bccd9ec5f0
Pass CPUState pointer to tlb_fill() instead of architecture local cpu_single_env hacks. Signed-off-by: Blue Swirl <blauwirbel@gmail.com>
3412 lines
105 KiB
C
3412 lines
105 KiB
C
/*
|
|
* MIPS emulation helpers for qemu.
|
|
*
|
|
* Copyright (c) 2004-2005 Jocelyn Mayer
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#include <stdlib.h>
|
|
#include "cpu.h"
|
|
#include "dyngen-exec.h"
|
|
|
|
#include "host-utils.h"
|
|
|
|
#include "helper.h"
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
#include "softmmu_exec.h"
|
|
#endif /* !defined(CONFIG_USER_ONLY) */
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
static inline void cpu_mips_tlb_flush (CPUState *env, int flush_global);
|
|
#endif
|
|
|
|
static inline void compute_hflags(CPUState *env)
|
|
{
|
|
env->hflags &= ~(MIPS_HFLAG_COP1X | MIPS_HFLAG_64 | MIPS_HFLAG_CP0 |
|
|
MIPS_HFLAG_F64 | MIPS_HFLAG_FPU | MIPS_HFLAG_KSU |
|
|
MIPS_HFLAG_UX);
|
|
if (!(env->CP0_Status & (1 << CP0St_EXL)) &&
|
|
!(env->CP0_Status & (1 << CP0St_ERL)) &&
|
|
!(env->hflags & MIPS_HFLAG_DM)) {
|
|
env->hflags |= (env->CP0_Status >> CP0St_KSU) & MIPS_HFLAG_KSU;
|
|
}
|
|
#if defined(TARGET_MIPS64)
|
|
if (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_UM) ||
|
|
(env->CP0_Status & (1 << CP0St_PX)) ||
|
|
(env->CP0_Status & (1 << CP0St_UX))) {
|
|
env->hflags |= MIPS_HFLAG_64;
|
|
}
|
|
if (env->CP0_Status & (1 << CP0St_UX)) {
|
|
env->hflags |= MIPS_HFLAG_UX;
|
|
}
|
|
#endif
|
|
if ((env->CP0_Status & (1 << CP0St_CU0)) ||
|
|
!(env->hflags & MIPS_HFLAG_KSU)) {
|
|
env->hflags |= MIPS_HFLAG_CP0;
|
|
}
|
|
if (env->CP0_Status & (1 << CP0St_CU1)) {
|
|
env->hflags |= MIPS_HFLAG_FPU;
|
|
}
|
|
if (env->CP0_Status & (1 << CP0St_FR)) {
|
|
env->hflags |= MIPS_HFLAG_F64;
|
|
}
|
|
if (env->insn_flags & ISA_MIPS32R2) {
|
|
if (env->active_fpu.fcr0 & (1 << FCR0_F64)) {
|
|
env->hflags |= MIPS_HFLAG_COP1X;
|
|
}
|
|
} else if (env->insn_flags & ISA_MIPS32) {
|
|
if (env->hflags & MIPS_HFLAG_64) {
|
|
env->hflags |= MIPS_HFLAG_COP1X;
|
|
}
|
|
} else if (env->insn_flags & ISA_MIPS4) {
|
|
/* All supported MIPS IV CPUs use the XX (CU3) to enable
|
|
and disable the MIPS IV extensions to the MIPS III ISA.
|
|
Some other MIPS IV CPUs ignore the bit, so the check here
|
|
would be too restrictive for them. */
|
|
if (env->CP0_Status & (1 << CP0St_CU3)) {
|
|
env->hflags |= MIPS_HFLAG_COP1X;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* Exceptions processing helpers */
|
|
|
|
void helper_raise_exception_err (uint32_t exception, int error_code)
|
|
{
|
|
#if 1
|
|
if (exception < 0x100)
|
|
qemu_log("%s: %d %d\n", __func__, exception, error_code);
|
|
#endif
|
|
env->exception_index = exception;
|
|
env->error_code = error_code;
|
|
cpu_loop_exit(env);
|
|
}
|
|
|
|
void helper_raise_exception (uint32_t exception)
|
|
{
|
|
helper_raise_exception_err(exception, 0);
|
|
}
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
static void do_restore_state (void *pc_ptr)
|
|
{
|
|
TranslationBlock *tb;
|
|
unsigned long pc = (unsigned long) pc_ptr;
|
|
|
|
tb = tb_find_pc (pc);
|
|
if (tb) {
|
|
cpu_restore_state(tb, env, pc);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if defined(CONFIG_USER_ONLY)
|
|
#define HELPER_LD(name, insn, type) \
|
|
static inline type do_##name(target_ulong addr, int mem_idx) \
|
|
{ \
|
|
return (type) insn##_raw(addr); \
|
|
}
|
|
#else
|
|
#define HELPER_LD(name, insn, type) \
|
|
static inline type do_##name(target_ulong addr, int mem_idx) \
|
|
{ \
|
|
switch (mem_idx) \
|
|
{ \
|
|
case 0: return (type) insn##_kernel(addr); break; \
|
|
case 1: return (type) insn##_super(addr); break; \
|
|
default: \
|
|
case 2: return (type) insn##_user(addr); break; \
|
|
} \
|
|
}
|
|
#endif
|
|
HELPER_LD(lbu, ldub, uint8_t)
|
|
HELPER_LD(lw, ldl, int32_t)
|
|
#ifdef TARGET_MIPS64
|
|
HELPER_LD(ld, ldq, int64_t)
|
|
#endif
|
|
#undef HELPER_LD
|
|
|
|
#if defined(CONFIG_USER_ONLY)
|
|
#define HELPER_ST(name, insn, type) \
|
|
static inline void do_##name(target_ulong addr, type val, int mem_idx) \
|
|
{ \
|
|
insn##_raw(addr, val); \
|
|
}
|
|
#else
|
|
#define HELPER_ST(name, insn, type) \
|
|
static inline void do_##name(target_ulong addr, type val, int mem_idx) \
|
|
{ \
|
|
switch (mem_idx) \
|
|
{ \
|
|
case 0: insn##_kernel(addr, val); break; \
|
|
case 1: insn##_super(addr, val); break; \
|
|
default: \
|
|
case 2: insn##_user(addr, val); break; \
|
|
} \
|
|
}
|
|
#endif
|
|
HELPER_ST(sb, stb, uint8_t)
|
|
HELPER_ST(sw, stl, uint32_t)
|
|
#ifdef TARGET_MIPS64
|
|
HELPER_ST(sd, stq, uint64_t)
|
|
#endif
|
|
#undef HELPER_ST
|
|
|
|
target_ulong helper_clo (target_ulong arg1)
|
|
{
|
|
return clo32(arg1);
|
|
}
|
|
|
|
target_ulong helper_clz (target_ulong arg1)
|
|
{
|
|
return clz32(arg1);
|
|
}
|
|
|
|
#if defined(TARGET_MIPS64)
|
|
target_ulong helper_dclo (target_ulong arg1)
|
|
{
|
|
return clo64(arg1);
|
|
}
|
|
|
|
target_ulong helper_dclz (target_ulong arg1)
|
|
{
|
|
return clz64(arg1);
|
|
}
|
|
#endif /* TARGET_MIPS64 */
|
|
|
|
/* 64 bits arithmetic for 32 bits hosts */
|
|
static inline uint64_t get_HILO (void)
|
|
{
|
|
return ((uint64_t)(env->active_tc.HI[0]) << 32) | (uint32_t)env->active_tc.LO[0];
|
|
}
|
|
|
|
static inline void set_HILO (uint64_t HILO)
|
|
{
|
|
env->active_tc.LO[0] = (int32_t)HILO;
|
|
env->active_tc.HI[0] = (int32_t)(HILO >> 32);
|
|
}
|
|
|
|
static inline void set_HIT0_LO (target_ulong arg1, uint64_t HILO)
|
|
{
|
|
env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
|
|
arg1 = env->active_tc.HI[0] = (int32_t)(HILO >> 32);
|
|
}
|
|
|
|
static inline void set_HI_LOT0 (target_ulong arg1, uint64_t HILO)
|
|
{
|
|
arg1 = env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
|
|
env->active_tc.HI[0] = (int32_t)(HILO >> 32);
|
|
}
|
|
|
|
/* Multiplication variants of the vr54xx. */
|
|
target_ulong helper_muls (target_ulong arg1, target_ulong arg2)
|
|
{
|
|
set_HI_LOT0(arg1, 0 - ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2));
|
|
|
|
return arg1;
|
|
}
|
|
|
|
target_ulong helper_mulsu (target_ulong arg1, target_ulong arg2)
|
|
{
|
|
set_HI_LOT0(arg1, 0 - ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2));
|
|
|
|
return arg1;
|
|
}
|
|
|
|
target_ulong helper_macc (target_ulong arg1, target_ulong arg2)
|
|
{
|
|
set_HI_LOT0(arg1, ((int64_t)get_HILO()) + ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2));
|
|
|
|
return arg1;
|
|
}
|
|
|
|
target_ulong helper_macchi (target_ulong arg1, target_ulong arg2)
|
|
{
|
|
set_HIT0_LO(arg1, ((int64_t)get_HILO()) + ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2));
|
|
|
|
return arg1;
|
|
}
|
|
|
|
target_ulong helper_maccu (target_ulong arg1, target_ulong arg2)
|
|
{
|
|
set_HI_LOT0(arg1, ((uint64_t)get_HILO()) + ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2));
|
|
|
|
return arg1;
|
|
}
|
|
|
|
target_ulong helper_macchiu (target_ulong arg1, target_ulong arg2)
|
|
{
|
|
set_HIT0_LO(arg1, ((uint64_t)get_HILO()) + ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2));
|
|
|
|
return arg1;
|
|
}
|
|
|
|
target_ulong helper_msac (target_ulong arg1, target_ulong arg2)
|
|
{
|
|
set_HI_LOT0(arg1, ((int64_t)get_HILO()) - ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2));
|
|
|
|
return arg1;
|
|
}
|
|
|
|
target_ulong helper_msachi (target_ulong arg1, target_ulong arg2)
|
|
{
|
|
set_HIT0_LO(arg1, ((int64_t)get_HILO()) - ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2));
|
|
|
|
return arg1;
|
|
}
|
|
|
|
target_ulong helper_msacu (target_ulong arg1, target_ulong arg2)
|
|
{
|
|
set_HI_LOT0(arg1, ((uint64_t)get_HILO()) - ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2));
|
|
|
|
return arg1;
|
|
}
|
|
|
|
target_ulong helper_msachiu (target_ulong arg1, target_ulong arg2)
|
|
{
|
|
set_HIT0_LO(arg1, ((uint64_t)get_HILO()) - ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2));
|
|
|
|
return arg1;
|
|
}
|
|
|
|
target_ulong helper_mulhi (target_ulong arg1, target_ulong arg2)
|
|
{
|
|
set_HIT0_LO(arg1, (int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2);
|
|
|
|
return arg1;
|
|
}
|
|
|
|
target_ulong helper_mulhiu (target_ulong arg1, target_ulong arg2)
|
|
{
|
|
set_HIT0_LO(arg1, (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
|
|
|
|
return arg1;
|
|
}
|
|
|
|
target_ulong helper_mulshi (target_ulong arg1, target_ulong arg2)
|
|
{
|
|
set_HIT0_LO(arg1, 0 - ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2));
|
|
|
|
return arg1;
|
|
}
|
|
|
|
target_ulong helper_mulshiu (target_ulong arg1, target_ulong arg2)
|
|
{
|
|
set_HIT0_LO(arg1, 0 - ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2));
|
|
|
|
return arg1;
|
|
}
|
|
|
|
#ifdef TARGET_MIPS64
|
|
void helper_dmult (target_ulong arg1, target_ulong arg2)
|
|
{
|
|
muls64(&(env->active_tc.LO[0]), &(env->active_tc.HI[0]), arg1, arg2);
|
|
}
|
|
|
|
void helper_dmultu (target_ulong arg1, target_ulong arg2)
|
|
{
|
|
mulu64(&(env->active_tc.LO[0]), &(env->active_tc.HI[0]), arg1, arg2);
|
|
}
|
|
#endif
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
|
|
static inline target_phys_addr_t do_translate_address(target_ulong address, int rw)
|
|
{
|
|
target_phys_addr_t lladdr;
|
|
|
|
lladdr = cpu_mips_translate_address(env, address, rw);
|
|
|
|
if (lladdr == -1LL) {
|
|
cpu_loop_exit(env);
|
|
} else {
|
|
return lladdr;
|
|
}
|
|
}
|
|
|
|
#define HELPER_LD_ATOMIC(name, insn) \
|
|
target_ulong helper_##name(target_ulong arg, int mem_idx) \
|
|
{ \
|
|
env->lladdr = do_translate_address(arg, 0); \
|
|
env->llval = do_##insn(arg, mem_idx); \
|
|
return env->llval; \
|
|
}
|
|
HELPER_LD_ATOMIC(ll, lw)
|
|
#ifdef TARGET_MIPS64
|
|
HELPER_LD_ATOMIC(lld, ld)
|
|
#endif
|
|
#undef HELPER_LD_ATOMIC
|
|
|
|
#define HELPER_ST_ATOMIC(name, ld_insn, st_insn, almask) \
|
|
target_ulong helper_##name(target_ulong arg1, target_ulong arg2, int mem_idx) \
|
|
{ \
|
|
target_long tmp; \
|
|
\
|
|
if (arg2 & almask) { \
|
|
env->CP0_BadVAddr = arg2; \
|
|
helper_raise_exception(EXCP_AdES); \
|
|
} \
|
|
if (do_translate_address(arg2, 1) == env->lladdr) { \
|
|
tmp = do_##ld_insn(arg2, mem_idx); \
|
|
if (tmp == env->llval) { \
|
|
do_##st_insn(arg2, arg1, mem_idx); \
|
|
return 1; \
|
|
} \
|
|
} \
|
|
return 0; \
|
|
}
|
|
HELPER_ST_ATOMIC(sc, lw, sw, 0x3)
|
|
#ifdef TARGET_MIPS64
|
|
HELPER_ST_ATOMIC(scd, ld, sd, 0x7)
|
|
#endif
|
|
#undef HELPER_ST_ATOMIC
|
|
#endif
|
|
|
|
#ifdef TARGET_WORDS_BIGENDIAN
|
|
#define GET_LMASK(v) ((v) & 3)
|
|
#define GET_OFFSET(addr, offset) (addr + (offset))
|
|
#else
|
|
