= 0) {
|
|
tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
|
|
} else {
|
|
tcg_fpstatus = NULL;
|
|
}
|
|
if (rmode >= 0) {
|
|
tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
|
|
} else {
|
|
tcg_rmode = NULL;
|
|
}
|
|
|
|
switch (opcode) {
|
|
case 0x5:
|
|
if (u && size == 0) { /* NOT */
|
|
gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
|
|
return;
|
|
}
|
|
break;
|
|
case 0x8: /* CMGT, CMGE */
|
|
if (u) {
|
|
gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size);
|
|
} else {
|
|
gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size);
|
|
}
|
|
return;
|
|
case 0x9: /* CMEQ, CMLE */
|
|
if (u) {
|
|
gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size);
|
|
} else {
|
|
gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size);
|
|
}
|
|
return;
|
|
case 0xa: /* CMLT */
|
|
gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size);
|
|
return;
|
|
case 0xb:
|
|
if (u) { /* ABS, NEG */
|
|
gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
|
|
} else {
|
|
gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (size == 3) {
|
|
/* All 64-bit element operations can be shared with scalar 2misc */
|
|
int pass;
|
|
|
|
/* Coverity claims (size == 3 && !is_q) has been eliminated
|
|
* from all paths leading to here.
|
|
*/
|
|
tcg_debug_assert(is_q);
|
|
for (pass = 0; pass < 2; pass++) {
|
|
TCGv_i64 tcg_op = tcg_temp_new_i64();
|
|
TCGv_i64 tcg_res = tcg_temp_new_i64();
|
|
|
|
read_vec_element(s, tcg_op, rn, pass, MO_64);
|
|
|
|
handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
|
|
tcg_rmode, tcg_fpstatus);
|
|
|
|
write_vec_element(s, tcg_res, rd, pass, MO_64);
|
|
}
|
|
} else {
|
|
int pass;
|
|
|
|
for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
|
|
TCGv_i32 tcg_op = tcg_temp_new_i32();
|
|
TCGv_i32 tcg_res = tcg_temp_new_i32();
|
|
|
|
read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
|
|
|
|
if (size == 2) {
|
|
/* Special cases for 32 bit elements */
|
|
switch (opcode) {
|
|
case 0x4: /* CLS */
|
|
if (u) {
|
|
tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
|
|
} else {
|
|
tcg_gen_clrsb_i32(tcg_res, tcg_op);
|
|
}
|
|
break;
|
|
case 0x7: /* SQABS, SQNEG */
|
|
if (u) {
|
|
gen_helper_neon_qneg_s32(tcg_res, tcg_env, tcg_op);
|
|
} else {
|
|
gen_helper_neon_qabs_s32(tcg_res, tcg_env, tcg_op);
|
|
}
|
|
break;
|
|
case 0x2f: /* FABS */
|
|
gen_helper_vfp_abss(tcg_res, tcg_op);
|
|
break;
|
|
case 0x6f: /* FNEG */
|
|
gen_helper_vfp_negs(tcg_res, tcg_op);
|
|
break;
|
|
case 0x7f: /* FSQRT */
|
|
gen_helper_vfp_sqrts(tcg_res, tcg_op, tcg_env);
|
|
break;
|
|
case 0x1a: /* FCVTNS */
|
|
case 0x1b: /* FCVTMS */
|
|
case 0x1c: /* FCVTAS */
|
|
case 0x3a: /* FCVTPS */
|
|
case 0x3b: /* FCVTZS */
|
|
gen_helper_vfp_tosls(tcg_res, tcg_op,
|
|
tcg_constant_i32(0), tcg_fpstatus);
|
|
break;
|
|
case 0x5a: /* FCVTNU */
|
|
case 0x5b: /* FCVTMU */
|
|
case 0x5c: /* FCVTAU */
|
|
case 0x7a: /* FCVTPU */
|
|
case 0x7b: /* FCVTZU */
|
|
gen_helper_vfp_touls(tcg_res, tcg_op,
|
|
tcg_constant_i32(0), tcg_fpstatus);
|
|
break;
|
|
case 0x18: /* FRINTN */
|
|
case 0x19: /* FRINTM */
|
|
case 0x38: /* FRINTP */
|
|
case 0x39: /* FRINTZ */
|
|
case 0x58: /* FRINTA */
|
|
case 0x79: /* FRINTI */
|
|
gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
|
|
break;
|
|
case 0x59: /* FRINTX */
|
|
gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
|
|
break;
|
|
case 0x7c: /* URSQRTE */
|
|
gen_helper_rsqrte_u32(tcg_res, tcg_op);
|
|
break;
|
|
case 0x1e: /* FRINT32Z */
|
|
case 0x5e: /* FRINT32X */
|
|
gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus);
|
|
break;
|
|
case 0x1f: /* FRINT64Z */
|
|
case 0x5f: /* FRINT64X */
|
|
gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
} else {
|
|
/* Use helpers for 8 and 16 bit elements */
|
|
switch (opcode) {
|
|
case 0x5: /* CNT, RBIT */
|
|
/* For these two insns size is part of the opcode specifier
|
|
* (handled earlier); they always operate on byte elements.
|
|
*/
|
|
if (u) {
|
|
gen_helper_neon_rbit_u8(tcg_res, tcg_op);
|
|
} else {
|
|
gen_helper_neon_cnt_u8(tcg_res, tcg_op);
|
|
}
|
|
break;
|
|
case 0x7: /* SQABS, SQNEG */
|
|
{
|
|
NeonGenOneOpEnvFn *genfn;
|
|
static NeonGenOneOpEnvFn * const fns[2][2] = {
|
|
{ gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
|
|
{ gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
|
|
};
|
|
genfn = fns[size][u];
|
|
genfn(tcg_res, tcg_env, tcg_op);
|
|
break;
|
|
}
|
|
case 0x4: /* CLS, CLZ */
|
|
if (u) {
|
|
if (size == 0) {
|
|
gen_helper_neon_clz_u8(tcg_res, tcg_op);
|
|
} else {
|
|
gen_helper_neon_clz_u16(tcg_res, tcg_op);
|
|
}
|
|
} else {
|
|
if (size == 0) {
|
|
gen_helper_neon_cls_s8(tcg_res, tcg_op);
|
|
} else {
|
|
gen_helper_neon_cls_s16(tcg_res, tcg_op);
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
|
|
}
|
|
}
|
|
clear_vec_high(s, is_q, rd);
|
|
|
|
if (tcg_rmode) {
|
|
gen_restore_rmode(tcg_rmode, tcg_fpstatus);
|
|
}
|
|
}
|
|
|
|
/* AdvSIMD [scalar] two register miscellaneous (FP16)
|
|
*
|
|
* 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0
|
|
* +---+---+---+---+---------+---+-------------+--------+-----+------+------+
|
|
* | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd |
|
|
* +---+---+---+---+---------+---+-------------+--------+-----+------+------+
|
|
* mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
|
|
* val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
|
|
*
|
|
* This actually covers two groups where scalar access is governed by
|
|
* bit 28. A bunch of the instructions (float to integral) only exist
|
|
* in the vector form and are un-allocated for the scalar decode. Also
|
|
* in the scalar decode Q is always 1.
