qemu/target-s390x/cpu.h
Paolo Bonzini 14e6fe12a7 *_run_on_cpu: introduce run_on_cpu_data type
This changes the *_run_on_cpu APIs (and helpers) to pass data in a
run_on_cpu_data type instead of a plain void *. This is because we
sometimes want to pass a target address (target_ulong) and this fails on
32 bit hosts emulating 64 bit guests.

Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Message-Id: <20161027151030.20863-24-alex.bennee@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2016-10-31 15:00:25 +01:00

1297 lines
44 KiB
C

/*
* S/390 virtual CPU header
*
* Copyright (c) 2009 Ulrich Hecht
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* Contributions after 2012-10-29 are licensed under the terms of the
* GNU GPL, version 2 or (at your option) any later version.
*
* You should have received a copy of the GNU (Lesser) General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#ifndef S390X_CPU_H
#define S390X_CPU_H
#include "qemu-common.h"
#include "cpu-qom.h"
#define TARGET_LONG_BITS 64
#define ELF_MACHINE_UNAME "S390X"
#define CPUArchState struct CPUS390XState
#include "exec/cpu-defs.h"
#define TARGET_PAGE_BITS 12
#define TARGET_PHYS_ADDR_SPACE_BITS 64
#define TARGET_VIRT_ADDR_SPACE_BITS 64
#include "exec/cpu-all.h"
#include "fpu/softfloat.h"
#define NB_MMU_MODES 3
#define TARGET_INSN_START_EXTRA_WORDS 1
#define MMU_MODE0_SUFFIX _primary
#define MMU_MODE1_SUFFIX _secondary
#define MMU_MODE2_SUFFIX _home
#define MMU_USER_IDX 0
#define MAX_EXT_QUEUE 16
#define MAX_IO_QUEUE 16
#define MAX_MCHK_QUEUE 16
#define PSW_MCHK_MASK 0x0004000000000000
#define PSW_IO_MASK 0x0200000000000000
typedef struct PSW {
uint64_t mask;
uint64_t addr;
} PSW;
typedef struct ExtQueue {
uint32_t code;
uint32_t param;
uint32_t param64;
} ExtQueue;
typedef struct IOIntQueue {
uint16_t id;
uint16_t nr;
uint32_t parm;
uint32_t word;
} IOIntQueue;
typedef struct MchkQueue {
uint16_t type;
} MchkQueue;
typedef struct CPUS390XState {
uint64_t regs[16]; /* GP registers */
/*
* The floating point registers are part of the vector registers.
* vregs[0][0] -> vregs[15][0] are 16 floating point registers
*/
CPU_DoubleU vregs[32][2]; /* vector registers */
uint32_t aregs[16]; /* access registers */
uint32_t fpc; /* floating-point control register */
uint32_t cc_op;
float_status fpu_status; /* passed to softfloat lib */
/* The low part of a 128-bit return, or remainder of a divide. */
uint64_t retxl;
PSW psw;
uint64_t cc_src;
uint64_t cc_dst;
uint64_t cc_vr;
uint64_t __excp_addr;
uint64_t psa;
uint32_t int_pgm_code;
uint32_t int_pgm_ilen;
uint32_t int_svc_code;
uint32_t int_svc_ilen;
uint64_t per_address;
uint16_t per_perc_atmid;
uint64_t cregs[16]; /* control registers */
ExtQueue ext_queue[MAX_EXT_QUEUE];
IOIntQueue io_queue[MAX_IO_QUEUE][8];
MchkQueue mchk_queue[MAX_MCHK_QUEUE];
int pending_int;
int ext_index;
int io_index[8];
int mchk_index;
uint64_t ckc;
uint64_t cputm;
uint32_t todpr;
uint64_t pfault_token;
uint64_t pfault_compare;
uint64_t pfault_select;
uint64_t gbea;
uint64_t pp;
uint8_t riccb[64];
CPU_COMMON
/* reset does memset(0) up to here */
uint32_t cpu_num;
uint32_t machine_type;
uint64_t tod_offset;
uint64_t tod_basetime;
QEMUTimer *tod_timer;
QEMUTimer *cpu_timer;
/*
* The cpu state represents the logical state of a cpu. In contrast to other
* architectures, there is a difference between a halt and a stop on s390.
* If all cpus are either stopped (including check stop) or in the disabled
* wait state, the vm can be shut down.
*/
#define CPU_STATE_UNINITIALIZED 0x00
#define CPU_STATE_STOPPED 0x01
#define CPU_STATE_CHECK_STOP 0x02
#define CPU_STATE_OPERATING 0x03
#define CPU_STATE_LOAD 0x04
uint8_t cpu_state;
/* currently processed sigp order */
uint8_t sigp_order;
} CPUS390XState;
static inline CPU_DoubleU *get_freg(CPUS390XState *cs, int nr)
{
return &cs->vregs[nr][0];
}
/**
* S390CPU:
* @env: #CPUS390XState.
*
* An S/390 CPU.
