qemu/hw/net/stellaris_enet.c
Akihiko Odaki 7d0fefdf81 net: Provide MemReentrancyGuard * to qemu_new_nic()
Recently MemReentrancyGuard was added to DeviceState to record that the
device is engaging in I/O. The network device backend needs to update it
when delivering a packet to a device.

In preparation for such a change, add MemReentrancyGuard * as a
parameter of qemu_new_nic().

Signed-off-by: Akihiko Odaki <akihiko.odaki@daynix.com>
Reviewed-by: Alexander Bulekov <alxndr@bu.edu>
Signed-off-by: Jason Wang <jasowang@redhat.com>
2023-11-21 15:42:34 +08:00

528 lines
15 KiB
C

/*
* Luminary Micro Stellaris Ethernet Controller
*
* Copyright (c) 2007 CodeSourcery.
* Written by Paul Brook
*
* This code is licensed under the GPL.
*/
#include "qemu/osdep.h"
#include "hw/irq.h"
#include "hw/qdev-properties.h"
#include "hw/sysbus.h"
#include "migration/vmstate.h"
#include "net/net.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include <zlib.h>
#include "qom/object.h"
//#define DEBUG_STELLARIS_ENET 1
#ifdef DEBUG_STELLARIS_ENET
#define DPRINTF(fmt, ...) \
do { printf("stellaris_enet: " fmt , ## __VA_ARGS__); } while (0)
#define BADF(fmt, ...) \
do { fprintf(stderr, "stellaris_enet: error: " fmt , ## __VA_ARGS__); exit(1);} while (0)
#else
#define DPRINTF(fmt, ...) do {} while(0)
#define BADF(fmt, ...) \
do { fprintf(stderr, "stellaris_enet: error: " fmt , ## __VA_ARGS__);} while (0)
#endif
#define SE_INT_RX 0x01
#define SE_INT_TXER 0x02
#define SE_INT_TXEMP 0x04
#define SE_INT_FOV 0x08
#define SE_INT_RXER 0x10
#define SE_INT_MD 0x20
#define SE_INT_PHY 0x40
#define SE_RCTL_RXEN 0x01
#define SE_RCTL_AMUL 0x02
#define SE_RCTL_PRMS 0x04
#define SE_RCTL_BADCRC 0x08
#define SE_RCTL_RSTFIFO 0x10
#define SE_TCTL_TXEN 0x01
#define SE_TCTL_PADEN 0x02
#define SE_TCTL_CRC 0x04
#define SE_TCTL_DUPLEX 0x08
#define TYPE_STELLARIS_ENET "stellaris_enet"
OBJECT_DECLARE_SIMPLE_TYPE(stellaris_enet_state, STELLARIS_ENET)
typedef struct {
uint8_t data[2048];
uint32_t len;
} StellarisEnetRxFrame;
struct stellaris_enet_state {
SysBusDevice parent_obj;
uint32_t ris;
uint32_t im;
uint32_t rctl;
uint32_t tctl;
uint32_t thr;
uint32_t mctl;
uint32_t mdv;
uint32_t mtxd;
uint32_t mrxd;
uint32_t np;
uint32_t tx_fifo_len;
uint8_t tx_fifo[2048];
/* Real hardware has a 2k fifo, which works out to be at most 31 packets.
We implement a full 31 packet fifo. */
StellarisEnetRxFrame rx[31];
uint32_t rx_fifo_offset;
uint32_t next_packet;
NICState *nic;
NICConf conf;
qemu_irq irq;
MemoryRegion mmio;
};
static const VMStateDescription vmstate_rx_frame = {
.name = "stellaris_enet/rx_frame",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT8_ARRAY(data, StellarisEnetRxFrame, 2048),
VMSTATE_UINT32(len, StellarisEnetRxFrame),
VMSTATE_END_OF_LIST()
}
};
static int stellaris_enet_post_load(void *opaque, int version_id)
{
stellaris_enet_state *s = opaque;
int i;
/* Sanitize inbound state. Note that next_packet is an index but
* np is a size; hence their valid upper bounds differ.