|
|
*/
|
|
static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
|
|
{
|
|
int fpop, opcode, a, u;
|
|
int rn, rd;
|
|
bool is_q;
|
|
bool is_scalar;
|
|
bool only_in_vector = false;
|
|
|
|
int pass;
|
|
TCGv_i32 tcg_rmode = NULL;
|
|
TCGv_ptr tcg_fpstatus = NULL;
|
|
bool need_fpst = true;
|
|
int rmode = -1;
|
|
|
|
if (!dc_isar_feature(aa64_fp16, s)) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
rd = extract32(insn, 0, 5);
|
|
rn = extract32(insn, 5, 5);
|
|
|
|
a = extract32(insn, 23, 1);
|
|
u = extract32(insn, 29, 1);
|
|
is_scalar = extract32(insn, 28, 1);
|
|
is_q = extract32(insn, 30, 1);
|
|
|
|
opcode = extract32(insn, 12, 5);
|
|
fpop = deposit32(opcode, 5, 1, a);
|
|
fpop = deposit32(fpop, 6, 1, u);
|
|
|
|
switch (fpop) {
|
|
case 0x1d: /* SCVTF */
|
|
case 0x5d: /* UCVTF */
|
|
{
|
|
int elements;
|
|
|
|
if (is_scalar) {
|
|
elements = 1;
|
|
} else {
|
|
elements = (is_q ? 8 : 4);
|
|
}
|
|
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
|
|
return;
|
|
}
|
|
break;
|
|
case 0x2c: /* FCMGT (zero) */
|
|
case 0x2d: /* FCMEQ (zero) */
|
|
case 0x2e: /* FCMLT (zero) */
|
|
case 0x6c: /* FCMGE (zero) */
|
|
case 0x6d: /* FCMLE (zero) */
|
|
handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
|
|
return;
|
|
case 0x3d: /* FRECPE */
|
|
case 0x3f: /* FRECPX */
|
|
break;
|
|
case 0x18: /* FRINTN */
|
|
only_in_vector = true;
|
|
rmode = FPROUNDING_TIEEVEN;
|
|
break;
|
|
case 0x19: /* FRINTM */
|
|
only_in_vector = true;
|
|
rmode = FPROUNDING_NEGINF;
|
|
break;
|
|
case 0x38: /* FRINTP */
|
|
only_in_vector = true;
|
|
rmode = FPROUNDING_POSINF;
|
|
break;
|
|
case 0x39: /* FRINTZ */
|
|
only_in_vector = true;
|
|
rmode = FPROUNDING_ZERO;
|
|
break;
|
|
case 0x58: /* FRINTA */
|
|
only_in_vector = true;
|
|
rmode = FPROUNDING_TIEAWAY;
|
|
break;
|
|
case 0x59: /* FRINTX */
|
|
case 0x79: /* FRINTI */
|
|
only_in_vector = true;
|
|
/* current rounding mode */
|
|
break;
|
|
case 0x1a: /* FCVTNS */
|
|
rmode = FPROUNDING_TIEEVEN;
|
|
break;
|
|
case 0x1b: /* FCVTMS */
|
|
rmode = FPROUNDING_NEGINF;
|
|
break;
|
|
case 0x1c: /* FCVTAS */
|
|
rmode = FPROUNDING_TIEAWAY;
|
|
break;
|
|
case 0x3a: /* FCVTPS */
|
|
rmode = FPROUNDING_POSINF;
|
|
break;
|
|
case 0x3b: /* FCVTZS */
|
|
rmode = FPROUNDING_ZERO;
|
|
break;
|
|
case 0x5a: /* FCVTNU */
|
|
rmode = FPROUNDING_TIEEVEN;
|
|
break;
|
|
case 0x5b: /* FCVTMU */
|
|
rmode = FPROUNDING_NEGINF;
|
|
break;
|
|
case 0x5c: /* FCVTAU */
|
|
rmode = FPROUNDING_TIEAWAY;
|
|
break;
|
|
case 0x7a: /* FCVTPU */
|
|
rmode = FPROUNDING_POSINF;
|
|
break;
|
|
case 0x7b: /* FCVTZU */
|
|
rmode = FPROUNDING_ZERO;
|
|
break;
|
|
case 0x2f: /* FABS */
|
|
case 0x6f: /* FNEG */
|
|
need_fpst = false;
|
|
break;
|
|
case 0x7d: /* FRSQRTE */
|
|
case 0x7f: /* FSQRT (vector) */
|
|
break;
|
|
default:
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
|
|
/* Check additional constraints for the scalar encoding */
|
|
if (is_scalar) {
|
|
if (!is_q) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
/* FRINTxx is only in the vector form */
|
|
if (only_in_vector) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
|
|
if (rmode >= 0 || need_fpst) {
|
|
tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16);
|
|
}
|
|
|
|
if (rmode >= 0) {
|
|
tcg_rmode = gen_set_rmode(rmode, tcg_fpstatus);
|
|
}
|
|
|
|
if (is_scalar) {
|
|
TCGv_i32 tcg_op = read_fp_hreg(s, rn);
|
|
TCGv_i32 tcg_res = tcg_temp_new_i32();
|
|
|
|
switch (fpop) {
|
|
case 0x1a: /* FCVTNS */
|
|
case 0x1b: /* FCVTMS */
|
|
case 0x1c: /* FCVTAS */
|
|
case 0x3a: /* FCVTPS */
|
|
case 0x3b: /* FCVTZS */
|
|
gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
|
|
break;
|
|
case 0x3d: /* FRECPE */
|
|
gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
|
|
break;
|
|
case 0x3f: /* FRECPX */
|
|
gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
|
|
break;
|
|
case 0x5a: /* FCVTNU */
|
|
case 0x5b: /* FCVTMU */
|
|
case 0x5c: /* FCVTAU */
|
|
case 0x7a: /* FCVTPU */
|
|
case 0x7b: /* FCVTZU */
|
|
gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
|
|
break;
|
|
case 0x6f: /* FNEG */
|
|
tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
|
|
break;
|
|
case 0x7d: /* FRSQRTE */
|
|
gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
/* limit any sign extension going on */
|
|
tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
|
|
write_fp_sreg(s, rd, tcg_res);
|
|
} else {
|
|
for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
|
|
TCGv_i32 tcg_op = tcg_temp_new_i32();
|
|
TCGv_i32 tcg_res = tcg_temp_new_i32();
|
|
|
|
read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
|
|
|
|
switch (fpop) {
|
|
case 0x1a: /* FCVTNS */
|
|
case 0x1b: /* FCVTMS */
|
|
case 0x1c: /* FCVTAS */
|
|
case 0x3a: /* FCVTPS */
|
|
case 0x3b: /* FCVTZS */
|
|
gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
|
|
break;
|
|
case 0x3d: /* FRECPE */
|
|
gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
|
|
break;
|
|
case 0x5a: /* FCVTNU */
|
|
case 0x5b: /* FCVTMU */
|
|
case 0x5c: /* FCVTAU */
|
|
case 0x7a: /* FCVTPU */
|
|
case 0x7b: /* FCVTZU */
|
|
gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
|
|
break;
|
|
case 0x18: /* FRINTN */
|
|
case 0x19: /* FRINTM */
|
|
case 0x38: /* FRINTP */
|
|
case 0x39: /* FRINTZ */
|
|
case 0x58: /* FRINTA */
|
|
case 0x79: /* FRINTI */
|
|
gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
|
|
break;
|
|
case 0x59: /* FRINTX */
|
|
gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
|
|
break;
|
|
case 0x2f: /* FABS */
|
|
tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
|
|
break;
|
|
case 0x6f: /* FNEG */
|
|
tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
|
|
break;
|
|
case 0x7d: /* FRSQRTE */
|
|
gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
|
|
break;
|
|
case 0x7f: /* FSQRT */
|
|
gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
|
|
}
|
|
|
|
clear_vec_high(s, is_q, rd);
|
|
}
|
|
|
|
if (tcg_rmode) {
|
|
gen_restore_rmode(tcg_rmode, tcg_fpstatus);
|
|
}
|
|
}
|
|
|
|
/* AdvSIMD scalar x indexed element
|
|
* 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
|
|
* +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
|
|
* | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
|
|
* +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
|
|
* AdvSIMD vector x indexed element
|
|
* 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
|
|
* +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
|
|
* | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
|
|
* +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
|
|
*/
|
|
static void disas_simd_indexed(DisasContext *s, uint32_t insn)
|
|
{
|
|
/* This encoding has two kinds of instruction:
|
|
* normal, where we perform elt x idxelt => elt for each
|
|
* element in the vector
|
|
* long, where we perform elt x idxelt and generate a result of
|
|
* double the width of the input element
|
|
* The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
|
|
*/
|
|
bool is_scalar = extract32(insn, 28, 1);
|
|
bool is_q = extract32(insn, 30, 1);
|
|
bool u = extract32(insn, 29, 1);
|
|
int size = extract32(insn, 22, 2);
|
|
int l = extract32(insn, 21, 1);
|
|
int m = extract32(insn, 20, 1);
|
|
/* Note that the Rm field here is only 4 bits, not 5 as it usually is */
|
|
int rm = extract32(insn, 16, 4);
|
|
int opcode = extract32(insn, 12, 4);
|
|
int h = extract32(insn, 11, 1);
|
|
int rn = extract32(insn, 5, 5);
|
|
int rd = extract32(insn, 0, 5);
|
|
bool is_long = false;
|
|
int is_fp = 0;
|
|
bool is_fp16 = false;
|
|
int index;
|
|
TCGv_ptr fpst;
|
|
|
|
switch (16 * u + opcode) {
|
|
case 0x08: /* MUL */
|
|
case 0x10: /* MLA */
|
|
case 0x14: /* MLS */
|
|
