qemu/tests/ahci-test.c
John Snow c12e8293b8 qtest/ahci: remove guest_malloc global
Make helper routines rely on the earmarked
guest allocator object with AHCIQState/QOSSTate instead.

Signed-off-by: John Snow <jsnow@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-id: 1421698563-6977-12-git-send-email-jsnow@redhat.com
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
2015-02-16 14:40:55 +00:00

1215 lines
39 KiB
C

/*
* AHCI test cases
*
* Copyright (c) 2014 John Snow <jsnow@redhat.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdint.h>
#include <string.h>
#include <stdio.h>
#include <getopt.h>
#include <glib.h>
#include "libqtest.h"
#include "libqos/libqos-pc.h"
#include "libqos/ahci.h"
#include "libqos/pci-pc.h"
#include "qemu-common.h"
#include "qemu/host-utils.h"
#include "hw/pci/pci_ids.h"
#include "hw/pci/pci_regs.h"
/* Test-specific defines. */
#define TEST_IMAGE_SIZE (64 * 1024 * 1024)
/*** Globals ***/
static char tmp_path[] = "/tmp/qtest.XXXXXX";
static bool ahci_pedantic;
/*** IO macros for the AHCI memory registers. ***/
#define AHCI_READ(OFST) qpci_io_readl(ahci->dev, ahci->hba_base + (OFST))
#define AHCI_WRITE(OFST, VAL) qpci_io_writel(ahci->dev, \
ahci->hba_base + (OFST), (VAL))
#define AHCI_RREG(regno) AHCI_READ(4 * (regno))
#define AHCI_WREG(regno, val) AHCI_WRITE(4 * (regno), (val))
#define AHCI_SET(regno, mask) AHCI_WREG((regno), AHCI_RREG(regno) | (mask))
#define AHCI_CLR(regno, mask) AHCI_WREG((regno), AHCI_RREG(regno) & ~(mask))
/*** IO macros for port-specific offsets inside of AHCI memory. ***/
#define PX_OFST(port, regno) (HBA_PORT_NUM_REG * (port) + AHCI_PORTS + (regno))
#define PX_RREG(port, regno) AHCI_RREG(PX_OFST((port), (regno)))
#define PX_WREG(port, regno, val) AHCI_WREG(PX_OFST((port), (regno)), (val))
#define PX_SET(port, reg, mask) PX_WREG((port), (reg), \
PX_RREG((port), (reg)) | (mask));
#define PX_CLR(port, reg, mask) PX_WREG((port), (reg), \
PX_RREG((port), (reg)) & ~(mask));
/*** Function Declarations ***/
static QPCIDevice *get_ahci_device(uint32_t *fingerprint);
static void start_ahci_device(AHCIQState *ahci);
static void free_ahci_device(QPCIDevice *dev);
static void ahci_test_port_spec(AHCIQState *ahci, uint8_t port);
static void ahci_test_pci_spec(AHCIQState *ahci);
static void ahci_test_pci_caps(AHCIQState *ahci, uint16_t header,
uint8_t offset);
static void ahci_test_satacap(AHCIQState *ahci, uint8_t offset);
static void ahci_test_msicap(AHCIQState *ahci, uint8_t offset);
static void ahci_test_pmcap(AHCIQState *ahci, uint8_t offset);
/*** Utilities ***/
static void string_bswap16(uint16_t *s, size_t bytes)
{
g_assert_cmphex((bytes & 1), ==, 0);
bytes /= 2;
while (bytes--) {
*s = bswap16(*s);
s++;
}
}
static uint64_t ahci_alloc(AHCIQState *ahci, size_t bytes)
{
return qmalloc(ahci->parent, bytes);
}
/**
* Locate, verify, and return a handle to the AHCI device.
*/
static QPCIDevice *get_ahci_device(uint32_t *fingerprint)
{
QPCIDevice *ahci;
uint32_t ahci_fingerprint;
QPCIBus *pcibus;
pcibus = qpci_init_pc();
/* Find the AHCI PCI device and verify it's the right one. */
ahci = qpci_device_find(pcibus, QPCI_DEVFN(0x1F, 0x02));
g_assert(ahci != NULL);
ahci_fingerprint = qpci_config_readl(ahci, PCI_VENDOR_ID);
switch (ahci_fingerprint) {
case AHCI_INTEL_ICH9:
break;
default:
/* Unknown device. */
g_assert_not_reached();
}
if (fingerprint) {
*fingerprint = ahci_fingerprint;
}
return ahci;
}
static void free_ahci_device(QPCIDevice *dev)
{
QPCIBus *pcibus = dev ? dev->bus : NULL;
/* libqos doesn't have a function for this, so free it manually */
g_free(dev);
qpci_free_pc(pcibus);
}
/*** Test Setup & Teardown ***/
/**
* Start a Q35 machine and bookmark a handle to the AHCI device.
*/
static AHCIQState *ahci_boot(void)
{
AHCIQState *s;
const char *cli;
s = g_malloc0(sizeof(AHCIQState));
cli = "-drive if=none,id=drive0,file=%s,cache=writeback,serial=%s"
",format=raw"
" -M q35 "
"-device ide-hd,drive=drive0 "
"-global ide-hd.ver=%s";
s->parent = qtest_pc_boot(cli, tmp_path, "testdisk", "version");
/* Verify that we have an AHCI device present. */
s->dev = get_ahci_device(&s->fingerprint);
return s;
}
/**
* Clean up the PCI device, then terminate the QEMU instance.
*/
static void ahci_shutdown(AHCIQState *ahci)
{
QOSState *qs = ahci->parent;
free_ahci_device(ahci->dev);
g_free(ahci);
qtest_shutdown(qs);
}
/*** Logical Device Initialization ***/
/**
* Start the PCI device and sanity-check default operation.
