qemu/hw/mips/boston.c
Peter Maydell 5fb3d63288 hw/mips/boston: Remove workaround for writes to ROM aborting
Now that the memory system correctly handles writes to ROM for
guest CPUs that may generate exceptions for decode errors, we
can remove the workaround from the boston board.

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Message-Id: <1513187549-2435-3-git-send-email-peter.maydell@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-12-21 09:30:32 +01:00

566 lines
18 KiB
C

/*
* MIPS Boston development board emulation.
*
* Copyright (c) 2016 Imagination Technologies
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu-common.h"
#include "exec/address-spaces.h"
#include "hw/boards.h"
#include "hw/char/serial.h"
#include "hw/hw.h"
#include "hw/ide/pci.h"
#include "hw/ide/ahci.h"
#include "hw/loader.h"
#include "hw/loader-fit.h"
#include "hw/mips/cps.h"
#include "hw/mips/cpudevs.h"
#include "hw/pci-host/xilinx-pcie.h"
#include "qapi/error.h"
#include "qemu/cutils.h"
#include "qemu/error-report.h"
#include "qemu/log.h"
#include "chardev/char.h"
#include "sysemu/device_tree.h"
#include "sysemu/sysemu.h"
#include "sysemu/qtest.h"
#include <libfdt.h>
#define TYPE_MIPS_BOSTON "mips-boston"
#define BOSTON(obj) OBJECT_CHECK(BostonState, (obj), TYPE_MIPS_BOSTON)
typedef struct {
SysBusDevice parent_obj;
MachineState *mach;
MIPSCPSState *cps;
SerialState *uart;
CharBackend lcd_display;
char lcd_content[8];
bool lcd_inited;
hwaddr kernel_entry;
hwaddr fdt_base;
} BostonState;
enum boston_plat_reg {
PLAT_FPGA_BUILD = 0x00,
PLAT_CORE_CL = 0x04,
PLAT_WRAPPER_CL = 0x08,
PLAT_SYSCLK_STATUS = 0x0c,
PLAT_SOFTRST_CTL = 0x10,
#define PLAT_SOFTRST_CTL_SYSRESET (1 << 4)
PLAT_DDR3_STATUS = 0x14,
#define PLAT_DDR3_STATUS_LOCKED (1 << 0)
#define PLAT_DDR3_STATUS_CALIBRATED (1 << 2)
PLAT_PCIE_STATUS = 0x18,
#define PLAT_PCIE_STATUS_PCIE0_LOCKED (1 << 0)
#define PLAT_PCIE_STATUS_PCIE1_LOCKED (1 << 8)
#define PLAT_PCIE_STATUS_PCIE2_LOCKED (1 << 16)
PLAT_FLASH_CTL = 0x1c,
PLAT_SPARE0 = 0x20,
PLAT_SPARE1 = 0x24,
PLAT_SPARE2 = 0x28,
PLAT_SPARE3 = 0x2c,
PLAT_MMCM_DIV = 0x30,
#define PLAT_MMCM_DIV_CLK0DIV_SHIFT 0
#define PLAT_MMCM_DIV_INPUT_SHIFT 8
#define PLAT_MMCM_DIV_MUL_SHIFT 16
#define PLAT_MMCM_DIV_CLK1DIV_SHIFT 24
PLAT_BUILD_CFG = 0x34,
#define PLAT_BUILD_CFG_IOCU_EN (1 << 0)
#define PLAT_BUILD_CFG_PCIE0_EN (1 << 1)
#define PLAT_BUILD_CFG_PCIE1_EN (1 << 2)
#define PLAT_BUILD_CFG_PCIE2_EN (1 << 3)
PLAT_DDR_CFG = 0x38,
#define PLAT_DDR_CFG_SIZE (0xf << 0)
#define PLAT_DDR_CFG_MHZ (0xfff << 4)
PLAT_NOC_PCIE0_ADDR = 0x3c,
PLAT_NOC_PCIE1_ADDR = 0x40,
PLAT_NOC_PCIE2_ADDR = 0x44,
PLAT_SYS_CTL = 0x48,
};
static void boston_lcd_event(void *opaque, int event)
{
BostonState *s = opaque;
if (event == CHR_EVENT_OPENED && !s->lcd_inited) {
qemu_chr_fe_printf(&s->lcd_display, " ");
s->lcd_inited = true;
}
}
static uint64_t boston_lcd_read(void *opaque, hwaddr addr,
unsigned size)
{
BostonState *s = opaque;
uint64_t val = 0;