*/
struct S390CPU {
/*< private >*/
CPUState parent_obj;
/*< public >*/
CPUS390XState env;
int64_t id;
S390CPUModel *model;
/* needed for live migration */
void *irqstate;
uint32_t irqstate_saved_size;
};
static inline S390CPU *s390_env_get_cpu(CPUS390XState *env)
{
return container_of(env, S390CPU, env);
}
#define ENV_GET_CPU(e) CPU(s390_env_get_cpu(e))
#define ENV_OFFSET offsetof(S390CPU, env)
#ifndef CONFIG_USER_ONLY
extern const struct VMStateDescription vmstate_s390_cpu;
#endif
void s390_cpu_do_interrupt(CPUState *cpu);
bool s390_cpu_exec_interrupt(CPUState *cpu, int int_req);
void s390_cpu_dump_state(CPUState *cpu, FILE *f, fprintf_function cpu_fprintf,
int flags);
int s390_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
int cpuid, void *opaque);
hwaddr s390_cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
hwaddr s390_cpu_get_phys_addr_debug(CPUState *cpu, vaddr addr);
int s390_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
int s390_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
void s390_cpu_gdb_init(CPUState *cs);
void s390x_cpu_debug_excp_handler(CPUState *cs);
#include "sysemu/kvm.h"
/* distinguish between 24 bit and 31 bit addressing */
#define HIGH_ORDER_BIT 0x80000000
/* Interrupt Codes */
/* Program Interrupts */
#define PGM_OPERATION 0x0001
#define PGM_PRIVILEGED 0x0002
#define PGM_EXECUTE 0x0003
#define PGM_PROTECTION 0x0004
#define PGM_ADDRESSING 0x0005
#define PGM_SPECIFICATION 0x0006
#define PGM_DATA 0x0007
#define PGM_FIXPT_OVERFLOW 0x0008
#define PGM_FIXPT_DIVIDE 0x0009
#define PGM_DEC_OVERFLOW 0x000a
#define PGM_DEC_DIVIDE 0x000b
#define PGM_HFP_EXP_OVERFLOW 0x000c
#define PGM_HFP_EXP_UNDERFLOW 0x000d
#define PGM_HFP_SIGNIFICANCE 0x000e
#define PGM_HFP_DIVIDE 0x000f
#define PGM_SEGMENT_TRANS 0x0010
#define PGM_PAGE_TRANS 0x0011
#define PGM_TRANS_SPEC 0x0012
#define PGM_SPECIAL_OP 0x0013
#define PGM_OPERAND 0x0015
#define PGM_TRACE_TABLE 0x0016
#define PGM_SPACE_SWITCH 0x001c
#define PGM_HFP_SQRT 0x001d
#define PGM_PC_TRANS_SPEC 0x001f
#define PGM_AFX_TRANS 0x0020
#define PGM_ASX_TRANS 0x0021
#define PGM_LX_TRANS 0x0022
#define PGM_EX_TRANS 0x0023
#define PGM_PRIM_AUTH 0x0024
#define PGM_SEC_AUTH 0x0025
#define PGM_ALET_SPEC 0x0028
#define PGM_ALEN_SPEC 0x0029
#define PGM_ALE_SEQ 0x002a
#define PGM_ASTE_VALID 0x002b
#define PGM_ASTE_SEQ 0x002c
#define PGM_EXT_AUTH 0x002d
#define PGM_STACK_FULL 0x0030
#define PGM_STACK_EMPTY 0x0031
#define PGM_STACK_SPEC 0x0032
#define PGM_STACK_TYPE 0x0033
#define PGM_STACK_OP 0x0034
#define PGM_ASCE_TYPE 0x0038
#define PGM_REG_FIRST_TRANS 0x0039
#define PGM_REG_SEC_TRANS 0x003a
#define PGM_REG_THIRD_TRANS 0x003b
#define PGM_MONITOR 0x0040
#define PGM_PER 0x0080
#define PGM_CRYPTO 0x0119
/* External Interrupts */
#define EXT_INTERRUPT_KEY 0x0040
#define EXT_CLOCK_COMP 0x1004
#define EXT_CPU_TIMER 0x1005
#define EXT_MALFUNCTION 0x1200
#define EXT_EMERGENCY 0x1201
#define EXT_EXTERNAL_CALL 0x1202
#define EXT_ETR 0x1406
#define EXT_SERVICE 0x2401
#define EXT_VIRTIO 0x2603
/* PSW defines */
#undef PSW_MASK_PER
#undef PSW_MASK_DAT
#undef PSW_MASK_IO
#undef PSW_MASK_EXT
#undef PSW_MASK_KEY
#undef PSW_SHIFT_KEY
#undef PSW_MASK_MCHECK
#undef PSW_MASK_WAIT
#undef PSW_MASK_PSTATE
#undef PSW_MASK_ASC
#undef PSW_MASK_CC
#undef PSW_MASK_PM
#undef PSW_MASK_64
#undef PSW_MASK_32
#undef PSW_MASK_ESA_ADDR
#define PSW_MASK_PER 0x4000000000000000ULL
#define PSW_MASK_DAT 0x0400000000000000ULL
#define PSW_MASK_IO 0x0200000000000000ULL
#define PSW_MASK_EXT 0x0100000000000000ULL
#define PSW_MASK_KEY 0x00F0000000000000ULL
#define PSW_SHIFT_KEY 56
#define PSW_MASK_MCHECK 0x0004000000000000ULL
#define PSW_MASK_WAIT 0x0002000000000000ULL
#define PSW_MASK_PSTATE 0x0001000000000000ULL
#define PSW_MASK_ASC 0x0000C00000000000ULL
#define PSW_MASK_CC 0x0000300000000000ULL
#define PSW_MASK_PM 0x00000F0000000000ULL
#define PSW_MASK_64 0x0000000100000000ULL
#define PSW_MASK_32 0x0000000080000000ULL
#define PSW_MASK_ESA_ADDR 0x000000007fffffffULL
#undef PSW_ASC_PRIMARY
#undef PSW_ASC_ACCREG
#undef PSW_ASC_SECONDARY
#undef PSW_ASC_HOME
#define PSW_ASC_PRIMARY 0x0000000000000000ULL
#define PSW_ASC_ACCREG 0x0000400000000000ULL
#define PSW_ASC_SECONDARY 0x0000800000000000ULL
#define PSW_ASC_HOME 0x0000C00000000000ULL
/* tb flags */
#define FLAG_MASK_PER (PSW_MASK_PER >> 32)
#define FLAG_MASK_DAT (PSW_MASK_DAT >> 32)
#define FLAG_MASK_IO (PSW_MASK_IO >> 32)
#define FLAG_MASK_EXT (PSW_MASK_EXT >> 32)
#define FLAG_MASK_KEY (PSW_MASK_KEY >> 32)
#define FLAG_MASK_MCHECK (PSW_MASK_MCHECK >> 32)
#define FLAG_MASK_WAIT (PSW_MASK_WAIT >> 32)
#define FLAG_MASK_PSTATE (PSW_MASK_PSTATE >> 32)
#define FLAG_MASK_ASC (PSW_MASK_ASC >> 32)
#define FLAG_MASK_CC (PSW_MASK_CC >> 32)
#define FLAG_MASK_PM (PSW_MASK_PM >> 32)
#define FLAG_MASK_64 (PSW_MASK_64 >> 32)
#define FLAG_MASK_32 0x00001000