#define GET_LMASK(v) (((v) & 3) ^ 3)
|
|
#define GET_OFFSET(addr, offset) (addr - (offset))
|
|
#endif
|
|
|
|
target_ulong helper_lwl(target_ulong arg1, target_ulong arg2, int mem_idx)
|
|
{
|
|
target_ulong tmp;
|
|
|
|
tmp = do_lbu(arg2, mem_idx);
|
|
arg1 = (arg1 & 0x00FFFFFF) | (tmp << 24);
|
|
|
|
if (GET_LMASK(arg2) <= 2) {
|
|
tmp = do_lbu(GET_OFFSET(arg2, 1), mem_idx);
|
|
arg1 = (arg1 & 0xFF00FFFF) | (tmp << 16);
|
|
}
|
|
|
|
if (GET_LMASK(arg2) <= 1) {
|
|
tmp = do_lbu(GET_OFFSET(arg2, 2), mem_idx);
|
|
arg1 = (arg1 & 0xFFFF00FF) | (tmp << 8);
|
|
}
|
|
|
|
if (GET_LMASK(arg2) == 0) {
|
|
tmp = do_lbu(GET_OFFSET(arg2, 3), mem_idx);
|
|
arg1 = (arg1 & 0xFFFFFF00) | tmp;
|
|
}
|
|
return (int32_t)arg1;
|
|
}
|
|
|
|
target_ulong helper_lwr(target_ulong arg1, target_ulong arg2, int mem_idx)
|
|
{
|
|
target_ulong tmp;
|
|
|
|
tmp = do_lbu(arg2, mem_idx);
|
|
arg1 = (arg1 & 0xFFFFFF00) | tmp;
|
|
|
|
if (GET_LMASK(arg2) >= 1) {
|
|
tmp = do_lbu(GET_OFFSET(arg2, -1), mem_idx);
|
|
arg1 = (arg1 & 0xFFFF00FF) | (tmp << 8);
|
|
}
|
|
|
|
if (GET_LMASK(arg2) >= 2) {
|
|
tmp = do_lbu(GET_OFFSET(arg2, -2), mem_idx);
|
|
arg1 = (arg1 & 0xFF00FFFF) | (tmp << 16);
|
|
}
|
|
|
|
if (GET_LMASK(arg2) == 3) {
|
|
tmp = do_lbu(GET_OFFSET(arg2, -3), mem_idx);
|
|
arg1 = (arg1 & 0x00FFFFFF) | (tmp << 24);
|
|
}
|
|
return (int32_t)arg1;
|
|
}
|
|
|
|
void helper_swl(target_ulong arg1, target_ulong arg2, int mem_idx)
|
|
{
|
|
do_sb(arg2, (uint8_t)(arg1 >> 24), mem_idx);
|
|
|
|
if (GET_LMASK(arg2) <= 2)
|
|
do_sb(GET_OFFSET(arg2, 1), (uint8_t)(arg1 >> 16), mem_idx);
|
|
|
|
if (GET_LMASK(arg2) <= 1)
|
|
do_sb(GET_OFFSET(arg2, 2), (uint8_t)(arg1 >> 8), mem_idx);
|
|
|
|
if (GET_LMASK(arg2) == 0)
|
|
do_sb(GET_OFFSET(arg2, 3), (uint8_t)arg1, mem_idx);
|
|
}
|
|
|
|
void helper_swr(target_ulong arg1, target_ulong arg2, int mem_idx)
|
|
{
|
|
do_sb(arg2, (uint8_t)arg1, mem_idx);
|
|
|
|
if (GET_LMASK(arg2) >= 1)
|
|
do_sb(GET_OFFSET(arg2, -1), (uint8_t)(arg1 >> 8), mem_idx);
|
|
|
|
if (GET_LMASK(arg2) >= 2)
|
|
do_sb(GET_OFFSET(arg2, -2), (uint8_t)(arg1 >> 16), mem_idx);
|
|
|
|
if (GET_LMASK(arg2) == 3)
|
|
do_sb(GET_OFFSET(arg2, -3), (uint8_t)(arg1 >> 24), mem_idx);
|
|
}
|
|
|
|
#if defined(TARGET_MIPS64)
|
|
/* "half" load and stores. We must do the memory access inline,
|
|
or fault handling won't work. */
|
|
|
|
#ifdef TARGET_WORDS_BIGENDIAN
|
|
#define GET_LMASK64(v) ((v) & 7)
|
|
#else
|
|
#define GET_LMASK64(v) (((v) & 7) ^ 7)
|
|
#endif
|
|
|
|
target_ulong helper_ldl(target_ulong arg1, target_ulong arg2, int mem_idx)
|
|
{
|
|
uint64_t tmp;
|
|
|
|
tmp = do_lbu(arg2, mem_idx);
|
|
arg1 = (arg1 & 0x00FFFFFFFFFFFFFFULL) | (tmp << 56);
|
|
|
|
if (GET_LMASK64(arg2) <= 6) {
|
|
tmp = do_lbu(GET_OFFSET(arg2, 1), mem_idx);
|
|
arg1 = (arg1 & 0xFF00FFFFFFFFFFFFULL) | (tmp << 48);
|
|
}
|
|
|
|
if (GET_LMASK64(arg2) <= 5) {
|
|
tmp = do_lbu(GET_OFFSET(arg2, 2), mem_idx);
|
|
arg1 = (arg1 & 0xFFFF00FFFFFFFFFFULL) | (tmp << 40);
|
|
}
|
|
|
|
if (GET_LMASK64(arg2) <= 4) {
|
|
tmp = do_lbu(GET_OFFSET(arg2, 3), mem_idx);
|
|
arg1 = (arg1 & 0xFFFFFF00FFFFFFFFULL) | (tmp << 32);
|
|
}
|
|
|
|
if (GET_LMASK64(arg2) <= 3) {
|
|
tmp = do_lbu(GET_OFFSET(arg2, 4), mem_idx);
|
|
arg1 = (arg1 & 0xFFFFFFFF00FFFFFFULL) | (tmp << 24);
|
|
}
|
|
|
|
if (GET_LMASK64(arg2) <= 2) {
|
|
tmp = do_lbu(GET_OFFSET(arg2, 5), mem_idx);
|
|
arg1 = (arg1 & 0xFFFFFFFFFF00FFFFULL) | (tmp << 16);
|
|
}
|
|
|
|
if (GET_LMASK64(arg2) <= 1) {
|
|
tmp = do_lbu(GET_OFFSET(arg2, 6), mem_idx);
|
|
arg1 = (arg1 & 0xFFFFFFFFFFFF00FFULL) | (tmp << 8);
|
|
}
|
|
|
|
if (GET_LMASK64(arg2) == 0) {
|
|
tmp = do_lbu(GET_OFFSET(arg2, 7), mem_idx);
|
|
arg1 = (arg1 & 0xFFFFFFFFFFFFFF00ULL) | tmp;
|
|
}
|
|
|
|
return arg1;
|
|
}
|
|
|
|
target_ulong helper_ldr(target_ulong arg1, target_ulong arg2, int mem_idx)
|
|
{
|
|
uint64_t tmp;
|
|
|
|
tmp = do_lbu(arg2, mem_idx);
|
|
arg1 = (arg1 & 0xFFFFFFFFFFFFFF00ULL) | tmp;
|
|
|
|
if (GET_LMASK64(arg2) >= 1) {
|
|
tmp = do_lbu(GET_OFFSET(arg2, -1), mem_idx);
|
|
arg1 = (arg1 & 0xFFFFFFFFFFFF00FFULL) | (tmp << 8);
|
|
}
|
|
|
|
if (GET_LMASK64(arg2) >= 2) {
|
|
tmp = do_lbu(GET_OFFSET(arg2, -2), mem_idx);
|
|
arg1 = (arg1 & 0xFFFFFFFFFF00FFFFULL) | (tmp << 16);
|
|
}
|
|
|
|
if (GET_LMASK64(arg2) >= 3) {
|
|
tmp = do_lbu(GET_OFFSET(arg2, -3), mem_idx);
|
|
arg1 = (arg1 & 0xFFFFFFFF00FFFFFFULL) | (tmp << 24);
|
|
}
|
|
|
|
if (GET_LMASK64(arg2) >= 4) {
|
|
tmp = do_lbu(GET_OFFSET(arg2, -4), mem_idx);
|
|
arg1 = (arg1 & 0xFFFFFF00FFFFFFFFULL) | (tmp << 32);
|
|
}
|
|
|
|
if (GET_LMASK64(arg2) >= 5) {
|
|
tmp = do_lbu(GET_OFFSET(arg2, -5), mem_idx);
|
|
arg1 = (arg1 & 0xFFFF00FFFFFFFFFFULL) | (tmp << 40);
|
|
}
|
|
|
|
if (GET_LMASK64(arg2) >= 6) {
|
|
tmp = do_lbu(GET_OFFSET(arg2, -6), mem_idx);
|
|
arg1 = (arg1 & 0xFF00FFFFFFFFFFFFULL) | (tmp << 48);
|
|
}
|
|
|
|
if (GET_LMASK64(arg2) == 7) {
|
|
tmp = do_lbu(GET_OFFSET(arg2, -7), mem_idx);
|
|
arg1 = (arg1 & 0x00FFFFFFFFFFFFFFULL) | (tmp << 56);
|
|
}
|
|
|
|
return arg1;
|
|
}
|
|
|
|
void helper_sdl(target_ulong arg1, target_ulong arg2, int mem_idx)
|
|
{
|
|
do_sb(arg2, (uint8_t)(arg1 >> 56), mem_idx);
|
|
|
|
if (GET_LMASK64(arg2) <= 6)
|
|
do_sb(GET_OFFSET(arg2, 1), (uint8_t)(arg1 >> 48), mem_idx);
|
|
|
|
if (GET_LMASK64(arg2) <= 5)
|
|
do_sb(GET_OFFSET(arg2, 2), (uint8_t)(arg1 >> 40), mem_idx);
|
|
|
|
if (GET_LMASK64(arg2) <= 4)
|
|
do_sb(GET_OFFSET(arg2, 3), (uint8_t)(arg1 >> 32), mem_idx);
|
|
|
|
if (GET_LMASK64(arg2) <= 3)
|
|
do_sb(GET_OFFSET(arg2, 4), (uint8_t)(arg1 >> 24), mem_idx);
|
|
|
|
if (GET_LMASK64(arg2) <= 2)
|
|
do_sb(GET_OFFSET(arg2, 5), (uint8_t)(arg1 >> 16), mem_idx);
|
|
|
|
if (GET_LMASK64(arg2) <= 1)
|
|
do_sb(GET_OFFSET(arg2, 6), (uint8_t)(arg1 >> 8), mem_idx);
|
|
|
|
if (GET_LMASK64(arg2) <= 0)
|
|
do_sb(GET_OFFSET(arg2, 7), (uint8_t)arg1, mem_idx);
|
|
}
|
|
|
|
void helper_sdr(target_ulong arg1, target_ulong arg2, int mem_idx)
|
|
{
|
|
do_sb(arg2, (uint8_t)arg1, mem_idx);
|
|
|
|
if (GET_LMASK64(arg2) >= 1)
|
|
do_sb(GET_OFFSET(arg2, -1), (uint8_t)(arg1 >> 8), mem_idx);
|
|
|
|
if (GET_LMASK64(arg2) >= 2)
|
|
do_sb(GET_OFFSET(arg2, -2), (uint8_t)(arg1 >> 16), mem_idx);
|
|
|
|
if (GET_LMASK64(arg2) >= 3)
|
|
do_sb(GET_OFFSET(arg2, -3), (uint8_t)(arg1 >> 24), mem_idx);
|
|
|
|
if (GET_LMASK64(arg2) >= 4)
|
|
do_sb(GET_OFFSET(arg2, -4), (uint8_t)(arg1 >> 32), mem_idx);
|
|
|
|
if (GET_LMASK64(arg2) >= 5)
|
|
do_sb(GET_OFFSET(arg2, -5), (uint8_t)(arg1 >> 40), mem_idx);
|
|
|
|
if (GET_LMASK64(arg2) >= 6)
|
|
do_sb(GET_OFFSET(arg2, -6), (uint8_t)(arg1 >> 48), mem_idx);
|
|
|
|
if (GET_LMASK64(arg2) == 7)
|
|
do_sb(GET_OFFSET(arg2, -7), (uint8_t)(arg1 >> 56), mem_idx);
|
|
}
|
|
#endif /* TARGET_MIPS64 */
|
|
|
|
static const int multiple_regs[] = { 16, 17, 18, 19, 20, 21, 22, 23, 30 };
|
|
|
|
void helper_lwm (target_ulong addr, target_ulong reglist, uint32_t mem_idx)
|
|
{
|
|
target_ulong base_reglist = reglist & 0xf;
|
|
target_ulong do_r31 = reglist & 0x10;
|
|
#ifdef CONFIG_USER_ONLY
|
|
#undef ldfun
|
|
#define ldfun ldl_raw
|
|
#else
|
|
uint32_t (*ldfun)(target_ulong);
|
|
|
|
switch (mem_idx)
|
|
{
|
|
case 0: ldfun = ldl_kernel; break;
|
|
case 1: ldfun = ldl_super; break;
|
|
default:
|
|
case 2: ldfun = ldl_user; break;
|
|
}
|
|
#endif
|
|
|
|
if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
|
|
target_ulong i;
|
|
|
|
for (i = 0; i < base_reglist; i++) {
|
|
env->active_tc.gpr[multiple_regs[i]] = (target_long) ldfun(addr);
|
|
addr += 4;
|
|
}
|
|
}
|
|
|
|
if (do_r31) {
|
|
env->active_tc.gpr[31] = (target_long) ldfun(addr);
|
|
}
|
|
}
|
|
|
|
void helper_swm (target_ulong addr, target_ulong reglist, uint32_t mem_idx)
|
|
{
|
|
target_ulong base_reglist = reglist & 0xf;
|
|
target_ulong do_r31 = reglist & 0x10;
|
|
#ifdef CONFIG_USER_ONLY
|
|
#undef stfun
|
|
#define stfun stl_raw
|
|
#else
|
|
void (*stfun)(target_ulong, uint32_t);
|
|
|
|
switch (mem_idx)
|
|
{
|
|
case 0: stfun = stl_kernel; break;
|
|
case 1: stfun = stl_super; break;
|
|
default:
|
|
case 2: stfun = stl_user; break;
|
|
}
|
|
#endif
|
|
|
|
if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
|
|
target_ulong i;
|
|
|
|
for (i = 0; i < base_reglist; i++) {
|
|
stfun(addr, env->active_tc.gpr[multiple_regs[i]]);
|
|
addr += 4;
|
|
}
|
|
}
|
|
|
|
if (do_r31) {
|
|
stfun(addr, env->active_tc.gpr[31]);
|
|
}
|
|
}
|
|
|
|
#if defined(TARGET_MIPS64)
|
|
void helper_ldm (target_ulong addr, target_ulong reglist, uint32_t mem_idx)
|
|
{
|
|
target_ulong base_reglist = reglist & 0xf;
|
|
target_ulong do_r31 = reglist & 0x10;
|
|
#ifdef CONFIG_USER_ONLY
|
|
#undef ldfun
|
|
#define ldfun ldq_raw
|
|
#else
|
|
uint64_t (*ldfun)(target_ulong);
|
|
|
|
switch (mem_idx)
|
|
{
|
|
case 0: ldfun = ldq_kernel; break;
|
|
case 1: ldfun = ldq_super; break;
|
|
default:
|
|
case 2: ldfun = ldq_user; break;
|
|
}
|
|
#endif
|
|
|
|
if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
|
|
target_ulong i;
|
|
|
|
for (i = 0; i < base_reglist; i++) {
|
|
env->active_tc.gpr[multiple_regs[i]] = ldfun(addr);
|
|
addr += 8;
|
|
}
|
|
}
|
|
|
|
if (do_r31) {
|
|
env->active_tc.gpr[31] = ldfun(addr);
|
|
}
|
|
}
|
|
|
|
void helper_sdm (target_ulong addr, target_ulong reglist, uint32_t mem_idx)
|
|
{
|
|
target_ulong base_reglist = reglist & 0xf;
|
|
target_ulong do_r31 = reglist & 0x10;
|
|
#ifdef CONFIG_USER_ONLY
|
|
#undef stfun
|
|
#define stfun stq_raw
|
|
#else
|
|
void (*stfun)(target_ulong, uint64_t);
|
|
|
|
switch (mem_idx)
|
|
{
|
|
case 0: stfun = stq_kernel; break;
|
|
case 1: stfun = stq_super; break;
|
|
default:
|
|
case 2: stfun = stq_user; break;
|
|
}
|
|
#endif
|
|
|
|
if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
|
|
target_ulong i;
|
|
|
|
for (i = 0; i < base_reglist; i++) {
|
|
stfun(addr, env->active_tc.gpr[multiple_regs[i]]);
|
|
addr += 8;
|
|
}
|
|
}
|
|
|
|
if (do_r31) {
|
|
stfun(addr, env->active_tc.gpr[31]);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
/* SMP helpers. */
|
|
static int mips_vpe_is_wfi(CPUState *c)
|
|
{
|
|
/* If the VPE is halted but otherwise active, it means it's waiting for
|
|
an interrupt. */
|
|
return c->halted && mips_vpe_active(c);
|
|
}
|
|
|
|
static inline void mips_vpe_wake(CPUState *c)
|
|
{
|
|
/* Dont set ->halted = 0 directly, let it be done via cpu_has_work
|
|
because there might be other conditions that state that c should
|
|
be sleeping. */
|
|
cpu_interrupt(c, CPU_INTERRUPT_WAKE);
|
|
}
|
|
|
|
static inline void mips_vpe_sleep(CPUState *c)
|
|
{
|
|
/* The VPE was shut off, really go to bed.
