09319b3041
Update our copy of libvixl to upstream's 1.4 release. Note that we no longer need any local fixes for compilation on 32 bit hosts -- they have all been integrated upstream. Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Message-id: 1399040419-9227-1-git-send-email-peter.maydell@linaro.org Acked-by: Richard Henderson <rth@twiddle.net>
1896 lines
56 KiB
C++
1896 lines
56 KiB
C++
// Copyright 2013, ARM Limited
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
// * Neither the name of ARM Limited nor the names of its contributors may be
|
|
// used to endorse or promote products derived from this software without
|
|
// specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
|
|
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
|
|
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#ifndef VIXL_A64_ASSEMBLER_A64_H_
|
|
#define VIXL_A64_ASSEMBLER_A64_H_
|
|
|
|
#include <list>
|
|
|
|
#include "globals.h"
|
|
#include "utils.h"
|
|
#include "a64/instructions-a64.h"
|
|
|
|
namespace vixl {
|
|
|
|
typedef uint64_t RegList;
|
|
static const int kRegListSizeInBits = sizeof(RegList) * 8;
|
|
|
|
|
|
// Registers.
|
|
|
|
// Some CPURegister methods can return Register and FPRegister types, so we
|
|
// need to declare them in advance.
|
|
class Register;
|
|
class FPRegister;
|
|
|
|
|
|
class CPURegister {
|
|
public:
|
|
enum RegisterType {
|
|
// The kInvalid value is used to detect uninitialized static instances,
|
|
// which are always zero-initialized before any constructors are called.
|
|
kInvalid = 0,
|
|
kRegister,
|
|
kFPRegister,
|
|
kNoRegister
|
|
};
|
|
|
|
CPURegister() : code_(0), size_(0), type_(kNoRegister) {
|
|
VIXL_ASSERT(!IsValid());
|
|
VIXL_ASSERT(IsNone());
|
|
}
|
|
|
|
CPURegister(unsigned code, unsigned size, RegisterType type)
|
|
: code_(code), size_(size), type_(type) {
|
|
VIXL_ASSERT(IsValidOrNone());
|
|
}
|
|
|
|
unsigned code() const {
|
|
VIXL_ASSERT(IsValid());
|
|
return code_;
|
|
}
|
|
|
|
RegisterType type() const {
|
|
VIXL_ASSERT(IsValidOrNone());
|
|
return type_;
|
|
}
|
|
|
|
RegList Bit() const {
|
|
VIXL_ASSERT(code_ < (sizeof(RegList) * 8));
|
|
return IsValid() ? (static_cast<RegList>(1) << code_) : 0;
|
|
}
|
|
|
|
unsigned size() const {
|
|
VIXL_ASSERT(IsValid());
|
|
return size_;
|
|
}
|
|
|
|
int SizeInBytes() const {
|
|
VIXL_ASSERT(IsValid());
|
|
VIXL_ASSERT(size() % 8 == 0);
|
|
return size_ / 8;
|
|
}
|
|
|
|
int SizeInBits() const {
|
|
VIXL_ASSERT(IsValid());
|
|
return size_;
|
|
}
|
|
|
|
bool Is32Bits() const {
|
|
VIXL_ASSERT(IsValid());
|
|
return size_ == 32;
|
|
}
|
|
|
|
bool Is64Bits() const {
|
|
VIXL_ASSERT(IsValid());
|
|
return size_ == 64;
|
|
}
|
|
|
|
bool IsValid() const {
|
|
if (IsValidRegister() || IsValidFPRegister()) {
|
|
VIXL_ASSERT(!IsNone());
|
|
return true;
|
|
} else {
|
|
VIXL_ASSERT(IsNone());
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool IsValidRegister() const {
|
|
return IsRegister() &&
|
|
((size_ == kWRegSize) || (size_ == kXRegSize)) &&
|
|
((code_ < kNumberOfRegisters) || (code_ == kSPRegInternalCode));
|
|
}
|
|
|
|
bool IsValidFPRegister() const {
|
|
return IsFPRegister() &&
|
|
((size_ == kSRegSize) || (size_ == kDRegSize)) &&
|
|
(code_ < kNumberOfFPRegisters);
|
|
}
|
|
|
|
bool IsNone() const {
|
|
// kNoRegister types should always have size 0 and code 0.
|
|
VIXL_ASSERT((type_ != kNoRegister) || (code_ == 0));
|
|
VIXL_ASSERT((type_ != kNoRegister) || (size_ == 0));
|
|
|
|
return type_ == kNoRegister;
|
|
}
|
|
|
|
bool Aliases(const CPURegister& other) const {
|
|
VIXL_ASSERT(IsValidOrNone() && other.IsValidOrNone());
|
|
return (code_ == other.code_) && (type_ == other.type_);
|
|
}
|
|
|
|
bool Is(const CPURegister& other) const {
|
|
VIXL_ASSERT(IsValidOrNone() && other.IsValidOrNone());
|
|
return Aliases(other) && (size_ == other.size_);
|
|
}
|
|
|
|
inline bool IsZero() const {
|
|
VIXL_ASSERT(IsValid());
|
|
return IsRegister() && (code_ == kZeroRegCode);
|
|
}
|
|
|
|
inline bool IsSP() const {
|
|
VIXL_ASSERT(IsValid());
|
|
return IsRegister() && (code_ == kSPRegInternalCode);
|
|
}
|
|
|
|
inline bool IsRegister() const {
|
|
return type_ == kRegister;
|
|
}
|
|
|
|
inline bool IsFPRegister() const {
|
|
return type_ == kFPRegister;
|
|
}
|
|
|
|
const Register& W() const;
|
|
const Register& X() const;
|
|
const FPRegister& S() const;
|
|
const FPRegister& D() const;
|
|
|
|
inline bool IsSameSizeAndType(const CPURegister& other) const {
|
|
return (size_ == other.size_) && (type_ == other.type_);
|
|
}
|
|
|
|
protected:
|
|
unsigned code_;
|
|
unsigned size_;
|
|
RegisterType type_;
|
|
|
|
private:
|
|
bool IsValidOrNone() const {
|
|
return IsValid() || IsNone();
|
|
}
|
|
};
|
|
|
|
|
|
class Register : public CPURegister {
|
|
public:
|
|
explicit Register() : CPURegister() {}
|
|
inline explicit Register(const CPURegister& other)
|
|
: CPURegister(other.code(), other.size(), other.type()) {
|
|
VIXL_ASSERT(IsValidRegister());
|
|
}
|
|
explicit Register(unsigned code, unsigned size)
|
|
: CPURegister(code, size, kRegister) {}
|
|
|
|
bool IsValid() const {
|
|
VIXL_ASSERT(IsRegister() || IsNone());
|
|
return IsValidRegister();
|
|
}
|
|
|
|
static const Register& WRegFromCode(unsigned code);
|
|
static const Register& XRegFromCode(unsigned code);
|
|
|
|
// V8 compatibility.
|
|
static const int kNumRegisters = kNumberOfRegisters;
|
|
static const int kNumAllocatableRegisters = kNumberOfRegisters - 1;
|
|
|
|
private:
|
|
static const Register wregisters[];
|
|
static const Register xregisters[];
|
|
};
|
|
|
|
|
|
class FPRegister : public CPURegister {
|
|
public:
|
|
inline FPRegister() : CPURegister() {}
|
|
inline explicit FPRegister(const CPURegister& other)
|
|
: CPURegister(other.code(), other.size(), other.type()) {
|
|
VIXL_ASSERT(IsValidFPRegister());
|
|
}
|
|
inline FPRegister(unsigned code, unsigned size)
|
|
: CPURegister(code, size, kFPRegister) {}
|
|
|
|
bool IsValid() const {
|
|
VIXL_ASSERT(IsFPRegister() || IsNone());
|
|
return IsValidFPRegister();
|
|
}
|
|
|
|
static const FPRegister& SRegFromCode(unsigned code);
|
|
static const FPRegister& DRegFromCode(unsigned code);
|
|
|
|
// V8 compatibility.
|
|
static const int kNumRegisters = kNumberOfFPRegisters;
|
|
static const int kNumAllocatableRegisters = kNumberOfFPRegisters - 1;
|
|
|
|
private:
|
|
static const FPRegister sregisters[];
|
|
static const FPRegister dregisters[];
|
|
};
|
|
|
|
|
|
// No*Reg is used to indicate an unused argument, or an error case. Note that
|
|
// these all compare equal (using the Is() method). The Register and FPRegister
|
|
// variants are provided for convenience.
|
|
const Register NoReg;
|
|
const FPRegister NoFPReg;
|
|
const CPURegister NoCPUReg;
|
|
|
|
|
|
#define DEFINE_REGISTERS(N) \
|
|
const Register w##N(N, kWRegSize); \
|
|
const Register x##N(N, kXRegSize);
|
|
REGISTER_CODE_LIST(DEFINE_REGISTERS)
|
|
#undef DEFINE_REGISTERS
|
|
const Register wsp(kSPRegInternalCode, kWRegSize);
|
|
const Register sp(kSPRegInternalCode, kXRegSize);
|
|
|
|
|
|
#define DEFINE_FPREGISTERS(N) \
|
|
const FPRegister s##N(N, kSRegSize); \
|
|
const FPRegister d##N(N, kDRegSize);
|
|
REGISTER_CODE_LIST(DEFINE_FPREGISTERS)
|
|
#undef DEFINE_FPREGISTERS
|
|
|
|
|
|
// Registers aliases.