/* Control register 0 bits */
#define CR0_LOWPROT 0x0000000010000000ULL
#define CR0_EDAT 0x0000000000800000ULL
/* MMU */
#define MMU_PRIMARY_IDX 0
#define MMU_SECONDARY_IDX 1
#define MMU_HOME_IDX 2
static inline int cpu_mmu_index (CPUS390XState *env, bool ifetch)
{
switch (env->psw.mask & PSW_MASK_ASC) {
case PSW_ASC_PRIMARY:
return MMU_PRIMARY_IDX;
case PSW_ASC_SECONDARY:
return MMU_SECONDARY_IDX;
case PSW_ASC_HOME:
return MMU_HOME_IDX;
case PSW_ASC_ACCREG:
/* Fallthrough: access register mode is not yet supported */
default:
abort();
}
}
static inline uint64_t cpu_mmu_idx_to_asc(int mmu_idx)
{
switch (mmu_idx) {
case MMU_PRIMARY_IDX:
return PSW_ASC_PRIMARY;
case MMU_SECONDARY_IDX:
return PSW_ASC_SECONDARY;
case MMU_HOME_IDX:
return PSW_ASC_HOME;
default:
abort();
}
}
static inline void cpu_get_tb_cpu_state(CPUS390XState* env, target_ulong *pc,
target_ulong *cs_base, uint32_t *flags)
{
*pc = env->psw.addr;
*cs_base = 0;
*flags = ((env->psw.mask >> 32) & ~FLAG_MASK_CC) |
((env->psw.mask & PSW_MASK_32) ? FLAG_MASK_32 : 0);
}
#define MAX_ILEN 6
/* While the PoO talks about ILC (a number between 1-3) what is actually
stored in LowCore is shifted left one bit (an even between 2-6). As
this is the actual length of the insn and therefore more useful, that
is what we want to pass around and manipulate. To make sure that we
have applied this distinction universally, rename the "ILC" to "ILEN". */
static inline int get_ilen(uint8_t opc)
{
switch (opc >> 6) {
case 0:
return 2;
case 1:
case 2:
return 4;
default:
return 6;
}
}
/* PER bits from control register 9 */
#define PER_CR9_EVENT_BRANCH 0x80000000
#define PER_CR9_EVENT_IFETCH 0x40000000
#define PER_CR9_EVENT_STORE 0x20000000
#define PER_CR9_EVENT_STORE_REAL 0x08000000
#define PER_CR9_EVENT_NULLIFICATION 0x01000000
#define PER_CR9_CONTROL_BRANCH_ADDRESS 0x00800000
#define PER_CR9_CONTROL_ALTERATION 0x00200000
/* PER bits from the PER CODE/ATMID/AI in lowcore */
#define PER_CODE_EVENT_BRANCH 0x8000
#define PER_CODE_EVENT_IFETCH 0x4000
#define PER_CODE_EVENT_STORE 0x2000
#define PER_CODE_EVENT_STORE_REAL 0x0800
#define PER_CODE_EVENT_NULLIFICATION 0x0100
/* Compute the ATMID field that is stored in the per_perc_atmid lowcore
entry when a PER exception is triggered. */
static inline uint8_t get_per_atmid(CPUS390XState *env)
{
return ((env->psw.mask & PSW_MASK_64) ? (1 << 7) : 0) |
( (1 << 6) ) |
((env->psw.mask & PSW_MASK_32) ? (1 << 5) : 0) |
((env->psw.mask & PSW_MASK_DAT)? (1 << 4) : 0) |
((env->psw.mask & PSW_ASC_SECONDARY)? (1 << 3) : 0) |
((env->psw.mask & PSW_ASC_ACCREG)? (1 << 2) : 0);
}
/* Check if an address is within the PER starting address and the PER
ending address. The address range might loop. */
static inline bool get_per_in_range(CPUS390XState *env, uint64_t addr)
{
if (env->cregs[10] <= env->cregs[11]) {
return env->cregs[10] <= addr && addr <= env->cregs[11];
} else {
return env->cregs[10] <= addr || addr <= env->cregs[11];
}
}
#ifndef CONFIG_USER_ONLY
/* In several cases of runtime exceptions, we havn't recorded the true
instruction length. Use these codes when raising exceptions in order
to re-compute the length by examining the insn in memory. */
#define ILEN_LATER 0x20
#define ILEN_LATER_INC 0x21
void trigger_pgm_exception(CPUS390XState *env, uint32_t code, uint32_t ilen);
#endif
S390CPU *cpu_s390x_init(const char *cpu_model);
S390CPU *s390x_new_cpu(const char *cpu_model, int64_t id, Error **errp);
S390CPU *cpu_s390x_create(const char *cpu_model, Error **errp);
void s390x_translate_init(void);
/* you can call this signal handler from your SIGBUS and SIGSEGV
signal handlers to inform the virtual CPU of exceptions. non zero
is returned if the signal was handled by the virtual CPU. */
int cpu_s390x_signal_handler(int host_signum, void *pinfo,
void *puc);
int s390_cpu_handle_mmu_fault(CPUState *cpu, vaddr address, int rw,
int mmu_idx);
#ifndef CONFIG_USER_ONLY
void do_restart_interrupt(CPUS390XState *env);
static inline hwaddr decode_basedisp_s(CPUS390XState *env, uint32_t ipb,
uint8_t *ar)
{
hwaddr addr = 0;
uint8_t reg;
reg = ipb >> 28;
if (reg > 0) {
addr = env->regs[reg];
}
addr += (ipb >> 16) & 0xfff;
if (ar) {
*ar = reg;
}
return addr;
}
/* Base/displacement are at the same locations. */
#define decode_basedisp_rs decode_basedisp_s
/* helper functions for run_on_cpu() */
static inline void s390_do_cpu_reset(CPUState *cs, run_on_cpu_data arg)
{
S390CPUClass *scc = S390_CPU_GET_CLASS(cs);
scc->cpu_reset(cs);
}
static inline void s390_do_cpu_full_reset(CPUState *cs, run_on_cpu_data arg)
{
cpu_reset(cs);
}
void s390x_tod_timer(void *opaque);
void s390x_cpu_timer(void *opaque);
int s390_virtio_hypercall(CPUS390XState *env);
#ifdef CONFIG_KVM
void kvm_s390_service_interrupt(uint32_t parm);
void kvm_s390_vcpu_interrupt(S390CPU *cpu, struct kvm_s390_irq *irq);
