742cc269c7
misa_mxl_max is common for all instances of a RISC-V CPU class so they are better put into class. Signed-off-by: Akihiko Odaki <akihiko.odaki@daynix.com> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-ID: <20240203-riscv-v11-2-a23f4848a628@daynix.com> Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
476 lines
16 KiB
C
476 lines
16 KiB
C
/*
|
|
* QEMU RISC-V Boot Helper
|
|
*
|
|
* Copyright (c) 2017 SiFive, Inc.
|
|
* Copyright (c) 2019 Alistair Francis <alistair.francis@wdc.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2 or later, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qemu/datadir.h"
|
|
#include "qemu/units.h"
|
|
#include "qemu/error-report.h"
|
|
#include "exec/cpu-defs.h"
|
|
#include "hw/boards.h"
|
|
#include "hw/loader.h"
|
|
#include "hw/riscv/boot.h"
|
|
#include "hw/riscv/boot_opensbi.h"
|
|
#include "elf.h"
|
|
#include "sysemu/device_tree.h"
|
|
#include "sysemu/qtest.h"
|
|
#include "sysemu/kvm.h"
|
|
#include "sysemu/reset.h"
|
|
|
|
#include <libfdt.h>
|
|
|
|
bool riscv_is_32bit(RISCVHartArrayState *harts)
|
|
{
|
|
RISCVCPUClass *mcc = RISCV_CPU_GET_CLASS(&harts->harts[0]);
|
|
return mcc->misa_mxl_max == MXL_RV32;
|
|
}
|
|
|
|
/*
|
|
* Return the per-socket PLIC hart topology configuration string
|
|
* (caller must free with g_free())
|
|
*/
|
|
char *riscv_plic_hart_config_string(int hart_count)
|
|
{
|
|
g_autofree const char **vals = g_new(const char *, hart_count + 1);
|
|
int i;
|
|
|
|
for (i = 0; i < hart_count; i++) {
|
|
CPUState *cs = qemu_get_cpu(i);
|
|
CPURISCVState *env = &RISCV_CPU(cs)->env;
|
|
|
|
if (kvm_enabled()) {
|
|
vals[i] = "S";
|
|
} else if (riscv_has_ext(env, RVS)) {
|
|
vals[i] = "MS";
|
|
} else {
|
|
vals[i] = "M";
|
|
}
|
|
}
|
|
vals[i] = NULL;
|
|
|
|
/* g_strjoinv() obliges us to cast away const here */
|
|
return g_strjoinv(",", (char **)vals);
|
|
}
|
|
|
|
target_ulong riscv_calc_kernel_start_addr(RISCVHartArrayState *harts,
|
|
target_ulong firmware_end_addr) {
|
|
if (riscv_is_32bit(harts)) {
|
|
return QEMU_ALIGN_UP(firmware_end_addr, 4 * MiB);
|
|
} else {
|
|
return QEMU_ALIGN_UP(firmware_end_addr, 2 * MiB);
|
|
}
|
|
}
|
|
|
|
const char *riscv_default_firmware_name(RISCVHartArrayState *harts)
|
|
{
|
|
if (riscv_is_32bit(harts)) {
|
|
return RISCV32_BIOS_BIN;
|
|
}
|
|
|
|
return RISCV64_BIOS_BIN;
|
|
}
|
|
|
|
static char *riscv_find_bios(const char *bios_filename)
|
|
{
|
|
char *filename;
|
|
|
|
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_filename);
|
|
if (filename == NULL) {
|
|
if (!qtest_enabled()) {
|
|
/*
|
|
* We only ship OpenSBI binary bios images in the QEMU source.
|
|
* For machines that use images other than the default bios,
|
|
* running QEMU test will complain hence let's suppress the error
|
|
* report for QEMU testing.