*/
if (s->next_packet >= ARRAY_SIZE(s->rx)) {
return -1;
}
if (s->np > ARRAY_SIZE(s->rx)) {
return -1;
}
for (i = 0; i < ARRAY_SIZE(s->rx); i++) {
if (s->rx[i].len > ARRAY_SIZE(s->rx[i].data)) {
return -1;
}
}
if (s->rx_fifo_offset > ARRAY_SIZE(s->rx[0].data) - 4) {
return -1;
}
if (s->tx_fifo_len > ARRAY_SIZE(s->tx_fifo)) {
return -1;
}
return 0;
}
static const VMStateDescription vmstate_stellaris_enet = {
.name = "stellaris_enet",
.version_id = 2,
.minimum_version_id = 2,
.post_load = stellaris_enet_post_load,
.fields = (VMStateField[]) {
VMSTATE_UINT32(ris, stellaris_enet_state),
VMSTATE_UINT32(im, stellaris_enet_state),
VMSTATE_UINT32(rctl, stellaris_enet_state),
VMSTATE_UINT32(tctl, stellaris_enet_state),
VMSTATE_UINT32(thr, stellaris_enet_state),
VMSTATE_UINT32(mctl, stellaris_enet_state),
VMSTATE_UINT32(mdv, stellaris_enet_state),
VMSTATE_UINT32(mtxd, stellaris_enet_state),
VMSTATE_UINT32(mrxd, stellaris_enet_state),
VMSTATE_UINT32(np, stellaris_enet_state),
VMSTATE_UINT32(tx_fifo_len, stellaris_enet_state),
VMSTATE_UINT8_ARRAY(tx_fifo, stellaris_enet_state, 2048),
VMSTATE_STRUCT_ARRAY(rx, stellaris_enet_state, 31, 1,
vmstate_rx_frame, StellarisEnetRxFrame),
VMSTATE_UINT32(rx_fifo_offset, stellaris_enet_state),
VMSTATE_UINT32(next_packet, stellaris_enet_state),
VMSTATE_END_OF_LIST()
}
};
static void stellaris_enet_update(stellaris_enet_state *s)
{
qemu_set_irq(s->irq, (s->ris & s->im) != 0);
}
/* Return the data length of the packet currently being assembled
* in the TX fifo.
*/
static inline int stellaris_txpacket_datalen(stellaris_enet_state *s)
{
return s->tx_fifo[0] | (s->tx_fifo[1] << 8);
}
/* Return true if the packet currently in the TX FIFO is complete,
* ie the FIFO holds enough bytes for the data length, ethernet header,
* payload and optionally CRC.
*/
static inline bool stellaris_txpacket_complete(stellaris_enet_state *s)
{
int framelen = stellaris_txpacket_datalen(s);
framelen += 16;
if (!(s->tctl & SE_TCTL_CRC)) {
framelen += 4;
}
/* Cover the corner case of a 2032 byte payload with auto-CRC disabled:
* this requires more bytes than will fit in the FIFO. It's not totally
* clear how the h/w handles this, but if using threshold-based TX
* it will definitely try to transmit something.
*/
framelen = MIN(framelen, ARRAY_SIZE(s->tx_fifo));
return s->tx_fifo_len >= framelen;
}
/* Return true if the TX FIFO threshold is enabled and the FIFO
* has filled enough to reach it.
*/
static inline bool stellaris_tx_thr_reached(stellaris_enet_state *s)
{
return (s->thr < 0x3f &&
(s->tx_fifo_len >= 4 * (s->thr * 8 + 1)));
}
/* Send the packet currently in the TX FIFO */
static void stellaris_enet_send(stellaris_enet_state *s)
{
int framelen = stellaris_txpacket_datalen(s);
/* Ethernet header is in the FIFO but not in the datacount.
* We don't implement explicit CRC, so just ignore any
* CRC value in the FIFO.
*/
framelen += 14;
if ((s->tctl & SE_TCTL_PADEN) && framelen < 60) {
memset(&s->tx_fifo[framelen + 2], 0, 60 - framelen);
framelen = 60;
}
/* This MIN will have no effect unless the FIFO data is corrupt
* (eg bad data from an incoming migration); otherwise the check
* on the datalen at the start of writing the data into the FIFO
* will have caught this. Silently write a corrupt half-packet,
* which is what the hardware does in FIFO underrun situations.
*/
framelen = MIN(framelen, ARRAY_SIZE(s->tx_fifo) - 2);
qemu_send_packet(qemu_get_queue(s->nic), s->tx_fifo + 2, framelen);
s->tx_fifo_len = 0;
s->ris |= SE_INT_TXEMP;
stellaris_enet_update(s);
DPRINTF("Done TX\n");
}
/* TODO: Implement MAC address filtering. */
static ssize_t stellaris_enet_receive(NetClientState *nc, const uint8_t *buf, size_t size)
{
stellaris_enet_state *s = qemu_get_nic_opaque(nc);
int n;
uint8_t *p;
uint32_t crc;
if ((s->rctl & SE_RCTL_RXEN) == 0)
return -1;
if (s->np >= 31) {
return 0;
}
DPRINTF("Received packet len=%zu\n", size);
n = s->next_packet + s->np;
if (n >= 31)
n -= 31;
if (size >= sizeof(s->rx[n].data) - 6) {
/* If the packet won't fit into the
* emulated 2K RAM, this is reported
* as a FIFO overrun error.