*/
static void ahci_pci_enable(AHCIQState *ahci)
{
uint8_t reg;
start_ahci_device(ahci);
switch (ahci->fingerprint) {
case AHCI_INTEL_ICH9:
/* ICH9 has a register at PCI 0x92 that
* acts as a master port enabler mask. */
reg = qpci_config_readb(ahci->dev, 0x92);
reg |= 0x3F;
qpci_config_writeb(ahci->dev, 0x92, reg);
/* 0...0111111b -- bit significant, ports 0-5 enabled. */
ASSERT_BIT_SET(qpci_config_readb(ahci->dev, 0x92), 0x3F);
break;
}
}
/**
* Map BAR5/ABAR, and engage the PCI device.
*/
static void start_ahci_device(AHCIQState *ahci)
{
/* Map AHCI's ABAR (BAR5) */
ahci->hba_base = qpci_iomap(ahci->dev, 5, &ahci->barsize);
/* turns on pci.cmd.iose, pci.cmd.mse and pci.cmd.bme */
qpci_device_enable(ahci->dev);
}
/**
* Test and initialize the AHCI's HBA memory areas.
* Initialize and start any ports with devices attached.
* Bring the HBA into the idle state.
*/
static void ahci_hba_enable(AHCIQState *ahci)
{
/* Bits of interest in this section:
* GHC.AE Global Host Control / AHCI Enable
* PxCMD.ST Port Command: Start
* PxCMD.SUD "Spin Up Device"
* PxCMD.POD "Power On Device"
* PxCMD.FRE "FIS Receive Enable"
* PxCMD.FR "FIS Receive Running"
* PxCMD.CR "Command List Running"
*/
uint32_t reg, ports_impl, clb, fb;
uint16_t i;
uint8_t num_cmd_slots;
g_assert(ahci != NULL);
/* Set GHC.AE to 1 */
AHCI_SET(AHCI_GHC, AHCI_GHC_AE);
reg = AHCI_RREG(AHCI_GHC);
ASSERT_BIT_SET(reg, AHCI_GHC_AE);
/* Cache CAP and CAP2. */
ahci->cap = AHCI_RREG(AHCI_CAP);
ahci->cap2 = AHCI_RREG(AHCI_CAP2);
/* Read CAP.NCS, how many command slots do we have? */
num_cmd_slots = ((ahci->cap & AHCI_CAP_NCS) >> ctzl(AHCI_CAP_NCS)) + 1;
g_test_message("Number of Command Slots: %u", num_cmd_slots);
/* Determine which ports are implemented. */
ports_impl = AHCI_RREG(AHCI_PI);
for (i = 0; ports_impl; ports_impl >>= 1, ++i) {
if (!(ports_impl & 0x01)) {
continue;
}
g_test_message("Initializing port %u", i);
reg = PX_RREG(i, AHCI_PX_CMD);
if (BITCLR(reg, AHCI_PX_CMD_ST | AHCI_PX_CMD_CR |
AHCI_PX_CMD_FRE | AHCI_PX_CMD_FR)) {
g_test_message("port is idle");
} else {
g_test_message("port needs to be idled");
PX_CLR(i, AHCI_PX_CMD, (AHCI_PX_CMD_ST | AHCI_PX_CMD_FRE));
/* The port has 500ms to disengage. */
usleep(500000);
reg = PX_RREG(i, AHCI_PX_CMD);
ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_CR);
ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_FR);
g_test_message("port is now idle");
/* The spec does allow for possibly needing a PORT RESET
* or HBA reset if we fail to idle the port. */
}
/* Allocate Memory for the Command List Buffer & FIS Buffer */
/* PxCLB space ... 0x20 per command, as in 4.2.2 p 36 */
clb = ahci_alloc(ahci, num_cmd_slots * 0x20);
g_test_message("CLB: 0x%08x", clb);
PX_WREG(i, AHCI_PX_CLB, clb);
g_assert_cmphex(clb, ==, PX_RREG(i, AHCI_PX_CLB));
/* PxFB space ... 0x100, as in 4.2.1 p 35 */
fb = ahci_alloc(ahci, 0x100);
g_test_message("FB: 0x%08x", fb);
PX_WREG(i, AHCI_PX_FB, fb);
g_assert_cmphex(fb, ==, PX_RREG(i, AHCI_PX_FB));
/* Clear PxSERR, PxIS, then IS.IPS[x] by writing '1's. */
PX_WREG(i, AHCI_PX_SERR, 0xFFFFFFFF);
PX_WREG(i, AHCI_PX_IS, 0xFFFFFFFF);
AHCI_WREG(AHCI_IS, (1 << i));
/* Verify Interrupts Cleared */
reg = PX_RREG(i, AHCI_PX_SERR);
g_assert_cmphex(reg, ==, 0);
reg = PX_RREG(i, AHCI_PX_IS);
g_assert_cmphex(reg, ==, 0);
reg = AHCI_RREG(AHCI_IS);
ASSERT_BIT_CLEAR(reg, (1 << i));
/* Enable All Interrupts: */
PX_WREG(i, AHCI_PX_IE, 0xFFFFFFFF);
reg = PX_RREG(i, AHCI_PX_IE);
g_assert_cmphex(reg, ==, ~((uint32_t)AHCI_PX_IE_RESERVED));
/* Enable the FIS Receive Engine. */
PX_SET(i, AHCI_PX_CMD, AHCI_PX_CMD_FRE);
reg = PX_RREG(i, AHCI_PX_CMD);
ASSERT_BIT_SET(reg, AHCI_PX_CMD_FR);
/* AHCI 1.3 spec: if !STS.BSY, !STS.DRQ and PxSSTS.DET indicates
* physical presence, a device is present and may be started. However,
* PxSERR.DIAG.X /may/ need to be cleared a priori. */
reg = PX_RREG(i, AHCI_PX_SERR);
if (BITSET(reg, AHCI_PX_SERR_DIAG_X)) {
PX_SET(i, AHCI_PX_SERR, AHCI_PX_SERR_DIAG_X);
}
reg = PX_RREG(i, AHCI_PX_TFD);
if (BITCLR(reg, AHCI_PX_TFD_STS_BSY | AHCI_PX_TFD_STS_DRQ)) {
reg = PX_RREG(i, AHCI_PX_SSTS);
if ((reg & AHCI_PX_SSTS_DET) == SSTS_DET_ESTABLISHED) {
/* Device Found: set PxCMD.ST := 1 */
PX_SET(i, AHCI_PX_CMD, AHCI_PX_CMD_ST);
ASSERT_BIT_SET(PX_RREG(i, AHCI_PX_CMD), AHCI_PX_CMD_CR);
g_test_message("Started Device %u", i);
} else if ((reg & AHCI_PX_SSTS_DET)) {
/* Device present, but in some unknown state. */
g_assert_not_reached();
}
}
}
/* Enable GHC.IE */
AHCI_SET(AHCI_GHC, AHCI_GHC_IE);
reg = AHCI_RREG(AHCI_GHC);
ASSERT_BIT_SET(reg, AHCI_GHC_IE);
/* TODO: The device should now be idling and waiting for commands.