if (is_scalar) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
break;
|
|
case 0x02: /* SMLAL, SMLAL2 */
|
|
case 0x12: /* UMLAL, UMLAL2 */
|
|
case 0x06: /* SMLSL, SMLSL2 */
|
|
case 0x16: /* UMLSL, UMLSL2 */
|
|
case 0x0a: /* SMULL, SMULL2 */
|
|
case 0x1a: /* UMULL, UMULL2 */
|
|
if (is_scalar) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
is_long = true;
|
|
break;
|
|
case 0x03: /* SQDMLAL, SQDMLAL2 */
|
|
case 0x07: /* SQDMLSL, SQDMLSL2 */
|
|
case 0x0b: /* SQDMULL, SQDMULL2 */
|
|
is_long = true;
|
|
break;
|
|
case 0x0c: /* SQDMULH */
|
|
case 0x0d: /* SQRDMULH */
|
|
break;
|
|
case 0x01: /* FMLA */
|
|
case 0x05: /* FMLS */
|
|
case 0x09: /* FMUL */
|
|
case 0x19: /* FMULX */
|
|
is_fp = 1;
|
|
break;
|
|
case 0x1d: /* SQRDMLAH */
|
|
case 0x1f: /* SQRDMLSH */
|
|
if (!dc_isar_feature(aa64_rdm, s)) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
break;
|
|
case 0x0e: /* SDOT */
|
|
case 0x1e: /* UDOT */
|
|
if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
break;
|
|
case 0x0f:
|
|
switch (size) {
|
|
case 0: /* SUDOT */
|
|
case 2: /* USDOT */
|
|
if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
size = MO_32;
|
|
break;
|
|
case 1: /* BFDOT */
|
|
if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
size = MO_32;
|
|
break;
|
|
case 3: /* BFMLAL{B,T} */
|
|
if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
/* can't set is_fp without other incorrect size checks */
|
|
size = MO_16;
|
|
break;
|
|
default:
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
break;
|
|
case 0x11: /* FCMLA #0 */
|
|
case 0x13: /* FCMLA #90 */
|
|
case 0x15: /* FCMLA #180 */
|
|
case 0x17: /* FCMLA #270 */
|
|
if (is_scalar || !dc_isar_feature(aa64_fcma, s)) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
is_fp = 2;
|
|
break;
|
|
case 0x00: /* FMLAL */
|
|
case 0x04: /* FMLSL */
|
|
case 0x18: /* FMLAL2 */
|
|
case 0x1c: /* FMLSL2 */
|
|
if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
size = MO_16;
|
|
/* is_fp, but we pass tcg_env not fp_status. */
|
|
break;
|
|
default:
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
switch (is_fp) {
|
|
case 1: /* normal fp */
|
|
/* convert insn encoded size to MemOp size */
|
|
switch (size) {
|
|
case 0: /* half-precision */
|
|
size = MO_16;
|
|
is_fp16 = true;
|
|
break;
|
|
case MO_32: /* single precision */
|
|
case MO_64: /* double precision */
|
|
break;
|
|
default:
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
break;
|
|
|
|
case 2: /* complex fp */
|
|
/* Each indexable element is a complex pair. */
|
|
size += 1;
|
|
switch (size) {
|
|
case MO_32:
|
|
if (h && !is_q) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
is_fp16 = true;
|
|
break;
|
|
case MO_64:
|
|
break;
|
|
default:
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
break;
|
|
|
|
default: /* integer */
|
|
switch (size) {
|
|
case MO_8:
|
|
case MO_64:
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
/* Given MemOp size, adjust register and indexing. */
|
|
switch (size) {
|
|
case MO_16:
|
|
index = h << 2 | l << 1 | m;
|
|
break;
|
|
case MO_32:
|
|
index = h << 1 | l;
|
|
rm |= m << 4;
|
|
break;
|
|
case MO_64:
|
|
if (l || !is_q) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
index = h;
|
|
rm |= m << 4;
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
|
|
if (is_fp) {
|
|
fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
|
|
} else {
|
|
fpst = NULL;
|
|
}
|
|
|
|
switch (16 * u + opcode) {
|
|
case 0x0e: /* SDOT */
|
|
case 0x1e: /* UDOT */
|
|
gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
|
|
u ? gen_helper_gvec_udot_idx_b
|
|
: gen_helper_gvec_sdot_idx_b);
|
|
return;
|
|
case 0x0f:
|
|
switch (extract32(insn, 22, 2)) {
|
|
case 0: /* SUDOT */
|
|
gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
|
|
gen_helper_gvec_sudot_idx_b);
|
|
return;
|
|
case 1: /* BFDOT */
|
|
gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
|
|
gen_helper_gvec_bfdot_idx);
|
|
return;
|
|
case 2: /* USDOT */
|
|
gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
|
|
gen_helper_gvec_usdot_idx_b);
|
|
return;
|
|
case 3: /* BFMLAL{B,T} */
|
|
gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q,
|
|
gen_helper_gvec_bfmlal_idx);
|
|
return;
|
|
}
|
|
g_assert_not_reached();
|
|
case 0x11: /* FCMLA #0 */
|
|
case 0x13: /* FCMLA #90 */
|
|
case 0x15: /* FCMLA #180 */
|
|
case 0x17: /* FCMLA #270 */
|
|
{
|
|
int rot = extract32(insn, 13, 2);
|
|
int data = (index << 2) | rot;
|
|
tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
|
|
vec_full_reg_offset(s, rn),
|
|
vec_full_reg_offset(s, rm),
|
|
vec_full_reg_offset(s, rd), fpst,
|
|
is_q ? 16 : 8, vec_full_reg_size(s), data,
|
|
size == MO_64
|
|
? gen_helper_gvec_fcmlas_idx
|
|
: gen_helper_gvec_fcmlah_idx);
|
|
}
|
|
return;
|
|
|
|
case 0x00: /* FMLAL */
|
|
case 0x04: /* FMLSL */
|
|
case 0x18: /* FMLAL2 */
|
|
case 0x1c: /* FMLSL2 */
|
|
{
|
|
int is_s = extract32(opcode, 2, 1);
|
|
int is_2 = u;
|
|
int data = (index << 2) | (is_2 << 1) | is_s;
|
|
tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
|
|
vec_full_reg_offset(s, rn),
|
|
vec_full_reg_offset(s, rm), tcg_env,
|
|
is_q ? 16 : 8, vec_full_reg_size(s),
|
|
data, gen_helper_gvec_fmlal_idx_a64);
|
|
}
|
|
return;
|
|
|
|
case 0x08: /* MUL */
|
|
if (!is_long && !is_scalar) {
|
|
static gen_helper_gvec_3 * const fns[3] = {
|
|
gen_helper_gvec_mul_idx_h,
|
|
gen_helper_gvec_mul_idx_s,
|
|
gen_helper_gvec_mul_idx_d,
|
|
};
|
|
tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
|
|
vec_full_reg_offset(s, rn),
|
|
vec_full_reg_offset(s, rm),
|
|
is_q ? 16 : 8, vec_full_reg_size(s),
|
|
index, fns[size - 1]);
|
|
return;
|
|
}
|
|
break;
|
|
|
|
case 0x10: /* MLA */
|
|
if (!is_long && !is_scalar) {
|
|
static gen_helper_gvec_4 * const fns[3] = {
|
|
gen_helper_gvec_mla_idx_h,
|
|
gen_helper_gvec_mla_idx_s,
|
|
gen_helper_gvec_mla_idx_d,
|
|
};
|
|
tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
|
|
vec_full_reg_offset(s, rn),
|
|
vec_full_reg_offset(s, rm),
|
|
vec_full_reg_offset(s, rd),
|
|
is_q ? 16 : 8, vec_full_reg_size(s),
|
|
index, fns[size - 1]);
|
|
return;
|
|
}
|
|
break;
|
|
|
|
case 0x14: /* MLS */
|
|
if (!is_long && !is_scalar) {
|
|
static gen_helper_gvec_4 * const fns[3] = {
|
|
gen_helper_gvec_mls_idx_h,
|
|
gen_helper_gvec_mls_idx_s,
|
|
gen_helper_gvec_mls_idx_d,
|
|
};
|
|
tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
|
|
vec_full_reg_offset(s, rn),
|
|
vec_full_reg_offset(s, rm),
|
|
vec_full_reg_offset(s, rd),
|
|
is_q ? 16 : 8, vec_full_reg_size(s),
|
|
index, fns[size - 1]);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (size == 3) {
|
|
TCGv_i64 tcg_idx = tcg_temp_new_i64();
|
|
int pass;
|
|
|
|
assert(is_fp && is_q && !is_long);
|
|
|
|
read_vec_element(s, tcg_idx, rm, index, MO_64);
|
|
|
|
for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
|
|
TCGv_i64 tcg_op = tcg_temp_new_i64();
|
|
TCGv_i64 tcg_res = tcg_temp_new_i64();
|
|
|
|
read_vec_element(s, tcg_op, rn, pass, MO_64);
|
|
|
|
switch (16 * u + opcode) {
|
|
case 0x05: /* FMLS */
|
|
/* As usual for ARM, separate negation for fused multiply-add */
|
|
gen_helper_vfp_negd(tcg_op, tcg_op);
|
|
/* fall through */
|
|
case 0x01: /* FMLA */
|
|
read_vec_element(s, tcg_res, rd, pass, MO_64);
|
|
gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
|
|
break;
|
|
case 0x09: /* FMUL */
|
|
gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst);
|
|
break;
|
|
case 0x19: /* FMULX */
|
|
gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
write_vec_element(s, tcg_res, rd, pass, MO_64);
|
|
}
|
|
|
|
clear_vec_high(s, !is_scalar, rd);
|
|
} else if (!is_long) {
|
|
/* 32 bit floating point, or 16 or 32 bit integer.