void kvm_s390_floating_interrupt(struct kvm_s390_irq *irq);
int kvm_s390_inject_flic(struct kvm_s390_irq *irq);
void kvm_s390_access_exception(S390CPU *cpu, uint16_t code, uint64_t te_code);
int kvm_s390_mem_op(S390CPU *cpu, vaddr addr, uint8_t ar, void *hostbuf,
int len, bool is_write);
int kvm_s390_get_clock(uint8_t *tod_high, uint64_t *tod_clock);
int kvm_s390_set_clock(uint8_t *tod_high, uint64_t *tod_clock);
#else
static inline void kvm_s390_service_interrupt(uint32_t parm)
{
}
static inline int kvm_s390_get_clock(uint8_t *tod_high, uint64_t *tod_low)
{
return -ENOSYS;
}
static inline int kvm_s390_set_clock(uint8_t *tod_high, uint64_t *tod_low)
{
return -ENOSYS;
}
static inline int kvm_s390_mem_op(S390CPU *cpu, vaddr addr, uint8_t ar,
void *hostbuf, int len, bool is_write)
{
return -ENOSYS;
}
static inline void kvm_s390_access_exception(S390CPU *cpu, uint16_t code,
uint64_t te_code)
{
}
#endif
static inline int s390_get_clock(uint8_t *tod_high, uint64_t *tod_low)
{
if (kvm_enabled()) {
return kvm_s390_get_clock(tod_high, tod_low);
}
/* Fixme TCG */
*tod_high = 0;
*tod_low = 0;
return 0;
}
static inline int s390_set_clock(uint8_t *tod_high, uint64_t *tod_low)
{
if (kvm_enabled()) {
return kvm_s390_set_clock(tod_high, tod_low);
}
/* Fixme TCG */
return 0;
}
S390CPU *s390_cpu_addr2state(uint16_t cpu_addr);
unsigned int s390_cpu_halt(S390CPU *cpu);
void s390_cpu_unhalt(S390CPU *cpu);
unsigned int s390_cpu_set_state(uint8_t cpu_state, S390CPU *cpu);
static inline uint8_t s390_cpu_get_state(S390CPU *cpu)
{
return cpu->env.cpu_state;
}
void gtod_save(QEMUFile *f, void *opaque);
int gtod_load(QEMUFile *f, void *opaque, int version_id);
void cpu_inject_ext(S390CPU *cpu, uint32_t code, uint32_t param,
uint64_t param64);
/* ioinst.c */
void ioinst_handle_xsch(S390CPU *cpu, uint64_t reg1);
void ioinst_handle_csch(S390CPU *cpu, uint64_t reg1);
void ioinst_handle_hsch(S390CPU *cpu, uint64_t reg1);
void ioinst_handle_msch(S390CPU *cpu, uint64_t reg1, uint32_t ipb);
void ioinst_handle_ssch(S390CPU *cpu, uint64_t reg1, uint32_t ipb);
void ioinst_handle_stcrw(S390CPU *cpu, uint32_t ipb);
void ioinst_handle_stsch(S390CPU *cpu, uint64_t reg1, uint32_t ipb);
int ioinst_handle_tsch(S390CPU *cpu, uint64_t reg1, uint32_t ipb);
void ioinst_handle_chsc(S390CPU *cpu, uint32_t ipb);
int ioinst_handle_tpi(S390CPU *cpu, uint32_t ipb);
void ioinst_handle_schm(S390CPU *cpu, uint64_t reg1, uint64_t reg2,
uint32_t ipb);
void ioinst_handle_rsch(S390CPU *cpu, uint64_t reg1);
void ioinst_handle_rchp(S390CPU *cpu, uint64_t reg1);
void ioinst_handle_sal(S390CPU *cpu, uint64_t reg1);
/* service interrupts are floating therefore we must not pass an cpustate */
void s390_sclp_extint(uint32_t parm);
#else
static inline unsigned int s390_cpu_halt(S390CPU *cpu)
{
return 0;
}
static inline void s390_cpu_unhalt(S390CPU *cpu)
{
}
static inline unsigned int s390_cpu_set_state(uint8_t cpu_state, S390CPU *cpu)
{
return 0;
}
#endif
extern void subsystem_reset(void);
#define cpu_init(model) CPU(cpu_s390x_init(model))
#define cpu_signal_handler cpu_s390x_signal_handler
void s390_cpu_list(FILE *f, fprintf_function cpu_fprintf);
#define cpu_list s390_cpu_list
void s390_cpu_model_register_props(Object *obj);
void s390_cpu_model_class_register_props(ObjectClass *oc);
void s390_realize_cpu_model(CPUState *cs, Error **errp);
ObjectClass *s390_cpu_class_by_name(const char *name);
#define EXCP_EXT 1 /* external interrupt */
#define EXCP_SVC 2 /* supervisor call (syscall) */
#define EXCP_PGM 3 /* program interruption */
#define EXCP_IO 7 /* I/O interrupt */
#define EXCP_MCHK 8 /* machine check */
#define INTERRUPT_EXT (1 << 0)
#define INTERRUPT_TOD (1 << 1)
#define INTERRUPT_CPUTIMER (1 << 2)
#define INTERRUPT_IO (1 << 3)
#define INTERRUPT_MCHK (1 << 4)
/* Program Status Word. */
#define S390_PSWM_REGNUM 0
#define S390_PSWA_REGNUM 1
/* General Purpose Registers. */
#define S390_R0_REGNUM 2
#define S390_R1_REGNUM 3
#define S390_R2_REGNUM 4
#define S390_R3_REGNUM 5
#define S390_R4_REGNUM 6
#define S390_R5_REGNUM 7
#define S390_R6_REGNUM 8
#define S390_R7_REGNUM 9
#define S390_R8_REGNUM 10
#define S390_R9_REGNUM 11
#define S390_R10_REGNUM 12
#define S390_R11_REGNUM 13
#define S390_R12_REGNUM 14
#define S390_R13_REGNUM 15
#define S390_R14_REGNUM 16
#define S390_R15_REGNUM 17
/* Total Core Registers. */
#define S390_NUM_CORE_REGS 18
/* CC optimization */
/* Instead of computing the condition codes after each x86 instruction,
* QEMU just stores the result (called CC_DST), the type of operation
* (called CC_OP) and whatever operands are needed (CC_SRC and possibly
* CC_VR). When the condition codes are needed, the condition codes can
* be calculated using this information. Condition codes are not generated
* if they are only needed for conditional branches.