|
|
const Register ip0 = x16;
|
|
const Register ip1 = x17;
|
|
const Register lr = x30;
|
|
const Register xzr = x31;
|
|
const Register wzr = w31;
|
|
|
|
|
|
// AreAliased returns true if any of the named registers overlap. Arguments
|
|
// set to NoReg are ignored. The system stack pointer may be specified.
|
|
bool AreAliased(const CPURegister& reg1,
|
|
const CPURegister& reg2,
|
|
const CPURegister& reg3 = NoReg,
|
|
const CPURegister& reg4 = NoReg,
|
|
const CPURegister& reg5 = NoReg,
|
|
const CPURegister& reg6 = NoReg,
|
|
const CPURegister& reg7 = NoReg,
|
|
const CPURegister& reg8 = NoReg);
|
|
|
|
|
|
// AreSameSizeAndType returns true if all of the specified registers have the
|
|
// same size, and are of the same type. The system stack pointer may be
|
|
// specified. Arguments set to NoReg are ignored, as are any subsequent
|
|
// arguments. At least one argument (reg1) must be valid (not NoCPUReg).
|
|
bool AreSameSizeAndType(const CPURegister& reg1,
|
|
const CPURegister& reg2,
|
|
const CPURegister& reg3 = NoCPUReg,
|
|
const CPURegister& reg4 = NoCPUReg,
|
|
const CPURegister& reg5 = NoCPUReg,
|
|
const CPURegister& reg6 = NoCPUReg,
|
|
const CPURegister& reg7 = NoCPUReg,
|
|
const CPURegister& reg8 = NoCPUReg);
|
|
|
|
|
|
// Lists of registers.
|
|
class CPURegList {
|
|
public:
|
|
inline explicit CPURegList(CPURegister reg1,
|
|
CPURegister reg2 = NoCPUReg,
|
|
CPURegister reg3 = NoCPUReg,
|
|
CPURegister reg4 = NoCPUReg)
|
|
: list_(reg1.Bit() | reg2.Bit() | reg3.Bit() | reg4.Bit()),
|
|
size_(reg1.size()), type_(reg1.type()) {
|
|
VIXL_ASSERT(AreSameSizeAndType(reg1, reg2, reg3, reg4));
|
|
VIXL_ASSERT(IsValid());
|
|
}
|
|
|
|
inline CPURegList(CPURegister::RegisterType type, unsigned size, RegList list)
|
|
: list_(list), size_(size), type_(type) {
|
|
VIXL_ASSERT(IsValid());
|
|
}
|
|
|
|
inline CPURegList(CPURegister::RegisterType type, unsigned size,
|
|
unsigned first_reg, unsigned last_reg)
|
|
: size_(size), type_(type) {
|
|
VIXL_ASSERT(((type == CPURegister::kRegister) &&
|
|
(last_reg < kNumberOfRegisters)) ||
|
|
((type == CPURegister::kFPRegister) &&
|
|
(last_reg < kNumberOfFPRegisters)));
|
|
VIXL_ASSERT(last_reg >= first_reg);
|
|
list_ = (UINT64_C(1) << (last_reg + 1)) - 1;
|
|
list_ &= ~((UINT64_C(1) << first_reg) - 1);
|
|
VIXL_ASSERT(IsValid());
|
|
}
|
|
|
|
inline CPURegister::RegisterType type() const {
|
|
VIXL_ASSERT(IsValid());
|
|
return type_;
|
|
}
|
|
|
|
// Combine another CPURegList into this one. Registers that already exist in
|
|
// this list are left unchanged. The type and size of the registers in the
|
|
// 'other' list must match those in this list.
|
|
void Combine(const CPURegList& other) {
|
|
VIXL_ASSERT(IsValid());
|
|
VIXL_ASSERT(other.type() == type_);
|
|
VIXL_ASSERT(other.RegisterSizeInBits() == size_);
|
|
list_ |= other.list();
|
|
}
|
|
|
|
// Remove every register in the other CPURegList from this one. Registers that
|
|
// do not exist in this list are ignored. The type and size of the registers
|
|
// in the 'other' list must match those in this list.
|
|
void Remove(const CPURegList& other) {
|
|
VIXL_ASSERT(IsValid());
|
|
VIXL_ASSERT(other.type() == type_);
|
|
VIXL_ASSERT(other.RegisterSizeInBits() == size_);
|
|
list_ &= ~other.list();
|
|
}
|
|
|
|
// Variants of Combine and Remove which take a single register.
|
|
inline void Combine(const CPURegister& other) {
|
|
VIXL_ASSERT(other.type() == type_);
|
|
VIXL_ASSERT(other.size() == size_);
|
|
Combine(other.code());
|
|
}
|
|
|
|
inline void Remove(const CPURegister& other) {
|
|
VIXL_ASSERT(other.type() == type_);
|
|
VIXL_ASSERT(other.size() == size_);
|
|
Remove(other.code());
|
|
}
|
|
|
|
// Variants of Combine and Remove which take a single register by its code;
|
|
// the type and size of the register is inferred from this list.
|
|
inline void Combine(int code) {
|
|
VIXL_ASSERT(IsValid());
|
|
VIXL_ASSERT(CPURegister(code, size_, type_).IsValid());
|
|
list_ |= (UINT64_C(1) << code);
|
|
}
|
|
|
|
inline void Remove(int code) {
|
|
VIXL_ASSERT(IsValid());
|
|
VIXL_ASSERT(CPURegister(code, size_, type_).IsValid());
|
|
list_ &= ~(UINT64_C(1) << code);
|
|
}
|
|
|
|
inline RegList list() const {
|
|
VIXL_ASSERT(IsValid());
|
|
return list_;
|
|
}
|
|
|
|
inline void set_list(RegList new_list) {
|
|
VIXL_ASSERT(IsValid());
|
|
list_ = new_list;
|
|
}
|
|
|
|
// Remove all callee-saved registers from the list. This can be useful when
|
|
// preparing registers for an AAPCS64 function call, for example.
|
|
void RemoveCalleeSaved();
|
|
|
|
CPURegister PopLowestIndex();
|
|
CPURegister PopHighestIndex();
|
|
|
|
// AAPCS64 callee-saved registers.
|
|
static CPURegList GetCalleeSaved(unsigned size = kXRegSize);
|
|
static CPURegList GetCalleeSavedFP(unsigned size = kDRegSize);
|
|
|
|
// AAPCS64 caller-saved registers. Note that this includes lr.
|
|
static CPURegList GetCallerSaved(unsigned size = kXRegSize);
|
|
static CPURegList GetCallerSavedFP(unsigned size = kDRegSize);
|
|
|
|
inline bool IsEmpty() const {
|
|
VIXL_ASSERT(IsValid());
|
|
return list_ == 0;
|
|
}
|
|
|
|
inline bool IncludesAliasOf(const CPURegister& other) const {
|
|
VIXL_ASSERT(IsValid());
|
|
return (type_ == other.type()) && ((other.Bit() & list_) != 0);
|
|
}
|
|
|
|
inline bool IncludesAliasOf(int code) const {
|
|
VIXL_ASSERT(IsValid());
|
|
return ((code & list_) != 0);
|
|
}
|
|
|
|
inline int Count() const {
|
|
VIXL_ASSERT(IsValid());
|
|
return CountSetBits(list_, kRegListSizeInBits);
|
|
}
|
|
|
|
inline unsigned RegisterSizeInBits() const {
|
|
VIXL_ASSERT(IsValid());
|
|
return size_;
|
|
}
|
|
|
|
inline unsigned RegisterSizeInBytes() const {
|
|
int size_in_bits = RegisterSizeInBits();
|
|
VIXL_ASSERT((size_in_bits % 8) == 0);
|
|
return size_in_bits / 8;
|
|
}
|
|
|
|
inline unsigned TotalSizeInBytes() const {
|
|
VIXL_ASSERT(IsValid());
|
|
return RegisterSizeInBytes() * Count();
|
|
}
|
|
|
|
private:
|
|
RegList list_;
|
|
unsigned size_;
|
|
CPURegister::RegisterType type_;
|
|
|
|
bool IsValid() const;
|
|
};
|
|
|
|
|
|
// AAPCS64 callee-saved registers.
|
|
extern const CPURegList kCalleeSaved;
|
|
extern const CPURegList kCalleeSavedFP;
|
|
|
|
|
|
// AAPCS64 caller-saved registers. Note that this includes lr.
|
|
extern const CPURegList kCallerSaved;
|
|
extern const CPURegList kCallerSavedFP;
|
|
|
|
|
|
// Operand.
|
|
class Operand {
|
|
public:
|
|
// #<immediate>
|
|
// where <immediate> is int64_t.
|
|
// This is allowed to be an implicit constructor because Operand is
|
|
// a wrapper class that doesn't normally perform any type conversion.
|
|
Operand(int64_t immediate); // NOLINT(runtime/explicit)
|
|
|
|
// rm, {<shift> #<shift_amount>}
|
|
// where <shift> is one of {LSL, LSR, ASR, ROR}.
|
|
// <shift_amount> is uint6_t.
|
|
// This is allowed to be an implicit constructor because Operand is
|
|
// a wrapper class that doesn't normally perform any type conversion.