* In the future, a small test-case to inspect the Register D2H FIS
* and clear the initial interrupts might be good. */
}
/*** Specification Adherence Tests ***/
/**
* Implementation for test_pci_spec. Ensures PCI configuration space is sane.
*/
static void ahci_test_pci_spec(AHCIQState *ahci)
{
uint8_t datab;
uint16_t data;
uint32_t datal;
/* Most of these bits should start cleared until we turn them on. */
data = qpci_config_readw(ahci->dev, PCI_COMMAND);
ASSERT_BIT_CLEAR(data, PCI_COMMAND_MEMORY);
ASSERT_BIT_CLEAR(data, PCI_COMMAND_MASTER);
ASSERT_BIT_CLEAR(data, PCI_COMMAND_SPECIAL); /* Reserved */
ASSERT_BIT_CLEAR(data, PCI_COMMAND_VGA_PALETTE); /* Reserved */
ASSERT_BIT_CLEAR(data, PCI_COMMAND_PARITY);
ASSERT_BIT_CLEAR(data, PCI_COMMAND_WAIT); /* Reserved */
ASSERT_BIT_CLEAR(data, PCI_COMMAND_SERR);
ASSERT_BIT_CLEAR(data, PCI_COMMAND_FAST_BACK);
ASSERT_BIT_CLEAR(data, PCI_COMMAND_INTX_DISABLE);
ASSERT_BIT_CLEAR(data, 0xF800); /* Reserved */
data = qpci_config_readw(ahci->dev, PCI_STATUS);
ASSERT_BIT_CLEAR(data, 0x01 | 0x02 | 0x04); /* Reserved */
ASSERT_BIT_CLEAR(data, PCI_STATUS_INTERRUPT);
ASSERT_BIT_SET(data, PCI_STATUS_CAP_LIST); /* must be set */
ASSERT_BIT_CLEAR(data, PCI_STATUS_UDF); /* Reserved */
ASSERT_BIT_CLEAR(data, PCI_STATUS_PARITY);
ASSERT_BIT_CLEAR(data, PCI_STATUS_SIG_TARGET_ABORT);
ASSERT_BIT_CLEAR(data, PCI_STATUS_REC_TARGET_ABORT);
ASSERT_BIT_CLEAR(data, PCI_STATUS_REC_MASTER_ABORT);
ASSERT_BIT_CLEAR(data, PCI_STATUS_SIG_SYSTEM_ERROR);
ASSERT_BIT_CLEAR(data, PCI_STATUS_DETECTED_PARITY);
/* RID occupies the low byte, CCs occupy the high three. */
datal = qpci_config_readl(ahci->dev, PCI_CLASS_REVISION);
if (ahci_pedantic) {
/* AHCI 1.3 specifies that at-boot, the RID should reset to 0x00,
* Though in practice this is likely seldom true. */
ASSERT_BIT_CLEAR(datal, 0xFF);
}
/* BCC *must* equal 0x01. */
g_assert_cmphex(PCI_BCC(datal), ==, 0x01);
if (PCI_SCC(datal) == 0x01) {
/* IDE */
ASSERT_BIT_SET(0x80000000, datal);
ASSERT_BIT_CLEAR(0x60000000, datal);
} else if (PCI_SCC(datal) == 0x04) {
/* RAID */
g_assert_cmphex(PCI_PI(datal), ==, 0);
} else if (PCI_SCC(datal) == 0x06) {
/* AHCI */
g_assert_cmphex(PCI_PI(datal), ==, 0x01);
} else {
g_assert_not_reached();
}
datab = qpci_config_readb(ahci->dev, PCI_CACHE_LINE_SIZE);
g_assert_cmphex(datab, ==, 0);
datab = qpci_config_readb(ahci->dev, PCI_LATENCY_TIMER);
g_assert_cmphex(datab, ==, 0);
/* Only the bottom 7 bits must be off. */
datab = qpci_config_readb(ahci->dev, PCI_HEADER_TYPE);
ASSERT_BIT_CLEAR(datab, 0x7F);
/* BIST is optional, but the low 7 bits must always start off regardless. */
datab = qpci_config_readb(ahci->dev, PCI_BIST);
ASSERT_BIT_CLEAR(datab, 0x7F);
/* BARS 0-4 do not have a boot spec, but ABAR/BAR5 must be clean. */
datal = qpci_config_readl(ahci->dev, PCI_BASE_ADDRESS_5);
g_assert_cmphex(datal, ==, 0);
qpci_config_writel(ahci->dev, PCI_BASE_ADDRESS_5, 0xFFFFFFFF);
datal = qpci_config_readl(ahci->dev, PCI_BASE_ADDRESS_5);
/* ABAR must be 32-bit, memory mapped, non-prefetchable and
* must be >= 512 bytes. To that end, bits 0-8 must be off. */
ASSERT_BIT_CLEAR(datal, 0xFF);
/* Capability list MUST be present, */
datal = qpci_config_readl(ahci->dev, PCI_CAPABILITY_LIST);
/* But these bits are reserved. */
ASSERT_BIT_CLEAR(datal, ~0xFF);
g_assert_cmphex(datal, !=, 0);
/* Check specification adherence for capability extenstions. */
data = qpci_config_readw(ahci->dev, datal);
switch (ahci->fingerprint) {
case AHCI_INTEL_ICH9:
/* Intel ICH9 Family Datasheet 14.1.19 p.550 */
g_assert_cmphex((data & 0xFF), ==, PCI_CAP_ID_MSI);
break;
default:
/* AHCI 1.3, Section 2.1.14 -- CAP must point to PMCAP. */
g_assert_cmphex((data & 0xFF), ==, PCI_CAP_ID_PM);
}
ahci_test_pci_caps(ahci, data, (uint8_t)datal);
/* Reserved. */
datal = qpci_config_readl(ahci->dev, PCI_CAPABILITY_LIST + 4);
g_assert_cmphex(datal, ==, 0);
/* IPIN might vary, but ILINE must be off. */
datab = qpci_config_readb(ahci->dev, PCI_INTERRUPT_LINE);
g_assert_cmphex(datab, ==, 0);
}
/**
* Test PCI capabilities for AHCI specification adherence.