|
|
Reset any old _WAKE requests. */
|
|
c->halted = 1;
|
|
cpu_reset_interrupt(c, CPU_INTERRUPT_WAKE);
|
|
}
|
|
|
|
static inline void mips_tc_wake(CPUState *c, int tc)
|
|
{
|
|
/* FIXME: TC reschedule. */
|
|
if (mips_vpe_active(c) && !mips_vpe_is_wfi(c)) {
|
|
mips_vpe_wake(c);
|
|
}
|
|
}
|
|
|
|
static inline void mips_tc_sleep(CPUState *c, int tc)
|
|
{
|
|
/* FIXME: TC reschedule. */
|
|
if (!mips_vpe_active(c)) {
|
|
mips_vpe_sleep(c);
|
|
}
|
|
}
|
|
|
|
/* tc should point to an int with the value of the global TC index.
|
|
This function will transform it into a local index within the
|
|
returned CPUState.
|
|
|
|
FIXME: This code assumes that all VPEs have the same number of TCs,
|
|
which depends on runtime setup. Can probably be fixed by
|
|
walking the list of CPUStates. */
|
|
static CPUState *mips_cpu_map_tc(int *tc)
|
|
{
|
|
CPUState *other;
|
|
int vpe_idx, nr_threads = env->nr_threads;
|
|
int tc_idx = *tc;
|
|
|
|
if (!(env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP))) {
|
|
/* Not allowed to address other CPUs. */
|
|
*tc = env->current_tc;
|
|
return env;
|
|
}
|
|
|
|
vpe_idx = tc_idx / nr_threads;
|
|
*tc = tc_idx % nr_threads;
|
|
other = qemu_get_cpu(vpe_idx);
|
|
return other ? other : env;
|
|
}
|
|
|
|
/* The per VPE CP0_Status register shares some fields with the per TC
|
|
CP0_TCStatus registers. These fields are wired to the same registers,
|
|
so changes to either of them should be reflected on both registers.
|
|
|
|
Also, EntryHi shares the bottom 8 bit ASID with TCStauts.
|
|
|
|
These helper call synchronizes the regs for a given cpu. */
|
|
|
|
/* Called for updates to CP0_Status. */
|
|
static void sync_c0_status(CPUState *cpu, int tc)
|
|
{
|
|
int32_t tcstatus, *tcst;
|
|
uint32_t v = cpu->CP0_Status;
|
|
uint32_t cu, mx, asid, ksu;
|
|
uint32_t mask = ((1 << CP0TCSt_TCU3)
|
|
| (1 << CP0TCSt_TCU2)
|
|
| (1 << CP0TCSt_TCU1)
|
|
| (1 << CP0TCSt_TCU0)
|
|
| (1 << CP0TCSt_TMX)
|
|
| (3 << CP0TCSt_TKSU)
|
|
| (0xff << CP0TCSt_TASID));
|
|
|
|
cu = (v >> CP0St_CU0) & 0xf;
|
|
mx = (v >> CP0St_MX) & 0x1;
|
|
ksu = (v >> CP0St_KSU) & 0x3;
|
|
asid = env->CP0_EntryHi & 0xff;
|
|
|
|
tcstatus = cu << CP0TCSt_TCU0;
|
|
tcstatus |= mx << CP0TCSt_TMX;
|
|
tcstatus |= ksu << CP0TCSt_TKSU;
|
|
tcstatus |= asid;
|
|
|
|
if (tc == cpu->current_tc) {
|
|
tcst = &cpu->active_tc.CP0_TCStatus;
|
|
} else {
|
|
tcst = &cpu->tcs[tc].CP0_TCStatus;
|
|
}
|
|
|
|
*tcst &= ~mask;
|
|
*tcst |= tcstatus;
|
|
compute_hflags(cpu);
|
|
}
|
|
|
|
/* Called for updates to CP0_TCStatus. */
|
|
static void sync_c0_tcstatus(CPUState *cpu, int tc, target_ulong v)
|
|
{
|
|
uint32_t status;
|
|
uint32_t tcu, tmx, tasid, tksu;
|
|
uint32_t mask = ((1 << CP0St_CU3)
|
|
| (1 << CP0St_CU2)
|
|
| (1 << CP0St_CU1)
|
|
| (1 << CP0St_CU0)
|
|
| (1 << CP0St_MX)
|
|
| (3 << CP0St_KSU));
|
|
|
|
tcu = (v >> CP0TCSt_TCU0) & 0xf;
|
|
tmx = (v >> CP0TCSt_TMX) & 0x1;
|
|
tasid = v & 0xff;
|
|
tksu = (v >> CP0TCSt_TKSU) & 0x3;
|
|
|
|
status = tcu << CP0St_CU0;
|
|
status |= tmx << CP0St_MX;
|
|
status |= tksu << CP0St_KSU;
|
|
|
|
cpu->CP0_Status &= ~mask;
|
|
cpu->CP0_Status |= status;
|
|
|
|
/* Sync the TASID with EntryHi. */
|
|
cpu->CP0_EntryHi &= ~0xff;
|
|
cpu->CP0_EntryHi = tasid;
|
|
|
|
compute_hflags(cpu);
|
|
}
|
|
|
|
/* Called for updates to CP0_EntryHi. */
|
|
static void sync_c0_entryhi(CPUState *cpu, int tc)
|
|
{
|
|
int32_t *tcst;
|
|
uint32_t asid, v = cpu->CP0_EntryHi;
|
|
|
|
asid = v & 0xff;
|
|
|
|
if (tc == cpu->current_tc) {
|
|
tcst = &cpu->active_tc.CP0_TCStatus;
|
|
} else {
|
|
tcst = &cpu->tcs[tc].CP0_TCStatus;
|
|
}
|
|
|
|
*tcst &= ~0xff;
|
|
*tcst |= asid;
|
|
}
|
|
|
|
/* CP0 helpers */
|
|
target_ulong helper_mfc0_mvpcontrol (void)
|
|
{
|
|
return env->mvp->CP0_MVPControl;
|
|
}
|
|
|
|
target_ulong helper_mfc0_mvpconf0 (void)
|
|
{
|
|
return env->mvp->CP0_MVPConf0;
|
|
}
|
|
|
|
target_ulong helper_mfc0_mvpconf1 (void)
|
|
{
|
|
return env->mvp->CP0_MVPConf1;
|
|
}
|
|
|
|
target_ulong helper_mfc0_random (void)
|
|
{
|
|
return (int32_t)cpu_mips_get_random(env);
|
|
}
|
|
|
|
target_ulong helper_mfc0_tcstatus (void)
|
|
{
|
|
return env->active_tc.CP0_TCStatus;
|
|
}
|
|
|
|
target_ulong helper_mftc0_tcstatus(void)
|
|
{
|
|
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
|
|
CPUState *other = mips_cpu_map_tc(&other_tc);
|
|
|
|
if (other_tc == other->current_tc)
|
|
return other->active_tc.CP0_TCStatus;
|
|
else
|
|
return other->tcs[other_tc].CP0_TCStatus;
|
|
}
|
|
|
|
target_ulong helper_mfc0_tcbind (void)
|
|
{
|
|
return env->active_tc.CP0_TCBind;
|
|
}
|
|
|
|
target_ulong helper_mftc0_tcbind(void)
|
|
{
|
|
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
|
|
CPUState *other = mips_cpu_map_tc(&other_tc);
|
|
|
|
if (other_tc == other->current_tc)
|
|
return other->active_tc.CP0_TCBind;
|
|
else
|
|
return other->tcs[other_tc].CP0_TCBind;
|
|
}
|
|
|
|
target_ulong helper_mfc0_tcrestart (void)
|
|
{
|
|
return env->active_tc.PC;
|
|
}
|
|
|
|
target_ulong helper_mftc0_tcrestart(void)
|
|
{
|
|
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
|
|
CPUState *other = mips_cpu_map_tc(&other_tc);
|
|
|
|
if (other_tc == other->current_tc)
|
|
return other->active_tc.PC;
|
|
else
|
|
return other->tcs[other_tc].PC;
|
|
}
|
|
|
|
target_ulong helper_mfc0_tchalt (void)
|
|
{
|
|
return env->active_tc.CP0_TCHalt;
|
|
}
|
|
|
|
target_ulong helper_mftc0_tchalt(void)
|
|
{
|
|
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
|
|
CPUState *other = mips_cpu_map_tc(&other_tc);
|
|
|
|
if (other_tc == other->current_tc)
|
|
return other->active_tc.CP0_TCHalt;
|
|
else
|
|
return other->tcs[other_tc].CP0_TCHalt;
|
|
}
|
|
|
|
target_ulong helper_mfc0_tccontext (void)
|
|
{
|
|
return env->active_tc.CP0_TCContext;
|
|
}
|
|
|
|
target_ulong helper_mftc0_tccontext(void)
|
|
{
|
|
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
|
|
CPUState *other = mips_cpu_map_tc(&other_tc);
|
|
|
|
if (other_tc == other->current_tc)
|
|
return other->active_tc.CP0_TCContext;
|
|
else
|
|
return other->tcs[other_tc].CP0_TCContext;
|
|
}
|
|
|
|
target_ulong helper_mfc0_tcschedule (void)
|
|
{
|
|
return env->active_tc.CP0_TCSchedule;
|
|
}
|
|
|
|
target_ulong helper_mftc0_tcschedule(void)
|
|
{
|
|
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
|
|
CPUState *other = mips_cpu_map_tc(&other_tc);
|
|
|
|
if (other_tc == other->current_tc)
|
|
return other->active_tc.CP0_TCSchedule;
|
|
else
|
|
return other->tcs[other_tc].CP0_TCSchedule;
|
|
}
|
|
|
|
target_ulong helper_mfc0_tcschefback (void)
|
|
{
|
|
return env->active_tc.CP0_TCScheFBack;
|
|
}
|
|
|
|
target_ulong helper_mftc0_tcschefback(void)
|
|
{
|
|
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
|
|
CPUState *other = mips_cpu_map_tc(&other_tc);
|
|
|
|
if (other_tc == other->current_tc)
|
|
return other->active_tc.CP0_TCScheFBack;
|
|
else
|
|
return other->tcs[other_tc].CP0_TCScheFBack;
|
|
}
|
|
|
|
target_ulong helper_mfc0_count (void)
|
|
{
|
|
return (int32_t)cpu_mips_get_count(env);
|
|
}
|
|
|
|
target_ulong helper_mftc0_entryhi(void)
|
|
{
|
|
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
|
|
CPUState *other = mips_cpu_map_tc(&other_tc);
|
|
|
|
return other->CP0_EntryHi;
|
|
}
|
|
|
|
target_ulong helper_mftc0_cause(void)
|
|
{
|
|
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
|
|
int32_t tccause;
|
|
CPUState *other = mips_cpu_map_tc(&other_tc);
|
|
|
|
if (other_tc == other->current_tc) {
|
|
tccause = other->CP0_Cause;
|
|
} else {
|
|
tccause = other->CP0_Cause;
|
|
}
|
|
|
|
return tccause;
|
|
}
|
|
|
|
target_ulong helper_mftc0_status(void)
|
|
{
|
|
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
|
|
CPUState *other = mips_cpu_map_tc(&other_tc);
|
|
|
|
return other->CP0_Status;
|
|
}
|
|
|
|
target_ulong helper_mfc0_lladdr (void)
|
|
{
|
|
return (int32_t)(env->lladdr >> env->CP0_LLAddr_shift);
|
|
}
|
|
|
|
target_ulong helper_mfc0_watchlo (uint32_t sel)
|
|
{
|
|
return (int32_t)env->CP0_WatchLo[sel];
|
|
}
|
|
|
|
target_ulong helper_mfc0_watchhi (uint32_t sel)
|
|
{
|
|
return env->CP0_WatchHi[sel];
|
|
}
|
|
|
|
target_ulong helper_mfc0_debug (void)
|
|
{
|
|
target_ulong t0 = env->CP0_Debug;
|
|
if (env->hflags & MIPS_HFLAG_DM)
|
|
t0 |= 1 << CP0DB_DM;
|
|
|
|
return t0;
|
|
}
|
|
|
|
target_ulong helper_mftc0_debug(void)
|
|
{
|
|
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
|
|
int32_t tcstatus;
|
|
CPUState *other = mips_cpu_map_tc(&other_tc);
|
|
|
|
if (other_tc == other->current_tc)
|
|
tcstatus = other->active_tc.CP0_Debug_tcstatus;
|
|
else
|
|
tcstatus = other->tcs[other_tc].CP0_Debug_tcstatus;
|
|
|
|
/* XXX: Might be wrong, check with EJTAG spec. */
|
|
return (other->CP0_Debug & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
|
|
(tcstatus & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
|
|
}
|
|
|
|
#if defined(TARGET_MIPS64)
|
|
target_ulong helper_dmfc0_tcrestart (void)
|
|
{
|
|
return env->active_tc.PC;
|
|
}
|
|
|
|
target_ulong helper_dmfc0_tchalt (void)
|
|
{
|
|
return env->active_tc.CP0_TCHalt;
|
|
}
|
|
|
|
target_ulong helper_dmfc0_tccontext (void)
|
|
{
|
|
return env->active_tc.CP0_TCContext;
|
|
}
|
|
|
|
target_ulong helper_dmfc0_tcschedule (void)
|
|
{
|
|
return env->active_tc.CP0_TCSchedule;
|
|
}
|
|
|
|
target_ulong helper_dmfc0_tcschefback (void)
|
|
{
|
|
return env->active_tc.CP0_TCScheFBack;
|
|
}
|
|
|
|
target_ulong helper_dmfc0_lladdr (void)
|
|
{
|
|
return env->lladdr >> env->CP0_LLAddr_shift;
|
|
}
|
|
|
|
target_ulong helper_dmfc0_watchlo (uint32_t sel)
|
|
{
|
|
return env->CP0_WatchLo[sel];
|
|
}
|
|
#endif /* TARGET_MIPS64 */
|
|
|
|
void helper_mtc0_index (target_ulong arg1)
|
|
{
|
|
int num = 1;
|
|
unsigned int tmp = env->tlb->nb_tlb;
|
|
|
|
do {
|
|
tmp >>= 1;
|
|
num <<= 1;
|
|
} while (tmp);
|
|
env->CP0_Index = (env->CP0_Index & 0x80000000) | (arg1 & (num - 1));
|
|
}
|
|
|
|
void helper_mtc0_mvpcontrol (target_ulong arg1)
|
|
{
|
|
uint32_t mask = 0;
|
|
uint32_t newval;
|
|
|
|
if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP))
|
|
mask |= (1 << CP0MVPCo_CPA) | (1 << CP0MVPCo_VPC) |
|
|
(1 << CP0MVPCo_EVP);
|
|
if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
|
|
mask |= (1 << CP0MVPCo_STLB);
|
|
newval = (env->mvp->CP0_MVPControl & ~mask) | (arg1 & mask);
|
|
|
|
// TODO: Enable/disable shared TLB, enable/disable VPEs.
|
|
|
|
env->mvp->CP0_MVPControl = newval;
|
|
}
|
|
|
|
void helper_mtc0_vpecontrol (target_ulong arg1)
|
|
{
|
|
uint32_t mask;
|
|
uint32_t newval;
|
|
|
|
mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) |
|
|
(1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC);
|
|
newval = (env->CP0_VPEControl & ~mask) | (arg1 & mask);
|
|
|
|
/* Yield scheduler intercept not implemented. */
|
|
/* Gating storage scheduler intercept not implemented. */
|
|
|
|
// TODO: Enable/disable TCs.
|
|
|
|
env->CP0_VPEControl = newval;
|
|
}
|
|
|
|
void helper_mttc0_vpecontrol(target_ulong arg1)
|
|
{
|
|
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
|
|
CPUState *other = mips_cpu_map_tc(&other_tc);
|
|
uint32_t mask;
|
|
uint32_t newval;
|
|
|
|
mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) |
|
|
(1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC);
|
|
newval = (other->CP0_VPEControl & ~mask) | (arg1 & mask);
|
|
|
|
/* TODO: Enable/disable TCs. */
|
|
|
|
other->CP0_VPEControl = newval;
|
|
}
|
|
|
|
target_ulong helper_mftc0_vpecontrol(void)
|
|
{
|
|
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
|
|
CPUState *other = mips_cpu_map_tc(&other_tc);
|
|
/* FIXME: Mask away return zero on read bits. */
|
|
return other->CP0_VPEControl;
|
|
}
|
|
|
|
target_ulong helper_mftc0_vpeconf0(void)
|
|
{
|
|
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
|
|
CPUState *other = mips_cpu_map_tc(&other_tc);
|
|
|
|
return other->CP0_VPEConf0;
|
|
}
|
|
|
|
void helper_mtc0_vpeconf0 (target_ulong arg1)
|
|
{
|
|
uint32_t mask = 0;
|
|
uint32_t newval;
|
|
|
|
if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP)) {
|
|
if (env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))
|
|
mask |= (0xff << CP0VPEC0_XTC);
|
|
mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA);
|
|
}
|
|
newval = (env->CP0_VPEConf0 & ~mask) | (arg1 & mask);
|
|
|
|
// TODO: TC exclusive handling due to ERL/EXL.
