qemu/hw/arm/sbsa-ref.c
Peter Maydell 88c756bc9e hw/watchdog/sbsa_gwdt: Make watchdog timer frequency a QOM property
Currently the sbsa_gdwt watchdog device hardcodes its frequency at
62.5MHz. In real hardware, this watchdog is supposed to be driven
from the system counter, which also drives the CPU generic timers.
Newer CPU types (in particular from Armv8.6) should have a CPU
generic timer frequency of 1GHz, so we can't leave the watchdog
on the old QEMU default of 62.5GHz.

Make the frequency a QOM property so it can be set by the board,
and have our only board that uses this device set that frequency
to the same value it sets the CPU frequency.

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Message-id: 20240426122913.3427983-4-peter.maydell@linaro.org
2024-04-30 15:14:15 +01:00

926 lines
32 KiB
C

/*
* ARM SBSA Reference Platform emulation
*
* Copyright (c) 2018 Linaro Limited
* Copyright (c) 2023 Qualcomm Innovation Center, Inc. All rights reserved.
* Written by Hongbo Zhang <hongbo.zhang@linaro.org>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/datadir.h"
#include "qapi/error.h"
#include "qemu/error-report.h"
#include "qemu/units.h"
#include "sysemu/device_tree.h"
#include "sysemu/kvm.h"
#include "sysemu/numa.h"
#include "sysemu/runstate.h"
#include "sysemu/sysemu.h"
#include "exec/hwaddr.h"
#include "kvm_arm.h"
#include "hw/arm/boot.h"
#include "hw/arm/bsa.h"
#include "hw/arm/fdt.h"
#include "hw/arm/smmuv3.h"
#include "hw/block/flash.h"
#include "hw/boards.h"
#include "hw/ide/ide-bus.h"
#include "hw/ide/ahci-sysbus.h"
#include "hw/intc/arm_gicv3_common.h"
#include "hw/intc/arm_gicv3_its_common.h"
#include "hw/loader.h"
#include "hw/pci-host/gpex.h"
#include "hw/qdev-properties.h"
#include "hw/usb.h"
#include "hw/usb/xhci.h"
#include "hw/char/pl011.h"
#include "hw/watchdog/sbsa_gwdt.h"
#include "net/net.h"
#include "qapi/qmp/qlist.h"
#include "qom/object.h"
#include "target/arm/cpu-qom.h"
#include "target/arm/gtimer.h"
#define RAMLIMIT_GB 8192
#define RAMLIMIT_BYTES (RAMLIMIT_GB * GiB)
#define NUM_IRQS 256
#define NUM_SMMU_IRQS 4
#define NUM_SATA_PORTS 6
/*
* Generic timer frequency in Hz (which drives both the CPU generic timers
* and the SBSA watchdog-timer). Older versions of the TF-A firmware
* typically used with sbsa-ref (including the binaries in our Avocado test
* Aarch64SbsarefMachine.test_sbsaref_alpine_linux_max_pauth_impdef
* assume it is this value.
*
* TODO: this value is not architecturally correct for an Armv8.6 or
* better CPU, so we should move to 1GHz once the TF-A fix above has
* made it into a release and into our Avocado test.