switch (size) {
case 8:
val |= (uint64_t)s->lcd_content[(addr + 7) & 0x7] << 56;
val |= (uint64_t)s->lcd_content[(addr + 6) & 0x7] << 48;
val |= (uint64_t)s->lcd_content[(addr + 5) & 0x7] << 40;
val |= (uint64_t)s->lcd_content[(addr + 4) & 0x7] << 32;
/* fall through */
case 4:
val |= (uint64_t)s->lcd_content[(addr + 3) & 0x7] << 24;
val |= (uint64_t)s->lcd_content[(addr + 2) & 0x7] << 16;
/* fall through */
case 2:
val |= (uint64_t)s->lcd_content[(addr + 1) & 0x7] << 8;
/* fall through */
case 1:
val |= (uint64_t)s->lcd_content[(addr + 0) & 0x7];
break;
}
return val;
}
static void boston_lcd_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
BostonState *s = opaque;
switch (size) {
case 8:
s->lcd_content[(addr + 7) & 0x7] = val >> 56;
s->lcd_content[(addr + 6) & 0x7] = val >> 48;
s->lcd_content[(addr + 5) & 0x7] = val >> 40;
s->lcd_content[(addr + 4) & 0x7] = val >> 32;
/* fall through */
case 4:
s->lcd_content[(addr + 3) & 0x7] = val >> 24;
s->lcd_content[(addr + 2) & 0x7] = val >> 16;
/* fall through */
case 2:
s->lcd_content[(addr + 1) & 0x7] = val >> 8;
/* fall through */
case 1:
s->lcd_content[(addr + 0) & 0x7] = val;
break;
}
qemu_chr_fe_printf(&s->lcd_display,
"\r%-8.8s", s->lcd_content);
}
static const MemoryRegionOps boston_lcd_ops = {
.read = boston_lcd_read,
.write = boston_lcd_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static uint64_t boston_platreg_read(void *opaque, hwaddr addr,
unsigned size)
{
BostonState *s = opaque;
uint32_t gic_freq, val;
if (size != 4) {
qemu_log_mask(LOG_UNIMP, "%uB platform register read", size);
return 0;
}
switch (addr & 0xffff) {
case PLAT_FPGA_BUILD:
case PLAT_CORE_CL:
case PLAT_WRAPPER_CL:
return 0;
case PLAT_DDR3_STATUS:
return PLAT_DDR3_STATUS_LOCKED | PLAT_DDR3_STATUS_CALIBRATED;
case PLAT_MMCM_DIV:
gic_freq = mips_gictimer_get_freq(s->cps->gic.gic_timer) / 1000000;
val = gic_freq << PLAT_MMCM_DIV_INPUT_SHIFT;
val |= 1 << PLAT_MMCM_DIV_MUL_SHIFT;
val |= 1 << PLAT_MMCM_DIV_CLK0DIV_SHIFT;
val |= 1 << PLAT_MMCM_DIV_CLK1DIV_SHIFT;
return val;
case PLAT_BUILD_CFG:
val = PLAT_BUILD_CFG_PCIE0_EN;
val |= PLAT_BUILD_CFG_PCIE1_EN;
val |= PLAT_BUILD_CFG_PCIE2_EN;
return val;
case PLAT_DDR_CFG:
val = s->mach->ram_size / G_BYTE;
assert(!(val & ~PLAT_DDR_CFG_SIZE));
val |= PLAT_DDR_CFG_MHZ;
return val;
default:
qemu_log_mask(LOG_UNIMP, "Read platform register 0x%" HWADDR_PRIx,
addr & 0xffff);
return 0;
}
}
static void boston_platreg_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
if (size != 4) {
qemu_log_mask(LOG_UNIMP, "%uB platform register write", size);
return;
}
switch (addr & 0xffff) {
case PLAT_FPGA_BUILD:
case PLAT_CORE_CL:
case PLAT_WRAPPER_CL:
case PLAT_DDR3_STATUS:
case PLAT_PCIE_STATUS:
case PLAT_MMCM_DIV:
case PLAT_BUILD_CFG:
case PLAT_DDR_CFG:
/* read only */
break;
case PLAT_SOFTRST_CTL:
if (val & PLAT_SOFTRST_CTL_SYSRESET) {
qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
}
break;
default:
qemu_log_mask(LOG_UNIMP, "Write platform register 0x%" HWADDR_PRIx
" = 0x%" PRIx64, addr & 0xffff, val);
break;
}
}
static const MemoryRegionOps boston_platreg_ops = {
.read = boston_platreg_read,
.write = boston_platreg_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static const TypeInfo boston_device = {
.name = TYPE_MIPS_BOSTON,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(BostonState),
};
static void boston_register_types(void)
{
type_register_static(&boston_device);
}
type_init(boston_register_types)
static void gen_firmware(uint32_t *p, hwaddr kernel_entry, hwaddr fdt_addr,
bool is_64b)
{
const uint32_t cm_base = 0x16100000;
const uint32_t gic_base = 0x16120000;
const uint32_t cpc_base = 0x16200000;
/* Move CM GCRs */
if (is_64b) {
stl_p(p++, 0x40287803); /* dmfc0 $8, CMGCRBase */
stl_p(p++, 0x00084138); /* dsll $8, $8, 4 */
} else {
stl_p(p++, 0x40087803); /* mfc0 $8, CMGCRBase */
stl_p(p++, 0x00084100); /* sll $8, $8, 4 */
}
stl_p(p++, 0x3c09a000); /* lui $9, 0xa000 */
stl_p(p++, 0x01094025); /* or $8, $9 */
stl_p(p++, 0x3c0a0000 | (cm_base >> 16)); /* lui $10, cm_base >> 16 */
if (is_64b) {
stl_p(p++, 0xfd0a0008); /* sd $10, 0x8($8) */
} else {
stl_p(p++, 0xad0a0008); /* sw $10, 0x8($8) */
}
stl_p(p++, 0x012a4025); /* or $8, $10 */
/* Move & enable GIC GCRs */
stl_p(p++, 0x3c090000 | (gic_base >> 16)); /* lui $9, gic_base >> 16 */
stl_p(p++, 0x35290001); /* ori $9, 0x1 */
if (is_64b) {
stl_p(p++, 0xfd090080); /* sd $9, 0x80($8) */
} else {
stl_p(p++, 0xad090080); /* sw $9, 0x80($8) */
}
/* Move & enable CPC GCRs */
stl_p(p++, 0x3c090000 | (cpc_base >> 16)); /* lui $9, cpc_base >> 16 */
stl_p(p++, 0x35290001); /* ori $9, 0x1 */
if (is_64b) {
stl_p(p++, 0xfd090088); /* sd $9, 0x88($8) */
} else {
stl_p(p++, 0xad090088); /* sw $9, 0x88($8) */
}
/*
* Setup argument registers to follow the UHI boot protocol:
*
* a0/$4 = -2
* a1/$5 = virtual address of FDT
* a2/$6 = 0
* a3/$7 = 0
*/
stl_p(p++, 0x2404fffe); /* li $4, -2 */
/* lui $5, hi(fdt_addr) */
stl_p(p++, 0x3c050000 | ((fdt_addr >> 16) & 0xffff));
if (fdt_addr & 0xffff) { /* ori $5, lo(fdt_addr) */
stl_p(p++, 0x34a50000 | (fdt_addr & 0xffff));
}
stl_p(p++, 0x34060000); /* li $6, 0 */
stl_p(p++, 0x34070000); /* li $7, 0 */
/* Load kernel entry address & jump to it */
/* lui $25, hi(kernel_entry) */
stl_p(p++, 0x3c190000 | ((kernel_entry >> 16) & 0xffff));
/* ori $25, lo(kernel_entry) */
stl_p(p++, 0x37390000 | (kernel_entry & 0xffff));
stl_p(p++, 0x03200009); /* jr $25 */
}
static const void *boston_fdt_filter(void *opaque, const void *fdt_orig,
const void *match_data, hwaddr *load_addr)
{
BostonState *s = BOSTON(opaque);
MachineState *machine = s->mach;
const char *cmdline;
int err;
void *fdt;
size_t fdt_sz, ram_low_sz, ram_high_sz;
fdt_sz = fdt_totalsize(fdt_orig) * 2;
fdt = g_malloc0(fdt_sz);
err = fdt_open_into(fdt_orig, fdt, fdt_sz);
if (err) {
fprintf(stderr, "unable to open FDT\n");
return NULL;
}
cmdline = (machine->kernel_cmdline && machine->kernel_cmdline[0])