|
|
|
|
env->CP0_VPEConf0 = newval;
|
|
}
|
|
|
|
void helper_mttc0_vpeconf0(target_ulong arg1)
|
|
{
|
|
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
|
|
CPUState *other = mips_cpu_map_tc(&other_tc);
|
|
uint32_t mask = 0;
|
|
uint32_t newval;
|
|
|
|
mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA);
|
|
newval = (other->CP0_VPEConf0 & ~mask) | (arg1 & mask);
|
|
|
|
/* TODO: TC exclusive handling due to ERL/EXL. */
|
|
other->CP0_VPEConf0 = newval;
|
|
}
|
|
|
|
void helper_mtc0_vpeconf1 (target_ulong arg1)
|
|
{
|
|
uint32_t mask = 0;
|
|
uint32_t newval;
|
|
|
|
if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
|
|
mask |= (0xff << CP0VPEC1_NCX) | (0xff << CP0VPEC1_NCP2) |
|
|
(0xff << CP0VPEC1_NCP1);
|
|
newval = (env->CP0_VPEConf1 & ~mask) | (arg1 & mask);
|
|
|
|
/* UDI not implemented. */
|
|
/* CP2 not implemented. */
|
|
|
|
// TODO: Handle FPU (CP1) binding.
|
|
|
|
env->CP0_VPEConf1 = newval;
|
|
}
|
|
|
|
void helper_mtc0_yqmask (target_ulong arg1)
|
|
{
|
|
/* Yield qualifier inputs not implemented. */
|
|
env->CP0_YQMask = 0x00000000;
|
|
}
|
|
|
|
void helper_mtc0_vpeopt (target_ulong arg1)
|
|
{
|
|
env->CP0_VPEOpt = arg1 & 0x0000ffff;
|
|
}
|
|
|
|
void helper_mtc0_entrylo0 (target_ulong arg1)
|
|
{
|
|
/* Large physaddr (PABITS) not implemented */
|
|
/* 1k pages not implemented */
|
|
env->CP0_EntryLo0 = arg1 & 0x3FFFFFFF;
|
|
}
|
|
|
|
void helper_mtc0_tcstatus (target_ulong arg1)
|
|
{
|
|
uint32_t mask = env->CP0_TCStatus_rw_bitmask;
|
|
uint32_t newval;
|
|
|
|
newval = (env->active_tc.CP0_TCStatus & ~mask) | (arg1 & mask);
|
|
|
|
env->active_tc.CP0_TCStatus = newval;
|
|
sync_c0_tcstatus(env, env->current_tc, newval);
|
|
}
|
|
|
|
void helper_mttc0_tcstatus (target_ulong arg1)
|
|
{
|
|
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
|
|
CPUState *other = mips_cpu_map_tc(&other_tc);
|
|
|
|
if (other_tc == other->current_tc)
|
|
other->active_tc.CP0_TCStatus = arg1;
|
|
else
|
|
other->tcs[other_tc].CP0_TCStatus = arg1;
|
|
sync_c0_tcstatus(other, other_tc, arg1);
|
|
}
|
|
|
|
void helper_mtc0_tcbind (target_ulong arg1)
|
|
{
|
|
uint32_t mask = (1 << CP0TCBd_TBE);
|
|
uint32_t newval;
|
|
|
|
if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
|
|
mask |= (1 << CP0TCBd_CurVPE);
|
|
newval = (env->active_tc.CP0_TCBind & ~mask) | (arg1 & mask);
|
|
env->active_tc.CP0_TCBind = newval;
|
|
}
|
|
|
|
void helper_mttc0_tcbind (target_ulong arg1)
|
|
{
|
|
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
|
|
uint32_t mask = (1 << CP0TCBd_TBE);
|
|
uint32_t newval;
|
|
CPUState *other = mips_cpu_map_tc(&other_tc);
|
|
|
|
if (other->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
|
|
mask |= (1 << CP0TCBd_CurVPE);
|
|
if (other_tc == other->current_tc) {
|
|
newval = (other->active_tc.CP0_TCBind & ~mask) | (arg1 & mask);
|
|
other->active_tc.CP0_TCBind = newval;
|
|
} else {
|
|
newval = (other->tcs[other_tc].CP0_TCBind & ~mask) | (arg1 & mask);
|
|
other->tcs[other_tc].CP0_TCBind = newval;
|
|
}
|
|
}
|
|
|
|
void helper_mtc0_tcrestart (target_ulong arg1)
|
|
{
|
|
env->active_tc.PC = arg1;
|
|
env->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
|
|
env->lladdr = 0ULL;
|
|
/* MIPS16 not implemented. */
|
|
}
|
|
|
|
void helper_mttc0_tcrestart (target_ulong arg1)
|
|
{
|
|
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
|
|
CPUState *other = mips_cpu_map_tc(&other_tc);
|
|
|
|
if (other_tc == other->current_tc) {
|
|
other->active_tc.PC = arg1;
|
|
other->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
|
|
other->lladdr = 0ULL;
|
|
/* MIPS16 not implemented. */
|
|
} else {
|
|
other->tcs[other_tc].PC = arg1;
|
|
other->tcs[other_tc].CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
|
|
other->lladdr = 0ULL;
|
|
/* MIPS16 not implemented. */
|
|
}
|
|
}
|
|
|
|
void helper_mtc0_tchalt (target_ulong arg1)
|
|
{
|
|
env->active_tc.CP0_TCHalt = arg1 & 0x1;
|
|
|
|
// TODO: Halt TC / Restart (if allocated+active) TC.
|
|
if (env->active_tc.CP0_TCHalt & 1) {
|
|
mips_tc_sleep(env, env->current_tc);
|
|
} else {
|
|
mips_tc_wake(env, env->current_tc);
|
|
}
|
|
}
|
|
|
|
void helper_mttc0_tchalt (target_ulong arg1)
|
|
{
|
|
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
|
|
CPUState *other = mips_cpu_map_tc(&other_tc);
|
|
|
|
// TODO: Halt TC / Restart (if allocated+active) TC.
|
|
|
|
if (other_tc == other->current_tc)
|
|
other->active_tc.CP0_TCHalt = arg1;
|
|
else
|
|
other->tcs[other_tc].CP0_TCHalt = arg1;
|
|
|
|
if (arg1 & 1) {
|
|
mips_tc_sleep(other, other_tc);
|
|
} else {
|
|
mips_tc_wake(other, other_tc);
|
|
}
|
|
}
|
|
|
|
void helper_mtc0_tccontext (target_ulong arg1)
|
|
{
|
|
env->active_tc.CP0_TCContext = arg1;
|
|
}
|
|
|
|
void helper_mttc0_tccontext (target_ulong arg1)
|
|
{
|
|
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
|
|
CPUState *other = mips_cpu_map_tc(&other_tc);
|
|
|
|
if (other_tc == other->current_tc)
|
|
other->active_tc.CP0_TCContext = arg1;
|
|
else
|
|
other->tcs[other_tc].CP0_TCContext = arg1;
|
|
}
|
|
|
|
void helper_mtc0_tcschedule (target_ulong arg1)
|
|
{
|
|
env->active_tc.CP0_TCSchedule = arg1;
|
|
}
|
|
|
|
void helper_mttc0_tcschedule (target_ulong arg1)
|
|
{
|
|
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
|
|
CPUState *other = mips_cpu_map_tc(&other_tc);
|
|
|
|
if (other_tc == other->current_tc)
|
|
other->active_tc.CP0_TCSchedule = arg1;
|
|
else
|
|
other->tcs[other_tc].CP0_TCSchedule = arg1;
|
|
}
|
|
|
|
void helper_mtc0_tcschefback (target_ulong arg1)
|
|
{
|
|
env->active_tc.CP0_TCScheFBack = arg1;
|
|
}
|
|
|
|
void helper_mttc0_tcschefback (target_ulong arg1)
|
|
{
|
|
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
|
|
CPUState *other = mips_cpu_map_tc(&other_tc);
|
|
|
|
if (other_tc == other->current_tc)
|
|
other->active_tc.CP0_TCScheFBack = arg1;
|
|
else
|
|
other->tcs[other_tc].CP0_TCScheFBack = arg1;
|
|
}
|
|
|
|
void helper_mtc0_entrylo1 (target_ulong arg1)
|
|
{
|
|
/* Large physaddr (PABITS) not implemented */
|
|
/* 1k pages not implemented */
|
|
env->CP0_EntryLo1 = arg1 & 0x3FFFFFFF;
|
|
}
|
|
|
|
void helper_mtc0_context (target_ulong arg1)
|
|
{
|
|
env->CP0_Context = (env->CP0_Context & 0x007FFFFF) | (arg1 & ~0x007FFFFF);
|
|
}
|
|
|
|
void helper_mtc0_pagemask (target_ulong arg1)
|
|
{
|
|
/* 1k pages not implemented */
|
|
env->CP0_PageMask = arg1 & (0x1FFFFFFF & (TARGET_PAGE_MASK << 1));
|
|
}
|
|
|
|
void helper_mtc0_pagegrain (target_ulong arg1)
|
|
{
|
|
/* SmartMIPS not implemented */
|
|
/* Large physaddr (PABITS) not implemented */
|
|
/* 1k pages not implemented */
|
|
env->CP0_PageGrain = 0;
|
|
}
|
|
|
|
void helper_mtc0_wired (target_ulong arg1)
|
|
{
|
|
env->CP0_Wired = arg1 % env->tlb->nb_tlb;
|
|
}
|
|
|
|
void helper_mtc0_srsconf0 (target_ulong arg1)
|
|
{
|
|
env->CP0_SRSConf0 |= arg1 & env->CP0_SRSConf0_rw_bitmask;
|
|
}
|
|
|
|
void helper_mtc0_srsconf1 (target_ulong arg1)
|
|
{
|
|
env->CP0_SRSConf1 |= arg1 & env->CP0_SRSConf1_rw_bitmask;
|
|
}
|
|
|
|
void helper_mtc0_srsconf2 (target_ulong arg1)
|
|
{
|
|
env->CP0_SRSConf2 |= arg1 & env->CP0_SRSConf2_rw_bitmask;
|
|
}
|
|
|
|
void helper_mtc0_srsconf3 (target_ulong arg1)
|
|
{
|
|
env->CP0_SRSConf3 |= arg1 & env->CP0_SRSConf3_rw_bitmask;
|
|
}
|
|
|
|
void helper_mtc0_srsconf4 (target_ulong arg1)
|
|
{
|
|
env->CP0_SRSConf4 |= arg1 & env->CP0_SRSConf4_rw_bitmask;
|
|
}
|
|
|
|
void helper_mtc0_hwrena (target_ulong arg1)
|
|
{
|
|
env->CP0_HWREna = arg1 & 0x0000000F;
|
|
}
|
|
|
|
void helper_mtc0_count (target_ulong arg1)
|
|
{
|
|
cpu_mips_store_count(env, arg1);
|
|
}
|
|
|
|
void helper_mtc0_entryhi (target_ulong arg1)
|
|
{
|
|
target_ulong old, val;
|
|
|
|
/* 1k pages not implemented */
|
|
val = arg1 & ((TARGET_PAGE_MASK << 1) | 0xFF);
|
|
#if defined(TARGET_MIPS64)
|
|
val &= env->SEGMask;
|
|
#endif
|
|
old = env->CP0_EntryHi;
|
|
env->CP0_EntryHi = val;
|
|
if (env->CP0_Config3 & (1 << CP0C3_MT)) {
|
|
sync_c0_entryhi(env, env->current_tc);
|
|
}
|
|
/* If the ASID changes, flush qemu's TLB. */
|
|
if ((old & 0xFF) != (val & 0xFF))
|
|
cpu_mips_tlb_flush(env, 1);
|
|
}
|
|
|
|
void helper_mttc0_entryhi(target_ulong arg1)
|
|
{
|
|
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
|
|
CPUState *other = mips_cpu_map_tc(&other_tc);
|
|
|
|
other->CP0_EntryHi = arg1;
|
|
sync_c0_entryhi(other, other_tc);
|
|
}
|
|
|
|
void helper_mtc0_compare (target_ulong arg1)
|
|
{
|
|
cpu_mips_store_compare(env, arg1);
|
|
}
|
|
|
|
void helper_mtc0_status (target_ulong arg1)
|
|
{
|
|
uint32_t val, old;
|
|
uint32_t mask = env->CP0_Status_rw_bitmask;
|
|
|
|
val = arg1 & mask;
|
|
old = env->CP0_Status;
|
|
env->CP0_Status = (env->CP0_Status & ~mask) | val;
|
|
if (env->CP0_Config3 & (1 << CP0C3_MT)) {
|
|
sync_c0_status(env, env->current_tc);
|
|
} else {
|
|
compute_hflags(env);
|
|
}
|
|
|
|
if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
|
|
qemu_log("Status %08x (%08x) => %08x (%08x) Cause %08x",
|
|
old, old & env->CP0_Cause & CP0Ca_IP_mask,
|
|
val, val & env->CP0_Cause & CP0Ca_IP_mask,
|
|
env->CP0_Cause);
|
|
switch (env->hflags & MIPS_HFLAG_KSU) {
|
|
case MIPS_HFLAG_UM: qemu_log(", UM\n"); break;
|
|
case MIPS_HFLAG_SM: qemu_log(", SM\n"); break;
|
|
case MIPS_HFLAG_KM: qemu_log("\n"); break;
|
|
default: cpu_abort(env, "Invalid MMU mode!\n"); break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void helper_mttc0_status(target_ulong arg1)
|
|
{
|
|
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
|
|
CPUState *other = mips_cpu_map_tc(&other_tc);
|
|
|
|
other->CP0_Status = arg1 & ~0xf1000018;
|
|
sync_c0_status(other, other_tc);
|
|
}
|
|
|
|
void helper_mtc0_intctl (target_ulong arg1)
|
|
{
|
|
/* vectored interrupts not implemented, no performance counters. */
|
|
env->CP0_IntCtl = (env->CP0_IntCtl & ~0x000003e0) | (arg1 & 0x000003e0);
|
|
}
|
|
|
|
void helper_mtc0_srsctl (target_ulong arg1)
|
|
{
|
|
uint32_t mask = (0xf << CP0SRSCtl_ESS) | (0xf << CP0SRSCtl_PSS);
|
|
env->CP0_SRSCtl = (env->CP0_SRSCtl & ~mask) | (arg1 & mask);
|
|
}
|
|
|
|
static void mtc0_cause(CPUState *cpu, target_ulong arg1)
|
|
{
|
|
uint32_t mask = 0x00C00300;
|
|
uint32_t old = cpu->CP0_Cause;
|
|
int i;
|
|
|
|
if (cpu->insn_flags & ISA_MIPS32R2) {
|
|
mask |= 1 << CP0Ca_DC;
|
|
}
|
|
|
|
cpu->CP0_Cause = (cpu->CP0_Cause & ~mask) | (arg1 & mask);
|
|
|
|
if ((old ^ cpu->CP0_Cause) & (1 << CP0Ca_DC)) {
|
|
if (cpu->CP0_Cause & (1 << CP0Ca_DC)) {
|
|
cpu_mips_stop_count(cpu);
|
|
} else {
|
|
cpu_mips_start_count(cpu);
|
|
}
|
|
}
|
|
|
|
/* Set/reset software interrupts */
|
|
for (i = 0 ; i < 2 ; i++) {
|
|
if ((old ^ cpu->CP0_Cause) & (1 << (CP0Ca_IP + i))) {
|
|
cpu_mips_soft_irq(cpu, i, cpu->CP0_Cause & (1 << (CP0Ca_IP + i)));
|
|
}
|
|
}
|
|
}
|
|
|
|
void helper_mtc0_cause(target_ulong arg1)
|
|
{
|
|
mtc0_cause(env, arg1);
|
|
}
|
|
|
|
void helper_mttc0_cause(target_ulong arg1)
|
|
{
|
|
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
|
|
CPUState *other = mips_cpu_map_tc(&other_tc);
|
|
|
|
mtc0_cause(other, arg1);
|
|
}
|
|
|
|
target_ulong helper_mftc0_epc(void)
|
|
{
|
|
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
