qemu/hw/net/allwinner_emac.c
Marc-André Lureau 4f67d30b5e qdev: set properties with device_class_set_props()
The following patch will need to handle properties registration during
class_init time. Let's use a device_class_set_props() setter.

spatch --macro-file scripts/cocci-macro-file.h  --sp-file
./scripts/coccinelle/qdev-set-props.cocci --keep-comments --in-place
--dir .

@@
typedef DeviceClass;
DeviceClass *d;
expression val;
@@
- d->props = val
+ device_class_set_props(d, val)

Signed-off-by: Marc-André Lureau <marcandre.lureau@redhat.com>
Message-Id: <20200110153039.1379601-20-marcandre.lureau@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-01-24 20:59:15 +01:00

541 lines
15 KiB
C

/*
* Emulation of Allwinner EMAC Fast Ethernet controller and
* Realtek RTL8201CP PHY
*
* Copyright (C) 2014 Beniamino Galvani <b.galvani@gmail.com>
*
* This model is based on reverse-engineering of Linux kernel driver.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include "qemu/osdep.h"
#include "hw/sysbus.h"
#include "migration/vmstate.h"
#include "net/net.h"
#include "qemu/fifo8.h"
#include "hw/irq.h"
#include "hw/net/allwinner_emac.h"
#include "hw/qdev-properties.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include <zlib.h>
static uint8_t padding[60];
static void mii_set_link(RTL8201CPState *mii, bool link_ok)
{
if (link_ok) {
mii->bmsr |= MII_BMSR_LINK_ST | MII_BMSR_AN_COMP;
mii->anlpar |= MII_ANAR_TXFD | MII_ANAR_10FD | MII_ANAR_10 |
MII_ANAR_CSMACD;
} else {
mii->bmsr &= ~(MII_BMSR_LINK_ST | MII_BMSR_AN_COMP);
mii->anlpar = MII_ANAR_TX;
}
}
static void mii_reset(RTL8201CPState *mii, bool link_ok)
{
mii->bmcr = MII_BMCR_FD | MII_BMCR_AUTOEN | MII_BMCR_SPEED;
mii->bmsr = MII_BMSR_100TX_FD | MII_BMSR_100TX_HD | MII_BMSR_10T_FD |
MII_BMSR_10T_HD | MII_BMSR_MFPS | MII_BMSR_AUTONEG;
mii->anar = MII_ANAR_TXFD | MII_ANAR_TX | MII_ANAR_10FD | MII_ANAR_10 |
MII_ANAR_CSMACD;
mii->anlpar = MII_ANAR_TX;
mii_set_link(mii, link_ok);
}
static uint16_t RTL8201CP_mdio_read(AwEmacState *s, uint8_t addr, uint8_t reg)
{
RTL8201CPState *mii = &s->mii;
uint16_t ret = 0xffff;
if (addr == s->phy_addr) {
switch (reg) {
case MII_BMCR:
return mii->bmcr;
case MII_BMSR:
return mii->bmsr;
case MII_PHYID1:
return RTL8201CP_PHYID1;
case MII_PHYID2:
return RTL8201CP_PHYID2;
case MII_ANAR:
return mii->anar;
case MII_ANLPAR:
return mii->anlpar;
case MII_ANER:
case MII_NSR:
case MII_LBREMR:
case MII_REC:
case MII_SNRDR:
case MII_TEST:
qemu_log_mask(LOG_UNIMP,
"allwinner_emac: read from unimpl. mii reg 0x%x\n",
reg);
return 0;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"allwinner_emac: read from invalid mii reg 0x%x\n",
reg);
return 0;
}
}
return ret;
}
static void RTL8201CP_mdio_write(AwEmacState *s, uint8_t addr, uint8_t reg,
uint16_t value)
{
RTL8201CPState *mii = &s->mii;
NetClientState *nc;
if (addr == s->phy_addr) {
switch (reg) {
case MII_BMCR:
if (value & MII_BMCR_RESET) {
nc = qemu_get_queue(s->nic);
mii_reset(mii, !nc->link_down);
} else {
mii->bmcr = value;
}
break;
case MII_ANAR:
mii->anar = value;
break;
case MII_BMSR:
case MII_PHYID1:
case MII_PHYID2:
case MII_ANLPAR:
