qemu/block/vmdk.c
Chunyan Liu 4ab1559085 qemu-img create: add 'nocow' option
Add 'nocow' option so that users could have a chance to set NOCOW flag to
newly created files. It's useful on btrfs file system to enhance performance.

Btrfs has low performance when hosting VM images, even more when the guest
in those VM are also using btrfs as file system. One way to mitigate this bad
performance is to turn off COW attributes on VM files. Generally, there are
two ways to turn off NOCOW on btrfs: a) by mounting fs with nodatacow, then
all newly created files will be NOCOW. b) per file. Add the NOCOW file
attribute. It could only be done to empty or new files.

This patch tries the second way, according to the option, it could add NOCOW
per file.

For most block drivers, since the create file step is in raw-posix.c, so we
can do setting NOCOW flag ioctl in raw-posix.c only.

But there are some exceptions, like block/vpc.c and block/vdi.c, they are
creating file by calling qemu_open directly. For them, do the same setting
NOCOW flag ioctl work in them separately.

[Fixed up 082.out due to the new 'nocow' creation option
--Stefan]

Signed-off-by: Chunyan Liu <cyliu@suse.com>
Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
2014-07-01 10:15:12 +02:00

2193 lines
66 KiB
C

/*
* Block driver for the VMDK format
*
* Copyright (c) 2004 Fabrice Bellard
* Copyright (c) 2005 Filip Navara
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu-common.h"
#include "block/block_int.h"
#include "qemu/module.h"
#include "migration/migration.h"
#include <zlib.h>
#define VMDK3_MAGIC (('C' << 24) | ('O' << 16) | ('W' << 8) | 'D')
#define VMDK4_MAGIC (('K' << 24) | ('D' << 16) | ('M' << 8) | 'V')
#define VMDK4_COMPRESSION_DEFLATE 1
#define VMDK4_FLAG_NL_DETECT (1 << 0)
#define VMDK4_FLAG_RGD (1 << 1)
/* Zeroed-grain enable bit */
#define VMDK4_FLAG_ZERO_GRAIN (1 << 2)
#define VMDK4_FLAG_COMPRESS (1 << 16)
#define VMDK4_FLAG_MARKER (1 << 17)
#define VMDK4_GD_AT_END 0xffffffffffffffffULL
#define VMDK_GTE_ZEROED 0x1
/* VMDK internal error codes */
#define VMDK_OK 0
#define VMDK_ERROR (-1)
/* Cluster not allocated */
#define VMDK_UNALLOC (-2)
#define VMDK_ZEROED (-3)
#define BLOCK_OPT_ZEROED_GRAIN "zeroed_grain"
typedef struct {
uint32_t version;
uint32_t flags;
uint32_t disk_sectors;
uint32_t granularity;
uint32_t l1dir_offset;
uint32_t l1dir_size;
uint32_t file_sectors;
uint32_t cylinders;
uint32_t heads;
uint32_t sectors_per_track;
} QEMU_PACKED VMDK3Header;
typedef struct {
uint32_t version;
uint32_t flags;
uint64_t capacity;
uint64_t granularity;
uint64_t desc_offset;
uint64_t desc_size;
/* Number of GrainTableEntries per GrainTable */
uint32_t num_gtes_per_gt;
uint64_t rgd_offset;
uint64_t gd_offset;
uint64_t grain_offset;
char filler[1];
char check_bytes[4];
uint16_t compressAlgorithm;
} QEMU_PACKED VMDK4Header;
#define L2_CACHE_SIZE 16
typedef struct VmdkExtent {
BlockDriverState *file;
bool flat;
bool compressed;
bool has_marker;
bool has_zero_grain;
int version;
int64_t sectors;
int64_t end_sector;
int64_t flat_start_offset;
int64_t l1_table_offset;
int64_t l1_backup_table_offset;
uint32_t *l1_table;
uint32_t *l1_backup_table;
unsigned int l1_size;
uint32_t l1_entry_sectors;
unsigned int l2_size;
uint32_t *l2_cache;
uint32_t l2_cache_offsets[L2_CACHE_SIZE];
uint32_t l2_cache_counts[L2_CACHE_SIZE];
int64_t cluster_sectors;
char *type;
} VmdkExtent;
typedef struct BDRVVmdkState {
CoMutex lock;
uint64_t desc_offset;
bool cid_updated;
bool cid_checked;
uint32_t cid;
uint32_t parent_cid;
int num_extents;
/* Extent array with num_extents entries, ascend ordered by address */
VmdkExtent *extents;
Error *migration_blocker;
char *create_type;
} BDRVVmdkState;
typedef struct VmdkMetaData {
uint32_t offset;
unsigned int l1_index;
unsigned int l2_index;
unsigned int l2_offset;
int valid;
uint32_t *l2_cache_entry;
} VmdkMetaData;
typedef struct VmdkGrainMarker {
uint64_t lba;
uint32_t size;
uint8_t data[0];
} QEMU_PACKED VmdkGrainMarker;
enum {
MARKER_END_OF_STREAM = 0,
MARKER_GRAIN_TABLE = 1,
MARKER_GRAIN_DIRECTORY = 2,
MARKER_FOOTER = 3,
};
static int vmdk_probe(const uint8_t *buf, int buf_size, const char *filename)
{
uint32_t magic;
if (buf_size < 4) {
return 0;
}
magic = be32_to_cpu(*(uint32_t *)buf);
if (magic == VMDK3_MAGIC ||
magic == VMDK4_MAGIC) {
return 100;
} else {
const char *p = (const char *)buf;
const char *end = p + buf_size;
while (p < end) {
if (*p == '#') {
/* skip comment line */
while (p < end && *p != '\n') {
p++;
}
p++;
continue;
}
if (*p == ' ') {
while (p < end && *p == ' ') {
p++;
}
/* skip '\r' if windows line endings used. */
if (p < end && *p == '\r') {
p++;
}
/* only accept blank lines before 'version=' line */
