qemu/hw/watchdog/wdt_i6300esb.c
Juan Quintela d49805aeea savevm: Remove all the unneeded version_minimum_id_old (x86)
After previous Peter patch, they are redundant.  This way we don't
assign them except when needed.  Once there, there were lots of case
where the ".fields" indentation was wrong:

     .fields = (VMStateField []) {
and
     .fields =      (VMStateField []) {

Change all the combinations to:

     .fields = (VMStateField[]){

The biggest problem (appart from aesthetics) was that checkpatch complained
when we copy&pasted the code from one place to another.

Signed-off-by: Juan Quintela <quintela@redhat.com>
Acked-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
2014-06-16 04:55:26 +02:00

471 lines
14 KiB
C

/*
* Virtual hardware watchdog.
*
* Copyright (C) 2009 Red Hat Inc.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*
* By Richard W.M. Jones (rjones@redhat.com).
*/
#include <inttypes.h>
#include "qemu-common.h"
#include "qemu/timer.h"
#include "sysemu/watchdog.h"
#include "hw/hw.h"
#include "hw/pci/pci.h"
/*#define I6300ESB_DEBUG 1*/
#ifdef I6300ESB_DEBUG
#define i6300esb_debug(fs,...) \
fprintf(stderr,"i6300esb: %s: "fs,__func__,##__VA_ARGS__)
#else
#define i6300esb_debug(fs,...)
#endif
/* PCI configuration registers */
#define ESB_CONFIG_REG 0x60 /* Config register */
#define ESB_LOCK_REG 0x68 /* WDT lock register */
/* Memory mapped registers (offset from base address) */
#define ESB_TIMER1_REG 0x00 /* Timer1 value after each reset */
#define ESB_TIMER2_REG 0x04 /* Timer2 value after each reset */
#define ESB_GINTSR_REG 0x08 /* General Interrupt Status Register */
#define ESB_RELOAD_REG 0x0c /* Reload register */
/* Lock register bits */
#define ESB_WDT_FUNC (0x01 << 2) /* Watchdog functionality */
#define ESB_WDT_ENABLE (0x01 << 1) /* Enable WDT */
#define ESB_WDT_LOCK (0x01 << 0) /* Lock (nowayout) */
/* Config register bits */
#define ESB_WDT_REBOOT (0x01 << 5) /* Enable reboot on timeout */
#define ESB_WDT_FREQ (0x01 << 2) /* Decrement frequency */
#define ESB_WDT_INTTYPE (0x11 << 0) /* Interrupt type on timer1 timeout */
/* Reload register bits */
#define ESB_WDT_RELOAD (0x01 << 8) /* prevent timeout */
/* Magic constants */
#define ESB_UNLOCK1 0x80 /* Step 1 to unlock reset registers */
#define ESB_UNLOCK2 0x86 /* Step 2 to unlock reset registers */
/* Device state. */
struct I6300State {
PCIDevice dev;
MemoryRegion io_mem;
int reboot_enabled; /* "Reboot" on timer expiry. The real action
* performed depends on the -watchdog-action
* param passed on QEMU command line.
*/
int clock_scale; /* Clock scale. */
#define CLOCK_SCALE_1KHZ 0
#define CLOCK_SCALE_1MHZ 1
int int_type; /* Interrupt type generated. */
#define INT_TYPE_IRQ 0 /* APIC 1, INT 10 */
#define INT_TYPE_SMI 2
#define INT_TYPE_DISABLED 3
int free_run; /* If true, reload timer on expiry. */
int locked; /* If true, enabled field cannot be changed. */
int enabled; /* If true, watchdog is enabled. */
QEMUTimer *timer; /* The actual watchdog timer. */
uint32_t timer1_preload; /* Values preloaded into timer1, timer2. */
uint32_t timer2_preload;
int stage; /* Stage (1 or 2). */
int unlock_state; /* Guest writes 0x80, 0x86 to unlock the
* registers, and we transition through
* states 0 -> 1 -> 2 when this happens.
*/
int previous_reboot_flag; /* If the watchdog caused the previous
* reboot, this flag will be set.
*/
};
typedef struct I6300State I6300State;
/* This function is called when the watchdog has either been enabled
* (hence it starts counting down) or has been keep-alived.
*/
static void i6300esb_restart_timer(I6300State *d, int stage)
{
int64_t timeout;
if (!d->enabled)
return;
d->stage = stage;
if (d->stage <= 1)
timeout = d->timer1_preload;
else
timeout = d->timer2_preload;
if (d->clock_scale == CLOCK_SCALE_1KHZ)
timeout <<= 15;
else
timeout <<= 5;
/* Get the timeout in units of ticks_per_sec. */
timeout = get_ticks_per_sec() * timeout / 33000000;
i6300esb_debug("stage %d, timeout %" PRIi64 "\n", d->stage, timeout);
timer_mod(d->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + timeout);
}