*/
static void ahci_test_pci_caps(AHCIQState *ahci, uint16_t header,
uint8_t offset)
{
uint8_t cid = header & 0xFF;
uint8_t next = header >> 8;
g_test_message("CID: %02x; next: %02x", cid, next);
switch (cid) {
case PCI_CAP_ID_PM:
ahci_test_pmcap(ahci, offset);
break;
case PCI_CAP_ID_MSI:
ahci_test_msicap(ahci, offset);
break;
case PCI_CAP_ID_SATA:
ahci_test_satacap(ahci, offset);
break;
default:
g_test_message("Unknown CAP 0x%02x", cid);
}
if (next) {
ahci_test_pci_caps(ahci, qpci_config_readw(ahci->dev, next), next);
}
}
/**
* Test SATA PCI capabilitity for AHCI specification adherence.
*/
static void ahci_test_satacap(AHCIQState *ahci, uint8_t offset)
{
uint16_t dataw;
uint32_t datal;
g_test_message("Verifying SATACAP");
/* Assert that the SATACAP version is 1.0, And reserved bits are empty. */
dataw = qpci_config_readw(ahci->dev, offset + 2);
g_assert_cmphex(dataw, ==, 0x10);
/* Grab the SATACR1 register. */
datal = qpci_config_readw(ahci->dev, offset + 4);
switch (datal & 0x0F) {
case 0x04: /* BAR0 */
case 0x05: /* BAR1 */
case 0x06:
case 0x07:
case 0x08:
case 0x09: /* BAR5 */
case 0x0F: /* Immediately following SATACR1 in PCI config space. */
break;
default:
/* Invalid BARLOC for the Index Data Pair. */
g_assert_not_reached();
}
/* Reserved. */
g_assert_cmphex((datal >> 24), ==, 0x00);
}
/**
* Test MSI PCI capability for AHCI specification adherence.
*/
static void ahci_test_msicap(AHCIQState *ahci, uint8_t offset)
{
uint16_t dataw;
uint32_t datal;
g_test_message("Verifying MSICAP");
dataw = qpci_config_readw(ahci->dev, offset + PCI_MSI_FLAGS);
ASSERT_BIT_CLEAR(dataw, PCI_MSI_FLAGS_ENABLE);
ASSERT_BIT_CLEAR(dataw, PCI_MSI_FLAGS_QSIZE);
ASSERT_BIT_CLEAR(dataw, PCI_MSI_FLAGS_RESERVED);
datal = qpci_config_readl(ahci->dev, offset + PCI_MSI_ADDRESS_LO);
g_assert_cmphex(datal, ==, 0);
if (dataw & PCI_MSI_FLAGS_64BIT) {
g_test_message("MSICAP is 64bit");
datal = qpci_config_readl(ahci->dev, offset + PCI_MSI_ADDRESS_HI);
g_assert_cmphex(datal, ==, 0);
dataw = qpci_config_readw(ahci->dev, offset + PCI_MSI_DATA_64);
g_assert_cmphex(dataw, ==, 0);
} else {
g_test_message("MSICAP is 32bit");
dataw = qpci_config_readw(ahci->dev, offset + PCI_MSI_DATA_32);
g_assert_cmphex(dataw, ==, 0);
}
}
/**
* Test Power Management PCI capability for AHCI specification adherence.
*/
static void ahci_test_pmcap(AHCIQState *ahci, uint8_t offset)
{
uint16_t dataw;
g_test_message("Verifying PMCAP");
dataw = qpci_config_readw(ahci->dev, offset + PCI_PM_PMC);
ASSERT_BIT_CLEAR(dataw, PCI_PM_CAP_PME_CLOCK);
ASSERT_BIT_CLEAR(dataw, PCI_PM_CAP_RESERVED);
ASSERT_BIT_CLEAR(dataw, PCI_PM_CAP_D1);
ASSERT_BIT_CLEAR(dataw, PCI_PM_CAP_D2);
dataw = qpci_config_readw(ahci->dev, offset + PCI_PM_CTRL);
ASSERT_BIT_CLEAR(dataw, PCI_PM_CTRL_STATE_MASK);
ASSERT_BIT_CLEAR(dataw, PCI_PM_CTRL_RESERVED);
ASSERT_BIT_CLEAR(dataw, PCI_PM_CTRL_DATA_SEL_MASK);
ASSERT_BIT_CLEAR(dataw, PCI_PM_CTRL_DATA_SCALE_MASK);
}
static void ahci_test_hba_spec(AHCIQState *ahci)
{
unsigned i;
uint32_t reg;
uint32_t ports;
uint8_t nports_impl;
uint8_t maxports;
g_assert(ahci != NULL);
/*
* Note that the AHCI spec does expect the BIOS to set up a few things:
* CAP.SSS - Support for staggered spin-up (t/f)
* CAP.SMPS - Support for mechanical presence switches (t/f)
* PI - Ports Implemented (1-32)
* PxCMD.HPCP - Hot Plug Capable Port
* PxCMD.MPSP - Mechanical Presence Switch Present
* PxCMD.CPD - Cold Presence Detection support
*
* Additional items are touched if CAP.SSS is on, see AHCI 10.1.1 p.97:
* Foreach Port Implemented:
* -PxCMD.ST, PxCMD.CR, PxCMD.FRE, PxCMD.FR, PxSCTL.DET are 0
* -PxCLB/U and PxFB/U are set to valid regions in memory
* -PxSUD is set to 1.