if (p == end || *p != '\n') {
return 0;
}
p++;
continue;
}
if (end - p >= strlen("version=X\n")) {
if (strncmp("version=1\n", p, strlen("version=1\n")) == 0 ||
strncmp("version=2\n", p, strlen("version=2\n")) == 0) {
return 100;
}
}
if (end - p >= strlen("version=X\r\n")) {
if (strncmp("version=1\r\n", p, strlen("version=1\r\n")) == 0 ||
strncmp("version=2\r\n", p, strlen("version=2\r\n")) == 0) {
return 100;
}
}
return 0;
}
return 0;
}
}
#define SECTOR_SIZE 512
#define DESC_SIZE (20 * SECTOR_SIZE) /* 20 sectors of 512 bytes each */
#define BUF_SIZE 4096
#define HEADER_SIZE 512 /* first sector of 512 bytes */
static void vmdk_free_extents(BlockDriverState *bs)
{
int i;
BDRVVmdkState *s = bs->opaque;
VmdkExtent *e;
for (i = 0; i < s->num_extents; i++) {
e = &s->extents[i];
g_free(e->l1_table);
g_free(e->l2_cache);
g_free(e->l1_backup_table);
g_free(e->type);
if (e->file != bs->file) {
bdrv_unref(e->file);
}
}
g_free(s->extents);
}
static void vmdk_free_last_extent(BlockDriverState *bs)
{
BDRVVmdkState *s = bs->opaque;
if (s->num_extents == 0) {
return;
}
s->num_extents--;
s->extents = g_realloc(s->extents, s->num_extents * sizeof(VmdkExtent));
}
static uint32_t vmdk_read_cid(BlockDriverState *bs, int parent)
{
char desc[DESC_SIZE];
uint32_t cid = 0xffffffff;
const char *p_name, *cid_str;
size_t cid_str_size;
BDRVVmdkState *s = bs->opaque;
int ret;
ret = bdrv_pread(bs->file, s->desc_offset, desc, DESC_SIZE);
if (ret < 0) {
return 0;
}
if (parent) {
cid_str = "parentCID";
cid_str_size = sizeof("parentCID");
} else {
cid_str = "CID";
cid_str_size = sizeof("CID");
}
desc[DESC_SIZE - 1] = '\0';
p_name = strstr(desc, cid_str);
if (p_name != NULL) {
p_name += cid_str_size;
sscanf(p_name, "%" SCNx32, &cid);
}
return cid;
}
static int vmdk_write_cid(BlockDriverState *bs, uint32_t cid)
{
char desc[DESC_SIZE], tmp_desc[DESC_SIZE];
char *p_name, *tmp_str;
BDRVVmdkState *s = bs->opaque;
int ret;
ret = bdrv_pread(bs->file, s->desc_offset, desc, DESC_SIZE);
if (ret < 0) {
return ret;
}
desc[DESC_SIZE - 1] = '\0';
tmp_str = strstr(desc, "parentCID");
if (tmp_str == NULL) {
return -EINVAL;
}
pstrcpy(tmp_desc, sizeof(tmp_desc), tmp_str);
p_name = strstr(desc, "CID");
if (p_name != NULL) {
p_name += sizeof("CID");
snprintf(p_name, sizeof(desc) - (p_name - desc), "%" PRIx32 "\n", cid);
pstrcat(desc, sizeof(desc), tmp_desc);
}
ret = bdrv_pwrite_sync(bs->file, s->desc_offset, desc, DESC_SIZE);
if (ret < 0) {
return ret;
}
return 0;
}
static int vmdk_is_cid_valid(BlockDriverState *bs)
{
BDRVVmdkState *s = bs->opaque;
BlockDriverState *p_bs = bs->backing_hd;
uint32_t cur_pcid;
if (!s->cid_checked && p_bs) {
cur_pcid = vmdk_read_cid(p_bs, 0);
if (s->parent_cid != cur_pcid) {
/* CID not valid */
return 0;
}
}
s->cid_checked = true;
/* CID valid */
return 1;
}
/* Queue extents, if any, for reopen() */
static int vmdk_reopen_prepare(BDRVReopenState *state,
BlockReopenQueue *queue, Error **errp)
{
BDRVVmdkState *s;
int ret = -1;
int i;
VmdkExtent *e;
assert(state != NULL);
assert(state->bs != NULL);
if (queue == NULL) {
error_setg(errp, "No reopen queue for VMDK extents");
goto exit;
}
s = state->bs->opaque;
assert(s != NULL);
for (i = 0; i < s->num_extents; i++) {
e = &s->extents[i];
if (e->file != state->bs->file) {
bdrv_reopen_queue(queue, e->file, state->flags);
}
}
ret = 0;
exit:
return ret;
}
static int vmdk_parent_open(BlockDriverState *bs)
{
char *p_name;
char desc[DESC_SIZE + 1];
BDRVVmdkState *s = bs->opaque;
int ret;
desc[DESC_SIZE] = '\0';
ret = bdrv_pread(bs->file, s->desc_offset, desc, DESC_SIZE);
if (ret < 0) {
return ret;
}
p_name = strstr(desc, "parentFileNameHint");
if (p_name != NULL) {
char *end_name;
p_name += sizeof("parentFileNameHint") + 1;
end_name = strchr(p_name, '\"');
if (end_name == NULL) {
return -EINVAL;
}
if ((end_name - p_name) > sizeof(bs->backing_file) - 1) {
return -EINVAL;
}
pstrcpy(bs->backing_file, end_name - p_name + 1, p_name);
}
return 0;
}
/* Create and append extent to the extent array. Return the added VmdkExtent
* address. return NULL if allocation failed. */
static int vmdk_add_extent(BlockDriverState *bs,
BlockDriverState *file, bool flat, int64_t sectors,
int64_t l1_offset, int64_t l1_backup_offset,
uint32_t l1_size,
int l2_size, uint64_t cluster_sectors,
VmdkExtent **new_extent,
Error **errp)
{
VmdkExtent *extent;
BDRVVmdkState *s = bs->opaque;
if (cluster_sectors > 0x200000) {
/* 0x200000 * 512Bytes = 1GB for one cluster is unrealistic */
error_setg(errp, "Invalid granularity, image may be corrupt");
return -EFBIG;
}
if (l1_size > 512 * 1024 * 1024) {
/* Although with big capacity and small l1_entry_sectors, we can get a
* big l1_size, we don't want unbounded value to allocate the table.