|
|
CPUState *other = mips_cpu_map_tc(&other_tc);
|
|
|
|
return other->CP0_EPC;
|
|
}
|
|
|
|
target_ulong helper_mftc0_ebase(void)
|
|
{
|
|
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
|
|
CPUState *other = mips_cpu_map_tc(&other_tc);
|
|
|
|
return other->CP0_EBase;
|
|
}
|
|
|
|
void helper_mtc0_ebase (target_ulong arg1)
|
|
{
|
|
/* vectored interrupts not implemented */
|
|
env->CP0_EBase = (env->CP0_EBase & ~0x3FFFF000) | (arg1 & 0x3FFFF000);
|
|
}
|
|
|
|
void helper_mttc0_ebase(target_ulong arg1)
|
|
{
|
|
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
|
|
CPUState *other = mips_cpu_map_tc(&other_tc);
|
|
other->CP0_EBase = (other->CP0_EBase & ~0x3FFFF000) | (arg1 & 0x3FFFF000);
|
|
}
|
|
|
|
target_ulong helper_mftc0_configx(target_ulong idx)
|
|
{
|
|
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
|
|
CPUState *other = mips_cpu_map_tc(&other_tc);
|
|
|
|
switch (idx) {
|
|
case 0: return other->CP0_Config0;
|
|
case 1: return other->CP0_Config1;
|
|
case 2: return other->CP0_Config2;
|
|
case 3: return other->CP0_Config3;
|
|
/* 4 and 5 are reserved. */
|
|
case 6: return other->CP0_Config6;
|
|
case 7: return other->CP0_Config7;
|
|
default:
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void helper_mtc0_config0 (target_ulong arg1)
|
|
{
|
|
env->CP0_Config0 = (env->CP0_Config0 & 0x81FFFFF8) | (arg1 & 0x00000007);
|
|
}
|
|
|
|
void helper_mtc0_config2 (target_ulong arg1)
|
|
{
|
|
/* tertiary/secondary caches not implemented */
|
|
env->CP0_Config2 = (env->CP0_Config2 & 0x8FFF0FFF);
|
|
}
|
|
|
|
void helper_mtc0_lladdr (target_ulong arg1)
|
|
{
|
|
target_long mask = env->CP0_LLAddr_rw_bitmask;
|
|
arg1 = arg1 << env->CP0_LLAddr_shift;
|
|
env->lladdr = (env->lladdr & ~mask) | (arg1 & mask);
|
|
}
|
|
|
|
void helper_mtc0_watchlo (target_ulong arg1, uint32_t sel)
|
|
{
|
|
/* Watch exceptions for instructions, data loads, data stores
|
|
not implemented. */
|
|
env->CP0_WatchLo[sel] = (arg1 & ~0x7);
|
|
}
|
|
|
|
void helper_mtc0_watchhi (target_ulong arg1, uint32_t sel)
|
|
{
|
|
env->CP0_WatchHi[sel] = (arg1 & 0x40FF0FF8);
|
|
env->CP0_WatchHi[sel] &= ~(env->CP0_WatchHi[sel] & arg1 & 0x7);
|
|
}
|
|
|
|
void helper_mtc0_xcontext (target_ulong arg1)
|
|
{
|
|
target_ulong mask = (1ULL << (env->SEGBITS - 7)) - 1;
|
|
env->CP0_XContext = (env->CP0_XContext & mask) | (arg1 & ~mask);
|
|
}
|
|
|
|
void helper_mtc0_framemask (target_ulong arg1)
|
|
{
|
|
env->CP0_Framemask = arg1; /* XXX */
|
|
}
|
|
|
|
void helper_mtc0_debug (target_ulong arg1)
|
|
{
|
|
env->CP0_Debug = (env->CP0_Debug & 0x8C03FC1F) | (arg1 & 0x13300120);
|
|
if (arg1 & (1 << CP0DB_DM))
|
|
env->hflags |= MIPS_HFLAG_DM;
|
|
else
|
|
env->hflags &= ~MIPS_HFLAG_DM;
|
|
}
|
|
|
|
void helper_mttc0_debug(target_ulong arg1)
|
|
{
|
|
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
|
|
uint32_t val = arg1 & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt));
|
|
CPUState *other = mips_cpu_map_tc(&other_tc);
|
|
|
|
/* XXX: Might be wrong, check with EJTAG spec. */
|
|
if (other_tc == other->current_tc)
|
|
other->active_tc.CP0_Debug_tcstatus = val;
|
|
else
|
|
other->tcs[other_tc].CP0_Debug_tcstatus = val;
|
|
other->CP0_Debug = (other->CP0_Debug &
|
|
((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
|
|
(arg1 & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
|
|
}
|
|
|
|
void helper_mtc0_performance0 (target_ulong arg1)
|
|
{
|
|
env->CP0_Performance0 = arg1 & 0x000007ff;
|
|
}
|
|
|
|
void helper_mtc0_taglo (target_ulong arg1)
|
|
{
|
|
env->CP0_TagLo = arg1 & 0xFFFFFCF6;
|
|
}
|
|
|
|
void helper_mtc0_datalo (target_ulong arg1)
|
|
{
|
|
env->CP0_DataLo = arg1; /* XXX */
|
|
}
|
|
|
|
void helper_mtc0_taghi (target_ulong arg1)
|
|
{
|
|
env->CP0_TagHi = arg1; /* XXX */
|
|
}
|
|
|
|
void helper_mtc0_datahi (target_ulong arg1)
|
|
{
|
|
env->CP0_DataHi = arg1; /* XXX */
|
|
}
|
|
|
|
/* MIPS MT functions */
|
|
target_ulong helper_mftgpr(uint32_t sel)
|
|
{
|
|
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
|
|
CPUState *other = mips_cpu_map_tc(&other_tc);
|
|
|
|
if (other_tc == other->current_tc)
|
|
return other->active_tc.gpr[sel];
|
|
else
|
|
return other->tcs[other_tc].gpr[sel];
|
|
}
|
|
|
|
target_ulong helper_mftlo(uint32_t sel)
|
|
{
|
|
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
|
|
CPUState *other = mips_cpu_map_tc(&other_tc);
|
|
|
|
if (other_tc == other->current_tc)
|
|
return other->active_tc.LO[sel];
|
|
else
|
|
return other->tcs[other_tc].LO[sel];
|
|
}
|
|
|
|
target_ulong helper_mfthi(uint32_t sel)
|
|
{
|
|
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
|
|
CPUState *other = mips_cpu_map_tc(&other_tc);
|
|
|
|
if (other_tc == other->current_tc)
|
|
return other->active_tc.HI[sel];
|
|
else
|
|
return other->tcs[other_tc].HI[sel];
|
|
}
|
|
|
|
target_ulong helper_mftacx(uint32_t sel)
|
|
{
|
|
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
|
|
CPUState *other = mips_cpu_map_tc(&other_tc);
|
|
|
|
if (other_tc == other->current_tc)
|
|
return other->active_tc.ACX[sel];
|
|
else
|
|
return other->tcs[other_tc].ACX[sel];
|
|
}
|
|
|
|
target_ulong helper_mftdsp(void)
|
|
{
|
|
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
|
|
CPUState *other = mips_cpu_map_tc(&other_tc);
|
|
|
|
if (other_tc == other->current_tc)
|
|
return other->active_tc.DSPControl;
|
|
else
|
|
return other->tcs[other_tc].DSPControl;
|
|
}
|
|
|
|
void helper_mttgpr(target_ulong arg1, uint32_t sel)
|
|
{
|
|
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
|
|
CPUState *other = mips_cpu_map_tc(&other_tc);
|
|
|
|
if (other_tc == other->current_tc)
|
|
other->active_tc.gpr[sel] = arg1;
|
|
else
|
|
other->tcs[other_tc].gpr[sel] = arg1;
|
|
}
|
|
|
|
void helper_mttlo(target_ulong arg1, uint32_t sel)
|
|
{
|
|
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
|
|
CPUState *other = mips_cpu_map_tc(&other_tc);
|
|
|
|
if (other_tc == other->current_tc)
|
|
other->active_tc.LO[sel] = arg1;
|
|
else
|
|
other->tcs[other_tc].LO[sel] = arg1;
|
|
}
|
|
|
|
void helper_mtthi(target_ulong arg1, uint32_t sel)
|
|
{
|
|
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
|
|
CPUState *other = mips_cpu_map_tc(&other_tc);
|
|
|
|
if (other_tc == other->current_tc)
|
|
other->active_tc.HI[sel] = arg1;
|
|
else
|
|
other->tcs[other_tc].HI[sel] = arg1;
|
|
}
|
|
|
|
void helper_mttacx(target_ulong arg1, uint32_t sel)
|
|
{
|
|
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
|
|
CPUState *other = mips_cpu_map_tc(&other_tc);
|
|
|
|
if (other_tc == other->current_tc)
|
|
other->active_tc.ACX[sel] = arg1;
|
|
else
|
|
other->tcs[other_tc].ACX[sel] = arg1;
|
|
}
|
|
|
|
void helper_mttdsp(target_ulong arg1)
|
|
{
|
|
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
|
|
CPUState *other = mips_cpu_map_tc(&other_tc);
|
|
|
|
if (other_tc == other->current_tc)
|
|
other->active_tc.DSPControl = arg1;
|
|
else
|
|
other->tcs[other_tc].DSPControl = arg1;
|
|
}
|
|
|
|
/* MIPS MT functions */
|
|
target_ulong helper_dmt(void)
|
|
{
|
|
// TODO
|
|
return 0;
|
|
}
|
|
|
|
target_ulong helper_emt(void)
|
|
{
|
|
// TODO
|
|
return 0;
|
|
}
|
|
|
|
target_ulong helper_dvpe(void)
|
|
{
|
|
CPUState *other_cpu = first_cpu;
|
|
target_ulong prev = env->mvp->CP0_MVPControl;
|
|
|
|
do {
|
|
/* Turn off all VPEs except the one executing the dvpe. */
|
|
if (other_cpu != env) {
|
|
other_cpu->mvp->CP0_MVPControl &= ~(1 << CP0MVPCo_EVP);
|
|
mips_vpe_sleep(other_cpu);
|
|
}
|
|
other_cpu = other_cpu->next_cpu;
|
|
} while (other_cpu);
|
|
return prev;
|
|
}
|
|
|
|
target_ulong helper_evpe(void)
|
|
{
|
|
CPUState *other_cpu = first_cpu;
|
|
target_ulong prev = env->mvp->CP0_MVPControl;
|
|
|
|
do {
|
|
if (other_cpu != env
|
|
/* If the VPE is WFI, dont distrub it's sleep. */
|
|
&& !mips_vpe_is_wfi(other_cpu)) {
|
|
/* Enable the VPE. */
|
|
other_cpu->mvp->CP0_MVPControl |= (1 << CP0MVPCo_EVP);
|
|
mips_vpe_wake(other_cpu); /* And wake it up. */
|
|
}
|
|
other_cpu = other_cpu->next_cpu;
|
|
} while (other_cpu);
|
|
return prev;
|
|
}
|
|
#endif /* !CONFIG_USER_ONLY */
|
|
|
|
void helper_fork(target_ulong arg1, target_ulong arg2)
|
|
{
|
|
// arg1 = rt, arg2 = rs
|
|
arg1 = 0;
|
|
// TODO: store to TC register
|
|
}
|
|
|
|
target_ulong helper_yield(target_ulong arg)
|
|
{
|
|
target_long arg1 = arg;
|
|
|
|
if (arg1 < 0) {
|
|
/* No scheduling policy implemented. */
|
|
if (arg1 != -2) {
|
|
if (env->CP0_VPEControl & (1 << CP0VPECo_YSI) &&
|
|
env->active_tc.CP0_TCStatus & (1 << CP0TCSt_DT)) {
|
|
env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
|
|
env->CP0_VPEControl |= 4 << CP0VPECo_EXCPT;
|
|
helper_raise_exception(EXCP_THREAD);
|
|
}
|
|
}
|
|
} else if (arg1 == 0) {
|
|
if (0 /* TODO: TC underflow */) {
|
|
env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
|
|
helper_raise_exception(EXCP_THREAD);
|
|
} else {
|
|
// TODO: Deallocate TC
|
|
}
|
|
} else if (arg1 > 0) {
|
|
/* Yield qualifier inputs not implemented. */
|
|
env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
|
|
env->CP0_VPEControl |= 2 << CP0VPECo_EXCPT;
|
|
helper_raise_exception(EXCP_THREAD);
|
|
}
|
|
return env->CP0_YQMask;
|
|
}
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
/* TLB management */
|
|
static void cpu_mips_tlb_flush (CPUState *env, int flush_global)
|
|
{
|
|
/* Flush qemu's TLB and discard all shadowed entries. */
|
|
tlb_flush (env, flush_global);
|
|
env->tlb->tlb_in_use = env->tlb->nb_tlb;
|
|
}
|
|
|
|
static void r4k_mips_tlb_flush_extra (CPUState *env, int first)
|
|
{
|
|
/* Discard entries from env->tlb[first] onwards. */
|
|
while (env->tlb->tlb_in_use > first) {
|
|
r4k_invalidate_tlb(env, --env->tlb->tlb_in_use, 0);
|
|
}
|
|
}
|
|
|
|
static void r4k_fill_tlb (int idx)
|
|
{
|
|
r4k_tlb_t *tlb;
|
|
|
|
/* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
|
|
tlb = &env->tlb->mmu.r4k.tlb[idx];
|
|
tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
|
|
#if defined(TARGET_MIPS64)
|
|
tlb->VPN &= env->SEGMask;
|
|
#endif
|
|
tlb->ASID = env->CP0_EntryHi & 0xFF;
|
|
tlb->PageMask = env->CP0_PageMask;
|
|
tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
|
|
tlb->V0 = (env->CP0_EntryLo0 & 2) != 0;
|
|
tlb->D0 = (env->CP0_EntryLo0 & 4) != 0;
|
|
tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7;
|
|
tlb->PFN[0] = (env->CP0_EntryLo0 >> 6) << 12;
|
|
tlb->V1 = (env->CP0_EntryLo1 & 2) != 0;
|
|
tlb->D1 = (env->CP0_EntryLo1 & 4) != 0;
|
|
tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7;
|
|
tlb->PFN[1] = (env->CP0_EntryLo1 >> 6) << 12;
|
|
}
|
|
|
|
void r4k_helper_tlbwi (void)
|
|
{
|
|
int idx;
|
|
|
|
idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
|
|
|
|
/* Discard cached TLB entries. We could avoid doing this if the
|
|
tlbwi is just upgrading access permissions on the current entry;
|
|
that might be a further win. */
|
|
r4k_mips_tlb_flush_extra (env, env->tlb->nb_tlb);
|
|
|
|
r4k_invalidate_tlb(env, idx, 0);
|
|
r4k_fill_tlb(idx);
|
|
}
|
|
|
|
void r4k_helper_tlbwr (void)
|
|
{
|
|
int r = cpu_mips_get_random(env);
|
|
|
|
r4k_invalidate_tlb(env, r, 1);
|
|
r4k_fill_tlb(r);
|
|
}
|
|
|
|