|
|
*/
|
|
error_report("Unable to find the RISC-V BIOS \"%s\"",
|
|
bios_filename);
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
return filename;
|
|
}
|
|
|
|
char *riscv_find_firmware(const char *firmware_filename,
|
|
const char *default_machine_firmware)
|
|
{
|
|
char *filename = NULL;
|
|
|
|
if ((!firmware_filename) || (!strcmp(firmware_filename, "default"))) {
|
|
/*
|
|
* The user didn't specify -bios, or has specified "-bios default".
|
|
* That means we are going to load the OpenSBI binary included in
|
|
* the QEMU source.
|
|
*/
|
|
filename = riscv_find_bios(default_machine_firmware);
|
|
} else if (strcmp(firmware_filename, "none")) {
|
|
filename = riscv_find_bios(firmware_filename);
|
|
}
|
|
|
|
return filename;
|
|
}
|
|
|
|
target_ulong riscv_find_and_load_firmware(MachineState *machine,
|
|
const char *default_machine_firmware,
|
|
hwaddr firmware_load_addr,
|
|
symbol_fn_t sym_cb)
|
|
{
|
|
char *firmware_filename;
|
|
target_ulong firmware_end_addr = firmware_load_addr;
|
|
|
|
firmware_filename = riscv_find_firmware(machine->firmware,
|
|
default_machine_firmware);
|
|
|
|
if (firmware_filename) {
|
|
/* If not "none" load the firmware */
|
|
firmware_end_addr = riscv_load_firmware(firmware_filename,
|
|
firmware_load_addr, sym_cb);
|
|
g_free(firmware_filename);
|
|
}
|
|
|
|
return firmware_end_addr;
|
|
}
|
|
|
|
target_ulong riscv_load_firmware(const char *firmware_filename,
|
|
hwaddr firmware_load_addr,
|
|
symbol_fn_t sym_cb)
|
|
{
|
|
uint64_t firmware_entry, firmware_end;
|
|
ssize_t firmware_size;
|
|
|
|
g_assert(firmware_filename != NULL);
|
|
|
|
if (load_elf_ram_sym(firmware_filename, NULL, NULL, NULL,
|
|
&firmware_entry, NULL, &firmware_end, NULL,
|
|
0, EM_RISCV, 1, 0, NULL, true, sym_cb) > 0) {
|
|
return firmware_end;
|
|
}
|
|
|
|
firmware_size = load_image_targphys_as(firmware_filename,
|
|
firmware_load_addr,
|
|
current_machine->ram_size, NULL);
|
|
|
|
if (firmware_size > 0) {
|
|
return firmware_load_addr + firmware_size;
|
|
}
|
|
|
|
error_report("could not load firmware '%s'", firmware_filename);
|
|
exit(1);
|
|
}
|
|
|
|
static void riscv_load_initrd(MachineState *machine, uint64_t kernel_entry)
|
|
{
|
|
const char *filename = machine->initrd_filename;
|
|
uint64_t mem_size = machine->ram_size;
|
|
void *fdt = machine->fdt;
|
|
hwaddr start, end;
|
|
ssize_t size;
|
|
|
|
g_assert(filename != NULL);
|
|
|
|
/*
|
|
* We want to put the initrd far enough into RAM that when the
|
|
* kernel is uncompressed it will not clobber the initrd. However
|
|
* on boards without much RAM we must ensure that we still leave
|
|
* enough room for a decent sized initrd, and on boards with large
|
|
* amounts of RAM we must avoid the initrd being so far up in RAM
|
|
* that it is outside lowmem and inaccessible to the kernel.
|
|
* So for boards with less than 256MB of RAM we put the initrd
|
|
* halfway into RAM, and for boards with 256MB of RAM or more we put
|
|
* the initrd at 128MB.