? machine->kernel_cmdline : " ";
err = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
if (err < 0) {
fprintf(stderr, "couldn't set /chosen/bootargs\n");
return NULL;
}
ram_low_sz = MIN(256 * M_BYTE, machine->ram_size);
ram_high_sz = machine->ram_size - ram_low_sz;
qemu_fdt_setprop_sized_cells(fdt, "/memory@0", "reg",
1, 0x00000000, 1, ram_low_sz,
1, 0x90000000, 1, ram_high_sz);
fdt = g_realloc(fdt, fdt_totalsize(fdt));
qemu_fdt_dumpdtb(fdt, fdt_sz);
s->fdt_base = *load_addr;
return fdt;
}
static const void *boston_kernel_filter(void *opaque, const void *kernel,
hwaddr *load_addr, hwaddr *entry_addr)
{
BostonState *s = BOSTON(opaque);
s->kernel_entry = *entry_addr;
return kernel;
}
static const struct fit_loader_match boston_matches[] = {
{ "img,boston" },
{ NULL },
};
static const struct fit_loader boston_fit_loader = {
.matches = boston_matches,
.addr_to_phys = cpu_mips_kseg0_to_phys,
.fdt_filter = boston_fdt_filter,
.kernel_filter = boston_kernel_filter,
};
static inline XilinxPCIEHost *
xilinx_pcie_init(MemoryRegion *sys_mem, uint32_t bus_nr,
hwaddr cfg_base, uint64_t cfg_size,
hwaddr mmio_base, uint64_t mmio_size,
qemu_irq irq, bool link_up)
{
DeviceState *dev;
MemoryRegion *cfg, *mmio;
dev = qdev_create(NULL, TYPE_XILINX_PCIE_HOST);
qdev_prop_set_uint32(dev, "bus_nr", bus_nr);
qdev_prop_set_uint64(dev, "cfg_base", cfg_base);
qdev_prop_set_uint64(dev, "cfg_size", cfg_size);
qdev_prop_set_uint64(dev, "mmio_base", mmio_base);
qdev_prop_set_uint64(dev, "mmio_size", mmio_size);
qdev_prop_set_bit(dev, "link_up", link_up);
qdev_init_nofail(dev);
cfg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
memory_region_add_subregion_overlap(sys_mem, cfg_base, cfg, 0);
mmio = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
memory_region_add_subregion_overlap(sys_mem, 0, mmio, 0);
qdev_connect_gpio_out_named(dev, "interrupt_out", 0, irq);
return XILINX_PCIE_HOST(dev);
}
static void boston_mach_init(MachineState *machine)
{
DeviceState *dev;
BostonState *s;
Error *err = NULL;
MemoryRegion *flash, *ddr, *ddr_low_alias, *lcd, *platreg;
MemoryRegion *sys_mem = get_system_memory();
XilinxPCIEHost *pcie2;
PCIDevice *ahci;
DriveInfo *hd[6];
Chardev *chr;
int fw_size, fit_err;
bool is_64b;
if ((machine->ram_size % G_BYTE) ||
(machine->ram_size > (2 * G_BYTE))) {
error_report("Memory size must be 1GB or 2GB");
exit(1);
}
dev = qdev_create(NULL, TYPE_MIPS_BOSTON);
qdev_init_nofail(dev);
s = BOSTON(dev);
s->mach = machine;
if (!cpu_supports_cps_smp(machine->cpu_type)) {
error_report("Boston requires CPUs which support CPS");
exit(1);
}
is_64b = cpu_supports_isa(machine->cpu_type, ISA_MIPS64);
s->cps = MIPS_CPS(object_new(TYPE_MIPS_CPS));
qdev_set_parent_bus(DEVICE(s->cps), sysbus_get_default());
object_property_set_str(OBJECT(s->cps), machine->cpu_type, "cpu-type",
&err);
object_property_set_int(OBJECT(s->cps), smp_cpus, "num-vp", &err);
object_property_set_bool(OBJECT(s->cps), true, "realized", &err);