* Limit it to 512M, which is 16PB for default cluster and L2 table
* size */
error_setg(errp, "L1 size too big");
return -EFBIG;
}
s->extents = g_realloc(s->extents,
(s->num_extents + 1) * sizeof(VmdkExtent));
extent = &s->extents[s->num_extents];
s->num_extents++;
memset(extent, 0, sizeof(VmdkExtent));
extent->file = file;
extent->flat = flat;
extent->sectors = sectors;
extent->l1_table_offset = l1_offset;
extent->l1_backup_table_offset = l1_backup_offset;
extent->l1_size = l1_size;
extent->l1_entry_sectors = l2_size * cluster_sectors;
extent->l2_size = l2_size;
extent->cluster_sectors = flat ? sectors : cluster_sectors;
if (s->num_extents > 1) {
extent->end_sector = (*(extent - 1)).end_sector + extent->sectors;
} else {
extent->end_sector = extent->sectors;
}
bs->total_sectors = extent->end_sector;
if (new_extent) {
*new_extent = extent;
}
return 0;
}
static int vmdk_init_tables(BlockDriverState *bs, VmdkExtent *extent,
Error **errp)
{
int ret;
int l1_size, i;
/* read the L1 table */
l1_size = extent->l1_size * sizeof(uint32_t);
extent->l1_table = g_malloc(l1_size);
ret = bdrv_pread(extent->file,
extent->l1_table_offset,
extent->l1_table,
l1_size);
if (ret < 0) {
error_setg_errno(errp, -ret,
"Could not read l1 table from extent '%s'",
extent->file->filename);
goto fail_l1;
}
for (i = 0; i < extent->l1_size; i++) {
le32_to_cpus(&extent->l1_table[i]);
}
if (extent->l1_backup_table_offset) {
extent->l1_backup_table = g_malloc(l1_size);
ret = bdrv_pread(extent->file,
extent->l1_backup_table_offset,
extent->l1_backup_table,
l1_size);
if (ret < 0) {
error_setg_errno(errp, -ret,
"Could not read l1 backup table from extent '%s'",
extent->file->filename);
goto fail_l1b;
}
for (i = 0; i < extent->l1_size; i++) {
le32_to_cpus(&extent->l1_backup_table[i]);
}
}
extent->l2_cache =
g_malloc(extent->l2_size * L2_CACHE_SIZE * sizeof(uint32_t));
return 0;
fail_l1b:
g_free(extent->l1_backup_table);
fail_l1:
g_free(extent->l1_table);
return ret;
}
static int vmdk_open_vmfs_sparse(BlockDriverState *bs,
BlockDriverState *file,
int flags, Error **errp)
{
int ret;
uint32_t magic;
VMDK3Header header;
VmdkExtent *extent;
ret = bdrv_pread(file, sizeof(magic), &header, sizeof(header));
if (ret < 0) {
error_setg_errno(errp, -ret,
"Could not read header from file '%s'",
file->filename);
return ret;
}
ret = vmdk_add_extent(bs, file, false,
le32_to_cpu(header.disk_sectors),
le32_to_cpu(header.l1dir_offset) << 9,
0,
le32_to_cpu(header.l1dir_size),
4096,
le32_to_cpu(header.granularity),
&extent,
errp);
if (ret < 0) {
return ret;
}
ret = vmdk_init_tables(bs, extent, errp);
if (ret) {
/* free extent allocated by vmdk_add_extent */
vmdk_free_last_extent(bs);
}
return ret;
}
static int vmdk_open_desc_file(BlockDriverState *bs, int flags, char *buf,
Error **errp);
static char *vmdk_read_desc(BlockDriverState *file, uint64_t desc_offset,
Error **errp)
{
int64_t size;
char *buf;
int ret;
size = bdrv_getlength(file);
if (size < 0) {
error_setg_errno(errp, -size, "Could not access file");
return NULL;
}
size = MIN(size, 1 << 20); /* avoid unbounded allocation */
buf = g_malloc0(size + 1);
ret = bdrv_pread(file, desc_offset, buf, size);
if (ret < 0) {
error_setg_errno(errp, -ret, "Could not read from file");
g_free(buf);
return NULL;
}
return buf;
}
static int vmdk_open_vmdk4(BlockDriverState *bs,
BlockDriverState *file,
int flags, Error **errp)
{
int ret;
uint32_t magic;
uint32_t l1_size, l1_entry_sectors;
VMDK4Header header;
VmdkExtent *extent;
BDRVVmdkState *s = bs->opaque;
int64_t l1_backup_offset = 0;
ret = bdrv_pread(file, sizeof(magic), &header, sizeof(header));
if (ret < 0) {
error_setg_errno(errp, -ret,
"Could not read header from file '%s'",
file->filename);
return -EINVAL;
}
if (header.capacity == 0) {
uint64_t desc_offset = le64_to_cpu(header.desc_offset);
if (desc_offset) {
char *buf = vmdk_read_desc(file, desc_offset << 9, errp);
if (!buf) {
return -EINVAL;
}
ret = vmdk_open_desc_file(bs, flags, buf, errp);
g_free(buf);
return ret;
}
}
if (!s->create_type) {
s->create_type = g_strdup("monolithicSparse");
}
if (le64_to_cpu(header.gd_offset) == VMDK4_GD_AT_END) {
/*
* The footer takes precedence over the header, so read it in. The
* footer starts at offset -1024 from the end: One sector for the
* footer, and another one for the end-of-stream marker.