|
|
*/
|
|
start = kernel_entry + MIN(mem_size / 2, 128 * MiB);
|
|
|
|
size = load_ramdisk(filename, start, mem_size - start);
|
|
if (size == -1) {
|
|
size = load_image_targphys(filename, start, mem_size - start);
|
|
if (size == -1) {
|
|
error_report("could not load ramdisk '%s'", filename);
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
/* Some RISC-V machines (e.g. opentitan) don't have a fdt. */
|
|
if (fdt) {
|
|
end = start + size;
|
|
qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start", start);
|
|
qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end", end);
|
|
}
|
|
}
|
|
|
|
target_ulong riscv_load_kernel(MachineState *machine,
|
|
RISCVHartArrayState *harts,
|
|
target_ulong kernel_start_addr,
|
|
bool load_initrd,
|
|
symbol_fn_t sym_cb)
|
|
{
|
|
const char *kernel_filename = machine->kernel_filename;
|
|
uint64_t kernel_load_base, kernel_entry;
|
|
void *fdt = machine->fdt;
|
|
|
|
g_assert(kernel_filename != NULL);
|
|
|
|
/*
|
|
* NB: Use low address not ELF entry point to ensure that the fw_dynamic
|
|
* behaviour when loading an ELF matches the fw_payload, fw_jump and BBL
|
|
* behaviour, as well as fw_dynamic with a raw binary, all of which jump to
|
|
* the (expected) load address load address. This allows kernels to have
|
|
* separate SBI and ELF entry points (used by FreeBSD, for example).
|
|
*/
|
|
if (load_elf_ram_sym(kernel_filename, NULL, NULL, NULL,
|
|
NULL, &kernel_load_base, NULL, NULL, 0,
|
|
EM_RISCV, 1, 0, NULL, true, sym_cb) > 0) {
|
|
kernel_entry = kernel_load_base;
|
|
goto out;
|
|
}
|
|
|
|
if (load_uimage_as(kernel_filename, &kernel_entry, NULL, NULL,
|
|
NULL, NULL, NULL) > 0) {
|
|
goto out;
|
|
}
|
|
|
|
if (load_image_targphys_as(kernel_filename, kernel_start_addr,
|
|
current_machine->ram_size, NULL) > 0) {
|
|
kernel_entry = kernel_start_addr;
|
|
goto out;
|
|
}
|
|
|
|
error_report("could not load kernel '%s'", kernel_filename);
|
|
exit(1);
|
|
|
|
out:
|
|
/*
|
|
* For 32 bit CPUs 'kernel_entry' can be sign-extended by
|
|
* load_elf_ram_sym().
|
|
*/
|
|
if (riscv_is_32bit(harts)) {
|
|
kernel_entry = extract64(kernel_entry, 0, 32);
|
|
}
|
|
|
|
if (load_initrd && machine->initrd_filename) {
|
|
riscv_load_initrd(machine, kernel_entry);
|
|
}
|
|
|
|
if (fdt && machine->kernel_cmdline && *machine->kernel_cmdline) {
|
|
qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
|
|
machine->kernel_cmdline);
|
|
}
|
|
|
|
return kernel_entry;
|
|
}
|
|
|
|
/*
|
|
* This function makes an assumption that the DRAM interval
|
|
* 'dram_base' + 'dram_size' is contiguous.
|
|
*
|
|
* Considering that 'dram_end' is the lowest value between
|
|
* the end of the DRAM block and MachineState->ram_size, the
|
|
* FDT location will vary according to 'dram_base':
|
|
*
|
|
* - if 'dram_base' is less that 3072 MiB, the FDT will be
|
|
* put at the lowest value between 3072 MiB and 'dram_end';
|
|
*
|
|
* - if 'dram_base' is higher than 3072 MiB, the FDT will be
|
|
* put at 'dram_end'.
|
|
*
|
|
* The FDT is fdt_packed() during the calculation.
|
|
*/
|
|
uint64_t riscv_compute_fdt_addr(hwaddr dram_base, hwaddr dram_size,
|
|
MachineState *ms)
|
|
{
|
|
int ret = fdt_pack(ms->fdt);
|
|
hwaddr dram_end, temp;
|
|
int fdtsize;
|
|
|
|
/* Should only fail if we've built a corrupted tree */
|
|
g_assert(ret == 0);
|
|
|
|
fdtsize = fdt_totalsize(ms->fdt);
|
|
if (fdtsize <= 0) {
|
|
error_report("invalid device-tree");
|
|
exit(1);
|
|
}
|
|
|
|
/*
|
|
* A dram_size == 0, usually from a MemMapEntry[].size element,
|
|
* means that the DRAM block goes all the way to ms->ram_size.