if (err != NULL) {
error_report("%s", error_get_pretty(err));
exit(1);
}
sysbus_mmio_map_overlap(SYS_BUS_DEVICE(s->cps), 0, 0, 1);
flash = g_new(MemoryRegion, 1);
memory_region_init_rom_nomigrate(flash, NULL,
"boston.flash", 128 * M_BYTE, &err);
memory_region_add_subregion_overlap(sys_mem, 0x18000000, flash, 0);
ddr = g_new(MemoryRegion, 1);
memory_region_allocate_system_memory(ddr, NULL, "boston.ddr",
machine->ram_size);
memory_region_add_subregion_overlap(sys_mem, 0x80000000, ddr, 0);
ddr_low_alias = g_new(MemoryRegion, 1);
memory_region_init_alias(ddr_low_alias, NULL, "boston_low.ddr",
ddr, 0, MIN(machine->ram_size, (256 * M_BYTE)));
memory_region_add_subregion_overlap(sys_mem, 0, ddr_low_alias, 0);
xilinx_pcie_init(sys_mem, 0,
0x10000000, 32 * M_BYTE,
0x40000000, 1 * G_BYTE,
get_cps_irq(s->cps, 2), false);
xilinx_pcie_init(sys_mem, 1,
0x12000000, 32 * M_BYTE,
0x20000000, 512 * M_BYTE,
get_cps_irq(s->cps, 1), false);
pcie2 = xilinx_pcie_init(sys_mem, 2,
0x14000000, 32 * M_BYTE,
0x16000000, 1 * M_BYTE,
get_cps_irq(s->cps, 0), true);
platreg = g_new(MemoryRegion, 1);
memory_region_init_io(platreg, NULL, &boston_platreg_ops, s,
"boston-platregs", 0x1000);
memory_region_add_subregion_overlap(sys_mem, 0x17ffd000, platreg, 0);
if (!serial_hds[0]) {
serial_hds[0] = qemu_chr_new("serial0", "null");
}
s->uart = serial_mm_init(sys_mem, 0x17ffe000, 2,
get_cps_irq(s->cps, 3), 10000000,
serial_hds[0], DEVICE_NATIVE_ENDIAN);
lcd = g_new(MemoryRegion, 1);
memory_region_init_io(lcd, NULL, &boston_lcd_ops, s, "boston-lcd", 0x8);
memory_region_add_subregion_overlap(sys_mem, 0x17fff000, lcd, 0);
chr = qemu_chr_new("lcd", "vc:320x240");
qemu_chr_fe_init(&s->lcd_display, chr, NULL);
qemu_chr_fe_set_handlers(&s->lcd_display, NULL, NULL,
boston_lcd_event, NULL, s, NULL, true);
ahci = pci_create_simple_multifunction(&PCI_BRIDGE(&pcie2->root)->sec_bus,
PCI_DEVFN(0, 0),
true, TYPE_ICH9_AHCI);
g_assert(ARRAY_SIZE(hd) == ahci_get_num_ports(ahci));
ide_drive_get(hd, ahci_get_num_ports(ahci));
ahci_ide_create_devs(ahci, hd);
if (machine->firmware) {
fw_size = load_image_targphys(machine->firmware,
0x1fc00000, 4 * M_BYTE);
if (fw_size == -1) {
error_printf("unable to load firmware image '%s'\n",
machine->firmware);
exit(1);
}
} else if (machine->kernel_filename) {
fit_err = load_fit(&boston_fit_loader, machine->kernel_filename, s);
if (fit_err) {
error_printf("unable to load FIT image\n");
exit(1);
}
gen_firmware(memory_region_get_ram_ptr(flash) + 0x7c00000,
s->kernel_entry, s->fdt_base, is_64b);
} else if (!qtest_enabled()) {
error_printf("Please provide either a -kernel or -bios argument\n");
exit(1);
}
}
static void boston_mach_class_init(MachineClass *mc)
{
mc->desc = "MIPS Boston";
mc->init = boston_mach_init;
mc->block_default_type = IF_IDE;
mc->default_ram_size = 1 * G_BYTE;
mc->max_cpus = 16;
mc->default_cpu_type = MIPS_CPU_TYPE_NAME("I6400");
}
DEFINE_MACHINE("boston", boston_mach_class_init)