*/
struct {
struct {
uint64_t val;
uint32_t size;
uint32_t type;
uint8_t pad[512 - 16];
} QEMU_PACKED footer_marker;
uint32_t magic;
VMDK4Header header;
uint8_t pad[512 - 4 - sizeof(VMDK4Header)];
struct {
uint64_t val;
uint32_t size;
uint32_t type;
uint8_t pad[512 - 16];
} QEMU_PACKED eos_marker;
} QEMU_PACKED footer;
ret = bdrv_pread(file,
bs->file->total_sectors * 512 - 1536,
&footer, sizeof(footer));
if (ret < 0) {
return ret;
}
/* Some sanity checks for the footer */
if (be32_to_cpu(footer.magic) != VMDK4_MAGIC ||
le32_to_cpu(footer.footer_marker.size) != 0 ||
le32_to_cpu(footer.footer_marker.type) != MARKER_FOOTER ||
le64_to_cpu(footer.eos_marker.val) != 0 ||
le32_to_cpu(footer.eos_marker.size) != 0 ||
le32_to_cpu(footer.eos_marker.type) != MARKER_END_OF_STREAM)
{
return -EINVAL;
}
header = footer.header;
}
if (le32_to_cpu(header.version) > 3) {
char buf[64];
snprintf(buf, sizeof(buf), "VMDK version %" PRId32,
le32_to_cpu(header.version));
error_set(errp, QERR_UNKNOWN_BLOCK_FORMAT_FEATURE,
bs->device_name, "vmdk", buf);
return -ENOTSUP;
} else if (le32_to_cpu(header.version) == 3 && (flags & BDRV_O_RDWR)) {
/* VMware KB 2064959 explains that version 3 added support for
* persistent changed block tracking (CBT), and backup software can
* read it as version=1 if it doesn't care about the changed area
* information. So we are safe to enable read only. */
error_setg(errp, "VMDK version 3 must be read only");
return -EINVAL;
}
if (le32_to_cpu(header.num_gtes_per_gt) > 512) {
error_setg(errp, "L2 table size too big");
return -EINVAL;
}
l1_entry_sectors = le32_to_cpu(header.num_gtes_per_gt)
* le64_to_cpu(header.granularity);
if (l1_entry_sectors == 0) {
return -EINVAL;
}
l1_size = (le64_to_cpu(header.capacity) + l1_entry_sectors - 1)
/ l1_entry_sectors;
if (le32_to_cpu(header.flags) & VMDK4_FLAG_RGD) {
l1_backup_offset = le64_to_cpu(header.rgd_offset) << 9;
}
if (bdrv_getlength(file) <
le64_to_cpu(header.grain_offset) * BDRV_SECTOR_SIZE) {
error_setg(errp, "File truncated, expecting at least %" PRId64 " bytes",
(int64_t)(le64_to_cpu(header.grain_offset)
* BDRV_SECTOR_SIZE));
return -EINVAL;
}
ret = vmdk_add_extent(bs, file, false,
le64_to_cpu(header.capacity),
le64_to_cpu(header.gd_offset) << 9,
l1_backup_offset,
l1_size,
le32_to_cpu(header.num_gtes_per_gt),
le64_to_cpu(header.granularity),
&extent,
errp);
if (ret < 0) {
return ret;
}
extent->compressed =
le16_to_cpu(header.compressAlgorithm) == VMDK4_COMPRESSION_DEFLATE;
if (extent->compressed) {
g_free(s->create_type);
s->create_type = g_strdup("streamOptimized");
}
extent->has_marker = le32_to_cpu(header.flags) & VMDK4_FLAG_MARKER;
extent->version = le32_to_cpu(header.version);
extent->has_zero_grain = le32_to_cpu(header.flags) & VMDK4_FLAG_ZERO_GRAIN;
ret = vmdk_init_tables(bs, extent, errp);
if (ret) {
/* free extent allocated by vmdk_add_extent */
vmdk_free_last_extent(bs);
}
return ret;
}
/* find an option value out of descriptor file */
static int vmdk_parse_description(const char *desc, const char *opt_name,
char *buf, int buf_size)
{
char *opt_pos, *opt_end;
const char *end = desc + strlen(desc);
opt_pos = strstr(desc, opt_name);
if (!opt_pos) {
return VMDK_ERROR;
}
/* Skip "=\"" following opt_name */
opt_pos += strlen(opt_name) + 2;
if (opt_pos >= end) {
return VMDK_ERROR;
}
opt_end = opt_pos;
while (opt_end < end && *opt_end != '"') {
opt_end++;
}
if (opt_end == end || buf_size < opt_end - opt_pos + 1) {
return VMDK_ERROR;
}
pstrcpy(buf, opt_end - opt_pos + 1, opt_pos);
return VMDK_OK;
}
/* Open an extent file and append to bs array */
static int vmdk_open_sparse(BlockDriverState *bs,
BlockDriverState *file, int flags,
char *buf, Error **errp)
{
uint32_t magic;
magic = ldl_be_p(buf);
switch (magic) {
case VMDK3_MAGIC:
return vmdk_open_vmfs_sparse(bs, file, flags, errp);
break;
case VMDK4_MAGIC:
return vmdk_open_vmdk4(bs, file, flags, errp);
break;
default:
error_setg(errp, "Image not in VMDK format");
return -EINVAL;
break;
}
}
static int vmdk_parse_extents(const char *desc, BlockDriverState *bs,
const char *desc_file_path, Error **errp)
{
int ret;
char access[11];
char type[11];
char fname[512];
const char *p = desc;
int64_t sectors = 0;
int64_t flat_offset;
char extent_path[PATH_MAX];
BlockDriverState *extent_file;
BDRVVmdkState *s = bs->opaque;
VmdkExtent *extent;
while (*p) {
/* parse extent line:
* RW [size in sectors] FLAT "file-name.vmdk" OFFSET
* or
* RW [size in sectors] SPARSE "file-name.vmdk"
*/
flat_offset = -1;
ret = sscanf(p, "%10s %" SCNd64 " %10s \"%511[^\n\r\"]\" %" SCNd64,
access, &sectors, type, fname, &flat_offset);
if (ret < 4 || strcmp(access, "RW")) {
goto next_line;
} else if (!strcmp(type, "FLAT")) {
if (ret != 5 || flat_offset < 0) {
error_setg(errp, "Invalid extent lines: \n%s", p);
return -EINVAL;
}
} else if (!strcmp(type, "VMFS")) {
if (ret == 4) {
flat_offset = 0;
} else {
error_setg(errp, "Invalid extent lines:\n%s", p);
return -EINVAL;
}
} else if (ret != 4) {
error_setg(errp, "Invalid extent lines:\n%s", p);