*/
#define SBSA_GTIMER_HZ 62500000
enum {
SBSA_FLASH,
SBSA_MEM,
SBSA_CPUPERIPHS,
SBSA_GIC_DIST,
SBSA_GIC_REDIST,
SBSA_GIC_ITS,
SBSA_SECURE_EC,
SBSA_GWDT_WS0,
SBSA_GWDT_REFRESH,
SBSA_GWDT_CONTROL,
SBSA_SMMU,
SBSA_UART,
SBSA_RTC,
SBSA_PCIE,
SBSA_PCIE_MMIO,
SBSA_PCIE_MMIO_HIGH,
SBSA_PCIE_PIO,
SBSA_PCIE_ECAM,
SBSA_GPIO,
SBSA_SECURE_UART,
SBSA_SECURE_UART_MM,
SBSA_SECURE_MEM,
SBSA_AHCI,
SBSA_XHCI,
};
struct SBSAMachineState {
MachineState parent;
struct arm_boot_info bootinfo;
int smp_cpus;
void *fdt;
int fdt_size;
int psci_conduit;
DeviceState *gic;
PFlashCFI01 *flash[2];
};
#define TYPE_SBSA_MACHINE MACHINE_TYPE_NAME("sbsa-ref")
OBJECT_DECLARE_SIMPLE_TYPE(SBSAMachineState, SBSA_MACHINE)
static const MemMapEntry sbsa_ref_memmap[] = {
/* 512M boot ROM */
[SBSA_FLASH] = { 0, 0x20000000 },
/* 512M secure memory */
[SBSA_SECURE_MEM] = { 0x20000000, 0x20000000 },
/* Space reserved for CPU peripheral devices */
[SBSA_CPUPERIPHS] = { 0x40000000, 0x00040000 },
[SBSA_GIC_DIST] = { 0x40060000, 0x00010000 },
[SBSA_GIC_REDIST] = { 0x40080000, 0x04000000 },
[SBSA_GIC_ITS] = { 0x44081000, 0x00020000 },
[SBSA_SECURE_EC] = { 0x50000000, 0x00001000 },
[SBSA_GWDT_REFRESH] = { 0x50010000, 0x00001000 },
[SBSA_GWDT_CONTROL] = { 0x50011000, 0x00001000 },
[SBSA_UART] = { 0x60000000, 0x00001000 },
[SBSA_RTC] = { 0x60010000, 0x00001000 },
[SBSA_GPIO] = { 0x60020000, 0x00001000 },
[SBSA_SECURE_UART] = { 0x60030000, 0x00001000 },
[SBSA_SECURE_UART_MM] = { 0x60040000, 0x00001000 },
[SBSA_SMMU] = { 0x60050000, 0x00020000 },
/* Space here reserved for more SMMUs */
[SBSA_AHCI] = { 0x60100000, 0x00010000 },
[SBSA_XHCI] = { 0x60110000, 0x00010000 },
/* Space here reserved for other devices */
[SBSA_PCIE_PIO] = { 0x7fff0000, 0x00010000 },
/* 32-bit address PCIE MMIO space */
[SBSA_PCIE_MMIO] = { 0x80000000, 0x70000000 },
/* 256M PCIE ECAM space */
[SBSA_PCIE_ECAM] = { 0xf0000000, 0x10000000 },
/* ~1TB PCIE MMIO space (4GB to 1024GB boundary) */
[SBSA_PCIE_MMIO_HIGH] = { 0x100000000ULL, 0xFF00000000ULL },
[SBSA_MEM] = { 0x10000000000ULL, RAMLIMIT_BYTES },
};
static const int sbsa_ref_irqmap[] = {
[SBSA_UART] = 1,
[SBSA_RTC] = 2,
[SBSA_PCIE] = 3, /* ... to 6 */
[SBSA_GPIO] = 7,
[SBSA_SECURE_UART] = 8,
[SBSA_SECURE_UART_MM] = 9,
[SBSA_AHCI] = 10,
[SBSA_XHCI] = 11,
[SBSA_SMMU] = 12, /* ... to 15 */
[SBSA_GWDT_WS0] = 16,
};
static uint64_t sbsa_ref_cpu_mp_affinity(SBSAMachineState *sms, int idx)
{
uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
return arm_build_mp_affinity(idx, clustersz);
}
static void sbsa_fdt_add_gic_node(SBSAMachineState *sms)
{
char *nodename;
nodename = g_strdup_printf("/intc");
qemu_fdt_add_subnode(sms->fdt, nodename);
qemu_fdt_setprop_sized_cells(sms->fdt, nodename, "reg",
2, sbsa_ref_memmap[SBSA_GIC_DIST].base,
2, sbsa_ref_memmap[SBSA_GIC_DIST].size,
2, sbsa_ref_memmap[SBSA_GIC_REDIST].base,
2, sbsa_ref_memmap[SBSA_GIC_REDIST].size);
nodename = g_strdup_printf("/intc/its");
qemu_fdt_add_subnode(sms->fdt, nodename);
qemu_fdt_setprop_sized_cells(sms->fdt, nodename, "reg",
2, sbsa_ref_memmap[SBSA_GIC_ITS].base,
2, sbsa_ref_memmap[SBSA_GIC_ITS].size);
g_free(nodename);
}
/*
* Firmware on this machine only uses ACPI table to load OS, these limited
* device tree nodes are just to let firmware know the info which varies from
* command line parameters, so it is not necessary to be fully compatible
* with the kernel CPU and NUMA binding rules.