|
|
* For the 16 bit scalar case we use the usual Neon helpers and
|
|
* rely on the fact that 0 op 0 == 0 with no side effects.
|
|
*/
|
|
TCGv_i32 tcg_idx = tcg_temp_new_i32();
|
|
int pass, maxpasses;
|
|
|
|
if (is_scalar) {
|
|
maxpasses = 1;
|
|
} else {
|
|
maxpasses = is_q ? 4 : 2;
|
|
}
|
|
|
|
read_vec_element_i32(s, tcg_idx, rm, index, size);
|
|
|
|
if (size == 1 && !is_scalar) {
|
|
/* The simplest way to handle the 16x16 indexed ops is to duplicate
|
|
* the index into both halves of the 32 bit tcg_idx and then use
|
|
* the usual Neon helpers.
|
|
*/
|
|
tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
|
|
}
|
|
|
|
for (pass = 0; pass < maxpasses; pass++) {
|
|
TCGv_i32 tcg_op = tcg_temp_new_i32();
|
|
TCGv_i32 tcg_res = tcg_temp_new_i32();
|
|
|
|
read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
|
|
|
|
switch (16 * u + opcode) {
|
|
case 0x08: /* MUL */
|
|
case 0x10: /* MLA */
|
|
case 0x14: /* MLS */
|
|
{
|
|
static NeonGenTwoOpFn * const fns[2][2] = {
|
|
{ gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
|
|
{ tcg_gen_add_i32, tcg_gen_sub_i32 },
|
|
};
|
|
NeonGenTwoOpFn *genfn;
|
|
bool is_sub = opcode == 0x4;
|
|
|
|
if (size == 1) {
|
|
gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
|
|
} else {
|
|
tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
|
|
}
|
|
if (opcode == 0x8) {
|
|
break;
|
|
}
|
|
read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
|
|
genfn = fns[size - 1][is_sub];
|
|
genfn(tcg_res, tcg_op, tcg_res);
|
|
break;
|
|
}
|
|
case 0x05: /* FMLS */
|
|
case 0x01: /* FMLA */
|
|
read_vec_element_i32(s, tcg_res, rd, pass,
|
|
is_scalar ? size : MO_32);
|
|
switch (size) {
|
|
case 1:
|
|
if (opcode == 0x5) {
|
|
/* As usual for ARM, separate negation for fused
|
|
* multiply-add */
|
|
tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000);
|
|
}
|
|
if (is_scalar) {
|
|
gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx,
|
|
tcg_res, fpst);
|
|
} else {
|
|
gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx,
|
|
tcg_res, fpst);
|
|
}
|
|
break;
|
|
case 2:
|
|
if (opcode == 0x5) {
|
|
/* As usual for ARM, separate negation for
|
|
* fused multiply-add */
|
|
tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000);
|
|
}
|
|
gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx,
|
|
tcg_res, fpst);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
break;
|
|
case 0x09: /* FMUL */
|
|
switch (size) {
|
|
case 1:
|
|
if (is_scalar) {
|
|
gen_helper_advsimd_mulh(tcg_res, tcg_op,
|
|
tcg_idx, fpst);
|
|
} else {
|
|
gen_helper_advsimd_mul2h(tcg_res, tcg_op,
|
|
tcg_idx, fpst);
|
|
}
|
|
break;
|
|
case 2:
|
|
gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
break;
|
|
case 0x19: /* FMULX */
|
|
switch (size) {
|
|
case 1:
|
|
if (is_scalar) {
|
|
gen_helper_advsimd_mulxh(tcg_res, tcg_op,
|
|
tcg_idx, fpst);
|
|
} else {
|
|
gen_helper_advsimd_mulx2h(tcg_res, tcg_op,
|
|
tcg_idx, fpst);
|
|
}
|
|
break;
|
|
case 2:
|
|
gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
break;
|
|
case 0x0c: /* SQDMULH */
|
|
if (size == 1) {
|
|
gen_helper_neon_qdmulh_s16(tcg_res, tcg_env,
|
|
tcg_op, tcg_idx);
|
|
} else {
|
|
gen_helper_neon_qdmulh_s32(tcg_res, tcg_env,
|
|
tcg_op, tcg_idx);
|
|
}
|
|
break;
|
|
case 0x0d: /* SQRDMULH */
|
|
if (size == 1) {
|
|
gen_helper_neon_qrdmulh_s16(tcg_res, tcg_env,
|
|
tcg_op, tcg_idx);
|
|
} else {
|
|
gen_helper_neon_qrdmulh_s32(tcg_res, tcg_env,
|
|
tcg_op, tcg_idx);
|
|
}
|
|
break;
|
|
case 0x1d: /* SQRDMLAH */
|
|
read_vec_element_i32(s, tcg_res, rd, pass,
|
|
is_scalar ? size : MO_32);
|
|
if (size == 1) {
|
|
gen_helper_neon_qrdmlah_s16(tcg_res, tcg_env,
|
|
tcg_op, tcg_idx, tcg_res);
|
|
} else {
|
|
gen_helper_neon_qrdmlah_s32(tcg_res, tcg_env,
|
|
tcg_op, tcg_idx, tcg_res);
|
|
}
|
|
break;
|
|
case 0x1f: /* SQRDMLSH */
|
|
read_vec_element_i32(s, tcg_res, rd, pass,
|
|
is_scalar ? size : MO_32);
|
|
if (size == 1) {
|
|
gen_helper_neon_qrdmlsh_s16(tcg_res, tcg_env,
|
|
tcg_op, tcg_idx, tcg_res);
|
|
} else {
|
|
gen_helper_neon_qrdmlsh_s32(tcg_res, tcg_env,
|
|
tcg_op, tcg_idx, tcg_res);
|
|
}
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
if (is_scalar) {
|
|
write_fp_sreg(s, rd, tcg_res);
|
|
} else {
|
|
write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
|
|
}
|
|
}
|
|
|
|
clear_vec_high(s, is_q, rd);
|
|
} else {
|
|
/* long ops: 16x16->32 or 32x32->64 */
|
|
TCGv_i64 tcg_res[2];
|
|
int pass;
|
|
bool satop = extract32(opcode, 0, 1);
|
|
MemOp memop = MO_32;
|
|
|
|
if (satop || !u) {
|
|
memop |= MO_SIGN;
|
|
}
|
|
|
|
if (size == 2) {
|
|
TCGv_i64 tcg_idx = tcg_temp_new_i64();
|
|
|
|
read_vec_element(s, tcg_idx, rm, index, memop);
|
|
|
|
for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
|
|
TCGv_i64 tcg_op = tcg_temp_new_i64();
|
|
TCGv_i64 tcg_passres;
|
|
int passelt;
|
|
|
|
if (is_scalar) {
|
|
passelt = 0;
|
|
} else {
|
|
passelt = pass + (is_q * 2);
|
|
}
|
|
|
|
read_vec_element(s, tcg_op, rn, passelt, memop);
|
|
|
|
tcg_res[pass] = tcg_temp_new_i64();
|
|
|
|
if (opcode == 0xa || opcode == 0xb) {
|
|
/* Non-accumulating ops */
|
|
tcg_passres = tcg_res[pass];
|
|
} else {
|
|
tcg_passres = tcg_temp_new_i64();
|
|
}
|
|
|
|
tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
|
|
|
|
if (satop) {
|
|
/* saturating, doubling */
|
|
gen_helper_neon_addl_saturate_s64(tcg_passres, tcg_env,
|
|
tcg_passres, tcg_passres);
|
|
}
|
|
|
|
if (opcode == 0xa || opcode == 0xb) {
|
|
continue;
|
|
}
|
|
|
|
/* Accumulating op: handle accumulate step */
|
|
read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
|
|
|
|
switch (opcode) {
|
|
case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
|
|
tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
|
|
break;
|
|
case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
|
|
tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
|
|
break;
|
|
case 0x7: /* SQDMLSL, SQDMLSL2 */
|
|
tcg_gen_neg_i64(tcg_passres, tcg_passres);
|
|
/* fall through */
|
|
case 0x3: /* SQDMLAL, SQDMLAL2 */
|
|
gen_helper_neon_addl_saturate_s64(tcg_res[pass], tcg_env,
|
|
tcg_res[pass],
|
|
tcg_passres);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
clear_vec_high(s, !is_scalar, rd);
|
|
} else {
|
|
TCGv_i32 tcg_idx = tcg_temp_new_i32();
|
|
|
|
assert(size == 1);
|
|
read_vec_element_i32(s, tcg_idx, rm, index, size);
|
|
|
|
if (!is_scalar) {
|
|
/* The simplest way to handle the 16x16 indexed ops is to
|
|
* duplicate the index into both halves of the 32 bit tcg_idx
|
|
* and then use the usual Neon helpers.