return -EINVAL;
}
if (sectors <= 0 ||
(strcmp(type, "FLAT") && strcmp(type, "SPARSE") &&
strcmp(type, "VMFS") && strcmp(type, "VMFSSPARSE")) ||
(strcmp(access, "RW"))) {
goto next_line;
}
path_combine(extent_path, sizeof(extent_path),
desc_file_path, fname);
extent_file = NULL;
ret = bdrv_open(&extent_file, extent_path, NULL, NULL,
bs->open_flags | BDRV_O_PROTOCOL, NULL, errp);
if (ret) {
return ret;
}
/* save to extents array */
if (!strcmp(type, "FLAT") || !strcmp(type, "VMFS")) {
/* FLAT extent */
ret = vmdk_add_extent(bs, extent_file, true, sectors,
0, 0, 0, 0, 0, &extent, errp);
if (ret < 0) {
return ret;
}
extent->flat_start_offset = flat_offset << 9;
} else if (!strcmp(type, "SPARSE") || !strcmp(type, "VMFSSPARSE")) {
/* SPARSE extent and VMFSSPARSE extent are both "COWD" sparse file*/
char *buf = vmdk_read_desc(extent_file, 0, errp);
if (!buf) {
ret = -EINVAL;
} else {
ret = vmdk_open_sparse(bs, extent_file, bs->open_flags, buf, errp);
}
if (ret) {
g_free(buf);
bdrv_unref(extent_file);
return ret;
}
extent = &s->extents[s->num_extents - 1];
} else {
error_setg(errp, "Unsupported extent type '%s'", type);
return -ENOTSUP;
}
extent->type = g_strdup(type);
next_line:
/* move to next line */
while (*p) {
if (*p == '\n') {
p++;
break;
}
p++;
}
}
return 0;
}
static int vmdk_open_desc_file(BlockDriverState *bs, int flags, char *buf,
Error **errp)
{
int ret;
char ct[128];
BDRVVmdkState *s = bs->opaque;
if (vmdk_parse_description(buf, "createType", ct, sizeof(ct))) {
error_setg(errp, "invalid VMDK image descriptor");
ret = -EINVAL;
goto exit;
}
if (strcmp(ct, "monolithicFlat") &&
strcmp(ct, "vmfs") &&
strcmp(ct, "vmfsSparse") &&
strcmp(ct, "twoGbMaxExtentSparse") &&
strcmp(ct, "twoGbMaxExtentFlat")) {
error_setg(errp, "Unsupported image type '%s'", ct);
ret = -ENOTSUP;
goto exit;
}
s->create_type = g_strdup(ct);
s->desc_offset = 0;
ret = vmdk_parse_extents(buf, bs, bs->file->filename, errp);
exit:
return ret;
}
static int vmdk_open(BlockDriverState *bs, QDict *options, int flags,
Error **errp)
{
char *buf = NULL;
int ret;
BDRVVmdkState *s = bs->opaque;
uint32_t magic;
buf = vmdk_read_desc(bs->file, 0, errp);
if (!buf) {
return -EINVAL;
}
magic = ldl_be_p(buf);
switch (magic) {
case VMDK3_MAGIC:
case VMDK4_MAGIC:
ret = vmdk_open_sparse(bs, bs->file, flags, buf, errp);
s->desc_offset = 0x200;
break;
default:
ret = vmdk_open_desc_file(bs, flags, buf, errp);
break;
}
if (ret) {
goto fail;
}
/* try to open parent images, if exist */
ret = vmdk_parent_open(bs);
if (ret) {
goto fail;
}
s->cid = vmdk_read_cid(bs, 0);
s->parent_cid = vmdk_read_cid(bs, 1);
qemu_co_mutex_init(&s->lock);
/* Disable migration when VMDK images are used */
error_set(&s->migration_blocker,
QERR_BLOCK_FORMAT_FEATURE_NOT_SUPPORTED,
"vmdk", bs->device_name, "live migration");
migrate_add_blocker(s->migration_blocker);
g_free(buf);
return 0;
fail:
g_free(buf);
g_free(s->create_type);
s->create_type = NULL;
vmdk_free_extents(bs);
return ret;
}
static int vmdk_refresh_limits(BlockDriverState *bs)
{
BDRVVmdkState *s = bs->opaque;
int i;
for (i = 0; i < s->num_extents; i++) {
if (!s->extents[i].flat) {
bs->bl.write_zeroes_alignment =
MAX(bs->bl.write_zeroes_alignment,
s->extents[i].cluster_sectors);
}
}
return 0;
}
static int get_whole_cluster(BlockDriverState *bs,
VmdkExtent *extent,
uint64_t cluster_offset,
uint64_t offset,
bool allocate)
{
int ret = VMDK_OK;
uint8_t *whole_grain = NULL;
/* we will be here if it's first write on non-exist grain(cluster).
* try to read from parent image, if exist */
if (bs->backing_hd) {
whole_grain =
qemu_blockalign(bs, extent->cluster_sectors << BDRV_SECTOR_BITS);
if (!vmdk_is_cid_valid(bs)) {
ret = VMDK_ERROR;
goto exit;
}
/* floor offset to cluster */
offset -= offset % (extent->cluster_sectors * 512);
ret = bdrv_read(bs->backing_hd, offset >> 9, whole_grain,
extent->cluster_sectors);
if (ret < 0) {
ret = VMDK_ERROR;
goto exit;
}
/* Write grain only into the active image */
ret = bdrv_write(extent->file, cluster_offset, whole_grain,
extent->cluster_sectors);
if (ret < 0) {
ret = VMDK_ERROR;
goto exit;
}
}
exit:
qemu_vfree(whole_grain);
return ret;
}
static int vmdk_L2update(VmdkExtent *extent, VmdkMetaData *m_data)
{
uint32_t offset;
QEMU_BUILD_BUG_ON(sizeof(offset) != sizeof(m_data->offset));
offset = cpu_to_le32(m_data->offset);
/* update L2 table */
if (bdrv_pwrite_sync(
extent->file,
((int64_t)m_data->l2_offset * 512)
+ (m_data->l2_index * sizeof(m_data->offset)),
&offset, sizeof(offset)) < 0) {
return VMDK_ERROR;
}
/* update backup L2 table */
if (extent->l1_backup_table_offset != 0) {
m_data->l2_offset = extent->l1_backup_table[m_data->l1_index];
if (bdrv_pwrite_sync(
extent->file,
((int64_t)m_data->l2_offset * 512)
+ (m_data->l2_index * sizeof(m_data->offset)),
&offset, sizeof(offset)) < 0) {
return VMDK_ERROR;
}
}
if (m_data->l2_cache_entry) {
*m_data->l2_cache_entry = offset;
}
return VMDK_OK;
}
static int get_cluster_offset(BlockDriverState *bs,
VmdkExtent *extent,
VmdkMetaData *m_data,