*/
static void create_fdt(SBSAMachineState *sms)
{
void *fdt = create_device_tree(&sms->fdt_size);
const MachineState *ms = MACHINE(sms);
int nb_numa_nodes = ms->numa_state->num_nodes;
int cpu;
if (!fdt) {
error_report("create_device_tree() failed");
exit(1);
}
sms->fdt = fdt;
qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,sbsa-ref");
qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
/*
* This versioning scheme is for informing platform fw only. It is neither:
* - A QEMU versioned machine type; a given version of QEMU will emulate
* a given version of the platform.
* - A reflection of level of SBSA (now SystemReady SR) support provided.
*
* machine-version-major: updated when changes breaking fw compatibility
* are introduced.
* machine-version-minor: updated when features are added that don't break
* fw compatibility.
*/
qemu_fdt_setprop_cell(fdt, "/", "machine-version-major", 0);
qemu_fdt_setprop_cell(fdt, "/", "machine-version-minor", 3);
if (ms->numa_state->have_numa_distance) {
int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
uint32_t *matrix = g_malloc0(size);
int idx, i, j;
for (i = 0; i < nb_numa_nodes; i++) {
for (j = 0; j < nb_numa_nodes; j++) {
idx = (i * nb_numa_nodes + j) * 3;
matrix[idx + 0] = cpu_to_be32(i);
matrix[idx + 1] = cpu_to_be32(j);
matrix[idx + 2] =
cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
}
}
qemu_fdt_add_subnode(fdt, "/distance-map");
qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
matrix, size);
g_free(matrix);
}
/*
* From Documentation/devicetree/bindings/arm/cpus.yaml
* On ARM v8 64-bit systems this property is required
* and matches the MPIDR_EL1 register affinity bits.
*
* * If cpus node's #address-cells property is set to 2
*
* The first reg cell bits [7:0] must be set to
* bits [39:32] of MPIDR_EL1.
*
* The second reg cell bits [23:0] must be set to
* bits [23:0] of MPIDR_EL1.
*/
qemu_fdt_add_subnode(sms->fdt, "/cpus");
qemu_fdt_setprop_cell(sms->fdt, "/cpus", "#address-cells", 2);
qemu_fdt_setprop_cell(sms->fdt, "/cpus", "#size-cells", 0x0);
for (cpu = sms->smp_cpus - 1; cpu >= 0; cpu--) {
char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
CPUState *cs = CPU(armcpu);
uint64_t mpidr = sbsa_ref_cpu_mp_affinity(sms, cpu);
qemu_fdt_add_subnode(sms->fdt, nodename);
qemu_fdt_setprop_u64(sms->fdt, nodename, "reg", mpidr);
if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
qemu_fdt_setprop_cell(sms->fdt, nodename, "numa-node-id",
ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
}
g_free(nodename);
}
sbsa_fdt_add_gic_node(sms);
}
#define SBSA_FLASH_SECTOR_SIZE (256 * KiB)
static PFlashCFI01 *sbsa_flash_create1(SBSAMachineState *sms,
const char *name,
const char *alias_prop_name)
{
/*
* Create a single flash device. We use the same parameters as
* the flash devices on the Versatile Express board.