|
|
*/
|
|
dram_end = dram_base;
|
|
dram_end += dram_size ? MIN(ms->ram_size, dram_size) : ms->ram_size;
|
|
|
|
/*
|
|
* We should put fdt as far as possible to avoid kernel/initrd overwriting
|
|
* its content. But it should be addressable by 32 bit system as well.
|
|
* Thus, put it at an 2MB aligned address that less than fdt size from the
|
|
* end of dram or 3GB whichever is lesser.
|
|
*/
|
|
temp = (dram_base < 3072 * MiB) ? MIN(dram_end, 3072 * MiB) : dram_end;
|
|
|
|
return QEMU_ALIGN_DOWN(temp - fdtsize, 2 * MiB);
|
|
}
|
|
|
|
/*
|
|
* 'fdt_addr' is received as hwaddr because boards might put
|
|
* the FDT beyond 32-bit addressing boundary.
|
|
*/
|
|
void riscv_load_fdt(hwaddr fdt_addr, void *fdt)
|
|
{
|
|
uint32_t fdtsize = fdt_totalsize(fdt);
|
|
|
|
/* copy in the device tree */
|
|
qemu_fdt_dumpdtb(fdt, fdtsize);
|
|
|
|
rom_add_blob_fixed_as("fdt", fdt, fdtsize, fdt_addr,
|
|
&address_space_memory);
|
|
qemu_register_reset_nosnapshotload(qemu_fdt_randomize_seeds,
|
|
rom_ptr_for_as(&address_space_memory, fdt_addr, fdtsize));
|
|
}
|
|
|
|
void riscv_rom_copy_firmware_info(MachineState *machine, hwaddr rom_base,
|
|
hwaddr rom_size, uint32_t reset_vec_size,
|
|
uint64_t kernel_entry)
|
|
{
|
|
struct fw_dynamic_info dinfo;
|
|
size_t dinfo_len;
|
|
|
|
if (sizeof(dinfo.magic) == 4) {
|
|
dinfo.magic = cpu_to_le32(FW_DYNAMIC_INFO_MAGIC_VALUE);
|
|
dinfo.version = cpu_to_le32(FW_DYNAMIC_INFO_VERSION);
|
|
dinfo.next_mode = cpu_to_le32(FW_DYNAMIC_INFO_NEXT_MODE_S);
|
|
dinfo.next_addr = cpu_to_le32(kernel_entry);
|
|
} else {
|
|
dinfo.magic = cpu_to_le64(FW_DYNAMIC_INFO_MAGIC_VALUE);
|
|
dinfo.version = cpu_to_le64(FW_DYNAMIC_INFO_VERSION);
|
|
dinfo.next_mode = cpu_to_le64(FW_DYNAMIC_INFO_NEXT_MODE_S);
|
|
dinfo.next_addr = cpu_to_le64(kernel_entry);
|
|
}
|
|
dinfo.options = 0;
|
|
dinfo.boot_hart = 0;
|
|
dinfo_len = sizeof(dinfo);
|
|
|
|
/**
|
|
* copy the dynamic firmware info. This information is specific to
|
|
* OpenSBI but doesn't break any other firmware as long as they don't
|
|
* expect any certain value in "a2" register.