|
|
*/
|
|
tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
|
|
}
|
|
|
|
for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
|
|
TCGv_i32 tcg_op = tcg_temp_new_i32();
|
|
TCGv_i64 tcg_passres;
|
|
|
|
if (is_scalar) {
|
|
read_vec_element_i32(s, tcg_op, rn, pass, size);
|
|
} else {
|
|
read_vec_element_i32(s, tcg_op, rn,
|
|
pass + (is_q * 2), MO_32);
|
|
}
|
|
|
|
tcg_res[pass] = tcg_temp_new_i64();
|
|
|
|
if (opcode == 0xa || opcode == 0xb) {
|
|
/* Non-accumulating ops */
|
|
tcg_passres = tcg_res[pass];
|
|
} else {
|
|
tcg_passres = tcg_temp_new_i64();
|
|
}
|
|
|
|
if (memop & MO_SIGN) {
|
|
gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
|
|
} else {
|
|
gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
|
|
}
|
|
if (satop) {
|
|
gen_helper_neon_addl_saturate_s32(tcg_passres, tcg_env,
|
|
tcg_passres, tcg_passres);
|
|
}
|
|
|
|
if (opcode == 0xa || opcode == 0xb) {
|
|
continue;
|
|
}
|
|
|
|
/* Accumulating op: handle accumulate step */
|
|
read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
|
|
|
|
switch (opcode) {
|
|
case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
|
|
gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
|
|
tcg_passres);
|
|
break;
|
|
case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
|
|
gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
|
|
tcg_passres);
|
|
break;
|
|
case 0x7: /* SQDMLSL, SQDMLSL2 */
|
|
gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
|
|
/* fall through */
|
|
case 0x3: /* SQDMLAL, SQDMLAL2 */
|
|
gen_helper_neon_addl_saturate_s32(tcg_res[pass], tcg_env,
|
|
tcg_res[pass],
|
|
tcg_passres);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
if (is_scalar) {
|
|
tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
|
|
}
|
|
}
|
|
|
|
if (is_scalar) {
|
|
tcg_res[1] = tcg_constant_i64(0);
|
|
}
|
|
|
|
for (pass = 0; pass < 2; pass++) {
|
|
write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Crypto AES
|
|
* 31 24 23 22 21 17 16 12 11 10 9 5 4 0
|
|
* +-----------------+------+-----------+--------+-----+------+------+
|
|
* | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
|
|
* +-----------------+------+-----------+--------+-----+------+------+
|
|
*/
|
|
static void disas_crypto_aes(DisasContext *s, uint32_t insn)
|
|
{
|
|
int size = extract32(insn, 22, 2);
|
|
int opcode = extract32(insn, 12, 5);
|
|
int rn = extract32(insn, 5, 5);
|
|
int rd = extract32(insn, 0, 5);
|
|
gen_helper_gvec_2 *genfn2 = NULL;
|
|
gen_helper_gvec_3 *genfn3 = NULL;
|
|
|
|
if (!dc_isar_feature(aa64_aes, s) || size != 0) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
switch (opcode) {
|
|
case 0x4: /* AESE */
|
|
genfn3 = gen_helper_crypto_aese;
|
|
break;
|
|
case 0x6: /* AESMC */
|
|
genfn2 = gen_helper_crypto_aesmc;
|
|
break;
|
|
case 0x5: /* AESD */
|
|
genfn3 = gen_helper_crypto_aesd;
|
|
break;
|
|
case 0x7: /* AESIMC */
|
|
genfn2 = gen_helper_crypto_aesimc;
|
|
break;
|
|
default:
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
if (genfn2) {
|
|
gen_gvec_op2_ool(s, true, rd, rn, 0, genfn2);
|
|
} else {
|
|
gen_gvec_op3_ool(s, true, rd, rd, rn, 0, genfn3);
|
|
}
|
|
}
|
|
|
|
/* Crypto three-reg SHA
|
|
* 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
|
|
* +-----------------+------+---+------+---+--------+-----+------+------+
|
|
* | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd |
|
|
* +-----------------+------+---+------+---+--------+-----+------+------+
|
|
*/
|
|
static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn)
|
|
{
|
|
int size = extract32(insn, 22, 2);
|
|
int opcode = extract32(insn, 12, 3);
|
|
int rm = extract32(insn, 16, 5);
|
|
int rn = extract32(insn, 5, 5);
|
|
int rd = extract32(insn, 0, 5);
|
|
gen_helper_gvec_3 *genfn;
|
|
bool feature;
|
|
|
|
if (size != 0) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
switch (opcode) {
|
|
case 0: /* SHA1C */
|
|
genfn = gen_helper_crypto_sha1c;
|
|
feature = dc_isar_feature(aa64_sha1, s);
|
|
break;
|
|
case 1: /* SHA1P */
|
|
genfn = gen_helper_crypto_sha1p;
|
|
feature = dc_isar_feature(aa64_sha1, s);
|
|
break;
|
|
case 2: /* SHA1M */
|
|
genfn = gen_helper_crypto_sha1m;
|
|
feature = dc_isar_feature(aa64_sha1, s);
|
|
break;
|
|
case 3: /* SHA1SU0 */
|
|
genfn = gen_helper_crypto_sha1su0;
|
|
feature = dc_isar_feature(aa64_sha1, s);
|
|
break;
|
|
case 4: /* SHA256H */
|
|
genfn = gen_helper_crypto_sha256h;
|
|
feature = dc_isar_feature(aa64_sha256, s);
|
|
break;
|
|
case 5: /* SHA256H2 */
|
|
genfn = gen_helper_crypto_sha256h2;
|
|
feature = dc_isar_feature(aa64_sha256, s);
|
|
break;
|
|
case 6: /* SHA256SU1 */
|
|
genfn = gen_helper_crypto_sha256su1;
|
|
feature = dc_isar_feature(aa64_sha256, s);
|
|
break;
|
|
default:
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
if (!feature) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn);
|
|
}
|
|
|
|
/* Crypto two-reg SHA
|
|
* 31 24 23 22 21 17 16 12 11 10 9 5 4 0
|
|
* +-----------------+------+-----------+--------+-----+------+------+
|
|
* | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
|
|
* +-----------------+------+-----------+--------+-----+------+------+
|
|
*/
|
|
static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn)
|
|
{
|
|
int size = extract32(insn, 22, 2);
|
|
int opcode = extract32(insn, 12, 5);
|
|
int rn = extract32(insn, 5, 5);
|
|
int rd = extract32(insn, 0, 5);
|
|
gen_helper_gvec_2 *genfn;
|
|
bool feature;
|
|
|
|
if (size != 0) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
switch (opcode) {
|
|
case 0: /* SHA1H */
|
|
feature = dc_isar_feature(aa64_sha1, s);
|
|
genfn = gen_helper_crypto_sha1h;
|
|
break;
|
|
case 1: /* SHA1SU1 */
|
|
feature = dc_isar_feature(aa64_sha1, s);
|
|
genfn = gen_helper_crypto_sha1su1;
|
|
break;
|
|
case 2: /* SHA256SU0 */
|
|
feature = dc_isar_feature(aa64_sha256, s);
|
|
genfn = gen_helper_crypto_sha256su0;
|
|
break;
|
|
default:
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
if (!feature) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
gen_gvec_op2_ool(s, true, rd, rn, 0, genfn);
|
|
}
|
|
|
|
static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
|
|
{
|
|
tcg_gen_rotli_i64(d, m, 1);
|
|
tcg_gen_xor_i64(d, d, n);
|
|
}
|
|
|
|
static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m)
|
|
{
|
|
tcg_gen_rotli_vec(vece, d, m, 1);
|
|
tcg_gen_xor_vec(vece, d, d, n);
|
|
}
|
|
|
|
void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
|
|
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
|
|
{
|
|
static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 };
|
|
static const GVecGen3 op = {
|
|
.fni8 = gen_rax1_i64,
|
|
.fniv = gen_rax1_vec,
|
|
.opt_opc = vecop_list,
|
|
.fno = gen_helper_crypto_rax1,
|
|
.vece = MO_64,
|
|
};
|
|
tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op);
|
|
}
|
|
|
|
/* Crypto three-reg SHA512
|
|
* 31 21 20 16 15 14 13 12 11 10 9 5 4 0
|
|
* +-----------------------+------+---+---+-----+--------+------+------+
|
|
* | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd |
|
|
* +-----------------------+------+---+---+-----+--------+------+------+