*/
DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
qdev_prop_set_uint64(dev, "sector-length", SBSA_FLASH_SECTOR_SIZE);
qdev_prop_set_uint8(dev, "width", 4);
qdev_prop_set_uint8(dev, "device-width", 2);
qdev_prop_set_bit(dev, "big-endian", false);
qdev_prop_set_uint16(dev, "id0", 0x89);
qdev_prop_set_uint16(dev, "id1", 0x18);
qdev_prop_set_uint16(dev, "id2", 0x00);
qdev_prop_set_uint16(dev, "id3", 0x00);
qdev_prop_set_string(dev, "name", name);
object_property_add_child(OBJECT(sms), name, OBJECT(dev));
object_property_add_alias(OBJECT(sms), alias_prop_name,
OBJECT(dev), "drive");
return PFLASH_CFI01(dev);
}
static void sbsa_flash_create(SBSAMachineState *sms)
{
sms->flash[0] = sbsa_flash_create1(sms, "sbsa.flash0", "pflash0");
sms->flash[1] = sbsa_flash_create1(sms, "sbsa.flash1", "pflash1");
}
static void sbsa_flash_map1(PFlashCFI01 *flash,
hwaddr base, hwaddr size,
MemoryRegion *sysmem)
{
DeviceState *dev = DEVICE(flash);
assert(QEMU_IS_ALIGNED(size, SBSA_FLASH_SECTOR_SIZE));
assert(size / SBSA_FLASH_SECTOR_SIZE <= UINT32_MAX);
qdev_prop_set_uint32(dev, "num-blocks", size / SBSA_FLASH_SECTOR_SIZE);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
memory_region_add_subregion(sysmem, base,
sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
0));
}
static void sbsa_flash_map(SBSAMachineState *sms,
MemoryRegion *sysmem,
MemoryRegion *secure_sysmem)
{
/*
* Map two flash devices to fill the SBSA_FLASH space in the memmap.
* sysmem is the system memory space. secure_sysmem is the secure view
* of the system, and the first flash device should be made visible only
* there. The second flash device is visible to both secure and nonsecure.
*/
hwaddr flashsize = sbsa_ref_memmap[SBSA_FLASH].size / 2;
hwaddr flashbase = sbsa_ref_memmap[SBSA_FLASH].base;
sbsa_flash_map1(sms->flash[0], flashbase, flashsize,
secure_sysmem);
sbsa_flash_map1(sms->flash[1], flashbase + flashsize, flashsize,
sysmem);
}
static bool sbsa_firmware_init(SBSAMachineState *sms,
MemoryRegion *sysmem,
MemoryRegion *secure_sysmem)
{
const char *bios_name;
int i;
BlockBackend *pflash_blk0;
/* Map legacy -drive if=pflash to machine properties */
for (i = 0; i < ARRAY_SIZE(sms->flash); i++) {
pflash_cfi01_legacy_drive(sms->flash[i],
drive_get(IF_PFLASH, 0, i));
}
sbsa_flash_map(sms, sysmem, secure_sysmem);
pflash_blk0 = pflash_cfi01_get_blk(sms->flash[0]);
bios_name = MACHINE(sms)->firmware;
if (bios_name) {
char *fname;
MemoryRegion *mr;
int image_size;
if (pflash_blk0) {
error_report("The contents of the first flash device may be "
"specified with -bios or with -drive if=pflash... "
"but you cannot use both options at once");
exit(1);
}
/* Fall back to -bios */
fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
if (!fname) {
error_report("Could not find ROM image '%s'", bios_name);
exit(1);
}
mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(sms->flash[0]), 0);
image_size = load_image_mr(fname, mr);
g_free(fname);
if (image_size < 0) {
error_report("Could not load ROM image '%s'", bios_name);
exit(1);
}
}
return pflash_blk0 || bios_name;
}
static void create_secure_ram(SBSAMachineState *sms,
MemoryRegion *secure_sysmem)
{
MemoryRegion *secram = g_new(MemoryRegion, 1);
hwaddr base = sbsa_ref_memmap[SBSA_SECURE_MEM].base;
hwaddr size = sbsa_ref_memmap[SBSA_SECURE_MEM].size;
memory_region_init_ram(secram, NULL, "sbsa-ref.secure-ram", size,
&error_fatal);
memory_region_add_subregion(secure_sysmem, base, secram);
}
static void create_its(SBSAMachineState *sms)
{
const char *itsclass = its_class_name();
DeviceState *dev;
dev = qdev_new(itsclass);
object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(sms->gic),
&error_abort);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, sbsa_ref_memmap[SBSA_GIC_ITS].base);
}
static void create_gic(SBSAMachineState *sms, MemoryRegion *mem)
{
unsigned int smp_cpus = MACHINE(sms)->smp.cpus;
SysBusDevice *gicbusdev;
const char *gictype;
uint32_t redist0_capacity, redist0_count;
QList *redist_region_count;
int i;
gictype = gicv3_class_name();
sms->gic = qdev_new(gictype);
qdev_prop_set_uint32(sms->gic, "revision", 3);
qdev_prop_set_uint32(sms->gic, "num-cpu", smp_cpus);
/*
* Note that the num-irq property counts both internal and external
* interrupts; there are always 32 of the former (mandated by GIC spec).