uint64_t offset,
int allocate,
uint64_t *cluster_offset)
{
unsigned int l1_index, l2_offset, l2_index;
int min_index, i, j;
uint32_t min_count, *l2_table;
bool zeroed = false;
if (m_data) {
m_data->valid = 0;
}
if (extent->flat) {
*cluster_offset = extent->flat_start_offset;
return VMDK_OK;
}
offset -= (extent->end_sector - extent->sectors) * SECTOR_SIZE;
l1_index = (offset >> 9) / extent->l1_entry_sectors;
if (l1_index >= extent->l1_size) {
return VMDK_ERROR;
}
l2_offset = extent->l1_table[l1_index];
if (!l2_offset) {
return VMDK_UNALLOC;
}
for (i = 0; i < L2_CACHE_SIZE; i++) {
if (l2_offset == extent->l2_cache_offsets[i]) {
/* increment the hit count */
if (++extent->l2_cache_counts[i] == 0xffffffff) {
for (j = 0; j < L2_CACHE_SIZE; j++) {
extent->l2_cache_counts[j] >>= 1;
}
}
l2_table = extent->l2_cache + (i * extent->l2_size);
goto found;
}
}
/* not found: load a new entry in the least used one */
min_index = 0;
min_count = 0xffffffff;
for (i = 0; i < L2_CACHE_SIZE; i++) {
if (extent->l2_cache_counts[i] < min_count) {
min_count = extent->l2_cache_counts[i];
min_index = i;
}
}
l2_table = extent->l2_cache + (min_index * extent->l2_size);
if (bdrv_pread(
extent->file,
(int64_t)l2_offset * 512,
l2_table,
extent->l2_size * sizeof(uint32_t)
) != extent->l2_size * sizeof(uint32_t)) {
return VMDK_ERROR;
}
extent->l2_cache_offsets[min_index] = l2_offset;
extent->l2_cache_counts[min_index] = 1;
found:
l2_index = ((offset >> 9) / extent->cluster_sectors) % extent->l2_size;
*cluster_offset = le32_to_cpu(l2_table[l2_index]);
if (m_data) {
m_data->valid = 1;
m_data->l1_index = l1_index;
m_data->l2_index = l2_index;
m_data->offset = *cluster_offset;
m_data->l2_offset = l2_offset;
m_data->l2_cache_entry = &l2_table[l2_index];
}
if (extent->has_zero_grain && *cluster_offset == VMDK_GTE_ZEROED) {
zeroed = true;
}
if (!*cluster_offset || zeroed) {
if (!allocate) {
return zeroed ? VMDK_ZEROED : VMDK_UNALLOC;
}
/* Avoid the L2 tables update for the images that have snapshots. */
*cluster_offset = bdrv_getlength(extent->file);
if (!extent->compressed) {
bdrv_truncate(
extent->file,
*cluster_offset + (extent->cluster_sectors << 9)
);
}
*cluster_offset >>= 9;
l2_table[l2_index] = cpu_to_le32(*cluster_offset);
/* First of all we write grain itself, to avoid race condition
* that may to corrupt the image.
* This problem may occur because of insufficient space on host disk
* or inappropriate VM shutdown.
*/
if (get_whole_cluster(
bs, extent, *cluster_offset, offset, allocate) == -1) {
return VMDK_ERROR;
}
if (m_data) {
m_data->offset = *cluster_offset;
}
}
*cluster_offset <<= 9;
return VMDK_OK;
}
static VmdkExtent *find_extent(BDRVVmdkState *s,
int64_t sector_num, VmdkExtent *start_hint)
{
VmdkExtent *extent = start_hint;
if (!extent) {
extent = &s->extents[0];
}
while (extent < &s->extents[s->num_extents]) {
if (sector_num < extent->end_sector) {
return extent;
}
extent++;
}
return NULL;
}
static int64_t coroutine_fn vmdk_co_get_block_status(BlockDriverState *bs,
int64_t sector_num, int nb_sectors, int *pnum)
{
BDRVVmdkState *s = bs->opaque;
int64_t index_in_cluster, n, ret;
uint64_t offset;
VmdkExtent *extent;
extent = find_extent(s, sector_num, NULL);
if (!extent) {
return 0;
}
qemu_co_mutex_lock(&s->lock);
ret = get_cluster_offset(bs, extent, NULL,
sector_num * 512, 0, &offset);
qemu_co_mutex_unlock(&s->lock);
switch (ret) {
case VMDK_ERROR:
ret = -EIO;
break;
case VMDK_UNALLOC:
ret = 0;
break;
case VMDK_ZEROED:
ret = BDRV_BLOCK_ZERO;
break;
case VMDK_OK:
ret = BDRV_BLOCK_DATA;
if (extent->file == bs->file && !extent->compressed) {
ret |= BDRV_BLOCK_OFFSET_VALID | offset;
}
break;
}
index_in_cluster = sector_num % extent->cluster_sectors;
n = extent->cluster_sectors - index_in_cluster;
if (n > nb_sectors) {
n = nb_sectors;
}
*pnum = n;
return ret;
}
static int vmdk_write_extent(VmdkExtent *extent, int64_t cluster_offset,
int64_t offset_in_cluster, const uint8_t *buf,
int nb_sectors, int64_t sector_num)
{
int ret;
VmdkGrainMarker *data = NULL;
uLongf buf_len;
const uint8_t *write_buf = buf;
int write_len = nb_sectors * 512;
if (extent->compressed) {
if (!extent->has_marker) {
ret = -EINVAL;
goto out;
}
buf_len = (extent->cluster_sectors << 9) * 2;
data = g_malloc(buf_len + sizeof(VmdkGrainMarker));
if (compress(data->data, &buf_len, buf, nb_sectors << 9) != Z_OK ||
buf_len == 0) {
ret = -EINVAL;
goto out;
}
data->lba = sector_num;
data->size = buf_len;
write_buf = (uint8_t *)data;
write_len = buf_len + sizeof(VmdkGrainMarker);
}
ret = bdrv_pwrite(extent->file,
cluster_offset + offset_in_cluster,
write_buf,
write_len);
if (ret != write_len) {
ret = ret < 0 ? ret : -EIO;
goto out;
}
ret = 0;
out:
g_free(data);
return ret;
}
static int vmdk_read_extent(VmdkExtent *extent, int64_t cluster_offset,
int64_t offset_in_cluster, uint8_t *buf,
int nb_sectors)
{
int ret;
int cluster_bytes, buf_bytes;
uint8_t *cluster_buf, *compressed_data;
uint8_t *uncomp_buf;
uint32_t data_len;
VmdkGrainMarker *marker;
uLongf buf_len;