|
|
Operand(Register reg,
|
|
Shift shift = LSL,
|
|
unsigned shift_amount = 0); // NOLINT(runtime/explicit)
|
|
|
|
// rm, {<extend> {#<shift_amount>}}
|
|
// where <extend> is one of {UXTB, UXTH, UXTW, UXTX, SXTB, SXTH, SXTW, SXTX}.
|
|
// <shift_amount> is uint2_t.
|
|
explicit Operand(Register reg, Extend extend, unsigned shift_amount = 0);
|
|
|
|
bool IsImmediate() const;
|
|
bool IsShiftedRegister() const;
|
|
bool IsExtendedRegister() const;
|
|
bool IsZero() const;
|
|
|
|
// This returns an LSL shift (<= 4) operand as an equivalent extend operand,
|
|
// which helps in the encoding of instructions that use the stack pointer.
|
|
Operand ToExtendedRegister() const;
|
|
|
|
int64_t immediate() const {
|
|
VIXL_ASSERT(IsImmediate());
|
|
return immediate_;
|
|
}
|
|
|
|
Register reg() const {
|
|
VIXL_ASSERT(IsShiftedRegister() || IsExtendedRegister());
|
|
return reg_;
|
|
}
|
|
|
|
Shift shift() const {
|
|
VIXL_ASSERT(IsShiftedRegister());
|
|
return shift_;
|
|
}
|
|
|
|
Extend extend() const {
|
|
VIXL_ASSERT(IsExtendedRegister());
|
|
return extend_;
|
|
}
|
|
|
|
unsigned shift_amount() const {
|
|
VIXL_ASSERT(IsShiftedRegister() || IsExtendedRegister());
|
|
return shift_amount_;
|
|
}
|
|
|
|
private:
|
|
int64_t immediate_;
|
|
Register reg_;
|
|
Shift shift_;
|
|
Extend extend_;
|
|
unsigned shift_amount_;
|
|
};
|
|
|
|
|
|
// MemOperand represents the addressing mode of a load or store instruction.
|
|
class MemOperand {
|
|
public:
|
|
explicit MemOperand(Register base,
|
|
ptrdiff_t offset = 0,
|
|
AddrMode addrmode = Offset);
|
|
explicit MemOperand(Register base,
|
|
Register regoffset,
|
|
Shift shift = LSL,
|
|
unsigned shift_amount = 0);
|
|
explicit MemOperand(Register base,
|
|
Register regoffset,
|
|
Extend extend,
|
|
unsigned shift_amount = 0);
|
|
explicit MemOperand(Register base,
|
|
const Operand& offset,
|
|
AddrMode addrmode = Offset);
|
|
|
|
const Register& base() const { return base_; }
|
|
const Register& regoffset() const { return regoffset_; }
|
|
ptrdiff_t offset() const { return offset_; }
|
|
AddrMode addrmode() const { return addrmode_; }
|
|
Shift shift() const { return shift_; }
|
|
Extend extend() const { return extend_; }
|
|
unsigned shift_amount() const { return shift_amount_; }
|
|
bool IsImmediateOffset() const;
|
|
bool IsRegisterOffset() const;
|
|
bool IsPreIndex() const;
|
|
bool IsPostIndex() const;
|
|
|
|
private:
|
|
Register base_;
|
|
Register regoffset_;
|
|
ptrdiff_t offset_;
|
|
AddrMode addrmode_;
|
|
Shift shift_;
|
|
Extend extend_;
|
|
unsigned shift_amount_;
|
|
};
|
|
|
|
|
|
class Label {
|
|
public:
|
|
Label() : is_bound_(false), link_(NULL), target_(NULL) {}
|
|
~Label() {
|
|
// If the label has been linked to, it needs to be bound to a target.
|
|
VIXL_ASSERT(!IsLinked() || IsBound());
|
|
}
|
|
|
|
inline Instruction* link() const { return link_; }
|
|
inline Instruction* target() const { return target_; }
|
|
|
|
inline bool IsBound() const { return is_bound_; }
|
|
inline bool IsLinked() const { return link_ != NULL; }
|
|
|
|
inline void set_link(Instruction* new_link) { link_ = new_link; }
|
|
|
|
static const int kEndOfChain = 0;
|
|
|
|
private:
|
|
// Indicates if the label has been bound, ie its location is fixed.
|
|
bool is_bound_;
|
|
// Branches instructions branching to this label form a chained list, with
|
|
// their offset indicating where the next instruction is located.
|
|
// link_ points to the latest branch instruction generated branching to this
|
|
// branch.
|
|
// If link_ is not NULL, the label has been linked to.
|
|
Instruction* link_;
|
|
// The label location.
|
|
Instruction* target_;
|
|
|
|
friend class Assembler;
|
|
};
|
|
|
|
|
|
// TODO: Obtain better values for these, based on real-world data.
|
|
const int kLiteralPoolCheckInterval = 4 * KBytes;
|
|
const int kRecommendedLiteralPoolRange = 2 * kLiteralPoolCheckInterval;
|
|
|
|
|
|
// Control whether a branch over the literal pool should also be emitted. This
|
|
// is needed if the literal pool has to be emitted in the middle of the JITted
|
|
// code.
|
|
enum LiteralPoolEmitOption {
|
|
JumpRequired,
|
|
NoJumpRequired
|
|
};
|
|
|
|
|
|
// Literal pool entry.
|
|
class Literal {
|
|
public:
|
|
Literal(Instruction* pc, uint64_t imm, unsigned size)
|
|
: pc_(pc), value_(imm), size_(size) {}
|
|
|
|
private:
|
|
Instruction* pc_;
|
|
int64_t value_;
|
|
unsigned size_;
|
|
|
|
friend class Assembler;
|
|
};
|
|
|
|
|
|
// Assembler.
|
|
class Assembler {
|
|
public:
|
|
Assembler(byte* buffer, unsigned buffer_size);
|
|
|
|
// The destructor asserts that one of the following is true:
|
|
// * The Assembler object has not been used.
|
|
// * Nothing has been emitted since the last Reset() call.
|
|
// * Nothing has been emitted since the last FinalizeCode() call.
|
|
~Assembler();
|
|
|
|
// System functions.
|
|
|
|
// Start generating code from the beginning of the buffer, discarding any code
|
|
// and data that has already been emitted into the buffer.
|
|
//
|
|
// In order to avoid any accidental transfer of state, Reset ASSERTs that the
|
|
// constant pool is not blocked.
|
|
void Reset();
|
|
|
|
// Finalize a code buffer of generated instructions. This function must be
|
|
// called before executing or copying code from the buffer.
|
|
void FinalizeCode();
|
|
|
|
// Label.
|
|
// Bind a label to the current PC.
|
|
void bind(Label* label);
|
|
int UpdateAndGetByteOffsetTo(Label* label);
|
|
inline int UpdateAndGetInstructionOffsetTo(Label* label) {
|
|
VIXL_ASSERT(Label::kEndOfChain == 0);
|
|
return UpdateAndGetByteOffsetTo(label) >> kInstructionSizeLog2;
|
|
}
|
|
|
|
|
|
// Instruction set functions.
|
|
|
|
// Branch / Jump instructions.
|
|
// Branch to register.
|
|
void br(const Register& xn);
|
|
|
|
// Branch with link to register.
|
|
void blr(const Register& xn);
|
|
|
|
// Branch to register with return hint.
|
|
void ret(const Register& xn = lr);
|
|
|
|
// Unconditional branch to label.
|
|
void b(Label* label);
|
|
|
|
// Conditional branch to label.
|
|
void b(Label* label, Condition cond);
|
|
|
|
// Unconditional branch to PC offset.
|
|
void b(int imm26);
|
|
|
|
// Conditional branch to PC offset.
|
|
void b(int imm19, Condition cond);
|
|
|
|
// Branch with link to label.
|
|
void bl(Label* label);
|
|
|
|
// Branch with link to PC offset.
|
|
void bl(int imm26);
|
|
|
|
// Compare and branch to label if zero.
|
|
void cbz(const Register& rt, Label* label);
|
|
|
|
// Compare and branch to PC offset if zero.
|
|
void cbz(const Register& rt, int imm19);
|
|
|
|
// Compare and branch to label if not zero.
|
|
void cbnz(const Register& rt, Label* label);
|
|
|
|
// Compare and branch to PC offset if not zero.
|
|
void cbnz(const Register& rt, int imm19);
|
|
|
|
// Test bit and branch to label if zero.
|
|
void tbz(const Register& rt, unsigned bit_pos, Label* label);
|
|
|
|
// Test bit and branch to PC offset if zero.
|
|
void tbz(const Register& rt, unsigned bit_pos, int imm14);
|
|
|
|
// Test bit and branch to label if not zero.
|
|
void tbnz(const Register& rt, unsigned bit_pos, Label* label);
|
|
|
|
// Test bit and branch to PC offset if not zero.
|
|
void tbnz(const Register& rt, unsigned bit_pos, int imm14);
|
|
|
|
// Address calculation instructions.
|
|
// Calculate a PC-relative address. Unlike for branches the offset in adr is
|
|
// unscaled (i.e. the result can be unaligned).
|
|
|
|
// Calculate the address of a label.
|
|
void adr(const Register& rd, Label* label);
|
|
|
|
// Calculate the address of a PC offset.
|
|
void adr(const Register& rd, int imm21);
|
|
|
|
// Data Processing instructions.