case MII_ANER:
qemu_log_mask(LOG_GUEST_ERROR,
"allwinner_emac: write to read-only mii reg 0x%x\n",
reg);
break;
case MII_NSR:
case MII_LBREMR:
case MII_REC:
case MII_SNRDR:
case MII_TEST:
qemu_log_mask(LOG_UNIMP,
"allwinner_emac: write to unimpl. mii reg 0x%x\n",
reg);
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"allwinner_emac: write to invalid mii reg 0x%x\n",
reg);
}
}
}
static void aw_emac_update_irq(AwEmacState *s)
{
qemu_set_irq(s->irq, (s->int_sta & s->int_ctl) != 0);
}
static void aw_emac_tx_reset(AwEmacState *s, int chan)
{
fifo8_reset(&s->tx_fifo[chan]);
s->tx_length[chan] = 0;
}
static void aw_emac_rx_reset(AwEmacState *s)
{
fifo8_reset(&s->rx_fifo);
s->rx_num_packets = 0;
s->rx_packet_size = 0;
s->rx_packet_pos = 0;
}
static void fifo8_push_word(Fifo8 *fifo, uint32_t val)
{
fifo8_push(fifo, val);
fifo8_push(fifo, val >> 8);
fifo8_push(fifo, val >> 16);
fifo8_push(fifo, val >> 24);
}
static uint32_t fifo8_pop_word(Fifo8 *fifo)
{
uint32_t ret;
ret = fifo8_pop(fifo);
ret |= fifo8_pop(fifo) << 8;
ret |= fifo8_pop(fifo) << 16;
ret |= fifo8_pop(fifo) << 24;
return ret;
}
static int aw_emac_can_receive(NetClientState *nc)
{
AwEmacState *s = qemu_get_nic_opaque(nc);
/*
* To avoid packet drops, allow reception only when there is space
* for a full frame: 1522 + 8 (rx headers) + 2 (padding).
*/
return (s->ctl & EMAC_CTL_RX_EN) && (fifo8_num_free(&s->rx_fifo) >= 1532);
}
static ssize_t aw_emac_receive(NetClientState *nc, const uint8_t *buf,
size_t size)
{
AwEmacState *s = qemu_get_nic_opaque(nc);
Fifo8 *fifo = &s->rx_fifo;
size_t padded_size, total_size;
uint32_t crc;
padded_size = size > 60 ? size : 60;
total_size = QEMU_ALIGN_UP(RX_HDR_SIZE + padded_size + CRC_SIZE, 4);
if (!(s->ctl & EMAC_CTL_RX_EN) || (fifo8_num_free(fifo) < total_size)) {
return -1;
}
fifo8_push_word(fifo, EMAC_UNDOCUMENTED_MAGIC);
fifo8_push_word(fifo, EMAC_RX_HEADER(padded_size + CRC_SIZE,
EMAC_RX_IO_DATA_STATUS_OK));
fifo8_push_all(fifo, buf, size);
crc = crc32(~0, buf, size);
if (padded_size != size) {
fifo8_push_all(fifo, padding, padded_size - size);
crc = crc32(crc, padding, padded_size - size);
}
fifo8_push_word(fifo, crc);
fifo8_push_all(fifo, padding, QEMU_ALIGN_UP(padded_size, 4) - padded_size);
s->rx_num_packets++;
s->int_sta |= EMAC_INT_RX;
aw_emac_update_irq(s);
return size;
}
static void aw_emac_reset(DeviceState *dev)
{
AwEmacState *s = AW_EMAC(dev);
NetClientState *nc = qemu_get_queue(s->nic);
s->ctl = 0;
s->tx_mode = 0;
s->int_ctl = 0;
s->int_sta = 0;
s->tx_channel = 0;
s->phy_target = 0;
aw_emac_tx_reset(s, 0);
aw_emac_tx_reset(s, 1);
aw_emac_rx_reset(s);
mii_reset(&s->mii, !nc->link_down);
}
static uint64_t aw_emac_read(void *opaque, hwaddr offset, unsigned size)
{
AwEmacState *s = opaque;
Fifo8 *fifo = &s->rx_fifo;
NetClientState *nc;
uint64_t ret;
switch (offset) {
case EMAC_CTL_REG:
return s->ctl;
case EMAC_TX_MODE_REG:
return s->tx_mode;
case EMAC_TX_INS_REG:
return s->tx_channel;
case EMAC_RX_CTL_REG:
return s->rx_ctl;
case EMAC_RX_IO_DATA_REG:
if (!s->rx_num_packets) {
qemu_log_mask(LOG_GUEST_ERROR,
"Read IO data register when no packet available");
return 0;
}