void r4k_helper_tlbp (void)
|
|
{
|
|
r4k_tlb_t *tlb;
|
|
target_ulong mask;
|
|
target_ulong tag;
|
|
target_ulong VPN;
|
|
uint8_t ASID;
|
|
int i;
|
|
|
|
ASID = env->CP0_EntryHi & 0xFF;
|
|
for (i = 0; i < env->tlb->nb_tlb; i++) {
|
|
tlb = &env->tlb->mmu.r4k.tlb[i];
|
|
/* 1k pages are not supported. */
|
|
mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
|
|
tag = env->CP0_EntryHi & ~mask;
|
|
VPN = tlb->VPN & ~mask;
|
|
/* Check ASID, virtual page number & size */
|
|
if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
|
|
/* TLB match */
|
|
env->CP0_Index = i;
|
|
break;
|
|
}
|
|
}
|
|
if (i == env->tlb->nb_tlb) {
|
|
/* No match. Discard any shadow entries, if any of them match. */
|
|
for (i = env->tlb->nb_tlb; i < env->tlb->tlb_in_use; i++) {
|
|
tlb = &env->tlb->mmu.r4k.tlb[i];
|
|
/* 1k pages are not supported. */
|
|
mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
|
|
tag = env->CP0_EntryHi & ~mask;
|
|
VPN = tlb->VPN & ~mask;
|
|
/* Check ASID, virtual page number & size */
|
|
if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
|
|
r4k_mips_tlb_flush_extra (env, i);
|
|
break;
|
|
}
|
|
}
|
|
|
|
env->CP0_Index |= 0x80000000;
|
|
}
|
|
}
|
|
|
|
void r4k_helper_tlbr (void)
|
|
{
|
|
r4k_tlb_t *tlb;
|
|
uint8_t ASID;
|
|
int idx;
|
|
|
|
ASID = env->CP0_EntryHi & 0xFF;
|
|
idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
|
|
tlb = &env->tlb->mmu.r4k.tlb[idx];
|
|
|
|
/* If this will change the current ASID, flush qemu's TLB. */
|
|
if (ASID != tlb->ASID)
|
|
cpu_mips_tlb_flush (env, 1);
|
|
|
|
r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
|
|
|
|
env->CP0_EntryHi = tlb->VPN | tlb->ASID;
|
|
env->CP0_PageMask = tlb->PageMask;
|
|
env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) |
|
|
(tlb->C0 << 3) | (tlb->PFN[0] >> 6);
|
|
env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) |
|
|
(tlb->C1 << 3) | (tlb->PFN[1] >> 6);
|
|
}
|
|
|
|
void helper_tlbwi(void)
|
|
{
|
|
env->tlb->helper_tlbwi();
|
|
}
|
|
|
|
void helper_tlbwr(void)
|
|
{
|
|
env->tlb->helper_tlbwr();
|
|
}
|
|
|
|
void helper_tlbp(void)
|
|
{
|
|
env->tlb->helper_tlbp();
|
|
}
|
|
|
|
void helper_tlbr(void)
|
|
{
|
|
env->tlb->helper_tlbr();
|
|
}
|
|
|
|
/* Specials */
|
|
target_ulong helper_di (void)
|
|
{
|
|
target_ulong t0 = env->CP0_Status;
|
|
|
|
env->CP0_Status = t0 & ~(1 << CP0St_IE);
|
|
return t0;
|
|
}
|
|
|
|
target_ulong helper_ei (void)
|
|
{
|
|
target_ulong t0 = env->CP0_Status;
|
|
|
|
env->CP0_Status = t0 | (1 << CP0St_IE);
|
|
return t0;
|
|
}
|
|
|
|
static void debug_pre_eret (void)
|
|
{
|
|
if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
|
|
qemu_log("ERET: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
|
|
env->active_tc.PC, env->CP0_EPC);
|
|
if (env->CP0_Status & (1 << CP0St_ERL))
|
|
qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
|
|
if (env->hflags & MIPS_HFLAG_DM)
|
|
qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC);
|
|
qemu_log("\n");
|
|
}
|
|
}
|
|
|
|
static void debug_post_eret (void)
|
|
{
|
|
if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
|
|
qemu_log(" => PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
|
|
env->active_tc.PC, env->CP0_EPC);
|
|
if (env->CP0_Status & (1 << CP0St_ERL))
|
|
qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
|
|
if (env->hflags & MIPS_HFLAG_DM)
|
|
qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC);
|
|
switch (env->hflags & MIPS_HFLAG_KSU) {
|
|
case MIPS_HFLAG_UM: qemu_log(", UM\n"); break;
|
|
case MIPS_HFLAG_SM: qemu_log(", SM\n"); break;
|
|
case MIPS_HFLAG_KM: qemu_log("\n"); break;
|
|
default: cpu_abort(env, "Invalid MMU mode!\n"); break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void set_pc (target_ulong error_pc)
|
|
{
|
|
env->active_tc.PC = error_pc & ~(target_ulong)1;
|
|
if (error_pc & 1) {
|
|
env->hflags |= MIPS_HFLAG_M16;
|
|
} else {
|
|
env->hflags &= ~(MIPS_HFLAG_M16);
|
|
}
|
|
}
|
|
|
|
void helper_eret (void)
|
|
{
|
|
debug_pre_eret();
|
|
if (env->CP0_Status & (1 << CP0St_ERL)) {
|
|
set_pc(env->CP0_ErrorEPC);
|
|
env->CP0_Status &= ~(1 << CP0St_ERL);
|
|
} else {
|
|
set_pc(env->CP0_EPC);
|
|
env->CP0_Status &= ~(1 << CP0St_EXL);
|
|
}
|
|
compute_hflags(env);
|
|
debug_post_eret();
|
|
env->lladdr = 1;
|
|
}
|
|
|
|
void helper_deret (void)
|
|
{
|
|
debug_pre_eret();
|
|
set_pc(env->CP0_DEPC);
|
|
|
|
env->hflags &= MIPS_HFLAG_DM;
|
|
compute_hflags(env);
|
|
debug_post_eret();
|
|
env->lladdr = 1;
|
|
}
|
|
#endif /* !CONFIG_USER_ONLY */
|
|
|
|
target_ulong helper_rdhwr_cpunum(void)
|
|
{
|
|
if ((env->hflags & MIPS_HFLAG_CP0) ||
|
|
(env->CP0_HWREna & (1 << 0)))
|
|
return env->CP0_EBase & 0x3ff;
|
|
else
|
|
helper_raise_exception(EXCP_RI);
|
|
|
|
return 0;
|
|
}
|
|
|
|
target_ulong helper_rdhwr_synci_step(void)
|
|
{
|
|
if ((env->hflags & MIPS_HFLAG_CP0) ||
|
|
(env->CP0_HWREna & (1 << 1)))
|
|
return env->SYNCI_Step;
|
|
else
|
|
helper_raise_exception(EXCP_RI);
|
|
|
|
return 0;
|
|
}
|
|
|
|
target_ulong helper_rdhwr_cc(void)
|
|
{
|
|
if ((env->hflags & MIPS_HFLAG_CP0) ||
|
|
(env->CP0_HWREna & (1 << 2)))
|
|
return env->CP0_Count;
|
|
else
|
|
helper_raise_exception(EXCP_RI);
|
|
|
|
return 0;
|
|
}
|
|
|
|
target_ulong helper_rdhwr_ccres(void)
|
|
{
|
|
if ((env->hflags & MIPS_HFLAG_CP0) ||
|
|
(env->CP0_HWREna & (1 << 3)))
|
|
return env->CCRes;
|
|
else
|
|
helper_raise_exception(EXCP_RI);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void helper_pmon (int function)
|
|
{
|
|
function /= 2;
|
|
switch (function) {
|
|
case 2: /* TODO: char inbyte(int waitflag); */
|
|
if (env->active_tc.gpr[4] == 0)
|
|
env->active_tc.gpr[2] = -1;
|
|
/* Fall through */
|
|
case 11: /* TODO: char inbyte (void); */
|
|
env->active_tc.gpr[2] = -1;
|
|
break;
|
|
case 3:
|
|
case 12:
|
|
printf("%c", (char)(env->active_tc.gpr[4] & 0xFF));
|
|
break;
|
|
case 17:
|
|
break;
|
|
case 158:
|
|
{
|
|
unsigned char *fmt = (void *)(unsigned long)env->active_tc.gpr[4];
|
|
printf("%s", fmt);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
void helper_wait (void)
|
|
{
|
|
env->halted = 1;
|
|
cpu_reset_interrupt(env, CPU_INTERRUPT_WAKE);
|
|
helper_raise_exception(EXCP_HLT);
|
|
}
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
|
|
static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr);
|
|
|
|
#define MMUSUFFIX _mmu
|
|
#define ALIGNED_ONLY
|
|
|
|
#define SHIFT 0
|
|
#include "softmmu_template.h"
|
|
|
|
#define SHIFT 1
|
|
#include "softmmu_template.h"
|
|
|
|
#define SHIFT 2
|
|
#include "softmmu_template.h"
|
|
|
|
#define SHIFT 3
|
|
#include "softmmu_template.h"
|
|
|
|
static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr)
|
|
{
|
|
env->CP0_BadVAddr = addr;
|
|
do_restore_state (retaddr);
|
|
helper_raise_exception ((is_write == 1) ? EXCP_AdES : EXCP_AdEL);
|
|
}
|
|
|
|
void tlb_fill(CPUState *env1, target_ulong addr, int is_write, int mmu_idx,
|
|
void *retaddr)
|
|
{
|
|
TranslationBlock *tb;
|
|
CPUState *saved_env;
|
|
unsigned long pc;
|
|
int ret;
|
|
|
|
saved_env = env;
|
|
env = env1;
|
|
ret = cpu_mips_handle_mmu_fault(env, addr, is_write, mmu_idx);
|
|
if (ret) {
|
|
if (retaddr) {
|
|
/* now we have a real cpu fault */
|
|
pc = (unsigned long)retaddr;
|
|
tb = tb_find_pc(pc);
|
|
if (tb) {
|
|
/* the PC is inside the translated code. It means that we have
|
|
a virtual CPU fault */
|
|
cpu_restore_state(tb, env, pc);
|
|
}
|
|
}
|
|
helper_raise_exception_err(env->exception_index, env->error_code);
|
|
}
|
|
env = saved_env;
|
|
}
|
|
|
|
void cpu_unassigned_access(CPUState *env1, target_phys_addr_t addr,
|
|
int is_write, int is_exec, int unused, int size)
|
|
{
|
|
env = env1;
|
|
|
|
if (is_exec)
|
|
helper_raise_exception(EXCP_IBE);
|
|
else
|
|
helper_raise_exception(EXCP_DBE);
|
|
}
|
|
#endif /* !CONFIG_USER_ONLY */
|
|
|
|
/* Complex FPU operations which may need stack space. */
|
|
|
|
#define FLOAT_ONE32 make_float32(0x3f8 << 20)
|
|
#define FLOAT_ONE64 make_float64(0x3ffULL << 52)
|
|
#define FLOAT_TWO32 make_float32(1 << 30)
|
|
#define FLOAT_TWO64 make_float64(1ULL << 62)
|
|
#define FLOAT_QNAN32 0x7fbfffff
|
|
#define FLOAT_QNAN64 0x7ff7ffffffffffffULL
|
|
#define FLOAT_SNAN32 0x7fffffff
|
|
#define FLOAT_SNAN64 0x7fffffffffffffffULL
|
|
|
|
/* convert MIPS rounding mode in FCR31 to IEEE library */
|
|
static unsigned int ieee_rm[] = {
|
|
float_round_nearest_even,
|
|
float_round_to_zero,
|
|
float_round_up,
|
|
float_round_down
|
|
};
|
|
|
|
#define RESTORE_ROUNDING_MODE \
|
|
set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
|
|
|
|
#define RESTORE_FLUSH_MODE \
|
|
set_flush_to_zero((env->active_fpu.fcr31 & (1 << 24)) != 0, &env->active_fpu.fp_status);
|
|
|
|
target_ulong helper_cfc1 (uint32_t reg)
|
|
{
|
|
target_ulong arg1;
|
|
|
|
switch (reg) {
|
|
case 0:
|
|
arg1 = (int32_t)env->active_fpu.fcr0;
|
|
break;
|
|
case 25:
|
|
arg1 = ((env->active_fpu.fcr31 >> 24) & 0xfe) | ((env->active_fpu.fcr31 >> 23) & 0x1);
|
|
break;
|
|
case 26:
|
|
arg1 = env->active_fpu.fcr31 & 0x0003f07c;
|
|
break;
|
|
case 28:
|
|
arg1 = (env->active_fpu.fcr31 & 0x00000f83) | ((env->active_fpu.fcr31 >> 22) & 0x4);
|
|
break;
|
|
default:
|
|
arg1 = (int32_t)env->active_fpu.fcr31;
|
|
break;
|
|
}
|
|
|
|
return arg1;
|
|
}
|
|
|
|
void helper_ctc1 (target_ulong arg1, uint32_t reg)
|
|
{
|
|
switch(reg) {
|
|
case 25:
|
|
if (arg1 & 0xffffff00)
|
|
return;
|
|
env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0x017fffff) | ((arg1 & 0xfe) << 24) |
|
|
((arg1 & 0x1) << 23);
|
|
break;
|
|
case 26:
|
|
if (arg1 & 0x007c0000)
|
|
return;
|
|
env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfffc0f83) | (arg1 & 0x0003f07c);
|
|
break;
|
|
case 28:
|
|
if (arg1 & 0x007c0000)
|
|
return;
|
|
env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfefff07c) | (arg1 & 0x00000f83) |
|
|
((arg1 & 0x4) << 22);
|
|
break;
|
|
case 31:
|
|
if (arg1 & 0x007c0000)
|
|
return;
|
|
env->active_fpu.fcr31 = arg1;
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
/* set rounding mode */
|
|
RESTORE_ROUNDING_MODE;
|
|
/* set flush-to-zero mode */
|
|
RESTORE_FLUSH_MODE;
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status);
|
|
if ((GET_FP_ENABLE(env->active_fpu.fcr31) | 0x20) & GET_FP_CAUSE(env->active_fpu.fcr31))
|
|
helper_raise_exception(EXCP_FPE);
|
|
}
|
|
|
|
static inline int ieee_ex_to_mips(int xcpt)
|
|
{
|
|
int ret = 0;
|
|
if (xcpt) {
|
|
if (xcpt & float_flag_invalid) {
|
|
ret |= FP_INVALID;
|
|
}
|
|
if (xcpt & float_flag_overflow) {
|
|
ret |= FP_OVERFLOW;
|
|
}
|
|
if (xcpt & float_flag_underflow) {
|
|
ret |= FP_UNDERFLOW;
|
|
}
|
|
if (xcpt & float_flag_divbyzero) {
|
|
ret |= FP_DIV0;
|
|
}
|
|
if (xcpt & float_flag_inexact) {
|
|
ret |= FP_INEXACT;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static inline void update_fcr31(void)
|
|
{
|
|
int tmp = ieee_ex_to_mips(get_float_exception_flags(&env->active_fpu.fp_status));
|
|
|
|
SET_FP_CAUSE(env->active_fpu.fcr31, tmp);
|
|
if (GET_FP_ENABLE(env->active_fpu.fcr31) & tmp)
|
|
helper_raise_exception(EXCP_FPE);
|
|
else
|
|
UPDATE_FP_FLAGS(env->active_fpu.fcr31, tmp);
|
|
}
|
|
|
|
/* Float support.