*/
s->ris |= SE_INT_FOV;
stellaris_enet_update(s);
return -1;
}
s->np++;
s->rx[n].len = size + 6;
p = s->rx[n].data;
*(p++) = (size + 6);
*(p++) = (size + 6) >> 8;
memcpy (p, buf, size);
p += size;
crc = crc32(~0, buf, size);
*(p++) = crc;
*(p++) = crc >> 8;
*(p++) = crc >> 16;
*(p++) = crc >> 24;
/* Clear the remaining bytes in the last word. */
if ((size & 3) != 2) {
memset(p, 0, (6 - size) & 3);
}
s->ris |= SE_INT_RX;
stellaris_enet_update(s);
return size;
}
static int stellaris_enet_can_receive(stellaris_enet_state *s)
{
return (s->np < 31);
}
static uint64_t stellaris_enet_read(void *opaque, hwaddr offset,
unsigned size)
{
stellaris_enet_state *s = (stellaris_enet_state *)opaque;
uint32_t val;
switch (offset) {
case 0x00: /* RIS */
DPRINTF("IRQ status %02x\n", s->ris);
return s->ris;
case 0x04: /* IM */
return s->im;
case 0x08: /* RCTL */
return s->rctl;
case 0x0c: /* TCTL */
return s->tctl;
case 0x10: /* DATA */
{
uint8_t *rx_fifo;
if (s->np == 0) {
BADF("RX underflow\n");
return 0;
}
rx_fifo = s->rx[s->next_packet].data + s->rx_fifo_offset;
val = rx_fifo[0] | (rx_fifo[1] << 8) | (rx_fifo[2] << 16)
| (rx_fifo[3] << 24);
s->rx_fifo_offset += 4;
if (s->rx_fifo_offset >= s->rx[s->next_packet].len) {
s->rx_fifo_offset = 0;
s->next_packet++;
if (s->next_packet >= 31)
s->next_packet = 0;
s->np--;
DPRINTF("RX done np=%d\n", s->np);
if (!s->np && stellaris_enet_can_receive(s)) {
qemu_flush_queued_packets(qemu_get_queue(s->nic));
}
}
return val;
}
case 0x14: /* IA0 */
return s->conf.macaddr.a[0] | (s->conf.macaddr.a[1] << 8)
| (s->conf.macaddr.a[2] << 16)
| ((uint32_t)s->conf.macaddr.a[3] << 24);
case 0x18: /* IA1 */
return s->conf.macaddr.a[4] | (s->conf.macaddr.a[5] << 8);
case 0x1c: /* THR */
return s->thr;
case 0x20: /* MCTL */
return s->mctl;
case 0x24: /* MDV */
return s->mdv;
case 0x28: /* MADD */
return 0;
case 0x2c: /* MTXD */
return s->mtxd;
case 0x30: /* MRXD */
return s->mrxd;
case 0x34: /* NP */
return s->np;
case 0x38: /* TR */
return 0;
case 0x3c: /* Undocumented: Timestamp? */
return 0;
default:
qemu_log_mask(LOG_GUEST_ERROR, "stellaris_enet_rd%d: Illegal register"
" 0x02%" HWADDR_PRIx "\n",
size * 8, offset);
return 0;
}
}
static void stellaris_enet_write(void *opaque, hwaddr offset,
uint64_t value, unsigned size)
{
stellaris_enet_state *s = (stellaris_enet_state *)opaque;
switch (offset) {
case 0x00: /* IACK */
s->ris &= ~value;
DPRINTF("IRQ ack %02" PRIx64 "/%02x\n", value, s->ris);
stellaris_enet_update(s);
/* Clearing TXER also resets the TX fifo. */
if (value & SE_INT_TXER) {
s->tx_fifo_len = 0;
}
break;
case 0x04: /* IM */
DPRINTF("IRQ mask %02" PRIx64 "/%02x\n", value, s->ris);
s->im = value;
stellaris_enet_update(s);
break;
case 0x08: /* RCTL */
s->rctl = value;
if (value & SE_RCTL_RSTFIFO) {
s->np = 0;
s->rx_fifo_offset = 0;
stellaris_enet_update(s);
}
break;
case 0x0c: /* TCTL */
s->tctl = value;
break;
case 0x10: /* DATA */
if (s->tx_fifo_len == 0) {
/* The first word is special, it contains the data length */
int framelen = value & 0xffff;
if (framelen > 2032) {
DPRINTF("TX frame too long (%d)\n", framelen);
s->ris |= SE_INT_TXER;
stellaris_enet_update(s);