if (!extent->compressed) {
ret = bdrv_pread(extent->file,
cluster_offset + offset_in_cluster,
buf, nb_sectors * 512);
if (ret == nb_sectors * 512) {
return 0;
} else {
return -EIO;
}
}
cluster_bytes = extent->cluster_sectors * 512;
/* Read two clusters in case GrainMarker + compressed data > one cluster */
buf_bytes = cluster_bytes * 2;
cluster_buf = g_malloc(buf_bytes);
uncomp_buf = g_malloc(cluster_bytes);
ret = bdrv_pread(extent->file,
cluster_offset,
cluster_buf, buf_bytes);
if (ret < 0) {
goto out;
}
compressed_data = cluster_buf;
buf_len = cluster_bytes;
data_len = cluster_bytes;
if (extent->has_marker) {
marker = (VmdkGrainMarker *)cluster_buf;
compressed_data = marker->data;
data_len = le32_to_cpu(marker->size);
}
if (!data_len || data_len > buf_bytes) {
ret = -EINVAL;
goto out;
}
ret = uncompress(uncomp_buf, &buf_len, compressed_data, data_len);
if (ret != Z_OK) {
ret = -EINVAL;
goto out;
}
if (offset_in_cluster < 0 ||
offset_in_cluster + nb_sectors * 512 > buf_len) {
ret = -EINVAL;
goto out;
}
memcpy(buf, uncomp_buf + offset_in_cluster, nb_sectors * 512);
ret = 0;
out:
g_free(uncomp_buf);
g_free(cluster_buf);
return ret;
}
static int vmdk_read(BlockDriverState *bs, int64_t sector_num,
uint8_t *buf, int nb_sectors)
{
BDRVVmdkState *s = bs->opaque;
int ret;
uint64_t n, index_in_cluster;
uint64_t extent_begin_sector, extent_relative_sector_num;
VmdkExtent *extent = NULL;
uint64_t cluster_offset;
while (nb_sectors > 0) {
extent = find_extent(s, sector_num, extent);
if (!extent) {
return -EIO;
}
ret = get_cluster_offset(
bs, extent, NULL,
sector_num << 9, 0, &cluster_offset);
extent_begin_sector = extent->end_sector - extent->sectors;
extent_relative_sector_num = sector_num - extent_begin_sector;
index_in_cluster = extent_relative_sector_num % extent->cluster_sectors;
n = extent->cluster_sectors - index_in_cluster;
if (n > nb_sectors) {
n = nb_sectors;
}
if (ret != VMDK_OK) {
/* if not allocated, try to read from parent image, if exist */
if (bs->backing_hd && ret != VMDK_ZEROED) {
if (!vmdk_is_cid_valid(bs)) {
return -EINVAL;
}
ret = bdrv_read(bs->backing_hd, sector_num, buf, n);
if (ret < 0) {
return ret;
}
} else {
memset(buf, 0, 512 * n);
}
} else {
ret = vmdk_read_extent(extent,
cluster_offset, index_in_cluster * 512,
buf, n);
if (ret) {
return ret;
}
}
nb_sectors -= n;
sector_num += n;
buf += n * 512;
}
return 0;
}
static coroutine_fn int vmdk_co_read(BlockDriverState *bs, int64_t sector_num,
uint8_t *buf, int nb_sectors)
{
int ret;
BDRVVmdkState *s = bs->opaque;
qemu_co_mutex_lock(&s->lock);
ret = vmdk_read(bs, sector_num, buf, nb_sectors);
qemu_co_mutex_unlock(&s->lock);
return ret;
}
/**
* vmdk_write:
* @zeroed: buf is ignored (data is zero), use zeroed_grain GTE feature
* if possible, otherwise return -ENOTSUP.
* @zero_dry_run: used for zeroed == true only, don't update L2 table, just try
* with each cluster. By dry run we can find if the zero write
* is possible without modifying image data.
*
* Returns: error code with 0 for success.
*/
static int vmdk_write(BlockDriverState *bs, int64_t sector_num,
const uint8_t *buf, int nb_sectors,
bool zeroed, bool zero_dry_run)
{
BDRVVmdkState *s = bs->opaque;
VmdkExtent *extent = NULL;
int ret;
int64_t index_in_cluster, n;
uint64_t extent_begin_sector, extent_relative_sector_num;
uint64_t cluster_offset;
VmdkMetaData m_data;
if (sector_num > bs->total_sectors) {
error_report("Wrong offset: sector_num=0x%" PRIx64
" total_sectors=0x%" PRIx64 "\n",
sector_num, bs->total_sectors);
return -EIO;
}
while (nb_sectors > 0) {
extent = find_extent(s, sector_num, extent);
if (!extent) {
return -EIO;
}
ret = get_cluster_offset(
bs,
extent,
&m_data,
sector_num << 9, !extent->compressed,
&cluster_offset);
if (extent->compressed) {
if (ret == VMDK_OK) {
/* Refuse write to allocated cluster for streamOptimized */
error_report("Could not write to allocated cluster"
" for streamOptimized");
return -EIO;
} else {
/* allocate */
ret = get_cluster_offset(
bs,
extent,
&m_data,
sector_num << 9, 1,
&cluster_offset);
}
}
if (ret == VMDK_ERROR) {
return -EINVAL;
}
extent_begin_sector = extent->end_sector - extent->sectors;
extent_relative_sector_num = sector_num - extent_begin_sector;
index_in_cluster = extent_relative_sector_num % extent->cluster_sectors;
n = extent->cluster_sectors - index_in_cluster;
if (n > nb_sectors) {
n = nb_sectors;
}
if (zeroed) {
/* Do zeroed write, buf is ignored */
if (extent->has_zero_grain &&
index_in_cluster == 0 &&
n >= extent->cluster_sectors) {
n = extent->cluster_sectors;
if (!zero_dry_run) {
m_data.offset = VMDK_GTE_ZEROED;
/* update L2 tables */
if (vmdk_L2update(extent, &m_data) != VMDK_OK) {
return -EIO;
}
}
} else {
return -ENOTSUP;
}
} else {
ret = vmdk_write_extent(extent,
cluster_offset, index_in_cluster * 512,
buf, n, sector_num);
if (ret) {
return ret;
}
if (m_data.valid) {
/* update L2 tables */
if (vmdk_L2update(extent, &m_data) != VMDK_OK) {
return -EIO;
}
}
}
nb_sectors -= n;
sector_num += n;
buf += n * 512;