|
|
Single precition routines have a "s" suffix, double precision a
|
|
"d" suffix, 32bit integer "w", 64bit integer "l", paired single "ps",
|
|
paired single lower "pl", paired single upper "pu". */
|
|
|
|
/* unary operations, modifying fp status */
|
|
uint64_t helper_float_sqrt_d(uint64_t fdt0)
|
|
{
|
|
return float64_sqrt(fdt0, &env->active_fpu.fp_status);
|
|
}
|
|
|
|
uint32_t helper_float_sqrt_s(uint32_t fst0)
|
|
{
|
|
return float32_sqrt(fst0, &env->active_fpu.fp_status);
|
|
}
|
|
|
|
uint64_t helper_float_cvtd_s(uint32_t fst0)
|
|
{
|
|
uint64_t fdt2;
|
|
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status);
|
|
fdt2 = float32_to_float64(fst0, &env->active_fpu.fp_status);
|
|
update_fcr31();
|
|
return fdt2;
|
|
}
|
|
|
|
uint64_t helper_float_cvtd_w(uint32_t wt0)
|
|
{
|
|
uint64_t fdt2;
|
|
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status);
|
|
fdt2 = int32_to_float64(wt0, &env->active_fpu.fp_status);
|
|
update_fcr31();
|
|
return fdt2;
|
|
}
|
|
|
|
uint64_t helper_float_cvtd_l(uint64_t dt0)
|
|
{
|
|
uint64_t fdt2;
|
|
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status);
|
|
fdt2 = int64_to_float64(dt0, &env->active_fpu.fp_status);
|
|
update_fcr31();
|
|
return fdt2;
|
|
}
|
|
|
|
uint64_t helper_float_cvtl_d(uint64_t fdt0)
|
|
{
|
|
uint64_t dt2;
|
|
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status);
|
|
dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
dt2 = FLOAT_SNAN64;
|
|
return dt2;
|
|
}
|
|
|
|
uint64_t helper_float_cvtl_s(uint32_t fst0)
|
|
{
|
|
uint64_t dt2;
|
|
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status);
|
|
dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
dt2 = FLOAT_SNAN64;
|
|
return dt2;
|
|
}
|
|
|
|
uint64_t helper_float_cvtps_pw(uint64_t dt0)
|
|
{
|
|
uint32_t fst2;
|
|
uint32_t fsth2;
|
|
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status);
|
|
fst2 = int32_to_float32(dt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
|
|
fsth2 = int32_to_float32(dt0 >> 32, &env->active_fpu.fp_status);
|
|
update_fcr31();
|
|
return ((uint64_t)fsth2 << 32) | fst2;
|
|
}
|
|
|
|
uint64_t helper_float_cvtpw_ps(uint64_t fdt0)
|
|
{
|
|
uint32_t wt2;
|
|
uint32_t wth2;
|
|
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status);
|
|
wt2 = float32_to_int32(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
|
|
wth2 = float32_to_int32(fdt0 >> 32, &env->active_fpu.fp_status);
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) {
|
|
wt2 = FLOAT_SNAN32;
|
|
wth2 = FLOAT_SNAN32;
|
|
}
|
|
return ((uint64_t)wth2 << 32) | wt2;
|
|
}
|
|
|
|
uint32_t helper_float_cvts_d(uint64_t fdt0)
|
|
{
|
|
uint32_t fst2;
|
|
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status);
|
|
fst2 = float64_to_float32(fdt0, &env->active_fpu.fp_status);
|
|
update_fcr31();
|
|
return fst2;
|
|
}
|
|
|
|
uint32_t helper_float_cvts_w(uint32_t wt0)
|
|
{
|
|
uint32_t fst2;
|
|
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status);
|
|
fst2 = int32_to_float32(wt0, &env->active_fpu.fp_status);
|
|
update_fcr31();
|
|
return fst2;
|
|
}
|
|
|
|
uint32_t helper_float_cvts_l(uint64_t dt0)
|
|
{
|
|
uint32_t fst2;
|
|
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status);
|
|
fst2 = int64_to_float32(dt0, &env->active_fpu.fp_status);
|
|
update_fcr31();
|
|
return fst2;
|
|
}
|
|
|
|
uint32_t helper_float_cvts_pl(uint32_t wt0)
|
|
{
|
|
uint32_t wt2;
|
|
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status);
|
|
wt2 = wt0;
|
|
update_fcr31();
|
|
return wt2;
|
|
}
|
|
|
|
uint32_t helper_float_cvts_pu(uint32_t wth0)
|
|
{
|
|
uint32_t wt2;
|
|
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status);
|
|
wt2 = wth0;
|
|
update_fcr31();
|
|
return wt2;
|
|
}
|
|
|
|
uint32_t helper_float_cvtw_s(uint32_t fst0)
|
|
{
|
|
uint32_t wt2;
|
|
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status);
|
|
wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
wt2 = FLOAT_SNAN32;
|
|
return wt2;
|
|
}
|
|
|
|
uint32_t helper_float_cvtw_d(uint64_t fdt0)
|
|
{
|
|
uint32_t wt2;
|
|
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status);
|
|
wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
wt2 = FLOAT_SNAN32;
|
|
return wt2;
|
|
}
|
|
|
|
uint64_t helper_float_roundl_d(uint64_t fdt0)
|
|
{
|
|
uint64_t dt2;
|
|
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status);
|
|
set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
|
|
dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
|
|
RESTORE_ROUNDING_MODE;
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
dt2 = FLOAT_SNAN64;
|
|
return dt2;
|
|
}
|
|
|
|
uint64_t helper_float_roundl_s(uint32_t fst0)
|
|
{
|
|
uint64_t dt2;
|
|
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status);
|
|
set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
|
|
dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
|
|
RESTORE_ROUNDING_MODE;
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
dt2 = FLOAT_SNAN64;
|
|
return dt2;
|
|
}
|
|
|
|
uint32_t helper_float_roundw_d(uint64_t fdt0)
|
|
{
|
|
uint32_t wt2;
|
|
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status);
|
|
set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
|
|
wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
|
|
RESTORE_ROUNDING_MODE;
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
wt2 = FLOAT_SNAN32;
|
|
return wt2;
|
|
}
|
|
|
|
uint32_t helper_float_roundw_s(uint32_t fst0)
|
|
{
|
|
uint32_t wt2;
|
|
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status);
|
|
set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
|
|
wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
|
|
RESTORE_ROUNDING_MODE;
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
wt2 = FLOAT_SNAN32;
|
|
return wt2;
|
|
}
|
|
|
|
uint64_t helper_float_truncl_d(uint64_t fdt0)
|
|
{
|
|
uint64_t dt2;
|
|
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status);
|
|
dt2 = float64_to_int64_round_to_zero(fdt0, &env->active_fpu.fp_status);
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
dt2 = FLOAT_SNAN64;
|
|
return dt2;
|
|
}
|
|
|
|
uint64_t helper_float_truncl_s(uint32_t fst0)
|
|
{
|
|
uint64_t dt2;
|
|
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status);
|
|
dt2 = float32_to_int64_round_to_zero(fst0, &env->active_fpu.fp_status);
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
dt2 = FLOAT_SNAN64;
|
|
return dt2;
|
|
}
|
|
|
|
uint32_t helper_float_truncw_d(uint64_t fdt0)
|
|
{
|
|
uint32_t wt2;
|
|
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status);
|
|
wt2 = float64_to_int32_round_to_zero(fdt0, &env->active_fpu.fp_status);
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
wt2 = FLOAT_SNAN32;
|
|
return wt2;
|
|
}
|
|
|
|
uint32_t helper_float_truncw_s(uint32_t fst0)
|
|
{
|
|
uint32_t wt2;
|
|
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status);
|
|
wt2 = float32_to_int32_round_to_zero(fst0, &env->active_fpu.fp_status);
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
wt2 = FLOAT_SNAN32;
|
|
return wt2;
|
|
}
|
|
|
|
uint64_t helper_float_ceill_d(uint64_t fdt0)
|
|
{
|
|
uint64_t dt2;
|
|
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status);
|
|
set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
|
|
dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
|
|
RESTORE_ROUNDING_MODE;
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
dt2 = FLOAT_SNAN64;
|
|
return dt2;
|
|
}
|
|
|
|
uint64_t helper_float_ceill_s(uint32_t fst0)
|
|
{
|
|
uint64_t dt2;
|
|
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status);
|
|
set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
|
|
dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
|
|
RESTORE_ROUNDING_MODE;
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
dt2 = FLOAT_SNAN64;
|
|
return dt2;
|
|
}
|
|
|
|
uint32_t helper_float_ceilw_d(uint64_t fdt0)
|
|
{
|
|
uint32_t wt2;
|
|
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status);
|
|
set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
|
|
wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
|
|
RESTORE_ROUNDING_MODE;
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
wt2 = FLOAT_SNAN32;
|
|
return wt2;
|
|
}
|
|
|
|
uint32_t helper_float_ceilw_s(uint32_t fst0)
|
|
{
|
|
uint32_t wt2;
|
|
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status);
|
|
set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
|
|
wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
|
|
RESTORE_ROUNDING_MODE;
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
wt2 = FLOAT_SNAN32;
|
|
return wt2;
|
|
}
|
|
|
|
uint64_t helper_float_floorl_d(uint64_t fdt0)
|
|
{
|
|
uint64_t dt2;
|
|
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status);
|
|
set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
|
|
dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
|
|
RESTORE_ROUNDING_MODE;
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
dt2 = FLOAT_SNAN64;
|
|
return dt2;
|
|
}
|
|
|
|
uint64_t helper_float_floorl_s(uint32_t fst0)
|
|
{
|
|
uint64_t dt2;
|
|
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status);
|
|
set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
|
|
dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
|
|
RESTORE_ROUNDING_MODE;
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
dt2 = FLOAT_SNAN64;
|
|
return dt2;
|
|
}
|
|
|
|
uint32_t helper_float_floorw_d(uint64_t fdt0)
|
|
{
|
|
uint32_t wt2;
|
|
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status);
|
|
set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
|
|
wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
|
|
RESTORE_ROUNDING_MODE;
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
wt2 = FLOAT_SNAN32;
|
|
return wt2;
|
|
}
|
|
|
|
uint32_t helper_float_floorw_s(uint32_t fst0)
|
|
{
|
|
uint32_t wt2;
|
|
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status);
|
|
set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
|
|
wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
|
|
RESTORE_ROUNDING_MODE;
|
|
update_fcr31();
|
|
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
|
|
wt2 = FLOAT_SNAN32;
|
|
return wt2;
|
|
}
|
|
|
|
/* unary operations, not modifying fp status */
|
|
#define FLOAT_UNOP(name) \
|
|
uint64_t helper_float_ ## name ## _d(uint64_t fdt0) \
|
|
{ \
|
|
return float64_ ## name(fdt0); \
|
|
} \
|
|
uint32_t helper_float_ ## name ## _s(uint32_t fst0) \
|
|
{ \
|
|
return float32_ ## name(fst0); \
|
|
} \
|
|
uint64_t helper_float_ ## name ## _ps(uint64_t fdt0) \
|
|
{ \
|
|
uint32_t wt0; \
|
|
uint32_t wth0; \
|
|
\
|
|
wt0 = float32_ ## name(fdt0 & 0XFFFFFFFF); \
|
|
wth0 = float32_ ## name(fdt0 >> 32); \
|
|
return ((uint64_t)wth0 << 32) | wt0; \
|
|
}
|
|
FLOAT_UNOP(abs)
|
|
FLOAT_UNOP(chs)
|
|
#undef FLOAT_UNOP
|
|
|
|
/* MIPS specific unary operations */
|
|
uint64_t helper_float_recip_d(uint64_t fdt0)
|
|
{
|
|
uint64_t fdt2;
|
|
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status);
|
|
fdt2 = float64_div(FLOAT_ONE64, fdt0, &env->active_fpu.fp_status);
|
|
update_fcr31();
|
|
return fdt2;
|
|
}
|
|
|
|
uint32_t helper_float_recip_s(uint32_t fst0)
|
|
{
|
|
uint32_t fst2;
|
|
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status);
|
|
fst2 = float32_div(FLOAT_ONE32, fst0, &env->active_fpu.fp_status);
|
|
update_fcr31();
|
|
return fst2;
|
|
}
|
|
|
|
uint64_t helper_float_rsqrt_d(uint64_t fdt0)
|
|
{
|
|
uint64_t fdt2;
|
|
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status);
|
|
fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
|
|
fdt2 = float64_div(FLOAT_ONE64, fdt2, &env->active_fpu.fp_status);
|
|
update_fcr31();
|
|
return fdt2;
|
|
}
|
|
|
|
uint32_t helper_float_rsqrt_s(uint32_t fst0)
|
|
{
|
|
uint32_t fst2;
|
|
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status);
|
|
fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
|
|
fst2 = float32_div(FLOAT_ONE32, fst2, &env->active_fpu.fp_status);
|
|
update_fcr31();
|
|
return fst2;
|
|
}
|
|
|
|
uint64_t helper_float_recip1_d(uint64_t fdt0)
|
|
{
|
|
uint64_t fdt2;
|
|
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status);
|
|
fdt2 = float64_div(FLOAT_ONE64, fdt0, &env->active_fpu.fp_status);
|
|
update_fcr31();
|
|
return fdt2;
|
|
}
|
|
|
|
uint32_t helper_float_recip1_s(uint32_t fst0)
|
|
{
|
|
uint32_t fst2;
|
|
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status);
|
|
fst2 = float32_div(FLOAT_ONE32, fst0, &env->active_fpu.fp_status);
|
|
update_fcr31();
|
|
return fst2;
|
|
}
|
|
|
|
uint64_t helper_float_recip1_ps(uint64_t fdt0)
|
|
{
|
|
uint32_t fst2;
|
|
uint32_t fsth2;
|
|
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status);
|
|
fst2 = float32_div(FLOAT_ONE32, fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
|
|
fsth2 = float32_div(FLOAT_ONE32, fdt0 >> 32, &env->active_fpu.fp_status);
|
|
update_fcr31();
|
|
return ((uint64_t)fsth2 << 32) | fst2;
|
|
}
|
|
|
|
uint64_t helper_float_rsqrt1_d(uint64_t fdt0)
|
|
{
|
|
uint64_t fdt2;
|
|
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status);
|
|
fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
|
|
fdt2 = float64_div(FLOAT_ONE64, fdt2, &env->active_fpu.fp_status);
|
|
update_fcr31();
|
|
return fdt2;
|
|
}
|
|
|
|
uint32_t helper_float_rsqrt1_s(uint32_t fst0)
|
|
{
|
|
uint32_t fst2;
|
|
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status);
|
|
fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
|
|
fst2 = float32_div(FLOAT_ONE32, fst2, &env->active_fpu.fp_status);
|
|
update_fcr31();
|
|
return fst2;
|
|
}
|
|
|
|
uint64_t helper_float_rsqrt1_ps(uint64_t fdt0)
|
|
{
|
|
uint32_t fst2;
|
|
uint32_t fsth2;
|
|
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status);
|
|
fst2 = float32_sqrt(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
|
|
fsth2 = float32_sqrt(fdt0 >> 32, &env->active_fpu.fp_status);
|
|
fst2 = float32_div(FLOAT_ONE32, fst2, &env->active_fpu.fp_status);
|
|
fsth2 = float32_div(FLOAT_ONE32, fsth2, &env->active_fpu.fp_status);
|
|
update_fcr31();
|
|
return ((uint64_t)fsth2 << 32) | fst2;
|
|
}
|
|
|
|
#define FLOAT_OP(name, p) void helper_float_##name##_##p(void)
|
|
|
|
/* binary operations */
|
|
#define FLOAT_BINOP(name) \
|
|
uint64_t helper_float_ ## name ## _d(uint64_t fdt0, uint64_t fdt1) \
|
|
{ \
|
|
uint64_t dt2; \
|
|
\
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status); \
|
|
dt2 = float64_ ## name (fdt0, fdt1, &env->active_fpu.fp_status); \
|
|
update_fcr31(); \
|
|
if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) \
|
|
dt2 = FLOAT_QNAN64; \
|
|
return dt2; \
|
|
} \
|
|
\
|
|
uint32_t helper_float_ ## name ## _s(uint32_t fst0, uint32_t fst1) \
|
|
{ \
|
|
uint32_t wt2; \
|
|
\
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status); \
|
|
wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
|
|
update_fcr31(); \
|
|
if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) \
|
|
wt2 = FLOAT_QNAN32; \
|
|
return wt2; \
|
|
} \
|
|
\
|
|
uint64_t helper_float_ ## name ## _ps(uint64_t fdt0, uint64_t fdt1) \
|
|
{ \
|
|
uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
|
|
uint32_t fsth0 = fdt0 >> 32; \
|
|
uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
|
|
uint32_t fsth1 = fdt1 >> 32; \
|
|
uint32_t wt2; \
|
|
uint32_t wth2; \
|
|
\
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status); \
|
|
wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
|
|
wth2 = float32_ ## name (fsth0, fsth1, &env->active_fpu.fp_status); \
|
|
update_fcr31(); \
|
|
if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) { \