|
|
// Add.
|
|
void add(const Register& rd,
|
|
const Register& rn,
|
|
const Operand& operand);
|
|
|
|
// Add and update status flags.
|
|
void adds(const Register& rd,
|
|
const Register& rn,
|
|
const Operand& operand);
|
|
|
|
// Compare negative.
|
|
void cmn(const Register& rn, const Operand& operand);
|
|
|
|
// Subtract.
|
|
void sub(const Register& rd,
|
|
const Register& rn,
|
|
const Operand& operand);
|
|
|
|
// Subtract and update status flags.
|
|
void subs(const Register& rd,
|
|
const Register& rn,
|
|
const Operand& operand);
|
|
|
|
// Compare.
|
|
void cmp(const Register& rn, const Operand& operand);
|
|
|
|
// Negate.
|
|
void neg(const Register& rd,
|
|
const Operand& operand);
|
|
|
|
// Negate and update status flags.
|
|
void negs(const Register& rd,
|
|
const Operand& operand);
|
|
|
|
// Add with carry bit.
|
|
void adc(const Register& rd,
|
|
const Register& rn,
|
|
const Operand& operand);
|
|
|
|
// Add with carry bit and update status flags.
|
|
void adcs(const Register& rd,
|
|
const Register& rn,
|
|
const Operand& operand);
|
|
|
|
// Subtract with carry bit.
|
|
void sbc(const Register& rd,
|
|
const Register& rn,
|
|
const Operand& operand);
|
|
|
|
// Subtract with carry bit and update status flags.
|
|
void sbcs(const Register& rd,
|
|
const Register& rn,
|
|
const Operand& operand);
|
|
|
|
// Negate with carry bit.
|
|
void ngc(const Register& rd,
|
|
const Operand& operand);
|
|
|
|
// Negate with carry bit and update status flags.
|
|
void ngcs(const Register& rd,
|
|
const Operand& operand);
|
|
|
|
// Logical instructions.
|
|
// Bitwise and (A & B).
|
|
void and_(const Register& rd,
|
|
const Register& rn,
|
|
const Operand& operand);
|
|
|
|
// Bitwise and (A & B) and update status flags.
|
|
void ands(const Register& rd,
|
|
const Register& rn,
|
|
const Operand& operand);
|
|
|
|
// Bit test and set flags.
|
|
void tst(const Register& rn, const Operand& operand);
|
|
|
|
// Bit clear (A & ~B).
|
|
void bic(const Register& rd,
|
|
const Register& rn,
|
|
const Operand& operand);
|
|
|
|
// Bit clear (A & ~B) and update status flags.
|
|
void bics(const Register& rd,
|
|
const Register& rn,
|
|
const Operand& operand);
|
|
|
|
// Bitwise or (A | B).
|
|
void orr(const Register& rd, const Register& rn, const Operand& operand);
|
|
|
|
// Bitwise nor (A | ~B).
|
|
void orn(const Register& rd, const Register& rn, const Operand& operand);
|
|
|
|
// Bitwise eor/xor (A ^ B).
|
|
void eor(const Register& rd, const Register& rn, const Operand& operand);
|
|
|
|
// Bitwise enor/xnor (A ^ ~B).
|
|
void eon(const Register& rd, const Register& rn, const Operand& operand);
|
|
|
|
// Logical shift left by variable.
|
|
void lslv(const Register& rd, const Register& rn, const Register& rm);
|
|
|
|
// Logical shift right by variable.
|
|
void lsrv(const Register& rd, const Register& rn, const Register& rm);
|
|
|
|
// Arithmetic shift right by variable.
|
|
void asrv(const Register& rd, const Register& rn, const Register& rm);
|
|
|
|
// Rotate right by variable.
|
|
void rorv(const Register& rd, const Register& rn, const Register& rm);
|
|
|
|
// Bitfield instructions.
|
|
// Bitfield move.
|
|
void bfm(const Register& rd,
|
|
const Register& rn,
|
|
unsigned immr,
|
|
unsigned imms);
|
|
|
|
// Signed bitfield move.
|
|
void sbfm(const Register& rd,
|
|
const Register& rn,
|
|
unsigned immr,
|
|
unsigned imms);
|
|
|
|
// Unsigned bitfield move.
|
|
void ubfm(const Register& rd,
|
|
const Register& rn,
|
|
unsigned immr,
|
|
unsigned imms);
|
|
|
|
// Bfm aliases.
|
|
// Bitfield insert.
|
|
inline void bfi(const Register& rd,
|
|
const Register& rn,
|
|
unsigned lsb,
|
|
unsigned width) {
|
|
VIXL_ASSERT(width >= 1);
|
|
VIXL_ASSERT(lsb + width <= rn.size());
|
|
bfm(rd, rn, (rd.size() - lsb) & (rd.size() - 1), width - 1);
|
|
}
|
|
|
|
// Bitfield extract and insert low.
|
|
inline void bfxil(const Register& rd,
|
|
const Register& rn,
|
|
unsigned lsb,
|
|
unsigned width) {
|
|
VIXL_ASSERT(width >= 1);
|
|
VIXL_ASSERT(lsb + width <= rn.size());
|
|
bfm(rd, rn, lsb, lsb + width - 1);
|
|
}
|
|
|
|
// Sbfm aliases.
|
|
// Arithmetic shift right.
|
|
inline void asr(const Register& rd, const Register& rn, unsigned shift) {
|
|
VIXL_ASSERT(shift < rd.size());
|
|
sbfm(rd, rn, shift, rd.size() - 1);
|
|
}
|
|
|
|
// Signed bitfield insert with zero at right.
|
|
inline void sbfiz(const Register& rd,
|
|
const Register& rn,
|
|
unsigned lsb,
|
|
unsigned width) {
|
|
VIXL_ASSERT(width >= 1);
|
|
VIXL_ASSERT(lsb + width <= rn.size());
|
|
sbfm(rd, rn, (rd.size() - lsb) & (rd.size() - 1), width - 1);
|
|
}
|
|
|
|
// Signed bitfield extract.
|
|
inline void sbfx(const Register& rd,
|
|
const Register& rn,
|
|
unsigned lsb,
|
|
unsigned width) {
|
|
VIXL_ASSERT(width >= 1);
|
|
VIXL_ASSERT(lsb + width <= rn.size());
|
|
sbfm(rd, rn, lsb, lsb + width - 1);
|
|
}
|
|
|
|
// Signed extend byte.
|
|
inline void sxtb(const Register& rd, const Register& rn) {
|
|
sbfm(rd, rn, 0, 7);
|
|
}
|
|
|
|
// Signed extend halfword.
|
|
inline void sxth(const Register& rd, const Register& rn) {
|
|
sbfm(rd, rn, 0, 15);
|
|
}
|
|
|
|
// Signed extend word.
|
|
inline void sxtw(const Register& rd, const Register& rn) {
|
|
sbfm(rd, rn, 0, 31);
|
|
}
|
|
|
|
// Ubfm aliases.
|
|
// Logical shift left.
|
|
inline void lsl(const Register& rd, const Register& rn, unsigned shift) {
|
|
unsigned reg_size = rd.size();
|
|
VIXL_ASSERT(shift < reg_size);
|
|
ubfm(rd, rn, (reg_size - shift) % reg_size, reg_size - shift - 1);
|
|
}
|
|
|
|
// Logical shift right.
|
|
inline void lsr(const Register& rd, const Register& rn, unsigned shift) {
|
|
VIXL_ASSERT(shift < rd.size());
|
|
ubfm(rd, rn, shift, rd.size() - 1);
|
|
}
|
|
|
|
// Unsigned bitfield insert with zero at right.
|
|
inline void ubfiz(const Register& rd,
|
|
const Register& rn,
|
|
unsigned lsb,
|
|
unsigned width) {
|
|
VIXL_ASSERT(width >= 1);
|
|
VIXL_ASSERT(lsb + width <= rn.size());
|
|
ubfm(rd, rn, (rd.size() - lsb) & (rd.size() - 1), width - 1);
|
|
}
|
|
|
|
// Unsigned bitfield extract.
|
|
inline void ubfx(const Register& rd,
|
|
const Register& rn,
|
|
unsigned lsb,
|
|
unsigned width) {
|
|
VIXL_ASSERT(width >= 1);
|
|
VIXL_ASSERT(lsb + width <= rn.size());
|
|
ubfm(rd, rn, lsb, lsb + width - 1);
|
|
}
|
|
|
|
// Unsigned extend byte.
|
|
inline void uxtb(const Register& rd, const Register& rn) {
|
|
ubfm(rd, rn, 0, 7);
|
|
}
|
|
|
|
// Unsigned extend halfword.
|
|
inline void uxth(const Register& rd, const Register& rn) {
|
|
ubfm(rd, rn, 0, 15);
|
|
}
|
|
|
|
// Unsigned extend word.
|
|
inline void uxtw(const Register& rd, const Register& rn) {
|
|
ubfm(rd, rn, 0, 31);
|
|
}
|
|
|
|
// Extract.
|
|
void extr(const Register& rd,
|
|
const Register& rn,
|
|
const Register& rm,
|
|
unsigned lsb);
|
|
|
|
// Conditional select: rd = cond ? rn : rm.