/* This is called when the guest disables the watchdog. */
static void i6300esb_disable_timer(I6300State *d)
{
i6300esb_debug("timer disabled\n");
timer_del(d->timer);
}
static void i6300esb_reset(DeviceState *dev)
{
PCIDevice *pdev = PCI_DEVICE(dev);
I6300State *d = DO_UPCAST(I6300State, dev, pdev);
i6300esb_debug("I6300State = %p\n", d);
i6300esb_disable_timer(d);
/* NB: Don't change d->previous_reboot_flag in this function. */
d->reboot_enabled = 1;
d->clock_scale = CLOCK_SCALE_1KHZ;
d->int_type = INT_TYPE_IRQ;
d->free_run = 0;
d->locked = 0;
d->enabled = 0;
d->timer1_preload = 0xfffff;
d->timer2_preload = 0xfffff;
d->stage = 1;
d->unlock_state = 0;
}
/* This function is called when the watchdog expires. Note that
* the hardware has two timers, and so expiry happens in two stages.
* If d->stage == 1 then we perform the first stage action (usually,
* sending an interrupt) and then restart the timer again for the
* second stage. If the second stage expires then the watchdog
* really has run out.
*/
static void i6300esb_timer_expired(void *vp)
{
I6300State *d = vp;
i6300esb_debug("stage %d\n", d->stage);
if (d->stage == 1) {
/* What to do at the end of stage 1? */
switch (d->int_type) {
case INT_TYPE_IRQ:
fprintf(stderr, "i6300esb_timer_expired: I would send APIC 1 INT 10 here if I knew how (XXX)\n");
break;
case INT_TYPE_SMI:
fprintf(stderr, "i6300esb_timer_expired: I would send SMI here if I knew how (XXX)\n");
break;
}
/* Start the second stage. */
i6300esb_restart_timer(d, 2);
} else {
/* Second stage expired, reboot for real. */
if (d->reboot_enabled) {
d->previous_reboot_flag = 1;
watchdog_perform_action(); /* This reboots, exits, etc */
i6300esb_reset(&d->dev.qdev);
}
/* In "free running mode" we start stage 1 again. */
if (d->free_run)
i6300esb_restart_timer(d, 1);
}
}
static void i6300esb_config_write(PCIDevice *dev, uint32_t addr,
uint32_t data, int len)
{
I6300State *d = DO_UPCAST(I6300State, dev, dev);
int old;
i6300esb_debug("addr = %x, data = %x, len = %d\n", addr, data, len);
if (addr == ESB_CONFIG_REG && len == 2) {
d->reboot_enabled = (data & ESB_WDT_REBOOT) == 0;
d->clock_scale =
(data & ESB_WDT_FREQ) != 0 ? CLOCK_SCALE_1MHZ : CLOCK_SCALE_1KHZ;
d->int_type = (data & ESB_WDT_INTTYPE);
} else if (addr == ESB_LOCK_REG && len == 1) {
if (!d->locked) {
d->locked = (data & ESB_WDT_LOCK) != 0;
d->free_run = (data & ESB_WDT_FUNC) != 0;
old = d->enabled;
d->enabled = (data & ESB_WDT_ENABLE) != 0;
if (!old && d->enabled) /* Enabled transitioned from 0 -> 1 */
i6300esb_restart_timer(d, 1);
else if (!d->enabled)
i6300esb_disable_timer(d);
}
} else {
pci_default_write_config(dev, addr, data, len);
}
}
static uint32_t i6300esb_config_read(PCIDevice *dev, uint32_t addr, int len)
{
I6300State *d = DO_UPCAST(I6300State, dev, dev);
uint32_t data;
i6300esb_debug ("addr = %x, len = %d\n", addr, len);
if (addr == ESB_CONFIG_REG && len == 2) {
data =
(d->reboot_enabled ? 0 : ESB_WDT_REBOOT) |
(d->clock_scale == CLOCK_SCALE_1MHZ ? ESB_WDT_FREQ : 0) |
d->int_type;
return data;
} else if (addr == ESB_LOCK_REG && len == 1) {
data =
(d->free_run ? ESB_WDT_FUNC : 0) |
(d->locked ? ESB_WDT_LOCK : 0) |
(d->enabled ? ESB_WDT_ENABLE : 0);
return data;
} else {
return pci_default_read_config(dev, addr, len);
}
}
static uint32_t i6300esb_mem_readb(void *vp, hwaddr addr)
{
i6300esb_debug ("addr = %x\n", (int) addr);
return 0;
}
static uint32_t i6300esb_mem_readw(void *vp, hwaddr addr)
{
uint32_t data = 0;
I6300State *d = vp;
i6300esb_debug("addr = %x\n", (int) addr);
if (addr == 0xc) {
/* The previous reboot flag is really bit 9, but there is
* a bug in the Linux driver where it thinks it's bit 12.
* Set both.
*/
data = d->previous_reboot_flag ? 0x1200 : 0;
}
return data;
}
static uint32_t i6300esb_mem_readl(void *vp, hwaddr addr)
{
i6300esb_debug("addr = %x\n", (int) addr);
return 0;
}
static void i6300esb_mem_writeb(void *vp, hwaddr addr, uint32_t val)
{
I6300State *d = vp;
i6300esb_debug("addr = %x, val = %x\n", (int) addr, val);
if (addr == 0xc && val == 0x80)
d->unlock_state = 1;
else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
d->unlock_state = 2;