ret = fifo8_pop_word(fifo);
switch (s->rx_packet_pos) {
case 0: /* Word is magic header */
s->rx_packet_pos += 4;
break;
case 4: /* Word is rx info header */
s->rx_packet_pos += 4;
s->rx_packet_size = QEMU_ALIGN_UP(extract32(ret, 0, 16), 4);
break;
default: /* Word is packet data */
s->rx_packet_pos += 4;
s->rx_packet_size -= 4;
if (!s->rx_packet_size) {
s->rx_packet_pos = 0;
s->rx_num_packets--;
nc = qemu_get_queue(s->nic);
if (aw_emac_can_receive(nc)) {
qemu_flush_queued_packets(nc);
}
}
}
return ret;
case EMAC_RX_FBC_REG:
return s->rx_num_packets;
case EMAC_INT_CTL_REG:
return s->int_ctl;
case EMAC_INT_STA_REG:
return s->int_sta;
case EMAC_MAC_MRDD_REG:
return RTL8201CP_mdio_read(s,
extract32(s->phy_target, PHY_ADDR_SHIFT, 8),
extract32(s->phy_target, PHY_REG_SHIFT, 8));
default:
qemu_log_mask(LOG_UNIMP,
"allwinner_emac: read access to unknown register 0x"
TARGET_FMT_plx "\n", offset);
ret = 0;
}
return ret;
}
static void aw_emac_write(void *opaque, hwaddr offset, uint64_t value,
unsigned size)
{
AwEmacState *s = opaque;
Fifo8 *fifo;
NetClientState *nc = qemu_get_queue(s->nic);
int chan;
switch (offset) {
case EMAC_CTL_REG:
if (value & EMAC_CTL_RESET) {
aw_emac_reset(DEVICE(s));
value &= ~EMAC_CTL_RESET;
}
s->ctl = value;
if (aw_emac_can_receive(nc)) {
qemu_flush_queued_packets(nc);
}
break;
case EMAC_TX_MODE_REG:
s->tx_mode = value;
break;
case EMAC_TX_CTL0_REG:
case EMAC_TX_CTL1_REG:
chan = (offset == EMAC_TX_CTL0_REG ? 0 : 1);
if ((value & 1) && (s->ctl & EMAC_CTL_TX_EN)) {
uint32_t len, ret;
const uint8_t *data;
fifo = &s->tx_fifo[chan];
len = s->tx_length[chan];
if (len > fifo8_num_used(fifo)) {
len = fifo8_num_used(fifo);
qemu_log_mask(LOG_GUEST_ERROR,
"allwinner_emac: TX length > fifo data length\n");
}
if (len > 0) {
data = fifo8_pop_buf(fifo, len, &ret);
qemu_send_packet(nc, data, ret);
aw_emac_tx_reset(s, chan);
/* Raise TX interrupt */
s->int_sta |= EMAC_INT_TX_CHAN(chan);
aw_emac_update_irq(s);
}
}
break;
case EMAC_TX_INS_REG:
s->tx_channel = value < NUM_TX_FIFOS ? value : 0;
break;
case EMAC_TX_PL0_REG:
case EMAC_TX_PL1_REG:
chan = (offset == EMAC_TX_PL0_REG ? 0 : 1);
if (value > TX_FIFO_SIZE) {
qemu_log_mask(LOG_GUEST_ERROR,
"allwinner_emac: invalid TX frame length %d\n",
(int)value);
value = TX_FIFO_SIZE;
}
s->tx_length[chan] = value;
break;
case EMAC_TX_IO_DATA_REG:
fifo = &s->tx_fifo[s->tx_channel];
if (fifo8_num_free(fifo) < 4) {
qemu_log_mask(LOG_GUEST_ERROR,
"allwinner_emac: TX data overruns fifo\n");
break;
}
fifo8_push_word(fifo, value);
break;
case EMAC_RX_CTL_REG:
s->rx_ctl = value;
break;
case EMAC_RX_FBC_REG:
if (value == 0) {
aw_emac_rx_reset(s);
}
break;
case EMAC_INT_CTL_REG:
s->int_ctl = value;
aw_emac_update_irq(s);
break;
case EMAC_INT_STA_REG:
s->int_sta &= ~value;
aw_emac_update_irq(s);
break;
case EMAC_MAC_MADR_REG:
s->phy_target = value;
break;
case EMAC_MAC_MWTD_REG:
RTL8201CP_mdio_write(s, extract32(s->phy_target, PHY_ADDR_SHIFT, 8),
extract32(s->phy_target, PHY_REG_SHIFT, 8), value);
break;
default:
qemu_log_mask(LOG_UNIMP,
"allwinner_emac: write access to unknown register 0x"
TARGET_FMT_plx "\n", offset);
}
}
static void aw_emac_set_link(NetClientState *nc)