*/
enum cc_op {
CC_OP_CONST0 = 0, /* CC is 0 */
CC_OP_CONST1, /* CC is 1 */
CC_OP_CONST2, /* CC is 2 */
CC_OP_CONST3, /* CC is 3 */
CC_OP_DYNAMIC, /* CC calculation defined by env->cc_op */
CC_OP_STATIC, /* CC value is env->cc_op */
CC_OP_NZ, /* env->cc_dst != 0 */
CC_OP_LTGT_32, /* signed less/greater than (32bit) */
CC_OP_LTGT_64, /* signed less/greater than (64bit) */
CC_OP_LTUGTU_32, /* unsigned less/greater than (32bit) */
CC_OP_LTUGTU_64, /* unsigned less/greater than (64bit) */
CC_OP_LTGT0_32, /* signed less/greater than 0 (32bit) */
CC_OP_LTGT0_64, /* signed less/greater than 0 (64bit) */
CC_OP_ADD_64, /* overflow on add (64bit) */
CC_OP_ADDU_64, /* overflow on unsigned add (64bit) */
CC_OP_ADDC_64, /* overflow on unsigned add-carry (64bit) */
CC_OP_SUB_64, /* overflow on subtraction (64bit) */
CC_OP_SUBU_64, /* overflow on unsigned subtraction (64bit) */
CC_OP_SUBB_64, /* overflow on unsigned sub-borrow (64bit) */
CC_OP_ABS_64, /* sign eval on abs (64bit) */
CC_OP_NABS_64, /* sign eval on nabs (64bit) */
CC_OP_ADD_32, /* overflow on add (32bit) */
CC_OP_ADDU_32, /* overflow on unsigned add (32bit) */
CC_OP_ADDC_32, /* overflow on unsigned add-carry (32bit) */
CC_OP_SUB_32, /* overflow on subtraction (32bit) */
CC_OP_SUBU_32, /* overflow on unsigned subtraction (32bit) */
CC_OP_SUBB_32, /* overflow on unsigned sub-borrow (32bit) */
CC_OP_ABS_32, /* sign eval on abs (64bit) */
CC_OP_NABS_32, /* sign eval on nabs (64bit) */
CC_OP_COMP_32, /* complement */
CC_OP_COMP_64, /* complement */
CC_OP_TM_32, /* test under mask (32bit) */
CC_OP_TM_64, /* test under mask (64bit) */
CC_OP_NZ_F32, /* FP dst != 0 (32bit) */
CC_OP_NZ_F64, /* FP dst != 0 (64bit) */
CC_OP_NZ_F128, /* FP dst != 0 (128bit) */
CC_OP_ICM, /* insert characters under mask */
CC_OP_SLA_32, /* Calculate shift left signed (32bit) */
CC_OP_SLA_64, /* Calculate shift left signed (64bit) */
CC_OP_FLOGR, /* find leftmost one */
CC_OP_MAX
};
static const char *cc_names[] = {
[CC_OP_CONST0] = "CC_OP_CONST0",
[CC_OP_CONST1] = "CC_OP_CONST1",
[CC_OP_CONST2] = "CC_OP_CONST2",
[CC_OP_CONST3] = "CC_OP_CONST3",
[CC_OP_DYNAMIC] = "CC_OP_DYNAMIC",
[CC_OP_STATIC] = "CC_OP_STATIC",
[CC_OP_NZ] = "CC_OP_NZ",
[CC_OP_LTGT_32] = "CC_OP_LTGT_32",
[CC_OP_LTGT_64] = "CC_OP_LTGT_64",
[CC_OP_LTUGTU_32] = "CC_OP_LTUGTU_32",
[CC_OP_LTUGTU_64] = "CC_OP_LTUGTU_64",
[CC_OP_LTGT0_32] = "CC_OP_LTGT0_32",
[CC_OP_LTGT0_64] = "CC_OP_LTGT0_64",
[CC_OP_ADD_64] = "CC_OP_ADD_64",
[CC_OP_ADDU_64] = "CC_OP_ADDU_64",
[CC_OP_ADDC_64] = "CC_OP_ADDC_64",
[CC_OP_SUB_64] = "CC_OP_SUB_64",
[CC_OP_SUBU_64] = "CC_OP_SUBU_64",
[CC_OP_SUBB_64] = "CC_OP_SUBB_64",
[CC_OP_ABS_64] = "CC_OP_ABS_64",
[CC_OP_NABS_64] = "CC_OP_NABS_64",
[CC_OP_ADD_32] = "CC_OP_ADD_32",
[CC_OP_ADDU_32] = "CC_OP_ADDU_32",
[CC_OP_ADDC_32] = "CC_OP_ADDC_32",
[CC_OP_SUB_32] = "CC_OP_SUB_32",
[CC_OP_SUBU_32] = "CC_OP_SUBU_32",
[CC_OP_SUBB_32] = "CC_OP_SUBB_32",
[CC_OP_ABS_32] = "CC_OP_ABS_32",
[CC_OP_NABS_32] = "CC_OP_NABS_32",
[CC_OP_COMP_32] = "CC_OP_COMP_32",
[CC_OP_COMP_64] = "CC_OP_COMP_64",
[CC_OP_TM_32] = "CC_OP_TM_32",
[CC_OP_TM_64] = "CC_OP_TM_64",
[CC_OP_NZ_F32] = "CC_OP_NZ_F32",
[CC_OP_NZ_F64] = "CC_OP_NZ_F64",
[CC_OP_NZ_F128] = "CC_OP_NZ_F128",
[CC_OP_ICM] = "CC_OP_ICM",
[CC_OP_SLA_32] = "CC_OP_SLA_32",
[CC_OP_SLA_64] = "CC_OP_SLA_64",
[CC_OP_FLOGR] = "CC_OP_FLOGR",
};
static inline const char *cc_name(int cc_op)
{
return cc_names[cc_op];
}
static inline void setcc(S390CPU *cpu, uint64_t cc)
{
CPUS390XState *env = &cpu->env;
env->psw.mask &= ~(3ull << 44);
env->psw.mask |= (cc & 3) << 44;
env->cc_op = cc;
}
typedef struct LowCore
{
/* prefix area: defined by architecture */
uint32_t ccw1[2]; /* 0x000 */
uint32_t ccw2[4]; /* 0x008 */
uint8_t pad1[0x80-0x18]; /* 0x018 */
uint32_t ext_params; /* 0x080 */
uint16_t cpu_addr; /* 0x084 */
uint16_t ext_int_code; /* 0x086 */
uint16_t svc_ilen; /* 0x088 */
uint16_t svc_code; /* 0x08a */
uint16_t pgm_ilen; /* 0x08c */
uint16_t pgm_code; /* 0x08e */
uint32_t data_exc_code; /* 0x090 */
uint16_t mon_class_num; /* 0x094 */
uint16_t per_perc_atmid; /* 0x096 */
uint64_t per_address; /* 0x098 */
uint8_t exc_access_id; /* 0x0a0 */
uint8_t per_access_id; /* 0x0a1 */
uint8_t op_access_id; /* 0x0a2 */
uint8_t ar_access_id; /* 0x0a3 */
uint8_t pad2[0xA8-0xA4]; /* 0x0a4 */
uint64_t trans_exc_code; /* 0x0a8 */
uint64_t monitor_code; /* 0x0b0 */
uint16_t subchannel_id; /* 0x0b8 */
uint16_t subchannel_nr; /* 0x0ba */
uint32_t io_int_parm; /* 0x0bc */
uint32_t io_int_word; /* 0x0c0 */
uint8_t pad3[0xc8-0xc4]; /* 0x0c4 */
uint32_t stfl_fac_list; /* 0x0c8 */
uint8_t pad4[0xe8-0xcc]; /* 0x0cc */