|
|
void csel(const Register& rd,
|
|
const Register& rn,
|
|
const Register& rm,
|
|
Condition cond);
|
|
|
|
// Conditional select increment: rd = cond ? rn : rm + 1.
|
|
void csinc(const Register& rd,
|
|
const Register& rn,
|
|
const Register& rm,
|
|
Condition cond);
|
|
|
|
// Conditional select inversion: rd = cond ? rn : ~rm.
|
|
void csinv(const Register& rd,
|
|
const Register& rn,
|
|
const Register& rm,
|
|
Condition cond);
|
|
|
|
// Conditional select negation: rd = cond ? rn : -rm.
|
|
void csneg(const Register& rd,
|
|
const Register& rn,
|
|
const Register& rm,
|
|
Condition cond);
|
|
|
|
// Conditional set: rd = cond ? 1 : 0.
|
|
void cset(const Register& rd, Condition cond);
|
|
|
|
// Conditional set mask: rd = cond ? -1 : 0.
|
|
void csetm(const Register& rd, Condition cond);
|
|
|
|
// Conditional increment: rd = cond ? rn + 1 : rn.
|
|
void cinc(const Register& rd, const Register& rn, Condition cond);
|
|
|
|
// Conditional invert: rd = cond ? ~rn : rn.
|
|
void cinv(const Register& rd, const Register& rn, Condition cond);
|
|
|
|
// Conditional negate: rd = cond ? -rn : rn.
|
|
void cneg(const Register& rd, const Register& rn, Condition cond);
|
|
|
|
// Rotate right.
|
|
inline void ror(const Register& rd, const Register& rs, unsigned shift) {
|
|
extr(rd, rs, rs, shift);
|
|
}
|
|
|
|
// Conditional comparison.
|
|
// Conditional compare negative.
|
|
void ccmn(const Register& rn,
|
|
const Operand& operand,
|
|
StatusFlags nzcv,
|
|
Condition cond);
|
|
|
|
// Conditional compare.
|
|
void ccmp(const Register& rn,
|
|
const Operand& operand,
|
|
StatusFlags nzcv,
|
|
Condition cond);
|
|
|
|
// Multiply.
|
|
void mul(const Register& rd, const Register& rn, const Register& rm);
|
|
|
|
// Negated multiply.
|
|
void mneg(const Register& rd, const Register& rn, const Register& rm);
|
|
|
|
// Signed long multiply: 32 x 32 -> 64-bit.
|
|
void smull(const Register& rd, const Register& rn, const Register& rm);
|
|
|
|
// Signed multiply high: 64 x 64 -> 64-bit <127:64>.
|
|
void smulh(const Register& xd, const Register& xn, const Register& xm);
|
|
|
|
// Multiply and accumulate.
|
|
void madd(const Register& rd,
|
|
const Register& rn,
|
|
const Register& rm,
|
|
const Register& ra);
|
|
|
|
// Multiply and subtract.
|
|
void msub(const Register& rd,
|
|
const Register& rn,
|
|
const Register& rm,
|
|
const Register& ra);
|
|
|
|
// Signed long multiply and accumulate: 32 x 32 + 64 -> 64-bit.
|
|
void smaddl(const Register& rd,
|
|
const Register& rn,
|
|
const Register& rm,
|
|
const Register& ra);
|
|
|
|
// Unsigned long multiply and accumulate: 32 x 32 + 64 -> 64-bit.
|
|
void umaddl(const Register& rd,
|
|
const Register& rn,
|
|
const Register& rm,
|
|
const Register& ra);
|
|
|
|
// Signed long multiply and subtract: 64 - (32 x 32) -> 64-bit.
|
|
void smsubl(const Register& rd,
|
|
const Register& rn,
|
|
const Register& rm,
|
|
const Register& ra);
|
|
|
|
// Unsigned long multiply and subtract: 64 - (32 x 32) -> 64-bit.
|
|
void umsubl(const Register& rd,
|
|
const Register& rn,
|
|
const Register& rm,
|
|
const Register& ra);
|
|
|
|
// Signed integer divide.
|
|
void sdiv(const Register& rd, const Register& rn, const Register& rm);
|
|
|
|
// Unsigned integer divide.
|
|
void udiv(const Register& rd, const Register& rn, const Register& rm);
|
|
|
|
// Bit reverse.
|
|
void rbit(const Register& rd, const Register& rn);
|
|
|
|
// Reverse bytes in 16-bit half words.
|
|
void rev16(const Register& rd, const Register& rn);
|
|
|
|
// Reverse bytes in 32-bit words.
|
|
void rev32(const Register& rd, const Register& rn);
|
|
|
|
// Reverse bytes.
|
|
void rev(const Register& rd, const Register& rn);
|
|
|
|
// Count leading zeroes.
|
|
void clz(const Register& rd, const Register& rn);
|
|
|
|
// Count leading sign bits.
|
|
void cls(const Register& rd, const Register& rn);
|
|
|
|
// Memory instructions.
|
|
// Load integer or FP register.
|
|
void ldr(const CPURegister& rt, const MemOperand& src);
|
|
|
|
// Store integer or FP register.
|
|
void str(const CPURegister& rt, const MemOperand& dst);
|
|
|
|
// Load word with sign extension.
|
|
void ldrsw(const Register& rt, const MemOperand& src);
|
|
|
|
// Load byte.
|
|
void ldrb(const Register& rt, const MemOperand& src);
|
|
|
|
// Store byte.
|
|
void strb(const Register& rt, const MemOperand& dst);
|
|
|
|
// Load byte with sign extension.
|
|
void ldrsb(const Register& rt, const MemOperand& src);
|
|
|
|
// Load half-word.
|
|
void ldrh(const Register& rt, const MemOperand& src);
|
|
|
|
// Store half-word.
|
|
void strh(const Register& rt, const MemOperand& dst);
|
|
|
|
// Load half-word with sign extension.
|
|
void ldrsh(const Register& rt, const MemOperand& src);
|
|
|
|
// Load integer or FP register pair.
|
|
void ldp(const CPURegister& rt, const CPURegister& rt2,
|
|
const MemOperand& src);
|
|
|
|
// Store integer or FP register pair.
|
|
void stp(const CPURegister& rt, const CPURegister& rt2,
|
|
const MemOperand& dst);
|
|
|
|
// Load word pair with sign extension.
|
|
void ldpsw(const Register& rt, const Register& rt2, const MemOperand& src);
|
|
|
|
// Load integer or FP register pair, non-temporal.
|
|
void ldnp(const CPURegister& rt, const CPURegister& rt2,
|
|
const MemOperand& src);
|
|
|
|
// Store integer or FP register pair, non-temporal.
|
|
void stnp(const CPURegister& rt, const CPURegister& rt2,
|
|
const MemOperand& dst);
|
|
|
|
// Load literal to register.
|
|
void ldr(const Register& rt, uint64_t imm);
|
|
|
|
// Load double precision floating point literal to FP register.
|
|
void ldr(const FPRegister& ft, double imm);
|
|
|
|
// Load single precision floating point literal to FP register.
|
|
void ldr(const FPRegister& ft, float imm);
|
|
|
|
// Move instructions. The default shift of -1 indicates that the move
|
|
// instruction will calculate an appropriate 16-bit immediate and left shift
|
|
// that is equal to the 64-bit immediate argument. If an explicit left shift
|
|
// is specified (0, 16, 32 or 48), the immediate must be a 16-bit value.
|
|
//
|
|
// For movk, an explicit shift can be used to indicate which half word should
|
|
// be overwritten, eg. movk(x0, 0, 0) will overwrite the least-significant
|
|
// half word with zero, whereas movk(x0, 0, 48) will overwrite the
|
|
// most-significant.
|
|
|
|
// Move immediate and keep.
|
|
void movk(const Register& rd, uint64_t imm, int shift = -1) {
|
|
MoveWide(rd, imm, shift, MOVK);
|
|
}
|
|
|
|
// Move inverted immediate.
|
|
void movn(const Register& rd, uint64_t imm, int shift = -1) {
|
|
MoveWide(rd, imm, shift, MOVN);
|
|
}
|
|
|
|
// Move immediate.
|
|
void movz(const Register& rd, uint64_t imm, int shift = -1) {
|
|
MoveWide(rd, imm, shift, MOVZ);
|
|
}
|
|
|
|
// Misc instructions.
|
|
// Monitor debug-mode breakpoint.
|
|
void brk(int code);
|
|
|
|
// Halting debug-mode breakpoint.
|
|
void hlt(int code);
|
|
|
|
// Move register to register.
|
|
void mov(const Register& rd, const Register& rn);
|
|
|
|
// Move inverted operand to register.
|
|
void mvn(const Register& rd, const Operand& operand);
|
|
|
|
// System instructions.
|
|
// Move to register from system register.
|
|
void mrs(const Register& rt, SystemRegister sysreg);
|
|
|
|
// Move from register to system register.
|
|
void msr(SystemRegister sysreg, const Register& rt);
|
|
|
|
// System hint.
|
|
void hint(SystemHint code);
|
|
|
|
// Data memory barrier.
|
|
void dmb(BarrierDomain domain, BarrierType type);
|
|
|
|
// Data synchronization barrier.
|
|
void dsb(BarrierDomain domain, BarrierType type);
|
|
|
|
// Instruction synchronization barrier.
|
|
void isb();
|
|
|
|
// Alias for system instructions.
|
|
// No-op.