* -PxSSTS.DET is polled for presence; if detected, we continue:
* -PxSERR is cleared with 1's.
* -If PxTFD.STS.BSY, PxTFD.STS.DRQ, and PxTFD.STS.ERR are all zero,
* the device is ready.
*/
/* 1 CAP - Capabilities Register */
ahci->cap = AHCI_RREG(AHCI_CAP);
ASSERT_BIT_CLEAR(ahci->cap, AHCI_CAP_RESERVED);
/* 2 GHC - Global Host Control */
reg = AHCI_RREG(AHCI_GHC);
ASSERT_BIT_CLEAR(reg, AHCI_GHC_HR);
ASSERT_BIT_CLEAR(reg, AHCI_GHC_IE);
ASSERT_BIT_CLEAR(reg, AHCI_GHC_MRSM);
if (BITSET(ahci->cap, AHCI_CAP_SAM)) {
g_test_message("Supports AHCI-Only Mode: GHC_AE is Read-Only.");
ASSERT_BIT_SET(reg, AHCI_GHC_AE);
} else {
g_test_message("Supports AHCI/Legacy mix.");
ASSERT_BIT_CLEAR(reg, AHCI_GHC_AE);
}
/* 3 IS - Interrupt Status */
reg = AHCI_RREG(AHCI_IS);
g_assert_cmphex(reg, ==, 0);
/* 4 PI - Ports Implemented */
ports = AHCI_RREG(AHCI_PI);
/* Ports Implemented must be non-zero. */
g_assert_cmphex(ports, !=, 0);
/* Ports Implemented must be <= Number of Ports. */
nports_impl = ctpopl(ports);
g_assert_cmpuint(((AHCI_CAP_NP & ahci->cap) + 1), >=, nports_impl);
/* Ports must be within the proper range. Given a mapping of SIZE,
* 256 bytes are used for global HBA control, and the rest is used
* for ports data, at 0x80 bytes each. */
g_assert_cmphex(ahci->barsize, >, 0);
maxports = (ahci->barsize - HBA_DATA_REGION_SIZE) / HBA_PORT_DATA_SIZE;
/* e.g, 30 ports for 4K of memory. (4096 - 256) / 128 = 30 */
g_assert_cmphex((reg >> maxports), ==, 0);
/* 5 AHCI Version */
reg = AHCI_RREG(AHCI_VS);
switch (reg) {
case AHCI_VERSION_0_95:
case AHCI_VERSION_1_0:
case AHCI_VERSION_1_1:
case AHCI_VERSION_1_2:
case AHCI_VERSION_1_3:
break;
default:
g_assert_not_reached();
}
/* 6 Command Completion Coalescing Control: depends on CAP.CCCS. */
reg = AHCI_RREG(AHCI_CCCCTL);
if (BITSET(ahci->cap, AHCI_CAP_CCCS)) {
ASSERT_BIT_CLEAR(reg, AHCI_CCCCTL_EN);
ASSERT_BIT_CLEAR(reg, AHCI_CCCCTL_RESERVED);
ASSERT_BIT_SET(reg, AHCI_CCCCTL_CC);
ASSERT_BIT_SET(reg, AHCI_CCCCTL_TV);
} else {
g_assert_cmphex(reg, ==, 0);
}
/* 7 CCC_PORTS */
reg = AHCI_RREG(AHCI_CCCPORTS);
/* Must be zeroes initially regardless of CAP.CCCS */
g_assert_cmphex(reg, ==, 0);
/* 8 EM_LOC */
reg = AHCI_RREG(AHCI_EMLOC);
if (BITCLR(ahci->cap, AHCI_CAP_EMS)) {
g_assert_cmphex(reg, ==, 0);
}
/* 9 EM_CTL */
reg = AHCI_RREG(AHCI_EMCTL);
if (BITSET(ahci->cap, AHCI_CAP_EMS)) {
ASSERT_BIT_CLEAR(reg, AHCI_EMCTL_STSMR);
ASSERT_BIT_CLEAR(reg, AHCI_EMCTL_CTLTM);
ASSERT_BIT_CLEAR(reg, AHCI_EMCTL_CTLRST);
ASSERT_BIT_CLEAR(reg, AHCI_EMCTL_RESERVED);
} else {
g_assert_cmphex(reg, ==, 0);
}
/* 10 CAP2 -- Capabilities Extended */
ahci->cap2 = AHCI_RREG(AHCI_CAP2);
ASSERT_BIT_CLEAR(ahci->cap2, AHCI_CAP2_RESERVED);
/* 11 BOHC -- Bios/OS Handoff Control */
reg = AHCI_RREG(AHCI_BOHC);
g_assert_cmphex(reg, ==, 0);
/* 12 -- 23: Reserved */
g_test_message("Verifying HBA reserved area is empty.");
for (i = AHCI_RESERVED; i < AHCI_NVMHCI; ++i) {
reg = AHCI_RREG(i);
g_assert_cmphex(reg, ==, 0);
}
/* 24 -- 39: NVMHCI */
if (BITCLR(ahci->cap2, AHCI_CAP2_NVMP)) {
g_test_message("Verifying HBA/NVMHCI area is empty.");
for (i = AHCI_NVMHCI; i < AHCI_VENDOR; ++i) {
reg = AHCI_RREG(i);
g_assert_cmphex(reg, ==, 0);
}
}
/* 40 -- 63: Vendor */
g_test_message("Verifying HBA/Vendor area is empty.");
for (i = AHCI_VENDOR; i < AHCI_PORTS; ++i) {
reg = AHCI_RREG(i);
g_assert_cmphex(reg, ==, 0);
}
/* 64 -- XX: Port Space */
for (i = 0; ports || (i < maxports); ports >>= 1, ++i) {
if (BITSET(ports, 0x1)) {
g_test_message("Testing port %u for spec", i);
ahci_test_port_spec(ahci, i);
} else {
uint16_t j;
uint16_t low = AHCI_PORTS + (32 * i);
uint16_t high = AHCI_PORTS + (32 * (i + 1));
g_test_message("Asserting unimplemented port %u "
"(reg [%u-%u]) is empty.",
i, low, high - 1);
for (j = low; j < high; ++j) {
reg = AHCI_RREG(j);
g_assert_cmphex(reg, ==, 0);
}
}
}
}
/**
* Test the memory space for one port for specification adherence.
