b904a9096f
This allows us to check our new SYS_HEAPINFO implementation generates sane values. Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Peter Maydell <peter.maydell@linaro.org> Message-Id: <20220225172021.3493923-19-alex.bennee@linaro.org>
94 lines
2.5 KiB
C
94 lines
2.5 KiB
C
/*
|
|
* Semihosting System HEAPINFO Test
|
|
*
|
|
* Copyright (c) 2021 Linaro Ltd
|
|
*
|
|
* SPDX-License-Identifier: GPL-2.0-or-later
|
|
*/
|
|
|
|
#include <inttypes.h>
|
|
#include <stddef.h>
|
|
#include <minilib.h>
|
|
|
|
#define SYS_HEAPINFO 0x16
|
|
|
|
uintptr_t __semi_call(uintptr_t type, uintptr_t arg0)
|
|
{
|
|
register uintptr_t t asm("x0") = type;
|
|
register uintptr_t a0 asm("x1") = arg0;
|
|
asm("hlt 0xf000"
|
|
: "=r" (t)
|
|
: "r" (t), "r" (a0)
|
|
: "memory" );
|
|
|
|
return t;
|
|
}
|
|
|
|
int main(int argc, char *argv[argc])
|
|
{
|
|
struct {
|
|
void *heap_base;
|
|
void *heap_limit;
|
|
void *stack_base;
|
|
void *stack_limit;
|
|
} info = { };
|
|
void *ptr_to_info = (void *) &info;
|
|
uint32_t *ptr_to_heap;
|
|
int i;
|
|
|
|
ml_printf("Semihosting Heap Info Test\n");
|
|
|
|
__semi_call(SYS_HEAPINFO, (uintptr_t) &ptr_to_info);
|
|
|
|
if (info.heap_base == NULL || info.heap_limit == NULL) {
|
|
ml_printf("null heap: %p -> %p\n", info.heap_base, info.heap_limit);
|
|
return -1;
|
|
}
|
|
|
|
/* Error if heap base is above limit */
|
|
if ((uintptr_t) info.heap_base >= (uintptr_t) info.heap_limit) {
|
|
ml_printf("heap base %p >= heap_limit %p\n",
|
|
info.heap_base, info.heap_limit);
|
|
return -2;
|
|
}
|
|
|
|
if (info.stack_base == NULL) {
|
|
ml_printf("null stack: %p -> %p\n", info.stack_base, info.stack_limit);
|
|
return -3;
|
|
}
|
|
|
|
/*
|
|
* boot.S put our stack somewhere inside the data segment of the
|
|
* ELF file, and we know that SYS_HEAPINFO won't pick a range
|
|
* that overlaps with part of a loaded ELF file. So the info
|
|
* struct (on the stack) should not be inside the reported heap.
|
|
*/
|
|
if (ptr_to_info > info.heap_base && ptr_to_info < info.heap_limit) {
|
|
ml_printf("info appears to be inside the heap: %p in %p:%p\n",
|
|
ptr_to_info, info.heap_base, info.heap_limit);
|
|
return -4;
|
|
}
|
|
|
|
ml_printf("heap: %p -> %p\n", info.heap_base, info.heap_limit);
|
|
ml_printf("stack: %p <- %p\n", info.stack_limit, info.stack_base);
|
|
|
|
/* finally can we read/write the heap */
|
|
ptr_to_heap = (uint32_t *) info.heap_base;
|
|
for (i = 0; i < 512; i++) {
|
|
*ptr_to_heap++ = i;
|
|
}
|
|
ptr_to_heap = (uint32_t *) info.heap_base;
|
|
for (i = 0; i < 512; i++) {
|
|
uint32_t tmp = *ptr_to_heap;
|
|
if (tmp != i) {
|
|
ml_printf("unexpected value in heap: %d @ %p", tmp, ptr_to_heap);
|
|
return -5;
|
|
}
|
|
ptr_to_heap++;
|
|
}
|
|
ml_printf("r/w to heap upto %p\n", ptr_to_heap);
|
|
|
|
ml_printf("Passed HeapInfo checks\n");
|
|
return 0;
|
|
}
|