*/
qdev_prop_set_uint32(sms->gic, "num-irq", NUM_IRQS + 32);
qdev_prop_set_bit(sms->gic, "has-security-extensions", true);
redist0_capacity =
sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
redist0_count = MIN(smp_cpus, redist0_capacity);
redist_region_count = qlist_new();
qlist_append_int(redist_region_count, redist0_count);
qdev_prop_set_array(sms->gic, "redist-region-count", redist_region_count);
object_property_set_link(OBJECT(sms->gic), "sysmem",
OBJECT(mem), &error_fatal);
qdev_prop_set_bit(sms->gic, "has-lpi", true);
gicbusdev = SYS_BUS_DEVICE(sms->gic);
sysbus_realize_and_unref(gicbusdev, &error_fatal);
sysbus_mmio_map(gicbusdev, 0, sbsa_ref_memmap[SBSA_GIC_DIST].base);
sysbus_mmio_map(gicbusdev, 1, sbsa_ref_memmap[SBSA_GIC_REDIST].base);
/*
* Wire the outputs from each CPU's generic timer and the GICv3
* maintenance interrupt signal to the appropriate GIC PPI inputs,
* and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
*/
for (i = 0; i < smp_cpus; i++) {
DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
int intidbase = NUM_IRQS + i * GIC_INTERNAL;
int irq;
/*
* Mapping from the output timer irq lines from the CPU to the
* GIC PPI inputs used for this board.
*/
const int timer_irq[] = {
[GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
[GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
[GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
[GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
[GTIMER_HYPVIRT] = ARCH_TIMER_NS_EL2_VIRT_IRQ,
};
for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
qdev_connect_gpio_out(cpudev, irq,
qdev_get_gpio_in(sms->gic,
intidbase + timer_irq[irq]));
}
qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
qdev_get_gpio_in(sms->gic,
intidbase
+ ARCH_GIC_MAINT_IRQ));
qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
qdev_get_gpio_in(sms->gic,
intidbase
+ VIRTUAL_PMU_IRQ));
sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
sysbus_connect_irq(gicbusdev, i + smp_cpus,
qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
}
create_its(sms);
}
static void create_uart(const SBSAMachineState *sms, int uart,
MemoryRegion *mem, Chardev *chr)
{
hwaddr base = sbsa_ref_memmap[uart].base;
int irq = sbsa_ref_irqmap[uart];
DeviceState *dev = qdev_new(TYPE_PL011);
SysBusDevice *s = SYS_BUS_DEVICE(dev);
qdev_prop_set_chr(dev, "chardev", chr);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
memory_region_add_subregion(mem, base,
sysbus_mmio_get_region(s, 0));
sysbus_connect_irq(s, 0, qdev_get_gpio_in(sms->gic, irq));
}
static void create_rtc(const SBSAMachineState *sms)
{
hwaddr base = sbsa_ref_memmap[SBSA_RTC].base;
int irq = sbsa_ref_irqmap[SBSA_RTC];
sysbus_create_simple("pl031", base, qdev_get_gpio_in(sms->gic, irq));
}
static void create_wdt(const SBSAMachineState *sms)
{
hwaddr rbase = sbsa_ref_memmap[SBSA_GWDT_REFRESH].base;
hwaddr cbase = sbsa_ref_memmap[SBSA_GWDT_CONTROL].base;
DeviceState *dev = qdev_new(TYPE_WDT_SBSA);
SysBusDevice *s = SYS_BUS_DEVICE(dev);
int irq = sbsa_ref_irqmap[SBSA_GWDT_WS0];
qdev_prop_set_uint64(dev, "clock-frequency", SBSA_GTIMER_HZ);
sysbus_realize_and_unref(s, &error_fatal);
sysbus_mmio_map(s, 0, rbase);
sysbus_mmio_map(s, 1, cbase);
sysbus_connect_irq(s, 0, qdev_get_gpio_in(sms->gic, irq));
}
static DeviceState *gpio_key_dev;
static void sbsa_ref_powerdown_req(Notifier *n, void *opaque)