|
|
*/
|
|
if (dinfo_len > (rom_size - reset_vec_size)) {
|
|
error_report("not enough space to store dynamic firmware info");
|
|
exit(1);
|
|
}
|
|
|
|
rom_add_blob_fixed_as("mrom.finfo", &dinfo, dinfo_len,
|
|
rom_base + reset_vec_size,
|
|
&address_space_memory);
|
|
}
|
|
|
|
void riscv_setup_rom_reset_vec(MachineState *machine, RISCVHartArrayState *harts,
|
|
hwaddr start_addr,
|
|
hwaddr rom_base, hwaddr rom_size,
|
|
uint64_t kernel_entry,
|
|
uint64_t fdt_load_addr)
|
|
{
|
|
int i;
|
|
uint32_t start_addr_hi32 = 0x00000000;
|
|
uint32_t fdt_load_addr_hi32 = 0x00000000;
|
|
|
|
if (!riscv_is_32bit(harts)) {
|
|
start_addr_hi32 = start_addr >> 32;
|
|
fdt_load_addr_hi32 = fdt_load_addr >> 32;
|
|
}
|
|
/* reset vector */
|
|
uint32_t reset_vec[10] = {
|
|
0x00000297, /* 1: auipc t0, %pcrel_hi(fw_dyn) */
|
|
0x02828613, /* addi a2, t0, %pcrel_lo(1b) */
|
|
0xf1402573, /* csrr a0, mhartid */
|
|
0,
|
|
0,
|
|
0x00028067, /* jr t0 */
|
|
start_addr, /* start: .dword */
|
|
start_addr_hi32,
|
|
fdt_load_addr, /* fdt_laddr: .dword */
|
|
fdt_load_addr_hi32,
|
|
/* fw_dyn: */
|
|
};
|
|
if (riscv_is_32bit(harts)) {
|
|
reset_vec[3] = 0x0202a583; /* lw a1, 32(t0) */
|
|
reset_vec[4] = 0x0182a283; /* lw t0, 24(t0) */
|
|
} else {
|
|
reset_vec[3] = 0x0202b583; /* ld a1, 32(t0) */
|
|
reset_vec[4] = 0x0182b283; /* ld t0, 24(t0) */
|
|
}
|
|
|
|
if (!harts->harts[0].cfg.ext_zicsr) {
|
|
/*
|
|
* The Zicsr extension has been disabled, so let's ensure we don't
|
|
* run the CSR instruction. Let's fill the address with a non
|
|
* compressed nop.
|
|
*/
|
|
reset_vec[2] = 0x00000013; /* addi x0, x0, 0 */
|
|
}
|
|
|
|
/* copy in the reset vector in little_endian byte order */
|
|
for (i = 0; i < ARRAY_SIZE(reset_vec); i++) {
|
|
reset_vec[i] = cpu_to_le32(reset_vec[i]);
|
|
}
|
|
rom_add_blob_fixed_as("mrom.reset", reset_vec, sizeof(reset_vec),
|
|
rom_base, &address_space_memory);
|
|
riscv_rom_copy_firmware_info(machine, rom_base, rom_size, sizeof(reset_vec),
|
|
kernel_entry);
|
|
}
|
|
|
|
void riscv_setup_direct_kernel(hwaddr kernel_addr, hwaddr fdt_addr)
|
|
{
|
|
CPUState *cs;
|
|
|
|
for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
|
|
RISCVCPU *riscv_cpu = RISCV_CPU(cs);
|
|
riscv_cpu->env.kernel_addr = kernel_addr;
|
|
riscv_cpu->env.fdt_addr = fdt_addr;
|
|
}
|
|
}
|
|
|
|
void riscv_setup_firmware_boot(MachineState *machine)
|
|
{
|
|
if (machine->kernel_filename) {
|
|
FWCfgState *fw_cfg;
|
|
fw_cfg = fw_cfg_find();
|
|
|
|
assert(fw_cfg);
|
|
/*
|
|
* Expose the kernel, the command line, and the initrd in fw_cfg.
|
|
* We don't process them here at all, it's all left to the
|
|
* firmware.
|
|
*/
|
|
load_image_to_fw_cfg(fw_cfg,
|
|
FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
|
|
machine->kernel_filename,
|
|
true);
|
|
load_image_to_fw_cfg(fw_cfg,
|
|
FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
|
|
machine->initrd_filename, false);
|
|
|
|
if (machine->kernel_cmdline) {
|
|
fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
|
|
strlen(machine->kernel_cmdline) + 1);
|
|
fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
|
|
machine->kernel_cmdline);
|
|
}
|
|
}
|
|
}
|