|
|
wt2 = FLOAT_QNAN32; \
|
|
wth2 = FLOAT_QNAN32; \
|
|
} \
|
|
return ((uint64_t)wth2 << 32) | wt2; \
|
|
}
|
|
|
|
FLOAT_BINOP(add)
|
|
FLOAT_BINOP(sub)
|
|
FLOAT_BINOP(mul)
|
|
FLOAT_BINOP(div)
|
|
#undef FLOAT_BINOP
|
|
|
|
/* ternary operations */
|
|
#define FLOAT_TERNOP(name1, name2) \
|
|
uint64_t helper_float_ ## name1 ## name2 ## _d(uint64_t fdt0, uint64_t fdt1, \
|
|
uint64_t fdt2) \
|
|
{ \
|
|
fdt0 = float64_ ## name1 (fdt0, fdt1, &env->active_fpu.fp_status); \
|
|
return float64_ ## name2 (fdt0, fdt2, &env->active_fpu.fp_status); \
|
|
} \
|
|
\
|
|
uint32_t helper_float_ ## name1 ## name2 ## _s(uint32_t fst0, uint32_t fst1, \
|
|
uint32_t fst2) \
|
|
{ \
|
|
fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
|
|
return float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
|
|
} \
|
|
\
|
|
uint64_t helper_float_ ## name1 ## name2 ## _ps(uint64_t fdt0, uint64_t fdt1, \
|
|
uint64_t fdt2) \
|
|
{ \
|
|
uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
|
|
uint32_t fsth0 = fdt0 >> 32; \
|
|
uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
|
|
uint32_t fsth1 = fdt1 >> 32; \
|
|
uint32_t fst2 = fdt2 & 0XFFFFFFFF; \
|
|
uint32_t fsth2 = fdt2 >> 32; \
|
|
\
|
|
fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
|
|
fsth0 = float32_ ## name1 (fsth0, fsth1, &env->active_fpu.fp_status); \
|
|
fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
|
|
fsth2 = float32_ ## name2 (fsth0, fsth2, &env->active_fpu.fp_status); \
|
|
return ((uint64_t)fsth2 << 32) | fst2; \
|
|
}
|
|
|
|
FLOAT_TERNOP(mul, add)
|
|
FLOAT_TERNOP(mul, sub)
|
|
#undef FLOAT_TERNOP
|
|
|
|
/* negated ternary operations */
|
|
#define FLOAT_NTERNOP(name1, name2) \
|
|
uint64_t helper_float_n ## name1 ## name2 ## _d(uint64_t fdt0, uint64_t fdt1, \
|
|
uint64_t fdt2) \
|
|
{ \
|
|
fdt0 = float64_ ## name1 (fdt0, fdt1, &env->active_fpu.fp_status); \
|
|
fdt2 = float64_ ## name2 (fdt0, fdt2, &env->active_fpu.fp_status); \
|
|
return float64_chs(fdt2); \
|
|
} \
|
|
\
|
|
uint32_t helper_float_n ## name1 ## name2 ## _s(uint32_t fst0, uint32_t fst1, \
|
|
uint32_t fst2) \
|
|
{ \
|
|
fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
|
|
fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
|
|
return float32_chs(fst2); \
|
|
} \
|
|
\
|
|
uint64_t helper_float_n ## name1 ## name2 ## _ps(uint64_t fdt0, uint64_t fdt1,\
|
|
uint64_t fdt2) \
|
|
{ \
|
|
uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
|
|
uint32_t fsth0 = fdt0 >> 32; \
|
|
uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
|
|
uint32_t fsth1 = fdt1 >> 32; \
|
|
uint32_t fst2 = fdt2 & 0XFFFFFFFF; \
|
|
uint32_t fsth2 = fdt2 >> 32; \
|
|
\
|
|
fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
|
|
fsth0 = float32_ ## name1 (fsth0, fsth1, &env->active_fpu.fp_status); \
|
|
fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
|
|
fsth2 = float32_ ## name2 (fsth0, fsth2, &env->active_fpu.fp_status); \
|
|
fst2 = float32_chs(fst2); \
|
|
fsth2 = float32_chs(fsth2); \
|
|
return ((uint64_t)fsth2 << 32) | fst2; \
|
|
}
|
|
|
|
FLOAT_NTERNOP(mul, add)
|
|
FLOAT_NTERNOP(mul, sub)
|
|
#undef FLOAT_NTERNOP
|
|
|
|
/* MIPS specific binary operations */
|
|
uint64_t helper_float_recip2_d(uint64_t fdt0, uint64_t fdt2)
|
|
{
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status);
|
|
fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
|
|
fdt2 = float64_chs(float64_sub(fdt2, FLOAT_ONE64, &env->active_fpu.fp_status));
|
|
update_fcr31();
|
|
return fdt2;
|
|
}
|
|
|
|
uint32_t helper_float_recip2_s(uint32_t fst0, uint32_t fst2)
|
|
{
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status);
|
|
fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
|
|
fst2 = float32_chs(float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status));
|
|
update_fcr31();
|
|
return fst2;
|
|
}
|
|
|
|
uint64_t helper_float_recip2_ps(uint64_t fdt0, uint64_t fdt2)
|
|
{
|
|
uint32_t fst0 = fdt0 & 0XFFFFFFFF;
|
|
uint32_t fsth0 = fdt0 >> 32;
|
|
uint32_t fst2 = fdt2 & 0XFFFFFFFF;
|
|
uint32_t fsth2 = fdt2 >> 32;
|
|
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status);
|
|
fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
|
|
fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
|
|
fst2 = float32_chs(float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status));
|
|
fsth2 = float32_chs(float32_sub(fsth2, FLOAT_ONE32, &env->active_fpu.fp_status));
|
|
update_fcr31();
|
|
return ((uint64_t)fsth2 << 32) | fst2;
|
|
}
|
|
|
|
uint64_t helper_float_rsqrt2_d(uint64_t fdt0, uint64_t fdt2)
|
|
{
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status);
|
|
fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
|
|
fdt2 = float64_sub(fdt2, FLOAT_ONE64, &env->active_fpu.fp_status);
|
|
fdt2 = float64_chs(float64_div(fdt2, FLOAT_TWO64, &env->active_fpu.fp_status));
|
|
update_fcr31();
|
|
return fdt2;
|
|
}
|
|
|
|
uint32_t helper_float_rsqrt2_s(uint32_t fst0, uint32_t fst2)
|
|
{
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status);
|
|
fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
|
|
fst2 = float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status);
|
|
fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status));
|
|
update_fcr31();
|
|
return fst2;
|
|
}
|
|
|
|
uint64_t helper_float_rsqrt2_ps(uint64_t fdt0, uint64_t fdt2)
|
|
{
|
|
uint32_t fst0 = fdt0 & 0XFFFFFFFF;
|
|
uint32_t fsth0 = fdt0 >> 32;
|
|
uint32_t fst2 = fdt2 & 0XFFFFFFFF;
|
|
uint32_t fsth2 = fdt2 >> 32;
|
|
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status);
|
|
fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
|
|
fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
|
|
fst2 = float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status);
|
|
fsth2 = float32_sub(fsth2, FLOAT_ONE32, &env->active_fpu.fp_status);
|
|
fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status));
|
|
fsth2 = float32_chs(float32_div(fsth2, FLOAT_TWO32, &env->active_fpu.fp_status));
|
|
update_fcr31();
|
|
return ((uint64_t)fsth2 << 32) | fst2;
|
|
}
|
|
|
|
uint64_t helper_float_addr_ps(uint64_t fdt0, uint64_t fdt1)
|
|
{
|
|
uint32_t fst0 = fdt0 & 0XFFFFFFFF;
|
|
uint32_t fsth0 = fdt0 >> 32;
|
|
uint32_t fst1 = fdt1 & 0XFFFFFFFF;
|
|
uint32_t fsth1 = fdt1 >> 32;
|
|
uint32_t fst2;
|
|
uint32_t fsth2;
|
|
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status);
|
|
fst2 = float32_add (fst0, fsth0, &env->active_fpu.fp_status);
|
|
fsth2 = float32_add (fst1, fsth1, &env->active_fpu.fp_status);
|
|
update_fcr31();
|
|
return ((uint64_t)fsth2 << 32) | fst2;
|
|
}
|
|
|
|
uint64_t helper_float_mulr_ps(uint64_t fdt0, uint64_t fdt1)
|
|
{
|
|
uint32_t fst0 = fdt0 & 0XFFFFFFFF;
|
|
uint32_t fsth0 = fdt0 >> 32;
|
|
uint32_t fst1 = fdt1 & 0XFFFFFFFF;
|
|
uint32_t fsth1 = fdt1 >> 32;
|
|
uint32_t fst2;
|
|
uint32_t fsth2;
|
|
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status);
|
|
fst2 = float32_mul (fst0, fsth0, &env->active_fpu.fp_status);
|
|
fsth2 = float32_mul (fst1, fsth1, &env->active_fpu.fp_status);
|
|
update_fcr31();
|
|
return ((uint64_t)fsth2 << 32) | fst2;
|
|
}
|
|
|
|
/* compare operations */
|
|
#define FOP_COND_D(op, cond) \
|
|
void helper_cmp_d_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
|
|
{ \
|
|
int c; \
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status); \
|
|
c = cond; \
|
|
update_fcr31(); \
|
|
if (c) \
|
|
SET_FP_COND(cc, env->active_fpu); \
|
|
else \
|
|
CLEAR_FP_COND(cc, env->active_fpu); \
|
|
} \
|
|
void helper_cmpabs_d_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
|
|
{ \
|
|
int c; \
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status); \
|
|
fdt0 = float64_abs(fdt0); \
|
|
fdt1 = float64_abs(fdt1); \
|
|
c = cond; \
|
|
update_fcr31(); \
|
|
if (c) \
|
|
SET_FP_COND(cc, env->active_fpu); \
|
|
else \
|
|
CLEAR_FP_COND(cc, env->active_fpu); \
|
|
}
|
|
|
|
/* NOTE: the comma operator will make "cond" to eval to false,
|
|
* but float64_unordered_quiet() is still called. */
|
|
FOP_COND_D(f, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status), 0))
|
|
FOP_COND_D(un, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status))
|
|
FOP_COND_D(eq, float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
|
|
FOP_COND_D(ueq, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
|
|
FOP_COND_D(olt, float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
|
|
FOP_COND_D(ult, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
|
|
FOP_COND_D(ole, float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
|
|
FOP_COND_D(ule, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
|
|
/* NOTE: the comma operator will make "cond" to eval to false,
|
|
* but float64_unordered() is still called. */
|
|
FOP_COND_D(sf, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status), 0))
|
|
FOP_COND_D(ngle,float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status))
|
|
FOP_COND_D(seq, float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
|
|
FOP_COND_D(ngl, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
|
|
FOP_COND_D(lt, float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
|
|
FOP_COND_D(nge, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
|
|
FOP_COND_D(le, float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
|
|
FOP_COND_D(ngt, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
|
|
|
|
#define FOP_COND_S(op, cond) \
|
|
void helper_cmp_s_ ## op (uint32_t fst0, uint32_t fst1, int cc) \
|
|
{ \
|
|
int c; \
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status); \
|
|
c = cond; \
|
|
update_fcr31(); \
|
|
if (c) \
|
|
SET_FP_COND(cc, env->active_fpu); \
|
|
else \
|
|
CLEAR_FP_COND(cc, env->active_fpu); \
|
|
} \
|
|
void helper_cmpabs_s_ ## op (uint32_t fst0, uint32_t fst1, int cc) \
|
|
{ \
|
|
int c; \
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status); \
|
|
fst0 = float32_abs(fst0); \
|
|
fst1 = float32_abs(fst1); \
|
|
c = cond; \
|
|
update_fcr31(); \
|
|
if (c) \
|
|
SET_FP_COND(cc, env->active_fpu); \
|
|
else \
|
|
CLEAR_FP_COND(cc, env->active_fpu); \
|
|
}
|
|
|
|
/* NOTE: the comma operator will make "cond" to eval to false,
|
|
* but float32_unordered_quiet() is still called. */
|
|
FOP_COND_S(f, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status), 0))
|
|
FOP_COND_S(un, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status))
|
|
FOP_COND_S(eq, float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status))
|
|
FOP_COND_S(ueq, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status))
|
|
FOP_COND_S(olt, float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status))
|
|
FOP_COND_S(ult, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status))
|
|
FOP_COND_S(ole, float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status))
|
|
FOP_COND_S(ule, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status))
|
|
/* NOTE: the comma operator will make "cond" to eval to false,
|
|
* but float32_unordered() is still called. */
|
|
FOP_COND_S(sf, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status), 0))
|
|
FOP_COND_S(ngle,float32_unordered(fst1, fst0, &env->active_fpu.fp_status))
|
|
FOP_COND_S(seq, float32_eq(fst0, fst1, &env->active_fpu.fp_status))
|
|
FOP_COND_S(ngl, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status))
|
|
FOP_COND_S(lt, float32_lt(fst0, fst1, &env->active_fpu.fp_status))
|
|
FOP_COND_S(nge, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status))
|
|
FOP_COND_S(le, float32_le(fst0, fst1, &env->active_fpu.fp_status))
|
|
FOP_COND_S(ngt, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status))
|
|
|
|
#define FOP_COND_PS(op, condl, condh) \
|
|
void helper_cmp_ps_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
|
|
{ \
|
|
uint32_t fst0, fsth0, fst1, fsth1; \
|
|
int ch, cl; \
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status); \
|
|
fst0 = fdt0 & 0XFFFFFFFF; \
|
|
fsth0 = fdt0 >> 32; \
|
|
fst1 = fdt1 & 0XFFFFFFFF; \
|
|
fsth1 = fdt1 >> 32; \
|
|
cl = condl; \
|
|
ch = condh; \
|
|
update_fcr31(); \
|
|
if (cl) \
|
|
SET_FP_COND(cc, env->active_fpu); \
|
|
else \
|
|
CLEAR_FP_COND(cc, env->active_fpu); \
|
|
if (ch) \
|
|
SET_FP_COND(cc + 1, env->active_fpu); \
|
|
else \
|
|
CLEAR_FP_COND(cc + 1, env->active_fpu); \
|
|
} \
|
|
void helper_cmpabs_ps_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
|
|
{ \
|
|
uint32_t fst0, fsth0, fst1, fsth1; \
|
|
int ch, cl; \
|
|
fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \
|
|
fsth0 = float32_abs(fdt0 >> 32); \
|
|
fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \
|
|
fsth1 = float32_abs(fdt1 >> 32); \
|
|
cl = condl; \
|
|
ch = condh; \
|
|
update_fcr31(); \
|
|
if (cl) \
|
|
SET_FP_COND(cc, env->active_fpu); \
|
|
else \
|
|
CLEAR_FP_COND(cc, env->active_fpu); \
|
|
if (ch) \
|
|
SET_FP_COND(cc + 1, env->active_fpu); \
|
|
else \
|
|
CLEAR_FP_COND(cc + 1, env->active_fpu); \
|
|
}
|
|
|
|
/* NOTE: the comma operator will make "cond" to eval to false,
|
|
* but float32_unordered_quiet() is still called. */
|
|
FOP_COND_PS(f, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status), 0),
|
|
(float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status), 0))
|
|
FOP_COND_PS(un, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status),
|
|
float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status))
|
|
FOP_COND_PS(eq, float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status),
|
|
float32_eq_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
|
|
FOP_COND_PS(ueq, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status),
|
|
float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
|
|
FOP_COND_PS(olt, float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status),
|
|
float32_lt_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
|
|
FOP_COND_PS(ult, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status),
|
|
float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
|
|
FOP_COND_PS(ole, float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status),
|
|
float32_le_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
|
|
FOP_COND_PS(ule, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status),
|
|
float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_le_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
|
|
/* NOTE: the comma operator will make "cond" to eval to false,
|
|
* but float32_unordered() is still called. */
|
|
FOP_COND_PS(sf, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status), 0),
|
|
(float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status), 0))
|
|
FOP_COND_PS(ngle,float32_unordered(fst1, fst0, &env->active_fpu.fp_status),
|
|
float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status))
|
|
FOP_COND_PS(seq, float32_eq(fst0, fst1, &env->active_fpu.fp_status),
|
|
float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
|
|
FOP_COND_PS(ngl, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status),
|
|
float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
|
|
FOP_COND_PS(lt, float32_lt(fst0, fst1, &env->active_fpu.fp_status),
|
|
float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
|
|
FOP_COND_PS(nge, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status),
|
|
float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
|
|
FOP_COND_PS(le, float32_le(fst0, fst1, &env->active_fpu.fp_status),
|
|
float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
|
|
FOP_COND_PS(ngt, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status),
|
|
float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
|