{
/* use gpio Pin 3 for power button event */
qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
}
static Notifier sbsa_ref_powerdown_notifier = {
.notify = sbsa_ref_powerdown_req
};
static void create_gpio(const SBSAMachineState *sms)
{
DeviceState *pl061_dev;
hwaddr base = sbsa_ref_memmap[SBSA_GPIO].base;
int irq = sbsa_ref_irqmap[SBSA_GPIO];
pl061_dev = sysbus_create_simple("pl061", base,
qdev_get_gpio_in(sms->gic, irq));
gpio_key_dev = sysbus_create_simple("gpio-key", -1,
qdev_get_gpio_in(pl061_dev, 3));
/* connect powerdown request */
qemu_register_powerdown_notifier(&sbsa_ref_powerdown_notifier);
}
static void create_ahci(const SBSAMachineState *sms)
{
hwaddr base = sbsa_ref_memmap[SBSA_AHCI].base;
int irq = sbsa_ref_irqmap[SBSA_AHCI];
DeviceState *dev;
DriveInfo *hd[NUM_SATA_PORTS];
SysbusAHCIState *sysahci;
dev = qdev_new("sysbus-ahci");
qdev_prop_set_uint32(dev, "num-ports", NUM_SATA_PORTS);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(sms->gic, irq));
sysahci = SYSBUS_AHCI(dev);
ide_drive_get(hd, ARRAY_SIZE(hd));
ahci_ide_create_devs(&sysahci->ahci, hd);
}
static void create_xhci(const SBSAMachineState *sms)
{
hwaddr base = sbsa_ref_memmap[SBSA_XHCI].base;
int irq = sbsa_ref_irqmap[SBSA_XHCI];
DeviceState *dev = qdev_new(TYPE_XHCI_SYSBUS);
qdev_prop_set_uint32(dev, "slots", XHCI_MAXSLOTS);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(sms->gic, irq));
}
static void create_smmu(const SBSAMachineState *sms, PCIBus *bus)
{
hwaddr base = sbsa_ref_memmap[SBSA_SMMU].base;
int irq = sbsa_ref_irqmap[SBSA_SMMU];
DeviceState *dev;
int i;
dev = qdev_new(TYPE_ARM_SMMUV3);
object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
&error_abort);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
for (i = 0; i < NUM_SMMU_IRQS; i++) {
sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
qdev_get_gpio_in(sms->gic, irq + i));
}
}
static void create_pcie(SBSAMachineState *sms)
{
hwaddr base_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].base;
hwaddr size_ecam = sbsa_ref_memmap[SBSA_PCIE_ECAM].size;
hwaddr base_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].base;
hwaddr size_mmio = sbsa_ref_memmap[SBSA_PCIE_MMIO].size;
hwaddr base_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].base;
hwaddr size_mmio_high = sbsa_ref_memmap[SBSA_PCIE_MMIO_HIGH].size;
hwaddr base_pio = sbsa_ref_memmap[SBSA_PCIE_PIO].base;
int irq = sbsa_ref_irqmap[SBSA_PCIE];
MachineClass *mc = MACHINE_GET_CLASS(sms);
MemoryRegion *mmio_alias, *mmio_alias_high, *mmio_reg;
MemoryRegion *ecam_alias, *ecam_reg;
DeviceState *dev;
PCIHostState *pci;
int i;
dev = qdev_new(TYPE_GPEX_HOST);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
/* Map ECAM space */
ecam_alias = g_new0(MemoryRegion, 1);
ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
ecam_reg, 0, size_ecam);
memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
/* Map the MMIO space */
mmio_alias = g_new0(MemoryRegion, 1);
mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
mmio_reg, base_mmio, size_mmio);
memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
/* Map the MMIO_HIGH space */
mmio_alias_high = g_new0(MemoryRegion, 1);
memory_region_init_alias(mmio_alias_high, OBJECT(dev), "pcie-mmio-high",
mmio_reg, base_mmio_high, size_mmio_high);
memory_region_add_subregion(get_system_memory(), base_mmio_high,