|
|
void nop() {
|
|
hint(NOP);
|
|
}
|
|
|
|
// FP instructions.
|
|
// Move double precision immediate to FP register.
|
|
void fmov(const FPRegister& fd, double imm);
|
|
|
|
// Move single precision immediate to FP register.
|
|
void fmov(const FPRegister& fd, float imm);
|
|
|
|
// Move FP register to register.
|
|
void fmov(const Register& rd, const FPRegister& fn);
|
|
|
|
// Move register to FP register.
|
|
void fmov(const FPRegister& fd, const Register& rn);
|
|
|
|
// Move FP register to FP register.
|
|
void fmov(const FPRegister& fd, const FPRegister& fn);
|
|
|
|
// FP add.
|
|
void fadd(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
|
|
|
|
// FP subtract.
|
|
void fsub(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
|
|
|
|
// FP multiply.
|
|
void fmul(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
|
|
|
|
// FP fused multiply and add.
|
|
void fmadd(const FPRegister& fd,
|
|
const FPRegister& fn,
|
|
const FPRegister& fm,
|
|
const FPRegister& fa);
|
|
|
|
// FP fused multiply and subtract.
|
|
void fmsub(const FPRegister& fd,
|
|
const FPRegister& fn,
|
|
const FPRegister& fm,
|
|
const FPRegister& fa);
|
|
|
|
// FP fused multiply, add and negate.
|
|
void fnmadd(const FPRegister& fd,
|
|
const FPRegister& fn,
|
|
const FPRegister& fm,
|
|
const FPRegister& fa);
|
|
|
|
// FP fused multiply, subtract and negate.
|
|
void fnmsub(const FPRegister& fd,
|
|
const FPRegister& fn,
|
|
const FPRegister& fm,
|
|
const FPRegister& fa);
|
|
|
|
// FP divide.
|
|
void fdiv(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
|
|
|
|
// FP maximum.
|
|
void fmax(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
|
|
|
|
// FP minimum.
|
|
void fmin(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
|
|
|
|
// FP maximum number.
|
|
void fmaxnm(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
|
|
|
|
// FP minimum number.
|
|
void fminnm(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
|
|
|
|
// FP absolute.
|
|
void fabs(const FPRegister& fd, const FPRegister& fn);
|
|
|
|
// FP negate.
|
|
void fneg(const FPRegister& fd, const FPRegister& fn);
|
|
|
|
// FP square root.
|
|
void fsqrt(const FPRegister& fd, const FPRegister& fn);
|
|
|
|
// FP round to integer (nearest with ties to away).
|
|
void frinta(const FPRegister& fd, const FPRegister& fn);
|
|
|
|
// FP round to integer (toward minus infinity).
|
|
void frintm(const FPRegister& fd, const FPRegister& fn);
|
|
|
|
// FP round to integer (nearest with ties to even).
|
|
void frintn(const FPRegister& fd, const FPRegister& fn);
|
|
|
|
// FP round to integer (towards zero).
|
|
void frintz(const FPRegister& fd, const FPRegister& fn);
|
|
|
|
// FP compare registers.
|
|
void fcmp(const FPRegister& fn, const FPRegister& fm);
|
|
|
|
// FP compare immediate.
|
|
void fcmp(const FPRegister& fn, double value);
|
|
|
|
// FP conditional compare.
|
|
void fccmp(const FPRegister& fn,
|
|
const FPRegister& fm,
|
|
StatusFlags nzcv,
|
|
Condition cond);
|
|
|
|
// FP conditional select.
|
|
void fcsel(const FPRegister& fd,
|
|
const FPRegister& fn,
|
|
const FPRegister& fm,
|
|
Condition cond);
|
|
|
|
// Common FP Convert function.
|
|
void FPConvertToInt(const Register& rd,
|
|
const FPRegister& fn,
|
|
FPIntegerConvertOp op);
|
|
|
|
// FP convert between single and double precision.
|
|
void fcvt(const FPRegister& fd, const FPRegister& fn);
|
|
|
|
// Convert FP to signed integer (nearest with ties to away).
|
|
void fcvtas(const Register& rd, const FPRegister& fn);
|
|
|
|
// Convert FP to unsigned integer (nearest with ties to away).
|
|
void fcvtau(const Register& rd, const FPRegister& fn);
|
|
|
|
// Convert FP to signed integer (round towards -infinity).
|
|
void fcvtms(const Register& rd, const FPRegister& fn);
|
|
|
|
// Convert FP to unsigned integer (round towards -infinity).
|
|
void fcvtmu(const Register& rd, const FPRegister& fn);
|
|
|
|
// Convert FP to signed integer (nearest with ties to even).
|
|
void fcvtns(const Register& rd, const FPRegister& fn);
|
|
|
|
// Convert FP to unsigned integer (nearest with ties to even).
|
|
void fcvtnu(const Register& rd, const FPRegister& fn);
|
|
|
|
// Convert FP to signed integer (round towards zero).
|
|
void fcvtzs(const Register& rd, const FPRegister& fn);
|
|
|
|
// Convert FP to unsigned integer (round towards zero).
|
|
void fcvtzu(const Register& rd, const FPRegister& fn);
|
|
|
|
// Convert signed integer or fixed point to FP.
|
|
void scvtf(const FPRegister& fd, const Register& rn, unsigned fbits = 0);
|
|
|
|
// Convert unsigned integer or fixed point to FP.
|
|
void ucvtf(const FPRegister& fd, const Register& rn, unsigned fbits = 0);
|
|
|
|
// Emit generic instructions.
|
|
// Emit raw instructions into the instruction stream.
|
|
inline void dci(Instr raw_inst) { Emit(raw_inst); }
|
|
|
|
// Emit 32 bits of data into the instruction stream.
|
|
inline void dc32(uint32_t data) { EmitData(&data, sizeof(data)); }
|
|
|
|
// Emit 64 bits of data into the instruction stream.
|
|
inline void dc64(uint64_t data) { EmitData(&data, sizeof(data)); }
|
|
|
|
// Copy a string into the instruction stream, including the terminating NULL
|
|
// character. The instruction pointer (pc_) is then aligned correctly for
|
|
// subsequent instructions.
|
|
void EmitStringData(const char * string) {
|
|
VIXL_ASSERT(string != NULL);
|
|
|
|
size_t len = strlen(string) + 1;
|
|
EmitData(string, len);
|
|
|
|
// Pad with NULL characters until pc_ is aligned.
|
|
const char pad[] = {'\0', '\0', '\0', '\0'};
|
|
VIXL_STATIC_ASSERT(sizeof(pad) == kInstructionSize);
|
|
Instruction* next_pc = AlignUp(pc_, kInstructionSize);
|
|
EmitData(&pad, next_pc - pc_);
|
|
}
|
|
|
|
// Code generation helpers.
|
|
|
|
// Register encoding.
|
|
static Instr Rd(CPURegister rd) {
|
|
VIXL_ASSERT(rd.code() != kSPRegInternalCode);
|
|
return rd.code() << Rd_offset;
|
|
}
|
|
|
|
static Instr Rn(CPURegister rn) {
|
|
VIXL_ASSERT(rn.code() != kSPRegInternalCode);
|
|
return rn.code() << Rn_offset;
|
|
}
|
|
|
|
static Instr Rm(CPURegister rm) {
|
|
VIXL_ASSERT(rm.code() != kSPRegInternalCode);
|
|
return rm.code() << Rm_offset;
|
|
}
|
|
|
|
static Instr Ra(CPURegister ra) {
|
|
VIXL_ASSERT(ra.code() != kSPRegInternalCode);
|
|
return ra.code() << Ra_offset;
|
|
}
|
|
|
|
static Instr Rt(CPURegister rt) {
|
|
VIXL_ASSERT(rt.code() != kSPRegInternalCode);
|
|
return rt.code() << Rt_offset;
|
|
}
|
|
|
|
static Instr Rt2(CPURegister rt2) {
|
|
VIXL_ASSERT(rt2.code() != kSPRegInternalCode);
|
|
return rt2.code() << Rt2_offset;
|
|
}
|
|
|
|
// These encoding functions allow the stack pointer to be encoded, and
|
|
// disallow the zero register.
|
|
static Instr RdSP(Register rd) {
|
|
VIXL_ASSERT(!rd.IsZero());
|
|
return (rd.code() & kRegCodeMask) << Rd_offset;
|
|
}
|
|
|
|
static Instr RnSP(Register rn) {
|
|
VIXL_ASSERT(!rn.IsZero());
|
|
return (rn.code() & kRegCodeMask) << Rn_offset;
|
|
}
|
|
|
|
// Flags encoding.
|
|
static Instr Flags(FlagsUpdate S) {
|
|
if (S == SetFlags) {
|
|
return 1 << FlagsUpdate_offset;
|
|
} else if (S == LeaveFlags) {
|
|
return 0 << FlagsUpdate_offset;
|
|
}
|
|
VIXL_UNREACHABLE();
|
|
return 0;
|
|
}
|
|
|
|
static Instr Cond(Condition cond) {
|
|
return cond << Condition_offset;
|
|
}
|
|
|
|
// PC-relative address encoding.