*/
static void ahci_test_port_spec(AHCIQState *ahci, uint8_t port)
{
uint32_t reg;
unsigned i;
/* (0) CLB */
reg = PX_RREG(port, AHCI_PX_CLB);
ASSERT_BIT_CLEAR(reg, AHCI_PX_CLB_RESERVED);
/* (1) CLBU */
if (BITCLR(ahci->cap, AHCI_CAP_S64A)) {
reg = PX_RREG(port, AHCI_PX_CLBU);
g_assert_cmphex(reg, ==, 0);
}
/* (2) FB */
reg = PX_RREG(port, AHCI_PX_FB);
ASSERT_BIT_CLEAR(reg, AHCI_PX_FB_RESERVED);
/* (3) FBU */
if (BITCLR(ahci->cap, AHCI_CAP_S64A)) {
reg = PX_RREG(port, AHCI_PX_FBU);
g_assert_cmphex(reg, ==, 0);
}
/* (4) IS */
reg = PX_RREG(port, AHCI_PX_IS);
g_assert_cmphex(reg, ==, 0);
/* (5) IE */
reg = PX_RREG(port, AHCI_PX_IE);
g_assert_cmphex(reg, ==, 0);
/* (6) CMD */
reg = PX_RREG(port, AHCI_PX_CMD);
ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_FRE);
ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_RESERVED);
ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_CCS);
ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_FR);
ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_CR);
ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_PMA); /* And RW only if CAP.SPM */
ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_APSTE); /* RW only if CAP2.APST */
ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_ATAPI);
ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_DLAE);
ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_ALPE); /* RW only if CAP.SALP */
ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_ASP); /* RW only if CAP.SALP */
ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_ICC);
/* If CPDetect support does not exist, CPState must be off. */
if (BITCLR(reg, AHCI_PX_CMD_CPD)) {
ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_CPS);
}
/* If MPSPresence is not set, MPSState must be off. */
if (BITCLR(reg, AHCI_PX_CMD_MPSP)) {
ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_MPSS);
}
/* If we do not support MPS, MPSS and MPSP must be off. */
if (BITCLR(ahci->cap, AHCI_CAP_SMPS)) {
ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_MPSS);
ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_MPSP);
}
/* If, via CPD or MPSP we detect a drive, HPCP must be on. */
if (BITANY(reg, AHCI_PX_CMD_CPD || AHCI_PX_CMD_MPSP)) {
ASSERT_BIT_SET(reg, AHCI_PX_CMD_HPCP);
}
/* HPCP and ESP cannot both be active. */
g_assert(!BITSET(reg, AHCI_PX_CMD_HPCP | AHCI_PX_CMD_ESP));
/* If CAP.FBSS is not set, FBSCP must not be set. */
if (BITCLR(ahci->cap, AHCI_CAP_FBSS)) {
ASSERT_BIT_CLEAR(reg, AHCI_PX_CMD_FBSCP);
}
/* (7) RESERVED */
reg = PX_RREG(port, AHCI_PX_RES1);
g_assert_cmphex(reg, ==, 0);
/* (8) TFD */
reg = PX_RREG(port, AHCI_PX_TFD);
/* At boot, prior to an FIS being received, the TFD register should be 0x7F,
* which breaks down as follows, as seen in AHCI 1.3 sec 3.3.8, p. 27. */
ASSERT_BIT_SET(reg, AHCI_PX_TFD_STS_ERR);
ASSERT_BIT_SET(reg, AHCI_PX_TFD_STS_CS1);
ASSERT_BIT_SET(reg, AHCI_PX_TFD_STS_DRQ);
ASSERT_BIT_SET(reg, AHCI_PX_TFD_STS_CS2);
ASSERT_BIT_CLEAR(reg, AHCI_PX_TFD_STS_BSY);
ASSERT_BIT_CLEAR(reg, AHCI_PX_TFD_ERR);
ASSERT_BIT_CLEAR(reg, AHCI_PX_TFD_RESERVED);
/* (9) SIG */
/* Though AHCI specifies the boot value should be 0xFFFFFFFF,
* Even when GHC.ST is zero, the AHCI HBA may receive the initial
* D2H register FIS and update the signature asynchronously,
* so we cannot expect a value here. AHCI 1.3, sec 3.3.9, pp 27-28 */
/* (10) SSTS / SCR0: SStatus */
reg = PX_RREG(port, AHCI_PX_SSTS);
ASSERT_BIT_CLEAR(reg, AHCI_PX_SSTS_RESERVED);
/* Even though the register should be 0 at boot, it is asynchronous and
* prone to change, so we cannot test any well known value. */
/* (11) SCTL / SCR2: SControl */
reg = PX_RREG(port, AHCI_PX_SCTL);
g_assert_cmphex(reg, ==, 0);
/* (12) SERR / SCR1: SError */
reg = PX_RREG(port, AHCI_PX_SERR);
g_assert_cmphex(reg, ==, 0);
/* (13) SACT / SCR3: SActive */
reg = PX_RREG(port, AHCI_PX_SACT);
g_assert_cmphex(reg, ==, 0);
/* (14) CI */
reg = PX_RREG(port, AHCI_PX_CI);
g_assert_cmphex(reg, ==, 0);
/* (15) SNTF */
reg = PX_RREG(port, AHCI_PX_SNTF);
g_assert_cmphex(reg, ==, 0);
/* (16) FBS */
reg = PX_RREG(port, AHCI_PX_FBS);
ASSERT_BIT_CLEAR(reg, AHCI_PX_FBS_EN);
ASSERT_BIT_CLEAR(reg, AHCI_PX_FBS_DEC);
ASSERT_BIT_CLEAR(reg, AHCI_PX_FBS_SDE);
ASSERT_BIT_CLEAR(reg, AHCI_PX_FBS_DEV);
ASSERT_BIT_CLEAR(reg, AHCI_PX_FBS_DWE);
ASSERT_BIT_CLEAR(reg, AHCI_PX_FBS_RESERVED);
if (BITSET(ahci->cap, AHCI_CAP_FBSS)) {
/* if Port-Multiplier FIS-based switching avail, ADO must >= 2 */
g_assert((reg & AHCI_PX_FBS_ADO) >> ctzl(AHCI_PX_FBS_ADO) >= 2);
}
/* [17 -- 27] RESERVED */
for (i = AHCI_PX_RES2; i < AHCI_PX_VS; ++i) {
reg = PX_RREG(port, i);
g_assert_cmphex(reg, ==, 0);
}
/* [28 -- 31] Vendor-Specific */
for (i = AHCI_PX_VS; i < 32; ++i) {
reg = PX_RREG(port, i);
if (reg) {
g_test_message("INFO: Vendor register %u non-empty", i);
}
}
}
/**
* Utilizing an initialized AHCI HBA, issue an IDENTIFY command to the first
* device we see, then read and check the response.