uint32_t mcck_interruption_code[2]; /* 0x0e8 */
uint8_t pad5[0xf4-0xf0]; /* 0x0f0 */
uint32_t external_damage_code; /* 0x0f4 */
uint64_t failing_storage_address; /* 0x0f8 */
uint8_t pad6[0x110-0x100]; /* 0x100 */
uint64_t per_breaking_event_addr; /* 0x110 */
uint8_t pad7[0x120-0x118]; /* 0x118 */
PSW restart_old_psw; /* 0x120 */
PSW external_old_psw; /* 0x130 */
PSW svc_old_psw; /* 0x140 */
PSW program_old_psw; /* 0x150 */
PSW mcck_old_psw; /* 0x160 */
PSW io_old_psw; /* 0x170 */
uint8_t pad8[0x1a0-0x180]; /* 0x180 */
PSW restart_new_psw; /* 0x1a0 */
PSW external_new_psw; /* 0x1b0 */
PSW svc_new_psw; /* 0x1c0 */
PSW program_new_psw; /* 0x1d0 */
PSW mcck_new_psw; /* 0x1e0 */
PSW io_new_psw; /* 0x1f0 */
PSW return_psw; /* 0x200 */
uint8_t irb[64]; /* 0x210 */
uint64_t sync_enter_timer; /* 0x250 */
uint64_t async_enter_timer; /* 0x258 */
uint64_t exit_timer; /* 0x260 */
uint64_t last_update_timer; /* 0x268 */
uint64_t user_timer; /* 0x270 */
uint64_t system_timer; /* 0x278 */
uint64_t last_update_clock; /* 0x280 */
uint64_t steal_clock; /* 0x288 */
PSW return_mcck_psw; /* 0x290 */
uint8_t pad9[0xc00-0x2a0]; /* 0x2a0 */
/* System info area */
uint64_t save_area[16]; /* 0xc00 */
uint8_t pad10[0xd40-0xc80]; /* 0xc80 */
uint64_t kernel_stack; /* 0xd40 */
uint64_t thread_info; /* 0xd48 */
uint64_t async_stack; /* 0xd50 */
uint64_t kernel_asce; /* 0xd58 */
uint64_t user_asce; /* 0xd60 */
uint64_t panic_stack; /* 0xd68 */
uint64_t user_exec_asce; /* 0xd70 */
uint8_t pad11[0xdc0-0xd78]; /* 0xd78 */
/* SMP info area: defined by DJB */
uint64_t clock_comparator; /* 0xdc0 */
uint64_t ext_call_fast; /* 0xdc8 */
uint64_t percpu_offset; /* 0xdd0 */
uint64_t current_task; /* 0xdd8 */
uint32_t softirq_pending; /* 0xde0 */
uint32_t pad_0x0de4; /* 0xde4 */
uint64_t int_clock; /* 0xde8 */
uint8_t pad12[0xe00-0xdf0]; /* 0xdf0 */
/* 0xe00 is used as indicator for dump tools */
/* whether the kernel died with panic() or not */
uint32_t panic_magic; /* 0xe00 */
uint8_t pad13[0x11b8-0xe04]; /* 0xe04 */
/* 64 bit extparam used for pfault, diag 250 etc */
uint64_t ext_params2; /* 0x11B8 */
uint8_t pad14[0x1200-0x11C0]; /* 0x11C0 */
/* System info area */
uint64_t floating_pt_save_area[16]; /* 0x1200 */
uint64_t gpregs_save_area[16]; /* 0x1280 */
uint32_t st_status_fixed_logout[4]; /* 0x1300 */
uint8_t pad15[0x1318-0x1310]; /* 0x1310 */
uint32_t prefixreg_save_area; /* 0x1318 */
uint32_t fpt_creg_save_area; /* 0x131c */
uint8_t pad16[0x1324-0x1320]; /* 0x1320 */
uint32_t tod_progreg_save_area; /* 0x1324 */
uint32_t cpu_timer_save_area[2]; /* 0x1328 */
uint32_t clock_comp_save_area[2]; /* 0x1330 */
uint8_t pad17[0x1340-0x1338]; /* 0x1338 */
uint32_t access_regs_save_area[16]; /* 0x1340 */
uint64_t cregs_save_area[16]; /* 0x1380 */
/* align to the top of the prefix area */
uint8_t pad18[0x2000-0x1400]; /* 0x1400 */
} QEMU_PACKED LowCore;
/* STSI */
#define STSI_LEVEL_MASK 0x00000000f0000000ULL
#define STSI_LEVEL_CURRENT 0x0000000000000000ULL
#define STSI_LEVEL_1 0x0000000010000000ULL
#define STSI_LEVEL_2 0x0000000020000000ULL
#define STSI_LEVEL_3 0x0000000030000000ULL
#define STSI_R0_RESERVED_MASK 0x000000000fffff00ULL
#define STSI_R0_SEL1_MASK 0x00000000000000ffULL
#define STSI_R1_RESERVED_MASK 0x00000000ffff0000ULL
#define STSI_R1_SEL2_MASK 0x000000000000ffffULL
/* Basic Machine Configuration */
struct sysib_111 {
uint32_t res1[8];
uint8_t manuf[16];
uint8_t type[4];
uint8_t res2[12];
uint8_t model[16];
uint8_t sequence[16];
uint8_t plant[4];
uint8_t res3[156];
};
/* Basic Machine CPU */
struct sysib_121 {
uint32_t res1[80];
uint8_t sequence[16];
uint8_t plant[4];
uint8_t res2[2];
uint16_t cpu_addr;
uint8_t res3[152];
};
/* Basic Machine CPUs */
struct sysib_122 {
uint8_t res1[32];
uint32_t capability;
uint16_t total_cpus;
uint16_t active_cpus;
uint16_t standby_cpus;
uint16_t reserved_cpus;
uint16_t adjustments[2026];
};
/* LPAR CPU */
struct sysib_221 {
uint32_t res1[80];
uint8_t sequence[16];
uint8_t plant[4];
uint16_t cpu_id;
uint16_t cpu_addr;
uint8_t res3[152];
};
/* LPAR CPUs */
struct sysib_222 {
uint32_t res1[32];
uint16_t lpar_num;
uint8_t res2;
uint8_t lcpuc;
uint16_t total_cpus;
uint16_t conf_cpus;
uint16_t standby_cpus;
uint16_t reserved_cpus;
uint8_t name[8];
uint32_t caf;
uint8_t res3[16];
uint16_t dedicated_cpus;
uint16_t shared_cpus;
uint8_t res4[180];
};
/* VM CPUs */
struct sysib_322 {
uint8_t res1[31];
uint8_t count;
struct {
uint8_t res2[4];
uint16_t total_cpus;
uint16_t conf_cpus;
uint16_t standby_cpus;
uint16_t reserved_cpus;
uint8_t name[8];
uint32_t caf;
uint8_t cpi[16];
uint8_t res5[3];