mmio_alias_high);
/* Map IO port space */
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
for (i = 0; i < GPEX_NUM_IRQS; i++) {
sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
qdev_get_gpio_in(sms->gic, irq + i));
gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
}
pci = PCI_HOST_BRIDGE(dev);
pci_init_nic_devices(pci->bus, mc->default_nic);
pci_create_simple(pci->bus, -1, "bochs-display");
create_smmu(sms, pci->bus);
}
static void *sbsa_ref_dtb(const struct arm_boot_info *binfo, int *fdt_size)
{
const SBSAMachineState *board = container_of(binfo, SBSAMachineState,
bootinfo);
*fdt_size = board->fdt_size;
return board->fdt;
}
static void create_secure_ec(MemoryRegion *mem)
{
hwaddr base = sbsa_ref_memmap[SBSA_SECURE_EC].base;
DeviceState *dev = qdev_new("sbsa-ec");
SysBusDevice *s = SYS_BUS_DEVICE(dev);
memory_region_add_subregion(mem, base,
sysbus_mmio_get_region(s, 0));
}
static void sbsa_ref_init(MachineState *machine)
{
unsigned int smp_cpus = machine->smp.cpus;
unsigned int max_cpus = machine->smp.max_cpus;
SBSAMachineState *sms = SBSA_MACHINE(machine);
MachineClass *mc = MACHINE_GET_CLASS(machine);
MemoryRegion *sysmem = get_system_memory();
MemoryRegion *secure_sysmem = g_new(MemoryRegion, 1);
bool firmware_loaded;
const CPUArchIdList *possible_cpus;
int n, sbsa_max_cpus;
if (kvm_enabled()) {
error_report("sbsa-ref: KVM is not supported for this machine");
exit(1);
}
/*
* The Secure view of the world is the same as the NonSecure,
* but with a few extra devices. Create it as a container region
* containing the system memory at low priority; any secure-only
* devices go in at higher priority and take precedence.
*/
memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
UINT64_MAX);
memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
firmware_loaded = sbsa_firmware_init(sms, sysmem, secure_sysmem);
/*
* This machine has EL3 enabled, external firmware should supply PSCI
* implementation, so the QEMU's internal PSCI is disabled.
*/
sms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
sbsa_max_cpus = sbsa_ref_memmap[SBSA_GIC_REDIST].size / GICV3_REDIST_SIZE;
if (max_cpus > sbsa_max_cpus) {
error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
"supported by machine 'sbsa-ref' (%d)",
max_cpus, sbsa_max_cpus);
exit(1);
}
sms->smp_cpus = smp_cpus;
if (machine->ram_size > sbsa_ref_memmap[SBSA_MEM].size) {
error_report("sbsa-ref: cannot model more than %dGB RAM", RAMLIMIT_GB);
exit(1);
}
possible_cpus = mc->possible_cpu_arch_ids(machine);
for (n = 0; n < possible_cpus->len; n++) {
Object *cpuobj;
CPUState *cs;
if (n >= smp_cpus) {
break;
}
cpuobj = object_new(possible_cpus->cpus[n].type);
object_property_set_int(cpuobj, "mp-affinity",
possible_cpus->cpus[n].arch_id, NULL);
cs = CPU(cpuobj);
cs->cpu_index = n;
numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
&error_fatal);
if (object_property_find(cpuobj, "reset-cbar")) {
object_property_set_int(cpuobj, "reset-cbar",
sbsa_ref_memmap[SBSA_CPUPERIPHS].base,
&error_abort);
}
object_property_set_int(cpuobj, "cntfrq", SBSA_GTIMER_HZ, &error_abort);
object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
&error_abort);
object_property_set_link(cpuobj, "secure-memory",
OBJECT(secure_sysmem), &error_abort);
qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
object_unref(cpuobj);
}
memory_region_add_subregion(sysmem, sbsa_ref_memmap[SBSA_MEM].base,