|
|
*/
|
|
static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn)
|
|
{
|
|
int opcode = extract32(insn, 10, 2);
|
|
int o = extract32(insn, 14, 1);
|
|
int rm = extract32(insn, 16, 5);
|
|
int rn = extract32(insn, 5, 5);
|
|
int rd = extract32(insn, 0, 5);
|
|
bool feature;
|
|
gen_helper_gvec_3 *oolfn = NULL;
|
|
GVecGen3Fn *gvecfn = NULL;
|
|
|
|
if (o == 0) {
|
|
switch (opcode) {
|
|
case 0: /* SHA512H */
|
|
feature = dc_isar_feature(aa64_sha512, s);
|
|
oolfn = gen_helper_crypto_sha512h;
|
|
break;
|
|
case 1: /* SHA512H2 */
|
|
feature = dc_isar_feature(aa64_sha512, s);
|
|
oolfn = gen_helper_crypto_sha512h2;
|
|
break;
|
|
case 2: /* SHA512SU1 */
|
|
feature = dc_isar_feature(aa64_sha512, s);
|
|
oolfn = gen_helper_crypto_sha512su1;
|
|
break;
|
|
case 3: /* RAX1 */
|
|
feature = dc_isar_feature(aa64_sha3, s);
|
|
gvecfn = gen_gvec_rax1;
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
} else {
|
|
switch (opcode) {
|
|
case 0: /* SM3PARTW1 */
|
|
feature = dc_isar_feature(aa64_sm3, s);
|
|
oolfn = gen_helper_crypto_sm3partw1;
|
|
break;
|
|
case 1: /* SM3PARTW2 */
|
|
feature = dc_isar_feature(aa64_sm3, s);
|
|
oolfn = gen_helper_crypto_sm3partw2;
|
|
break;
|
|
case 2: /* SM4EKEY */
|
|
feature = dc_isar_feature(aa64_sm4, s);
|
|
oolfn = gen_helper_crypto_sm4ekey;
|
|
break;
|
|
default:
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (!feature) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
|
|
if (oolfn) {
|
|
gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn);
|
|
} else {
|
|
gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64);
|
|
}
|
|
}
|
|
|
|
/* Crypto two-reg SHA512
|
|
* 31 12 11 10 9 5 4 0
|
|
* +-----------------------------------------+--------+------+------+
|
|
* | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd |
|
|
* +-----------------------------------------+--------+------+------+
|
|
*/
|
|
static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn)
|
|
{
|
|
int opcode = extract32(insn, 10, 2);
|
|
int rn = extract32(insn, 5, 5);
|
|
int rd = extract32(insn, 0, 5);
|
|
bool feature;
|
|
|
|
switch (opcode) {
|
|
case 0: /* SHA512SU0 */
|
|
feature = dc_isar_feature(aa64_sha512, s);
|
|
break;
|
|
case 1: /* SM4E */
|
|
feature = dc_isar_feature(aa64_sm4, s);
|
|
break;
|
|
default:
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
if (!feature) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
|
|
switch (opcode) {
|
|
case 0: /* SHA512SU0 */
|
|
gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0);
|
|
break;
|
|
case 1: /* SM4E */
|
|
gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
/* Crypto four-register
|
|
* 31 23 22 21 20 16 15 14 10 9 5 4 0
|
|
* +-------------------+-----+------+---+------+------+------+
|
|
* | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd |
|
|
* +-------------------+-----+------+---+------+------+------+
|
|
*/
|
|
static void disas_crypto_four_reg(DisasContext *s, uint32_t insn)
|
|
{
|
|
int op0 = extract32(insn, 21, 2);
|
|
int rm = extract32(insn, 16, 5);
|
|
int ra = extract32(insn, 10, 5);
|
|
int rn = extract32(insn, 5, 5);
|
|
int rd = extract32(insn, 0, 5);
|
|
bool feature;
|
|
|
|
switch (op0) {
|
|
case 0: /* EOR3 */
|
|
case 1: /* BCAX */
|
|
feature = dc_isar_feature(aa64_sha3, s);
|
|
break;
|
|
case 2: /* SM3SS1 */
|
|
feature = dc_isar_feature(aa64_sm3, s);
|
|
break;
|
|
default:
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
if (!feature) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
|
|
if (op0 < 2) {
|
|
TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2];
|
|
int pass;
|
|
|
|
tcg_op1 = tcg_temp_new_i64();
|
|
tcg_op2 = tcg_temp_new_i64();
|
|
tcg_op3 = tcg_temp_new_i64();
|
|
tcg_res[0] = tcg_temp_new_i64();
|
|
tcg_res[1] = tcg_temp_new_i64();
|
|
|
|
for (pass = 0; pass < 2; pass++) {
|
|
read_vec_element(s, tcg_op1, rn, pass, MO_64);
|
|
read_vec_element(s, tcg_op2, rm, pass, MO_64);
|
|
read_vec_element(s, tcg_op3, ra, pass, MO_64);
|
|
|
|
if (op0 == 0) {
|
|
/* EOR3 */
|
|
tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3);
|
|
} else {
|
|
/* BCAX */
|
|
tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3);
|
|
}
|
|
tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
|
|
}
|
|
write_vec_element(s, tcg_res[0], rd, 0, MO_64);
|
|
write_vec_element(s, tcg_res[1], rd, 1, MO_64);
|
|
} else {
|
|
TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero;
|
|
|
|
tcg_op1 = tcg_temp_new_i32();
|
|
tcg_op2 = tcg_temp_new_i32();
|
|
tcg_op3 = tcg_temp_new_i32();
|
|
tcg_res = tcg_temp_new_i32();
|
|
tcg_zero = tcg_constant_i32(0);
|
|
|
|
read_vec_element_i32(s, tcg_op1, rn, 3, MO_32);
|
|
read_vec_element_i32(s, tcg_op2, rm, 3, MO_32);
|
|
read_vec_element_i32(s, tcg_op3, ra, 3, MO_32);
|
|
|
|
tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
|
|
tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
|
|
tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
|
|
tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
|
|
|
|
write_vec_element_i32(s, tcg_zero, rd, 0, MO_32);
|
|
write_vec_element_i32(s, tcg_zero, rd, 1, MO_32);
|
|
write_vec_element_i32(s, tcg_zero, rd, 2, MO_32);
|
|
write_vec_element_i32(s, tcg_res, rd, 3, MO_32);
|
|
}
|
|
}
|
|
|
|
/* Crypto XAR
|
|
* 31 21 20 16 15 10 9 5 4 0
|
|
* +-----------------------+------+--------+------+------+
|
|
* | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd |
|
|
* +-----------------------+------+--------+------+------+
|
|
*/
|
|
static void disas_crypto_xar(DisasContext *s, uint32_t insn)
|
|
{
|
|
int rm = extract32(insn, 16, 5);
|
|
int imm6 = extract32(insn, 10, 6);
|
|
int rn = extract32(insn, 5, 5);
|
|
int rd = extract32(insn, 0, 5);
|
|
|
|
if (!dc_isar_feature(aa64_sha3, s)) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
|
|
gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd),
|
|
vec_full_reg_offset(s, rn),
|
|
vec_full_reg_offset(s, rm), imm6, 16,
|
|
vec_full_reg_size(s));
|
|
}
|
|
|
|
/* Crypto three-reg imm2
|
|
* 31 21 20 16 15 14 13 12 11 10 9 5 4 0
|
|
* +-----------------------+------+-----+------+--------+------+------+
|
|
* | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd |
|
|
* +-----------------------+------+-----+------+--------+------+------+
|
|
*/
|
|
static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn)
|
|
{
|
|
static gen_helper_gvec_3 * const fns[4] = {
|
|
gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b,
|
|
gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b,
|
|
};
|
|
int opcode = extract32(insn, 10, 2);
|
|
int imm2 = extract32(insn, 12, 2);
|
|
int rm = extract32(insn, 16, 5);
|
|
int rn = extract32(insn, 5, 5);
|
|
int rd = extract32(insn, 0, 5);
|
|
|
|
if (!dc_isar_feature(aa64_sm3, s)) {
|
|
unallocated_encoding(s);
|
|
return;
|
|
}
|
|
|
|
if (!fp_access_check(s)) {
|
|
return;
|
|
}
|
|
|
|
gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]);
|
|
}
|
|
|
|
/* C3.6 Data processing - SIMD, inc Crypto
|
|
*
|
|
* As the decode gets a little complex we are using a table based
|
|
* approach for this part of the decode.