break;
}
}
if (s->tx_fifo_len + 4 <= ARRAY_SIZE(s->tx_fifo)) {
s->tx_fifo[s->tx_fifo_len++] = value;
s->tx_fifo[s->tx_fifo_len++] = value >> 8;
s->tx_fifo[s->tx_fifo_len++] = value >> 16;
s->tx_fifo[s->tx_fifo_len++] = value >> 24;
}
if (stellaris_tx_thr_reached(s) && stellaris_txpacket_complete(s)) {
stellaris_enet_send(s);
}
break;
case 0x14: /* IA0 */
s->conf.macaddr.a[0] = value;
s->conf.macaddr.a[1] = value >> 8;
s->conf.macaddr.a[2] = value >> 16;
s->conf.macaddr.a[3] = value >> 24;
break;
case 0x18: /* IA1 */
s->conf.macaddr.a[4] = value;
s->conf.macaddr.a[5] = value >> 8;
break;
case 0x1c: /* THR */
s->thr = value;
break;
case 0x20: /* MCTL */
/* TODO: MII registers aren't modelled.
* Clear START, indicating that the operation completes immediately.
*/
s->mctl = value & ~1;
break;
case 0x24: /* MDV */
s->mdv = value;
break;
case 0x28: /* MADD */
/* ignored. */
break;
case 0x2c: /* MTXD */
s->mtxd = value & 0xff;
break;
case 0x38: /* TR */
if (value & 1) {
stellaris_enet_send(s);
}
break;
case 0x30: /* MRXD */
case 0x34: /* NP */
/* Ignored. */
case 0x3c: /* Undocuented: Timestamp? */
/* Ignored. */
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "stellaris_enet_wr%d: Illegal register "
"0x02%" HWADDR_PRIx " = 0x%" PRIx64 "\n",
size * 8, offset, value);
}
}
static const MemoryRegionOps stellaris_enet_ops = {
.read = stellaris_enet_read,
.write = stellaris_enet_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static void stellaris_enet_reset(DeviceState *dev)
{
stellaris_enet_state *s = STELLARIS_ENET(dev);
s->mdv = 0x80;
s->rctl = SE_RCTL_BADCRC;
s->im = SE_INT_PHY | SE_INT_MD | SE_INT_RXER | SE_INT_FOV | SE_INT_TXEMP
| SE_INT_TXER | SE_INT_RX;
s->thr = 0x3f;
s->tx_fifo_len = 0;
}
static NetClientInfo net_stellaris_enet_info = {
.type = NET_CLIENT_DRIVER_NIC,
.size = sizeof(NICState),
.receive = stellaris_enet_receive,
};
static void stellaris_enet_realize(DeviceState *dev, Error **errp)
{
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
stellaris_enet_state *s = STELLARIS_ENET(dev);
memory_region_init_io(&s->mmio, OBJECT(s), &stellaris_enet_ops, s,
"stellaris_enet", 0x1000);
sysbus_init_mmio(sbd, &s->mmio);
sysbus_init_irq(sbd, &s->irq);
qemu_macaddr_default_if_unset(&s->conf.macaddr);
s->nic = qemu_new_nic(&net_stellaris_enet_info, &s->conf,
object_get_typename(OBJECT(dev)), dev->id,
&dev->mem_reentrancy_guard, s);
qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
}
static Property stellaris_enet_properties[] = {
DEFINE_NIC_PROPERTIES(stellaris_enet_state, conf),
DEFINE_PROP_END_OF_LIST(),
};
static void stellaris_enet_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = stellaris_enet_realize;
dc->reset = stellaris_enet_reset;
device_class_set_props(dc, stellaris_enet_properties);
dc->vmsd = &vmstate_stellaris_enet;
}
static const TypeInfo stellaris_enet_info = {
.name = TYPE_STELLARIS_ENET,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(stellaris_enet_state),
.class_init = stellaris_enet_class_init,
};
static void stellaris_enet_register_types(void)
{
type_register_static(&stellaris_enet_info);
}
type_init(stellaris_enet_register_types)