uint8_t ext_name_encoding;
uint32_t res3;
uint8_t uuid[16];
} vm[8];
uint8_t res4[1504];
uint8_t ext_names[8][256];
};
/* MMU defines */
#define _ASCE_ORIGIN ~0xfffULL /* segment table origin */
#define _ASCE_SUBSPACE 0x200 /* subspace group control */
#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
#define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
#define _ASCE_REAL_SPACE 0x20 /* real space control */
#define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
#define _ASCE_TYPE_REGION1 0x0c /* region first table type */
#define _ASCE_TYPE_REGION2 0x08 /* region second table type */
#define _ASCE_TYPE_REGION3 0x04 /* region third table type */
#define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
#define _ASCE_TABLE_LENGTH 0x03 /* region table length */
#define _REGION_ENTRY_ORIGIN ~0xfffULL /* region/segment table origin */
#define _REGION_ENTRY_RO 0x200 /* region/segment protection bit */
#define _REGION_ENTRY_TF 0xc0 /* region/segment table offset */
#define _REGION_ENTRY_INV 0x20 /* invalid region table entry */
#define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
#define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
#define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
#define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
#define _REGION_ENTRY_LENGTH 0x03 /* region third length */
#define _SEGMENT_ENTRY_ORIGIN ~0x7ffULL /* segment table origin */
#define _SEGMENT_ENTRY_FC 0x400 /* format control */
#define _SEGMENT_ENTRY_RO 0x200 /* page protection bit */
#define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */
#define _PAGE_RO 0x200 /* HW read-only bit */
#define _PAGE_INVALID 0x400 /* HW invalid bit */
#define _PAGE_RES0 0x800 /* bit must be zero */
#define SK_C (0x1 << 1)
#define SK_R (0x1 << 2)
#define SK_F (0x1 << 3)
#define SK_ACC_MASK (0xf << 4)
/* SIGP order codes */
#define SIGP_SENSE 0x01
#define SIGP_EXTERNAL_CALL 0x02
#define SIGP_EMERGENCY 0x03
#define SIGP_START 0x04
#define SIGP_STOP 0x05
#define SIGP_RESTART 0x06
#define SIGP_STOP_STORE_STATUS 0x09
#define SIGP_INITIAL_CPU_RESET 0x0b
#define SIGP_CPU_RESET 0x0c
#define SIGP_SET_PREFIX 0x0d
#define SIGP_STORE_STATUS_ADDR 0x0e
#define SIGP_SET_ARCH 0x12
#define SIGP_STORE_ADTL_STATUS 0x17
/* SIGP condition codes */
#define SIGP_CC_ORDER_CODE_ACCEPTED 0
#define SIGP_CC_STATUS_STORED 1
#define SIGP_CC_BUSY 2
#define SIGP_CC_NOT_OPERATIONAL 3
/* SIGP status bits */
#define SIGP_STAT_EQUIPMENT_CHECK 0x80000000UL
#define SIGP_STAT_INCORRECT_STATE 0x00000200UL
#define SIGP_STAT_INVALID_PARAMETER 0x00000100UL
#define SIGP_STAT_EXT_CALL_PENDING 0x00000080UL
#define SIGP_STAT_STOPPED 0x00000040UL
#define SIGP_STAT_OPERATOR_INTERV 0x00000020UL
#define SIGP_STAT_CHECK_STOP 0x00000010UL
#define SIGP_STAT_INOPERATIVE 0x00000004UL
#define SIGP_STAT_INVALID_ORDER 0x00000002UL
#define SIGP_STAT_RECEIVER_CHECK 0x00000001UL
/* SIGP SET ARCHITECTURE modes */
#define SIGP_MODE_ESA_S390 0
#define SIGP_MODE_Z_ARCH_TRANS_ALL_PSW 1
#define SIGP_MODE_Z_ARCH_TRANS_CUR_PSW 2
void load_psw(CPUS390XState *env, uint64_t mask, uint64_t addr);
int mmu_translate(CPUS390XState *env, target_ulong vaddr, int rw, uint64_t asc,
target_ulong *raddr, int *flags, bool exc);
int sclp_service_call(CPUS390XState *env, uint64_t sccb, uint32_t code);
uint32_t calc_cc(CPUS390XState *env, uint32_t cc_op, uint64_t src, uint64_t dst,
uint64_t vr);
void s390_cpu_recompute_watchpoints(CPUState *cs);
int s390_cpu_virt_mem_rw(S390CPU *cpu, vaddr laddr, uint8_t ar, void *hostbuf,
int len, bool is_write);
#define s390_cpu_virt_mem_read(cpu, laddr, ar, dest, len) \
s390_cpu_virt_mem_rw(cpu, laddr, ar, dest, len, false)
#define s390_cpu_virt_mem_write(cpu, laddr, ar, dest, len) \
s390_cpu_virt_mem_rw(cpu, laddr, ar, dest, len, true)
#define s390_cpu_virt_mem_check_write(cpu, laddr, ar, len) \
s390_cpu_virt_mem_rw(cpu, laddr, ar, NULL, len, true)
/* The value of the TOD clock for 1.1.1970. */
#define TOD_UNIX_EPOCH 0x7d91048bca000000ULL
/* Converts ns to s390's clock format */
static inline uint64_t time2tod(uint64_t ns) {
return (ns << 9) / 125;
}
/* Converts s390's clock format to ns */
static inline uint64_t tod2time(uint64_t t) {
return (t * 125) >> 9;
}
/* from s390-virtio-ccw */
#define MEM_SECTION_SIZE 0x10000000UL
#define MAX_AVAIL_SLOTS 32
/* fpu_helper.c */
uint32_t set_cc_nz_f32(float32 v);
uint32_t set_cc_nz_f64(float64 v);
uint32_t set_cc_nz_f128(float128 v);
/* misc_helper.c */
#ifndef CONFIG_USER_ONLY
int handle_diag_288(CPUS390XState *env, uint64_t r1, uint64_t r3);
void handle_diag_308(CPUS390XState *env, uint64_t r1, uint64_t r3);