|
|
*/
|
|
static const AArch64DecodeTable data_proc_simd[] = {
|
|
/* pattern , mask , fn */
|
|
{ 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
|
|
{ 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
|
|
{ 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
|
|
{ 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
|
|
{ 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
|
|
{ 0x0e000400, 0x9fe08400, disas_simd_copy },
|
|
{ 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
|
|
/* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
|
|
{ 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
|
|
{ 0x0f000400, 0x9f800400, disas_simd_shift_imm },
|
|
{ 0x0e000000, 0xbf208c00, disas_simd_tb },
|
|
{ 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
|
|
{ 0x2e000000, 0xbf208400, disas_simd_ext },
|
|
{ 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
|
|
{ 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra },
|
|
{ 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
|
|
{ 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
|
|
{ 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
|
|
{ 0x5e000400, 0xdfe08400, disas_simd_scalar_copy },
|
|
{ 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
|
|
{ 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
|
|
{ 0x4e280800, 0xff3e0c00, disas_crypto_aes },
|
|
{ 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha },
|
|
{ 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha },
|
|
{ 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 },
|
|
{ 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 },
|
|
{ 0xce000000, 0xff808000, disas_crypto_four_reg },
|
|
{ 0xce800000, 0xffe00000, disas_crypto_xar },
|
|
{ 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 },
|
|
{ 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 },
|
|
{ 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
|
|
{ 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 },
|
|
{ 0x00000000, 0x00000000, NULL }
|
|
};
|
|
|
|
static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
|
|
{
|
|
/* Note that this is called with all non-FP cases from
|
|
* table C3-6 so it must UNDEF for entries not specifically
|
|
* allocated to instructions in that table.
|
|
*/
|
|
AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
|
|
if (fn) {
|
|
fn(s, insn);
|
|
} else {
|
|
unallocated_encoding(s);
|
|
}
|
|
}
|
|
|
|
/* C3.6 Data processing - SIMD and floating point */
|
|
static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
|
|
{
|
|
if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
|
|
disas_data_proc_fp(s, insn);
|
|
} else {
|
|
/* SIMD, including crypto */
|
|
disas_data_proc_simd(s, insn);
|
|
}
|
|
}
|
|
|
|
static bool trans_OK(DisasContext *s, arg_OK *a)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
static bool trans_FAIL(DisasContext *s, arg_OK *a)
|
|
{
|
|
s->is_nonstreaming = true;
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* is_guarded_page:
|
|
* @env: The cpu environment
|
|
* @s: The DisasContext
|
|
*
|
|
* Return true if the page is guarded.
|
|
*/
|
|
static bool is_guarded_page(CPUARMState *env, DisasContext *s)
|
|
{
|
|
uint64_t addr = s->base.pc_first;
|
|
#ifdef CONFIG_USER_ONLY
|
|
return page_get_flags(addr) & PAGE_BTI;
|
|
#else
|
|
CPUTLBEntryFull *full;
|
|
void *host;
|
|
int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx);
|
|
int flags;
|
|
|
|
/*
|
|
* We test this immediately after reading an insn, which means
|
|
* that the TLB entry must be present and valid, and thus this
|
|
* access will never raise an exception.
|
|
*/
|
|
flags = probe_access_full(env, addr, 0, MMU_INST_FETCH, mmu_idx,
|
|
false, &host, &full, 0);
|
|
assert(!(flags & TLB_INVALID_MASK));
|
|
|
|
return full->extra.arm.guarded;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* btype_destination_ok:
|
|
* @insn: The instruction at the branch destination
|
|
* @bt: SCTLR_ELx.BT
|
|
* @btype: PSTATE.BTYPE, and is non-zero
|
|
*
|
|
* On a guarded page, there are a limited number of insns
|
|
* that may be present at the branch target:
|
|
* - branch target identifiers,
|
|
* - paciasp, pacibsp,
|
|
* - BRK insn
|
|
* - HLT insn
|
|
* Anything else causes a Branch Target Exception.
|
|
*
|
|
* Return true if the branch is compatible, false to raise BTITRAP.
|
|
*/
|
|
static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
|
|
{
|
|
if ((insn & 0xfffff01fu) == 0xd503201fu) {
|
|
/* HINT space */
|
|
switch (extract32(insn, 5, 7)) {
|
|
case 0b011001: /* PACIASP */
|
|
case 0b011011: /* PACIBSP */
|
|
/*
|
|
* If SCTLR_ELx.BT, then PACI*SP are not compatible
|
|
* with btype == 3. Otherwise all btype are ok.
|
|
*/
|
|
return !bt || btype != 3;
|
|
case 0b100000: /* BTI */
|
|
/* Not compatible with any btype. */
|
|
return false;
|
|
case 0b100010: /* BTI c */
|
|
/* Not compatible with btype == 3 */
|
|
return btype != 3;
|
|
case 0b100100: /* BTI j */
|
|
/* Not compatible with btype == 2 */
|
|
return btype != 2;
|
|
case 0b100110: /* BTI jc */
|
|
/* Compatible with any btype. */
|
|
return true;
|
|
}
|
|
} else {
|
|
switch (insn & 0xffe0001fu) {
|
|
case 0xd4200000u: /* BRK */
|
|
case 0xd4400000u: /* HLT */
|
|
/* Give priority to the breakpoint exception. */
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* C3.1 A64 instruction index by encoding */
|
|
static void disas_a64_legacy(DisasContext *s, uint32_t insn)
|
|
{
|
|
switch (extract32(insn, 25, 4)) {
|
|
case 0x5:
|
|
case 0xd: /* Data processing - register */
|
|
disas_data_proc_reg(s, insn);
|
|
break;
|
|
case 0x7:
|
|
case 0xf: /* Data processing - SIMD and floating point */
|
|
disas_data_proc_simd_fp(s, insn);
|
|
break;
|
|
default:
|
|
unallocated_encoding(s);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
|
|
CPUState *cpu)
|
|
{
|
|
DisasContext *dc = container_of(dcbase, DisasContext, base);
|
|
CPUARMState *env = cpu_env(cpu);
|
|
ARMCPU *arm_cpu = env_archcpu(env);
|
|
CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb);
|
|
int bound, core_mmu_idx;
|
|
|
|
dc->isar = &arm_cpu->isar;
|
|
dc->condjmp = 0;
|
|
dc->pc_save = dc->base.pc_first;
|
|
dc->aarch64 = true;
|
|
dc->thumb = false;
|
|
dc->sctlr_b = 0;
|
|
dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE;
|
|
dc->condexec_mask = 0;
|
|
dc->condexec_cond = 0;
|
|
core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX);
|
|
dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
|
|
dc->tbii = EX_TBFLAG_A64(tb_flags, TBII);
|
|
dc->tbid = EX_TBFLAG_A64(tb_flags, TBID);
|
|
dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA);
|
|
dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
dc->user = (dc->current_el == 0);
|
|
#endif
|
|
dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL);
|
|
dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM);
|
|
dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL);
|
|
dc->fgt_active = EX_TBFLAG_ANY(tb_flags, FGT_ACTIVE);
|
|
dc->fgt_svc = EX_TBFLAG_ANY(tb_flags, FGT_SVC);
|
|
dc->trap_eret = EX_TBFLAG_A64(tb_flags, TRAP_ERET);
|
|
dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL);
|
|
dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL);
|
|
dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16;
|
|
dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16;
|
|
dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE);
|
|
dc->bt = EX_TBFLAG_A64(tb_flags, BT);
|
|
dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE);
|
|
dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV);
|
|
dc->ata[0] = EX_TBFLAG_A64(tb_flags, ATA);
|
|
dc->ata[1] = EX_TBFLAG_A64(tb_flags, ATA0);
|
|
dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE);
|
|
dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE);
|
|
dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM);
|
|
dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA);
|
|
dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING);
|
|
dc->naa = EX_TBFLAG_A64(tb_flags, NAA);
|
|
dc->nv = EX_TBFLAG_A64(tb_flags, NV);
|
|
dc->nv1 = EX_TBFLAG_A64(tb_flags, NV1);
|
|
dc->nv2 = EX_TBFLAG_A64(tb_flags, NV2);
|
|
dc->nv2_mem_e20 = EX_TBFLAG_A64(tb_flags, NV2_MEM_E20);
|
|
dc->nv2_mem_be = EX_TBFLAG_A64(tb_flags, NV2_MEM_BE);
|
|
dc->vec_len = 0;
|
|
dc->vec_stride = 0;
|
|
dc->cp_regs = arm_cpu->cp_regs;
|
|
dc->features = env->features;
|
|
dc->dcz_blocksize = arm_cpu->dcz_blocksize;
|
|
dc->gm_blocksize = arm_cpu->gm_blocksize;
|
|
|
|
#ifdef CONFIG_USER_ONLY
|
|
/* In sve_probe_page, we assume TBI is enabled. */
|
|
tcg_debug_assert(dc->tbid & 1);
|
|
#endif
|
|
|
|
dc->lse2 = dc_isar_feature(aa64_lse2, dc);
|
|
|
|
/* Single step state. The code-generation logic here is:
|
|
* SS_ACTIVE == 0:
|
|
* generate code with no special handling for single-stepping (except
|
|
* that anything that can make us go to SS_ACTIVE == 1 must end the TB;
|
|
* this happens anyway because those changes are all system register or
|
|
* PSTATE writes).