|
|
static Instr ImmPCRelAddress(int imm21) {
|
|
VIXL_ASSERT(is_int21(imm21));
|
|
Instr imm = static_cast<Instr>(truncate_to_int21(imm21));
|
|
Instr immhi = (imm >> ImmPCRelLo_width) << ImmPCRelHi_offset;
|
|
Instr immlo = imm << ImmPCRelLo_offset;
|
|
return (immhi & ImmPCRelHi_mask) | (immlo & ImmPCRelLo_mask);
|
|
}
|
|
|
|
// Branch encoding.
|
|
static Instr ImmUncondBranch(int imm26) {
|
|
VIXL_ASSERT(is_int26(imm26));
|
|
return truncate_to_int26(imm26) << ImmUncondBranch_offset;
|
|
}
|
|
|
|
static Instr ImmCondBranch(int imm19) {
|
|
VIXL_ASSERT(is_int19(imm19));
|
|
return truncate_to_int19(imm19) << ImmCondBranch_offset;
|
|
}
|
|
|
|
static Instr ImmCmpBranch(int imm19) {
|
|
VIXL_ASSERT(is_int19(imm19));
|
|
return truncate_to_int19(imm19) << ImmCmpBranch_offset;
|
|
}
|
|
|
|
static Instr ImmTestBranch(int imm14) {
|
|
VIXL_ASSERT(is_int14(imm14));
|
|
return truncate_to_int14(imm14) << ImmTestBranch_offset;
|
|
}
|
|
|
|
static Instr ImmTestBranchBit(unsigned bit_pos) {
|
|
VIXL_ASSERT(is_uint6(bit_pos));
|
|
// Subtract five from the shift offset, as we need bit 5 from bit_pos.
|
|
unsigned b5 = bit_pos << (ImmTestBranchBit5_offset - 5);
|
|
unsigned b40 = bit_pos << ImmTestBranchBit40_offset;
|
|
b5 &= ImmTestBranchBit5_mask;
|
|
b40 &= ImmTestBranchBit40_mask;
|
|
return b5 | b40;
|
|
}
|
|
|
|
// Data Processing encoding.
|
|
static Instr SF(Register rd) {
|
|
return rd.Is64Bits() ? SixtyFourBits : ThirtyTwoBits;
|
|
}
|
|
|
|
static Instr ImmAddSub(int64_t imm) {
|
|
VIXL_ASSERT(IsImmAddSub(imm));
|
|
if (is_uint12(imm)) { // No shift required.
|
|
return imm << ImmAddSub_offset;
|
|
} else {
|
|
return ((imm >> 12) << ImmAddSub_offset) | (1 << ShiftAddSub_offset);
|
|
}
|
|
}
|
|
|
|
static inline Instr ImmS(unsigned imms, unsigned reg_size) {
|
|
VIXL_ASSERT(((reg_size == kXRegSize) && is_uint6(imms)) ||
|
|
((reg_size == kWRegSize) && is_uint5(imms)));
|
|
USE(reg_size);
|
|
return imms << ImmS_offset;
|
|
}
|
|
|
|
static inline Instr ImmR(unsigned immr, unsigned reg_size) {
|
|
VIXL_ASSERT(((reg_size == kXRegSize) && is_uint6(immr)) ||
|
|
((reg_size == kWRegSize) && is_uint5(immr)));
|
|
USE(reg_size);
|
|
VIXL_ASSERT(is_uint6(immr));
|
|
return immr << ImmR_offset;
|
|
}
|
|
|
|
static inline Instr ImmSetBits(unsigned imms, unsigned reg_size) {
|
|
VIXL_ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
|
|
VIXL_ASSERT(is_uint6(imms));
|
|
VIXL_ASSERT((reg_size == kXRegSize) || is_uint6(imms + 3));
|
|
USE(reg_size);
|
|
return imms << ImmSetBits_offset;
|
|
}
|
|
|
|
static inline Instr ImmRotate(unsigned immr, unsigned reg_size) {
|
|
VIXL_ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
|
|
VIXL_ASSERT(((reg_size == kXRegSize) && is_uint6(immr)) ||
|
|
((reg_size == kWRegSize) && is_uint5(immr)));
|
|
USE(reg_size);
|
|
return immr << ImmRotate_offset;
|
|
}
|
|
|
|
static inline Instr ImmLLiteral(int imm19) {
|
|
VIXL_ASSERT(is_int19(imm19));
|
|
return truncate_to_int19(imm19) << ImmLLiteral_offset;
|
|
}
|
|
|
|
static inline Instr BitN(unsigned bitn, unsigned reg_size) {
|
|
VIXL_ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
|
|
VIXL_ASSERT((reg_size == kXRegSize) || (bitn == 0));
|
|
USE(reg_size);
|
|
return bitn << BitN_offset;
|
|
}
|
|
|
|
static Instr ShiftDP(Shift shift) {
|
|
VIXL_ASSERT(shift == LSL || shift == LSR || shift == ASR || shift == ROR);
|
|
return shift << ShiftDP_offset;
|
|
}
|
|
|
|
static Instr ImmDPShift(unsigned amount) {
|
|
VIXL_ASSERT(is_uint6(amount));
|
|
return amount << ImmDPShift_offset;
|
|
}
|
|
|
|
static Instr ExtendMode(Extend extend) {
|
|
return extend << ExtendMode_offset;
|
|
}
|
|
|
|
static Instr ImmExtendShift(unsigned left_shift) {
|
|
VIXL_ASSERT(left_shift <= 4);
|
|
return left_shift << ImmExtendShift_offset;
|
|
}
|
|
|
|
static Instr ImmCondCmp(unsigned imm) {
|
|
VIXL_ASSERT(is_uint5(imm));
|
|
return imm << ImmCondCmp_offset;
|
|
}
|
|
|
|
static Instr Nzcv(StatusFlags nzcv) {
|
|
return ((nzcv >> Flags_offset) & 0xf) << Nzcv_offset;
|
|
}
|
|
|
|
// MemOperand offset encoding.
|
|
static Instr ImmLSUnsigned(int imm12) {
|
|
VIXL_ASSERT(is_uint12(imm12));
|
|
return imm12 << ImmLSUnsigned_offset;
|
|
}
|
|
|
|
static Instr ImmLS(int imm9) {
|
|
VIXL_ASSERT(is_int9(imm9));
|
|
return truncate_to_int9(imm9) << ImmLS_offset;
|
|
}
|
|
|
|
static Instr ImmLSPair(int imm7, LSDataSize size) {
|
|
VIXL_ASSERT(((imm7 >> size) << size) == imm7);
|
|
int scaled_imm7 = imm7 >> size;
|
|
VIXL_ASSERT(is_int7(scaled_imm7));
|
|
return truncate_to_int7(scaled_imm7) << ImmLSPair_offset;
|
|
}
|
|
|
|
static Instr ImmShiftLS(unsigned shift_amount) {
|
|
VIXL_ASSERT(is_uint1(shift_amount));
|
|
return shift_amount << ImmShiftLS_offset;
|
|
}
|
|
|
|
static Instr ImmException(int imm16) {
|
|
VIXL_ASSERT(is_uint16(imm16));
|
|
return imm16 << ImmException_offset;
|
|
}
|
|
|
|
static Instr ImmSystemRegister(int imm15) {
|
|
VIXL_ASSERT(is_uint15(imm15));
|
|
return imm15 << ImmSystemRegister_offset;
|
|
}
|
|
|
|
static Instr ImmHint(int imm7) {
|
|
VIXL_ASSERT(is_uint7(imm7));
|
|
return imm7 << ImmHint_offset;
|
|
}
|
|
|
|
static Instr ImmBarrierDomain(int imm2) {
|
|
VIXL_ASSERT(is_uint2(imm2));
|
|
return imm2 << ImmBarrierDomain_offset;
|
|
}
|
|
|
|
static Instr ImmBarrierType(int imm2) {
|
|
VIXL_ASSERT(is_uint2(imm2));
|
|
return imm2 << ImmBarrierType_offset;
|
|
}
|
|
|
|
static LSDataSize CalcLSDataSize(LoadStoreOp op) {
|
|
VIXL_ASSERT((SizeLS_offset + SizeLS_width) == (kInstructionSize * 8));
|
|
return static_cast<LSDataSize>(op >> SizeLS_offset);
|
|
}
|
|
|
|
// Move immediates encoding.
|
|
static Instr ImmMoveWide(uint64_t imm) {
|
|
VIXL_ASSERT(is_uint16(imm));
|
|
return imm << ImmMoveWide_offset;
|
|
}
|
|
|
|
static Instr ShiftMoveWide(int64_t shift) {
|
|
VIXL_ASSERT(is_uint2(shift));
|
|
return shift << ShiftMoveWide_offset;
|
|
}
|
|
|
|
// FP Immediates.
|
|
static Instr ImmFP32(float imm);
|
|
static Instr ImmFP64(double imm);
|
|
|
|
// FP register type.
|
|
static Instr FPType(FPRegister fd) {
|
|
return fd.Is64Bits() ? FP64 : FP32;
|
|
}
|
|
|
|
static Instr FPScale(unsigned scale) {
|
|
VIXL_ASSERT(is_uint6(scale));
|
|
return scale << FPScale_offset;
|
|
}
|
|
|
|
// Size of the code generated in bytes
|
|
uint64_t SizeOfCodeGenerated() const {
|
|
VIXL_ASSERT((pc_ >= buffer_) && (pc_ < (buffer_ + buffer_size_)));
|
|
return pc_ - buffer_;
|
|
}
|
|
|
|
// Size of the code generated since label to the current position.