{
AwEmacState *s = qemu_get_nic_opaque(nc);
mii_set_link(&s->mii, !nc->link_down);
}
static const MemoryRegionOps aw_emac_mem_ops = {
.read = aw_emac_read,
.write = aw_emac_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
},
};
static NetClientInfo net_aw_emac_info = {
.type = NET_CLIENT_DRIVER_NIC,
.size = sizeof(NICState),
.can_receive = aw_emac_can_receive,
.receive = aw_emac_receive,
.link_status_changed = aw_emac_set_link,
};
static void aw_emac_init(Object *obj)
{
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
AwEmacState *s = AW_EMAC(obj);
memory_region_init_io(&s->iomem, OBJECT(s), &aw_emac_mem_ops, s,
"aw_emac", 0x1000);
sysbus_init_mmio(sbd, &s->iomem);
sysbus_init_irq(sbd, &s->irq);
}
static void aw_emac_realize(DeviceState *dev, Error **errp)
{
AwEmacState *s = AW_EMAC(dev);
qemu_macaddr_default_if_unset(&s->conf.macaddr);
s->nic = qemu_new_nic(&net_aw_emac_info, &s->conf,
object_get_typename(OBJECT(dev)), dev->id, s);
qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
fifo8_create(&s->rx_fifo, RX_FIFO_SIZE);
fifo8_create(&s->tx_fifo[0], TX_FIFO_SIZE);
fifo8_create(&s->tx_fifo[1], TX_FIFO_SIZE);
}
static Property aw_emac_properties[] = {
DEFINE_NIC_PROPERTIES(AwEmacState, conf),
DEFINE_PROP_UINT8("phy-addr", AwEmacState, phy_addr, 0),
DEFINE_PROP_END_OF_LIST(),
};
static const VMStateDescription vmstate_mii = {
.name = "rtl8201cp",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT16(bmcr, RTL8201CPState),
VMSTATE_UINT16(bmsr, RTL8201CPState),
VMSTATE_UINT16(anar, RTL8201CPState),
VMSTATE_UINT16(anlpar, RTL8201CPState),
VMSTATE_END_OF_LIST()
}
};
static int aw_emac_post_load(void *opaque, int version_id)
{
AwEmacState *s = opaque;
aw_emac_set_link(qemu_get_queue(s->nic));
return 0;
}
static const VMStateDescription vmstate_aw_emac = {
.name = "allwinner_emac",
.version_id = 1,
.minimum_version_id = 1,
.post_load = aw_emac_post_load,
.fields = (VMStateField[]) {
VMSTATE_STRUCT(mii, AwEmacState, 1, vmstate_mii, RTL8201CPState),
VMSTATE_UINT32(ctl, AwEmacState),
VMSTATE_UINT32(tx_mode, AwEmacState),
VMSTATE_UINT32(rx_ctl, AwEmacState),
VMSTATE_UINT32(int_ctl, AwEmacState),
VMSTATE_UINT32(int_sta, AwEmacState),
VMSTATE_UINT32(phy_target, AwEmacState),
VMSTATE_FIFO8(rx_fifo, AwEmacState),
VMSTATE_UINT32(rx_num_packets, AwEmacState),
VMSTATE_UINT32(rx_packet_size, AwEmacState),
VMSTATE_UINT32(rx_packet_pos, AwEmacState),
VMSTATE_STRUCT_ARRAY(tx_fifo, AwEmacState, NUM_TX_FIFOS, 1,
vmstate_fifo8, Fifo8),
VMSTATE_UINT32_ARRAY(tx_length, AwEmacState, NUM_TX_FIFOS),
VMSTATE_UINT32(tx_channel, AwEmacState),
VMSTATE_END_OF_LIST()
}
};
static void aw_emac_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = aw_emac_realize;
device_class_set_props(dc, aw_emac_properties);
dc->reset = aw_emac_reset;
dc->vmsd = &vmstate_aw_emac;
}
static const TypeInfo aw_emac_info = {
.name = TYPE_AW_EMAC,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(AwEmacState),
.instance_init = aw_emac_init,
.class_init = aw_emac_class_init,
};
static void aw_emac_register_types(void)
{
type_register_static(&aw_emac_info);
}
type_init(aw_emac_register_types)