machine->ram);
create_fdt(sms);
create_secure_ram(sms, secure_sysmem);
create_gic(sms, sysmem);
create_uart(sms, SBSA_UART, sysmem, serial_hd(0));
create_uart(sms, SBSA_SECURE_UART, secure_sysmem, serial_hd(1));
/* Second secure UART for RAS and MM from EL0 */
create_uart(sms, SBSA_SECURE_UART_MM, secure_sysmem, serial_hd(2));
create_rtc(sms);
create_wdt(sms);
create_gpio(sms);
create_ahci(sms);
create_xhci(sms);
create_pcie(sms);
create_secure_ec(secure_sysmem);
sms->bootinfo.ram_size = machine->ram_size;
sms->bootinfo.board_id = -1;
sms->bootinfo.loader_start = sbsa_ref_memmap[SBSA_MEM].base;
sms->bootinfo.get_dtb = sbsa_ref_dtb;
sms->bootinfo.firmware_loaded = firmware_loaded;
arm_load_kernel(ARM_CPU(first_cpu), machine, &sms->bootinfo);
}
static const CPUArchIdList *sbsa_ref_possible_cpu_arch_ids(MachineState *ms)
{
unsigned int max_cpus = ms->smp.max_cpus;
SBSAMachineState *sms = SBSA_MACHINE(ms);
int n;
if (ms->possible_cpus) {
assert(ms->possible_cpus->len == max_cpus);
return ms->possible_cpus;
}
ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
sizeof(CPUArchId) * max_cpus);
ms->possible_cpus->len = max_cpus;
for (n = 0; n < ms->possible_cpus->len; n++) {
ms->possible_cpus->cpus[n].type = ms->cpu_type;
ms->possible_cpus->cpus[n].arch_id =
sbsa_ref_cpu_mp_affinity(sms, n);
ms->possible_cpus->cpus[n].props.has_thread_id = true;
ms->possible_cpus->cpus[n].props.thread_id = n;
}
return ms->possible_cpus;
}
static CpuInstanceProperties
sbsa_ref_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
{
MachineClass *mc = MACHINE_GET_CLASS(ms);
const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
assert(cpu_index < possible_cpus->len);
return possible_cpus->cpus[cpu_index].props;
}
static int64_t
sbsa_ref_get_default_cpu_node_id(const MachineState *ms, int idx)
{
return idx % ms->numa_state->num_nodes;
}
static void sbsa_ref_instance_init(Object *obj)
{
SBSAMachineState *sms = SBSA_MACHINE(obj);
sbsa_flash_create(sms);
}
static void sbsa_ref_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
static const char * const valid_cpu_types[] = {
ARM_CPU_TYPE_NAME("cortex-a57"),
ARM_CPU_TYPE_NAME("cortex-a72"),
ARM_CPU_TYPE_NAME("neoverse-n1"),
ARM_CPU_TYPE_NAME("neoverse-v1"),
ARM_CPU_TYPE_NAME("neoverse-n2"),
ARM_CPU_TYPE_NAME("max"),
NULL,
};
mc->init = sbsa_ref_init;
mc->desc = "QEMU 'SBSA Reference' ARM Virtual Machine";
mc->default_cpu_type = ARM_CPU_TYPE_NAME("neoverse-n1");
mc->valid_cpu_types = valid_cpu_types;
mc->max_cpus = 512;
mc->pci_allow_0_address = true;
mc->minimum_page_bits = 12;
mc->block_default_type = IF_IDE;
mc->no_cdrom = 1;
mc->default_nic = "e1000e";
mc->default_ram_size = 1 * GiB;
mc->default_ram_id = "sbsa-ref.ram";
mc->default_cpus = 4;
mc->possible_cpu_arch_ids = sbsa_ref_possible_cpu_arch_ids;
mc->cpu_index_to_instance_props = sbsa_ref_cpu_index_to_props;
mc->get_default_cpu_node_id = sbsa_ref_get_default_cpu_node_id;
/* platform instead of architectural choice */
mc->cpu_cluster_has_numa_boundary = true;
}
static const TypeInfo sbsa_ref_info = {
.name = TYPE_SBSA_MACHINE,
.parent = TYPE_MACHINE,
.instance_init = sbsa_ref_instance_init,
.class_init = sbsa_ref_class_init,
.instance_size = sizeof(SBSAMachineState),
};
static void sbsa_ref_machine_init(void)
{
type_register_static(&sbsa_ref_info);
}
type_init(sbsa_ref_machine_init);