|
|
uint64_t SizeOfCodeGeneratedSince(Label* label) const {
|
|
VIXL_ASSERT(label->IsBound());
|
|
VIXL_ASSERT((pc_ >= label->target()) && (pc_ < (buffer_ + buffer_size_)));
|
|
return pc_ - label->target();
|
|
}
|
|
|
|
|
|
inline void BlockLiteralPool() {
|
|
literal_pool_monitor_++;
|
|
}
|
|
|
|
inline void ReleaseLiteralPool() {
|
|
if (--literal_pool_monitor_ == 0) {
|
|
// Has the literal pool been blocked for too long?
|
|
VIXL_ASSERT(literals_.empty() ||
|
|
(pc_ < (literals_.back()->pc_ + kMaxLoadLiteralRange)));
|
|
}
|
|
}
|
|
|
|
inline bool IsLiteralPoolBlocked() {
|
|
return literal_pool_monitor_ != 0;
|
|
}
|
|
|
|
void CheckLiteralPool(LiteralPoolEmitOption option = JumpRequired);
|
|
void EmitLiteralPool(LiteralPoolEmitOption option = NoJumpRequired);
|
|
size_t LiteralPoolSize();
|
|
|
|
protected:
|
|
inline const Register& AppropriateZeroRegFor(const CPURegister& reg) const {
|
|
return reg.Is64Bits() ? xzr : wzr;
|
|
}
|
|
|
|
|
|
void LoadStore(const CPURegister& rt,
|
|
const MemOperand& addr,
|
|
LoadStoreOp op);
|
|
static bool IsImmLSUnscaled(ptrdiff_t offset);
|
|
static bool IsImmLSScaled(ptrdiff_t offset, LSDataSize size);
|
|
|
|
void Logical(const Register& rd,
|
|
const Register& rn,
|
|
const Operand& operand,
|
|
LogicalOp op);
|
|
void LogicalImmediate(const Register& rd,
|
|
const Register& rn,
|
|
unsigned n,
|
|
unsigned imm_s,
|
|
unsigned imm_r,
|
|
LogicalOp op);
|
|
static bool IsImmLogical(uint64_t value,
|
|
unsigned width,
|
|
unsigned* n,
|
|
unsigned* imm_s,
|
|
unsigned* imm_r);
|
|
|
|
void ConditionalCompare(const Register& rn,
|
|
const Operand& operand,
|
|
StatusFlags nzcv,
|
|
Condition cond,
|
|
ConditionalCompareOp op);
|
|
static bool IsImmConditionalCompare(int64_t immediate);
|
|
|
|
void AddSubWithCarry(const Register& rd,
|
|
const Register& rn,
|
|
const Operand& operand,
|
|
FlagsUpdate S,
|
|
AddSubWithCarryOp op);
|
|
|
|
static bool IsImmFP32(float imm);
|
|
static bool IsImmFP64(double imm);
|
|
|
|
// Functions for emulating operands not directly supported by the instruction
|
|
// set.
|
|
void EmitShift(const Register& rd,
|
|
const Register& rn,
|
|
Shift shift,
|
|
unsigned amount);
|
|
void EmitExtendShift(const Register& rd,
|
|
const Register& rn,
|
|
Extend extend,
|
|
unsigned left_shift);
|
|
|
|
void AddSub(const Register& rd,
|
|
const Register& rn,
|
|
const Operand& operand,
|
|
FlagsUpdate S,
|
|
AddSubOp op);
|
|
static bool IsImmAddSub(int64_t immediate);
|
|
|
|
// Find an appropriate LoadStoreOp or LoadStorePairOp for the specified
|
|
// registers. Only simple loads are supported; sign- and zero-extension (such
|
|
// as in LDPSW_x or LDRB_w) are not supported.
|
|
static LoadStoreOp LoadOpFor(const CPURegister& rt);
|
|
static LoadStorePairOp LoadPairOpFor(const CPURegister& rt,
|
|
const CPURegister& rt2);
|
|
static LoadStoreOp StoreOpFor(const CPURegister& rt);
|
|
static LoadStorePairOp StorePairOpFor(const CPURegister& rt,
|
|
const CPURegister& rt2);
|
|
static LoadStorePairNonTemporalOp LoadPairNonTemporalOpFor(
|
|
const CPURegister& rt, const CPURegister& rt2);
|
|
static LoadStorePairNonTemporalOp StorePairNonTemporalOpFor(
|
|
const CPURegister& rt, const CPURegister& rt2);
|
|
|
|
|
|
private:
|
|
// Instruction helpers.
|
|
void MoveWide(const Register& rd,
|
|
uint64_t imm,
|
|
int shift,
|
|
MoveWideImmediateOp mov_op);
|
|
void DataProcShiftedRegister(const Register& rd,
|
|
const Register& rn,
|
|
const Operand& operand,
|
|
FlagsUpdate S,
|
|
Instr op);
|
|
void DataProcExtendedRegister(const Register& rd,
|
|
const Register& rn,
|
|
const Operand& operand,
|
|
FlagsUpdate S,
|
|
Instr op);
|
|
void LoadStorePair(const CPURegister& rt,
|
|
const CPURegister& rt2,
|
|
const MemOperand& addr,
|
|
LoadStorePairOp op);
|
|
void LoadStorePairNonTemporal(const CPURegister& rt,
|
|
const CPURegister& rt2,
|
|
const MemOperand& addr,
|
|
LoadStorePairNonTemporalOp op);
|
|
void LoadLiteral(const CPURegister& rt, uint64_t imm, LoadLiteralOp op);
|
|
void ConditionalSelect(const Register& rd,
|
|
const Register& rn,
|
|
const Register& rm,
|
|
Condition cond,
|
|
ConditionalSelectOp op);
|
|
void DataProcessing1Source(const Register& rd,
|
|
const Register& rn,
|
|
DataProcessing1SourceOp op);
|
|
void DataProcessing3Source(const Register& rd,
|
|
const Register& rn,
|
|
const Register& rm,
|
|
const Register& ra,
|
|
DataProcessing3SourceOp op);
|
|
void FPDataProcessing1Source(const FPRegister& fd,
|
|
const FPRegister& fn,
|
|
FPDataProcessing1SourceOp op);
|
|
void FPDataProcessing2Source(const FPRegister& fd,
|
|
const FPRegister& fn,
|
|
const FPRegister& fm,
|
|
FPDataProcessing2SourceOp op);
|
|
void FPDataProcessing3Source(const FPRegister& fd,
|
|
const FPRegister& fn,
|
|
const FPRegister& fm,
|
|
const FPRegister& fa,
|
|
FPDataProcessing3SourceOp op);
|
|
|
|
void RecordLiteral(int64_t imm, unsigned size);
|
|
|
|
// Emit the instruction at pc_.
|
|
void Emit(Instr instruction) {
|
|
VIXL_STATIC_ASSERT(sizeof(*pc_) == 1);
|
|
VIXL_STATIC_ASSERT(sizeof(instruction) == kInstructionSize);
|
|
VIXL_ASSERT((pc_ + sizeof(instruction)) <= (buffer_ + buffer_size_));
|
|
|
|
#ifdef DEBUG
|
|
finalized_ = false;
|
|
#endif
|
|
|
|
memcpy(pc_, &instruction, sizeof(instruction));
|
|
pc_ += sizeof(instruction);
|
|
CheckBufferSpace();
|
|
}
|
|
|
|
// Emit data inline in the instruction stream.
|
|
void EmitData(void const * data, unsigned size) {
|
|
VIXL_STATIC_ASSERT(sizeof(*pc_) == 1);
|
|
VIXL_ASSERT((pc_ + size) <= (buffer_ + buffer_size_));
|
|
|
|
#ifdef DEBUG
|
|
finalized_ = false;
|
|
#endif
|
|
|
|
// TODO: Record this 'instruction' as data, so that it can be disassembled
|
|
// correctly.
|
|
memcpy(pc_, data, size);
|
|
pc_ += size;
|
|
CheckBufferSpace();
|
|
}
|
|
|
|
inline void CheckBufferSpace() {
|
|
VIXL_ASSERT(pc_ < (buffer_ + buffer_size_));
|
|
if (pc_ > next_literal_pool_check_) {
|
|
CheckLiteralPool();
|
|
}
|
|
}
|
|
|
|
// The buffer into which code and relocation info are generated.
|
|
Instruction* buffer_;
|
|
// Buffer size, in bytes.
|
|
unsigned buffer_size_;
|
|
Instruction* pc_;
|
|
std::list<Literal*> literals_;
|
|
Instruction* next_literal_pool_check_;
|
|
unsigned literal_pool_monitor_;
|
|
|
|
friend class BlockLiteralPoolScope;
|
|
|
|
#ifdef DEBUG
|
|
bool finalized_;
|
|
#endif
|
|
};
|
|
|
|
class BlockLiteralPoolScope {
|
|
public:
|
|
explicit BlockLiteralPoolScope(Assembler* assm) : assm_(assm) {
|
|
assm_->BlockLiteralPool();
|
|
}
|
|
|
|
~BlockLiteralPoolScope() {
|
|
assm_->ReleaseLiteralPool();
|
|
}
|
|
|
|
private:
|
|
Assembler* assm_;
|
|
};
|
|
} // namespace vixl
|
|
|
|
#endif // VIXL_A64_ASSEMBLER_A64_H_
|