}
static void i6300esb_mem_writew(void *vp, hwaddr addr, uint32_t val)
{
I6300State *d = vp;
i6300esb_debug("addr = %x, val = %x\n", (int) addr, val);
if (addr == 0xc && val == 0x80)
d->unlock_state = 1;
else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
d->unlock_state = 2;
else {
if (d->unlock_state == 2) {
if (addr == 0xc) {
if ((val & 0x100) != 0)
/* This is the "ping" from the userspace watchdog in
* the guest ...
*/
i6300esb_restart_timer(d, 1);
/* Setting bit 9 resets the previous reboot flag.
* There's a bug in the Linux driver where it sets
* bit 12 instead.
*/
if ((val & 0x200) != 0 || (val & 0x1000) != 0) {
d->previous_reboot_flag = 0;
}
}
d->unlock_state = 0;
}
}
}
static void i6300esb_mem_writel(void *vp, hwaddr addr, uint32_t val)
{
I6300State *d = vp;
i6300esb_debug ("addr = %x, val = %x\n", (int) addr, val);
if (addr == 0xc && val == 0x80)
d->unlock_state = 1;
else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
d->unlock_state = 2;
else {
if (d->unlock_state == 2) {
if (addr == 0)
d->timer1_preload = val & 0xfffff;
else if (addr == 4)
d->timer2_preload = val & 0xfffff;
d->unlock_state = 0;
}
}
}
static const MemoryRegionOps i6300esb_ops = {
.old_mmio = {
.read = {
i6300esb_mem_readb,
i6300esb_mem_readw,
i6300esb_mem_readl,
},
.write = {
i6300esb_mem_writeb,
i6300esb_mem_writew,
i6300esb_mem_writel,
},
},
.endianness = DEVICE_NATIVE_ENDIAN,
};
static const VMStateDescription vmstate_i6300esb = {
.name = "i6300esb_wdt",
/* With this VMSD's introduction, version_id/minimum_version_id were
* erroneously set to sizeof(I6300State), causing a somewhat random
* version_id to be set for every build. This eventually broke
* migration.
*
* To correct this without breaking old->new migration for older
* versions of QEMU, we've set version_id to a value high enough
* to exceed all past values of sizeof(I6300State) across various
* build environments, and have reset minimum_version_id to 1,
* since this VMSD has never changed and thus can accept all past
* versions.
*
* For future changes we can treat these values as we normally would.
*/
.version_id = 10000,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_PCI_DEVICE(dev, I6300State),
VMSTATE_INT32(reboot_enabled, I6300State),
VMSTATE_INT32(clock_scale, I6300State),
VMSTATE_INT32(int_type, I6300State),
VMSTATE_INT32(free_run, I6300State),
VMSTATE_INT32(locked, I6300State),
VMSTATE_INT32(enabled, I6300State),
VMSTATE_TIMER(timer, I6300State),
VMSTATE_UINT32(timer1_preload, I6300State),
VMSTATE_UINT32(timer2_preload, I6300State),
VMSTATE_INT32(stage, I6300State),
VMSTATE_INT32(unlock_state, I6300State),
VMSTATE_INT32(previous_reboot_flag, I6300State),
VMSTATE_END_OF_LIST()
}
};
static int i6300esb_init(PCIDevice *dev)
{
I6300State *d = DO_UPCAST(I6300State, dev, dev);
i6300esb_debug("I6300State = %p\n", d);
d->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, i6300esb_timer_expired, d);
d->previous_reboot_flag = 0;
memory_region_init_io(&d->io_mem, OBJECT(d), &i6300esb_ops, d,
"i6300esb", 0x10);
pci_register_bar(&d->dev, 0, 0, &d->io_mem);
/* qemu_register_coalesced_mmio (addr, 0x10); ? */
return 0;
}
static void i6300esb_exit(PCIDevice *dev)
{
I6300State *d = DO_UPCAST(I6300State, dev, dev);
memory_region_destroy(&d->io_mem);
}
static WatchdogTimerModel model = {
.wdt_name = "i6300esb",
.wdt_description = "Intel 6300ESB",
};
static void i6300esb_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
k->config_read = i6300esb_config_read;
k->config_write = i6300esb_config_write;
k->init = i6300esb_init;
k->exit = i6300esb_exit;
k->vendor_id = PCI_VENDOR_ID_INTEL;
k->device_id = PCI_DEVICE_ID_INTEL_ESB_9;
k->class_id = PCI_CLASS_SYSTEM_OTHER;
dc->reset = i6300esb_reset;
dc->vmsd = &vmstate_i6300esb;
set_bit(DEVICE_CATEGORY_MISC, dc->categories);
}
static const TypeInfo i6300esb_info = {
.name = "i6300esb",
.parent = TYPE_PCI_DEVICE,
.instance_size = sizeof(I6300State),
.class_init = i6300esb_class_init,
};
static void i6300esb_register_types(void)
{
watchdog_add_model(&model);
type_register_static(&i6300esb_info);
}
type_init(i6300esb_register_types)