*/
static void ahci_test_identify(AHCIQState *ahci)
{
RegD2HFIS *d2h = g_malloc0(0x20);
RegD2HFIS *pio = g_malloc0(0x20);
RegH2DFIS fis;
AHCICommand cmd;
PRD prd;
uint32_t ports, reg, clb, table, fb, data_ptr;
uint16_t buff[256];
unsigned i;
int rc;
g_assert(ahci != NULL);
/* We need to:
* (1) Create a Command Table Buffer and update the Command List Slot #0
* to point to this buffer.
* (2) Construct an FIS host-to-device command structure, and write it to
* the top of the command table buffer.
* (3) Create a data buffer for the IDENTIFY response to be sent to
* (4) Create a Physical Region Descriptor that points to the data buffer,
* and write it to the bottom (offset 0x80) of the command table.
* (5) Now, PxCLB points to the command list, command 0 points to
* our table, and our table contains an FIS instruction and a
* PRD that points to our rx buffer.
* (6) We inform the HBA via PxCI that there is a command ready in slot #0.
*/
/* Pick the first implemented and running port */
ports = AHCI_RREG(AHCI_PI);
for (i = 0; i < 32; ports >>= 1, ++i) {
if (ports == 0) {
i = 32;
}
if (!(ports & 0x01)) {
continue;
}
reg = PX_RREG(i, AHCI_PX_CMD);
if (BITSET(reg, AHCI_PX_CMD_ST)) {
break;
}
}
g_assert_cmphex(i, <, 32);
g_test_message("Selected port %u for test", i);
/* Clear out this port's interrupts (ignore the init register d2h fis) */
reg = PX_RREG(i, AHCI_PX_IS);
PX_WREG(i, AHCI_PX_IS, reg);
g_assert_cmphex(PX_RREG(i, AHCI_PX_IS), ==, 0);
/* Wipe the FIS-Receive Buffer */
fb = PX_RREG(i, AHCI_PX_FB);
g_assert_cmphex(fb, !=, 0);
qmemset(fb, 0x00, 0x100);
/* Create a Command Table buffer. 0x80 is the smallest with a PRDTL of 0. */
/* We need at least one PRD, so round up to the nearest 0x80 multiple. */
table = ahci_alloc(ahci, CMD_TBL_SIZ(1));
g_assert(table);
ASSERT_BIT_CLEAR(table, 0x7F);
/* Create a data buffer ... where we will dump the IDENTIFY data to. */
data_ptr = ahci_alloc(ahci, 512);
g_assert(data_ptr);
/* Grab the Command List Buffer pointer */
clb = PX_RREG(i, AHCI_PX_CLB);
g_assert(clb);
/* Copy the existing Command #0 structure from the CLB into local memory,
* and build a new command #0. */
memread(clb, &cmd, sizeof(cmd));
cmd.b1 = 5; /* reg_h2d_fis is 5 double-words long */
cmd.b2 = 0x04; /* clear PxTFD.STS.BSY when done */
cmd.prdtl = cpu_to_le16(1); /* One PRD table entry. */
cmd.prdbc = 0;
cmd.ctba = cpu_to_le32(table);
cmd.ctbau = 0;
/* Construct our PRD, noting that DBC is 0-indexed. */
prd.dba = cpu_to_le32(data_ptr);
prd.dbau = 0;
prd.res = 0;
/* 511+1 bytes, request DPS interrupt */
prd.dbc = cpu_to_le32(511 | 0x80000000);
/* Construct our Command FIS, Based on http://wiki.osdev.org/AHCI */
memset(&fis, 0x00, sizeof(fis));
fis.fis_type = 0x27; /* Register Host-to-Device FIS */
fis.command = 0xEC; /* IDENTIFY */
fis.device = 0;
fis.flags = 0x80; /* Indicate this is a command FIS */
/* We've committed nothing yet, no interrupts should be posted yet. */
g_assert_cmphex(PX_RREG(i, AHCI_PX_IS), ==, 0);
/* Commit the Command FIS to the Command Table */
memwrite(table, &fis, sizeof(fis));
/* Commit the PRD entry to the Command Table */
memwrite(table + 0x80, &prd, sizeof(prd));
/* Commit Command #0, pointing to the Table, to the Command List Buffer. */
memwrite(clb, &cmd, sizeof(cmd));
/* Everything is in place, but we haven't given the go-ahead yet. */
g_assert_cmphex(PX_RREG(i, AHCI_PX_IS), ==, 0);
/* Issue Command #0 via PxCI */
PX_WREG(i, AHCI_PX_CI, (1 << 0));
while (BITSET(PX_RREG(i, AHCI_PX_TFD), AHCI_PX_TFD_STS_BSY)) {
usleep(50);
}
/* Check for expected interrupts */
reg = PX_RREG(i, AHCI_PX_IS);
ASSERT_BIT_SET(reg, AHCI_PX_IS_DHRS);
ASSERT_BIT_SET(reg, AHCI_PX_IS_PSS);
/* BUG: we expect AHCI_PX_IS_DPS to be set. */
ASSERT_BIT_CLEAR(reg, AHCI_PX_IS_DPS);
/* Clear expected interrupts and assert all interrupts now cleared. */
PX_WREG(i, AHCI_PX_IS, AHCI_PX_IS_DHRS | AHCI_PX_IS_PSS | AHCI_PX_IS_DPS);
g_assert_cmphex(PX_RREG(i, AHCI_PX_IS), ==, 0);
/* Check for errors. */
reg = PX_RREG(i, AHCI_PX_SERR);
g_assert_cmphex(reg, ==, 0);
reg = PX_RREG(i, AHCI_PX_TFD);
ASSERT_BIT_CLEAR(reg, AHCI_PX_TFD_STS_ERR);
ASSERT_BIT_CLEAR(reg, AHCI_PX_TFD_ERR);
/* Investigate CMD #0, assert that we read 512 bytes */
memread(clb, &cmd, sizeof(cmd));
g_assert_cmphex(512, ==, le32_to_cpu(cmd.prdbc));
/* Investigate FIS responses */