|
|
* SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
|
|
* emit code for one insn
|
|
* emit code to clear PSTATE.SS
|
|
* emit code to generate software step exception for completed step
|
|
* end TB (as usual for having generated an exception)
|
|
* SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
|
|
* emit code to generate a software step exception
|
|
* end the TB
|
|
*/
|
|
dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE);
|
|
dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS);
|
|
dc->is_ldex = false;
|
|
|
|
/* Bound the number of insns to execute to those left on the page. */
|
|
bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
|
|
|
|
/* If architectural single step active, limit to 1. */
|
|
if (dc->ss_active) {
|
|
bound = 1;
|
|
}
|
|
dc->base.max_insns = MIN(dc->base.max_insns, bound);
|
|
}
|
|
|
|
static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
|
|
{
|
|
}
|
|
|
|
static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
|
|
{
|
|
DisasContext *dc = container_of(dcbase, DisasContext, base);
|
|
target_ulong pc_arg = dc->base.pc_next;
|
|
|
|
if (tb_cflags(dcbase->tb) & CF_PCREL) {
|
|
pc_arg &= ~TARGET_PAGE_MASK;
|
|
}
|
|
tcg_gen_insn_start(pc_arg, 0, 0);
|
|
dc->insn_start = tcg_last_op();
|
|
}
|
|
|
|
static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
|
|
{
|
|
DisasContext *s = container_of(dcbase, DisasContext, base);
|
|
CPUARMState *env = cpu_env(cpu);
|
|
uint64_t pc = s->base.pc_next;
|
|
uint32_t insn;
|
|
|
|
/* Singlestep exceptions have the highest priority. */
|
|
if (s->ss_active && !s->pstate_ss) {
|
|
/* Singlestep state is Active-pending.
|
|
* If we're in this state at the start of a TB then either
|
|
* a) we just took an exception to an EL which is being debugged
|
|
* and this is the first insn in the exception handler
|
|
* b) debug exceptions were masked and we just unmasked them
|
|
* without changing EL (eg by clearing PSTATE.D)
|
|
* In either case we're going to take a swstep exception in the
|
|
* "did not step an insn" case, and so the syndrome ISV and EX
|
|
* bits should be zero.
|
|
*/
|
|
assert(s->base.num_insns == 1);
|
|
gen_swstep_exception(s, 0, 0);
|
|
s->base.is_jmp = DISAS_NORETURN;
|
|
s->base.pc_next = pc + 4;
|
|
return;
|
|
}
|
|
|
|
if (pc & 3) {
|
|
/*
|
|
* PC alignment fault. This has priority over the instruction abort
|
|
* that we would receive from a translation fault via arm_ldl_code.
|
|
* This should only be possible after an indirect branch, at the
|
|
* start of the TB.
|
|
*/
|
|
assert(s->base.num_insns == 1);
|
|
gen_helper_exception_pc_alignment(tcg_env, tcg_constant_tl(pc));
|
|
s->base.is_jmp = DISAS_NORETURN;
|
|
s->base.pc_next = QEMU_ALIGN_UP(pc, 4);
|
|
return;
|
|
}
|
|
|
|
s->pc_curr = pc;
|
|
insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b);
|
|
s->insn = insn;
|
|
s->base.pc_next = pc + 4;
|
|
|
|
s->fp_access_checked = false;
|
|
s->sve_access_checked = false;
|
|
|
|
if (s->pstate_il) {
|
|
/*
|
|
* Illegal execution state. This has priority over BTI
|
|
* exceptions, but comes after instruction abort exceptions.
|
|
*/
|
|
gen_exception_insn(s, 0, EXCP_UDEF, syn_illegalstate());
|
|
return;
|
|
}
|
|
|
|
if (dc_isar_feature(aa64_bti, s)) {
|
|
if (s->base.num_insns == 1) {
|
|
/*
|
|
* At the first insn of the TB, compute s->guarded_page.
|
|
* We delayed computing this until successfully reading
|
|
* the first insn of the TB, above. This (mostly) ensures
|
|
* that the softmmu tlb entry has been populated, and the
|
|
* page table GP bit is available.
|
|
*
|
|
* Note that we need to compute this even if btype == 0,
|
|
* because this value is used for BR instructions later
|
|
* where ENV is not available.
|
|
*/
|
|
s->guarded_page = is_guarded_page(env, s);
|
|
|
|
/* First insn can have btype set to non-zero. */
|
|
tcg_debug_assert(s->btype >= 0);
|
|
|
|
/*
|
|
* Note that the Branch Target Exception has fairly high
|
|
* priority -- below debugging exceptions but above most
|
|
* everything else. This allows us to handle this now
|
|
* instead of waiting until the insn is otherwise decoded.
|
|
*/
|
|
if (s->btype != 0
|
|
&& s->guarded_page
|
|
&& !btype_destination_ok(insn, s->bt, s->btype)) {
|
|
gen_exception_insn(s, 0, EXCP_UDEF, syn_btitrap(s->btype));
|
|
return;
|
|
}
|
|
} else {
|
|
/* Not the first insn: btype must be 0. */
|
|
tcg_debug_assert(s->btype == 0);
|
|
}
|
|
}
|
|
|
|
s->is_nonstreaming = false;
|
|
if (s->sme_trap_nonstreaming) {
|
|
disas_sme_fa64(s, insn);
|
|
}
|
|
|
|
if (!disas_a64(s, insn) &&
|
|
!disas_sme(s, insn) &&
|
|
!disas_sve(s, insn)) {
|
|
disas_a64_legacy(s, insn);
|
|
}
|
|
|
|
/*
|
|
* After execution of most insns, btype is reset to 0.
|
|
* Note that we set btype == -1 when the insn sets btype.
|
|
*/
|
|
if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
|
|
reset_btype(s);
|
|
}
|
|
}
|
|
|
|
static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
|
|
{
|
|
DisasContext *dc = container_of(dcbase, DisasContext, base);
|
|
|
|
if (unlikely(dc->ss_active)) {
|
|
/* Note that this means single stepping WFI doesn't halt the CPU.
|
|
* For conditional branch insns this is harmless unreachable code as
|
|
* gen_goto_tb() has already handled emitting the debug exception
|
|
* (and thus a tb-jump is not possible when singlestepping).
|
|
*/
|
|
switch (dc->base.is_jmp) {
|
|
default:
|
|
gen_a64_update_pc(dc, 4);
|
|
/* fall through */
|
|
case DISAS_EXIT:
|
|
case DISAS_JUMP:
|
|
gen_step_complete_exception(dc);
|
|
break;
|
|
case DISAS_NORETURN:
|
|
break;
|
|
}
|
|
} else {
|
|
switch (dc->base.is_jmp) {
|
|
case DISAS_NEXT:
|
|
case DISAS_TOO_MANY:
|
|
gen_goto_tb(dc, 1, 4);
|
|
break;
|
|
default:
|
|
case DISAS_UPDATE_EXIT:
|
|
gen_a64_update_pc(dc, 4);
|
|
/* fall through */
|
|
case DISAS_EXIT:
|
|
tcg_gen_exit_tb(NULL, 0);
|
|
break;
|
|
case DISAS_UPDATE_NOCHAIN:
|
|
gen_a64_update_pc(dc, 4);
|
|
/* fall through */
|
|
case DISAS_JUMP:
|
|
tcg_gen_lookup_and_goto_ptr();
|
|
break;
|
|
case DISAS_NORETURN:
|
|
case DISAS_SWI:
|
|
break;
|
|
case DISAS_WFE:
|
|
gen_a64_update_pc(dc, 4);
|
|
gen_helper_wfe(tcg_env);
|
|
break;
|
|
case DISAS_YIELD:
|
|
gen_a64_update_pc(dc, 4);
|
|
gen_helper_yield(tcg_env);
|
|
break;
|
|
case DISAS_WFI:
|
|
/*
|
|
* This is a special case because we don't want to just halt
|
|
* the CPU if trying to debug across a WFI.
|
|
*/
|
|
gen_a64_update_pc(dc, 4);
|
|
gen_helper_wfi(tcg_env, tcg_constant_i32(4));
|
|
/*
|
|
* The helper doesn't necessarily throw an exception, but we
|
|
* must go back to the main loop to check for interrupts anyway.
|
|
*/
|
|
tcg_gen_exit_tb(NULL, 0);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void aarch64_tr_disas_log(const DisasContextBase *dcbase,
|
|
CPUState *cpu, FILE *logfile)
|
|
{
|
|
DisasContext *dc = container_of(dcbase, DisasContext, base);
|
|
|
|
fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first));
|
|
target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size);
|
|
}
|
|
|
|
const TranslatorOps aarch64_translator_ops = {
|
|
.init_disas_context = aarch64_tr_init_disas_context,
|
|
.tb_start = aarch64_tr_tb_start,
|
|
.insn_start = aarch64_tr_insn_start,
|
|
.translate_insn = aarch64_tr_translate_insn,
|
|
.tb_stop = aarch64_tr_tb_stop,
|
|
.disas_log = aarch64_tr_disas_log,
|
|
};
|