#endif
void program_interrupt(CPUS390XState *env, uint32_t code, int ilen);
void QEMU_NORETURN runtime_exception(CPUS390XState *env, int excp,
uintptr_t retaddr);
#ifdef CONFIG_KVM
void kvm_s390_io_interrupt(uint16_t subchannel_id,
uint16_t subchannel_nr, uint32_t io_int_parm,
uint32_t io_int_word);
void kvm_s390_crw_mchk(void);
void kvm_s390_enable_css_support(S390CPU *cpu);
int kvm_s390_assign_subch_ioeventfd(EventNotifier *notifier, uint32_t sch,
int vq, bool assign);
int kvm_s390_cpu_restart(S390CPU *cpu);
int kvm_s390_get_memslot_count(KVMState *s);
void kvm_s390_cmma_reset(void);
int kvm_s390_set_cpu_state(S390CPU *cpu, uint8_t cpu_state);
void kvm_s390_reset_vcpu(S390CPU *cpu);
int kvm_s390_set_mem_limit(KVMState *s, uint64_t new_limit, uint64_t *hw_limit);
void kvm_s390_vcpu_interrupt_pre_save(S390CPU *cpu);
int kvm_s390_vcpu_interrupt_post_load(S390CPU *cpu);
int kvm_s390_get_ri(void);
void kvm_s390_crypto_reset(void);
#else
static inline void kvm_s390_io_interrupt(uint16_t subchannel_id,
uint16_t subchannel_nr,
uint32_t io_int_parm,
uint32_t io_int_word)
{
}
static inline void kvm_s390_crw_mchk(void)
{
}
static inline void kvm_s390_enable_css_support(S390CPU *cpu)
{
}
static inline int kvm_s390_assign_subch_ioeventfd(EventNotifier *notifier,
uint32_t sch, int vq,
bool assign)
{
return -ENOSYS;
}
static inline int kvm_s390_cpu_restart(S390CPU *cpu)
{
return -ENOSYS;
}
static inline void kvm_s390_cmma_reset(void)
{
}
static inline int kvm_s390_get_memslot_count(KVMState *s)
{
return MAX_AVAIL_SLOTS;
}
static inline int kvm_s390_set_cpu_state(S390CPU *cpu, uint8_t cpu_state)
{
return -ENOSYS;
}
static inline void kvm_s390_reset_vcpu(S390CPU *cpu)
{
}
static inline int kvm_s390_set_mem_limit(KVMState *s, uint64_t new_limit,
uint64_t *hw_limit)
{
return 0;
}
static inline void kvm_s390_vcpu_interrupt_pre_save(S390CPU *cpu)
{
}
static inline int kvm_s390_vcpu_interrupt_post_load(S390CPU *cpu)
{
return 0;
}
static inline int kvm_s390_get_ri(void)
{
return 0;
}
static inline void kvm_s390_crypto_reset(void)
{
}
#endif
static inline int s390_set_memory_limit(uint64_t new_limit, uint64_t *hw_limit)
{
if (kvm_enabled()) {
return kvm_s390_set_mem_limit(kvm_state, new_limit, hw_limit);
}
return 0;
}
static inline void s390_cmma_reset(void)
{
if (kvm_enabled()) {
kvm_s390_cmma_reset();
}
}
static inline int s390_cpu_restart(S390CPU *cpu)
{
if (kvm_enabled()) {
return kvm_s390_cpu_restart(cpu);
}
return -ENOSYS;
}
static inline int s390_get_memslot_count(KVMState *s)
{
if (kvm_enabled()) {
return kvm_s390_get_memslot_count(s);
} else {
return MAX_AVAIL_SLOTS;
}
}
void s390_io_interrupt(uint16_t subchannel_id, uint16_t subchannel_nr,
uint32_t io_int_parm, uint32_t io_int_word);
void s390_crw_mchk(void);
static inline int s390_assign_subch_ioeventfd(EventNotifier *notifier,
uint32_t sch_id, int vq,
bool assign)
{
return kvm_s390_assign_subch_ioeventfd(notifier, sch_id, vq, assign);
}
static inline void s390_crypto_reset(void)
{
if (kvm_enabled()) {
kvm_s390_crypto_reset();
}
}
/* machine check interruption code */
/* subclasses */
#define MCIC_SC_SD 0x8000000000000000ULL
#define MCIC_SC_PD 0x4000000000000000ULL
#define MCIC_SC_SR 0x2000000000000000ULL
#define MCIC_SC_CD 0x0800000000000000ULL
#define MCIC_SC_ED 0x0400000000000000ULL
#define MCIC_SC_DG 0x0100000000000000ULL
#define MCIC_SC_W 0x0080000000000000ULL
#define MCIC_SC_CP 0x0040000000000000ULL
#define MCIC_SC_SP 0x0020000000000000ULL
#define MCIC_SC_CK 0x0010000000000000ULL
/* subclass modifiers */
#define MCIC_SCM_B 0x0002000000000000ULL
#define MCIC_SCM_DA 0x0000000020000000ULL
#define MCIC_SCM_AP 0x0000000000080000ULL
/* storage errors */
#define MCIC_SE_SE 0x0000800000000000ULL
#define MCIC_SE_SC 0x0000400000000000ULL
#define MCIC_SE_KE 0x0000200000000000ULL
#define MCIC_SE_DS 0x0000100000000000ULL
#define MCIC_SE_IE 0x0000000080000000ULL
/* validity bits */
#define MCIC_VB_WP 0x0000080000000000ULL
#define MCIC_VB_MS 0x0000040000000000ULL
#define MCIC_VB_PM 0x0000020000000000ULL
#define MCIC_VB_IA 0x0000010000000000ULL
#define MCIC_VB_FA 0x0000008000000000ULL
#define MCIC_VB_VR 0x0000004000000000ULL
#define MCIC_VB_EC 0x0000002000000000ULL
#define MCIC_VB_FP 0x0000001000000000ULL
#define MCIC_VB_GR 0x0000000800000000ULL
#define MCIC_VB_CR 0x0000000400000000ULL
#define MCIC_VB_ST 0x0000000100000000ULL
#define MCIC_VB_AR 0x0000000040000000ULL
#define MCIC_VB_PR 0x0000000000200000ULL
#define MCIC_VB_FC 0x0000000000100000ULL
#define MCIC_VB_CT 0x0000000000020000ULL
#define MCIC_VB_CC 0x0000000000010000ULL
#endif