memread(fb + 0x20, pio, 0x20);
memread(fb + 0x40, d2h, 0x20);
g_assert_cmphex(pio->fis_type, ==, 0x5f);
g_assert_cmphex(d2h->fis_type, ==, 0x34);
g_assert_cmphex(pio->flags, ==, d2h->flags);
g_assert_cmphex(pio->status, ==, d2h->status);
g_assert_cmphex(pio->error, ==, d2h->error);
reg = PX_RREG(i, AHCI_PX_TFD);
g_assert_cmphex((reg & AHCI_PX_TFD_ERR), ==, pio->error);
g_assert_cmphex((reg & AHCI_PX_TFD_STS), ==, pio->status);
/* The PIO Setup FIS contains a "bytes read" field, which is a
* 16-bit value. The Physical Region Descriptor Byte Count is
* 32-bit, but for small transfers using one PRD, it should match. */
g_assert_cmphex(le16_to_cpu(pio->res4), ==, le32_to_cpu(cmd.prdbc));
/* Last, but not least: Investigate the IDENTIFY response data. */
memread(data_ptr, &buff, 512);
/* Check serial number/version in the buffer */
/* NB: IDENTIFY strings are packed in 16bit little endian chunks.
* Since we copy byte-for-byte in ahci-test, on both LE and BE, we need to
* unchunk this data. By contrast, ide-test copies 2 bytes at a time, and
* as a consequence, only needs to unchunk the data on LE machines. */
string_bswap16(&buff[10], 20);
rc = memcmp(&buff[10], "testdisk ", 20);
g_assert_cmphex(rc, ==, 0);
string_bswap16(&buff[23], 8);
rc = memcmp(&buff[23], "version ", 8);
g_assert_cmphex(rc, ==, 0);
g_free(d2h);
g_free(pio);
}
/******************************************************************************/
/* Test Interfaces */
/******************************************************************************/
/**
* Basic sanity test to boot a machine, find an AHCI device, and shutdown.
*/
static void test_sanity(void)
{
AHCIQState *ahci;
ahci = ahci_boot();
ahci_shutdown(ahci);
}
/**
* Ensure that the PCI configuration space for the AHCI device is in-line with
* the AHCI 1.3 specification for initial values.
*/
static void test_pci_spec(void)
{
AHCIQState *ahci;
ahci = ahci_boot();
ahci_test_pci_spec(ahci);
ahci_shutdown(ahci);
}
/**
* Engage the PCI AHCI device and sanity check the response.
* Perform additional PCI config space bringup for the HBA.
*/
static void test_pci_enable(void)
{
AHCIQState *ahci;
ahci = ahci_boot();
ahci_pci_enable(ahci);
ahci_shutdown(ahci);
}
/**
* Investigate the memory mapped regions of the HBA,
* and test them for AHCI specification adherence.
*/
static void test_hba_spec(void)
{
AHCIQState *ahci;
ahci = ahci_boot();
ahci_pci_enable(ahci);
ahci_test_hba_spec(ahci);
ahci_shutdown(ahci);
}
/**
* Engage the HBA functionality of the AHCI PCI device,
* and bring it into a functional idle state.
*/
static void test_hba_enable(void)
{
AHCIQState *ahci;
ahci = ahci_boot();
ahci_pci_enable(ahci);
ahci_hba_enable(ahci);
ahci_shutdown(ahci);
}
/**
* Bring up the device and issue an IDENTIFY command.
* Inspect the state of the HBA device and the data returned.
*/
static void test_identify(void)
{
AHCIQState *ahci;
ahci = ahci_boot();
ahci_pci_enable(ahci);
ahci_hba_enable(ahci);
ahci_test_identify(ahci);
ahci_shutdown(ahci);
}
/******************************************************************************/
int main(int argc, char **argv)
{
const char *arch;
int fd;
int ret;
int c;
static struct option long_options[] = {
{"pedantic", no_argument, 0, 'p' },
{0, 0, 0, 0},
};
/* Should be first to utilize g_test functionality, So we can see errors. */
g_test_init(&argc, &argv, NULL);
while (1) {
c = getopt_long(argc, argv, "", long_options, NULL);
if (c == -1) {
break;
}
switch (c) {
case -1:
break;
case 'p':
ahci_pedantic = 1;
break;
default:
fprintf(stderr, "Unrecognized ahci_test option.\n");
g_assert_not_reached();
}
}
/* Check architecture */
arch = qtest_get_arch();
if (strcmp(arch, "i386") && strcmp(arch, "x86_64")) {
g_test_message("Skipping test for non-x86");
return 0;
}
/* Create a temporary raw image */
fd = mkstemp(tmp_path);
g_assert(fd >= 0);
ret = ftruncate(fd, TEST_IMAGE_SIZE);
g_assert(ret == 0);
close(fd);
/* Run the tests */
qtest_add_func("/ahci/sanity", test_sanity);
qtest_add_func("/ahci/pci_spec", test_pci_spec);
qtest_add_func("/ahci/pci_enable", test_pci_enable);
qtest_add_func("/ahci/hba_spec", test_hba_spec);
qtest_add_func("/ahci/hba_enable", test_hba_enable);
qtest_add_func("/ahci/identify", test_identify);
ret = g_test_run();
/* Cleanup */
unlink(tmp_path);
return ret;
}