/* update CID on the first write every time the virtual disk is
* opened */
if (!s->cid_updated) {
ret = vmdk_write_cid(bs, time(NULL));
if (ret < 0) {
return ret;
}
s->cid_updated = true;
}
}
return 0;
}
static coroutine_fn int vmdk_co_write(BlockDriverState *bs, int64_t sector_num,
const uint8_t *buf, int nb_sectors)
{
int ret;
BDRVVmdkState *s = bs->opaque;
qemu_co_mutex_lock(&s->lock);
ret = vmdk_write(bs, sector_num, buf, nb_sectors, false, false);
qemu_co_mutex_unlock(&s->lock);
return ret;
}
static int vmdk_write_compressed(BlockDriverState *bs,
int64_t sector_num,
const uint8_t *buf,
int nb_sectors)
{
BDRVVmdkState *s = bs->opaque;
if (s->num_extents == 1 && s->extents[0].compressed) {
return vmdk_write(bs, sector_num, buf, nb_sectors, false, false);
} else {
return -ENOTSUP;
}
}
static int coroutine_fn vmdk_co_write_zeroes(BlockDriverState *bs,
int64_t sector_num,
int nb_sectors,
BdrvRequestFlags flags)
{
int ret;
BDRVVmdkState *s = bs->opaque;
qemu_co_mutex_lock(&s->lock);
/* write zeroes could fail if sectors not aligned to cluster, test it with
* dry_run == true before really updating image */
ret = vmdk_write(bs, sector_num, NULL, nb_sectors, true, true);
if (!ret) {
ret = vmdk_write(bs, sector_num, NULL, nb_sectors, true, false);
}
qemu_co_mutex_unlock(&s->lock);
return ret;
}
static int vmdk_create_extent(const char *filename, int64_t filesize,
bool flat, bool compress, bool zeroed_grain,
QemuOpts *opts, Error **errp)
{
int ret, i;
BlockDriverState *bs = NULL;
VMDK4Header header;
Error *local_err = NULL;
uint32_t tmp, magic, grains, gd_sectors, gt_size, gt_count;
uint32_t *gd_buf = NULL;
int gd_buf_size;
ret = bdrv_create_file(filename, opts, &local_err);
if (ret < 0) {
error_propagate(errp, local_err);
goto exit;
}
assert(bs == NULL);
ret = bdrv_open(&bs, filename, NULL, NULL, BDRV_O_RDWR | BDRV_O_PROTOCOL,
NULL, &local_err);
if (ret < 0) {
error_propagate(errp, local_err);
goto exit;
}
if (flat) {
ret = bdrv_truncate(bs, filesize);
if (ret < 0) {
error_setg_errno(errp, -ret, "Could not truncate file");
}
goto exit;
}
magic = cpu_to_be32(VMDK4_MAGIC);
memset(&header, 0, sizeof(header));
header.version = zeroed_grain ? 2 : 1;
header.flags = VMDK4_FLAG_RGD | VMDK4_FLAG_NL_DETECT
| (compress ? VMDK4_FLAG_COMPRESS | VMDK4_FLAG_MARKER : 0)
| (zeroed_grain ? VMDK4_FLAG_ZERO_GRAIN : 0);
header.compressAlgorithm = compress ? VMDK4_COMPRESSION_DEFLATE : 0;
header.capacity = filesize / BDRV_SECTOR_SIZE;
header.granularity = 128;
header.num_gtes_per_gt = BDRV_SECTOR_SIZE;
grains = DIV_ROUND_UP(filesize / BDRV_SECTOR_SIZE, header.granularity);
gt_size = DIV_ROUND_UP(header.num_gtes_per_gt * sizeof(uint32_t),
BDRV_SECTOR_SIZE);
gt_count = DIV_ROUND_UP(grains, header.num_gtes_per_gt);
gd_sectors = DIV_ROUND_UP(gt_count * sizeof(uint32_t), BDRV_SECTOR_SIZE);
header.desc_offset = 1;
header.desc_size = 20;
header.rgd_offset = header.desc_offset + header.desc_size;
header.gd_offset = header.rgd_offset + gd_sectors + (gt_size * gt_count);
header.grain_offset =
ROUND_UP(header.gd_offset + gd_sectors + (gt_size * gt_count),
header.granularity);
/* swap endianness for all header fields */
header.version = cpu_to_le32(header.version);
header.flags = cpu_to_le32(header.flags);
header.capacity = cpu_to_le64(header.capacity);
header.granularity = cpu_to_le64(header.granularity);
header.num_gtes_per_gt = cpu_to_le32(header.num_gtes_per_gt);
header.desc_offset = cpu_to_le64(header.desc_offset);
header.desc_size = cpu_to_le64(header.desc_size);
header.rgd_offset = cpu_to_le64(header.rgd_offset);
header.gd_offset = cpu_to_le64(header.gd_offset);
header.grain_offset = cpu_to_le64(header.grain_offset);
header.compressAlgorithm = cpu_to_le16(header.compressAlgorithm);
header.check_bytes[0] = 0xa;
header.check_bytes[1] = 0x20;
header.check_bytes[2] = 0xd;
header.check_bytes[3] = 0xa;
/* write all the data */
ret = bdrv_pwrite(bs, 0, &magic, sizeof(magic));
if (ret < 0) {
error_set(errp, QERR_IO_ERROR);
goto exit;
}
ret = bdrv_pwrite(bs, sizeof(magic), &header, sizeof(header));
if (ret < 0) {
error_set(errp, QERR_IO_ERROR);
goto exit;
}
ret = bdrv_truncate(bs, le64_to_cpu(header.grain_offset) << 9);
if (ret < 0) {
error_setg_errno(errp, -ret, "Could not truncate file");
goto exit;
}
/* write grain directory */
gd_buf_size = gd_sectors * BDRV_SECTOR_SIZE;
gd_buf = g_malloc0(gd_buf_size);
for (i = 0, tmp = le64_to_cpu(header.rgd_offset) + gd_sectors;
i < gt_count; i++, tmp += gt_size) {
gd_buf[i] = cpu_to_le32(tmp);
}
ret = bdrv_pwrite(bs, le64_to_cpu(header.rgd_offset) * BDRV_SECTOR_SIZE,
gd_buf, gd_buf_size);
if (ret < 0) {
error_set(errp, QERR_IO_ERROR);
goto exit;
}
/* write backup grain directory */
for (i = 0, tmp = le64_to_cpu(header.gd_offset) + gd_sectors;
i < gt_count; i++, tmp += gt_size) {
gd_buf[i] = cpu_to_le32(tmp);
}
ret = bdrv_pwrite(bs, le64_to_cpu(header.gd_offset) * BDRV_SECTOR_SIZE,
gd_buf, gd_buf_size);
if (ret < 0) {
error_set(errp, QERR_IO_ERROR);
goto exit;
}
ret = 0;
exit:
if (bs) {
bdrv_unref(bs);
}
g_free(gd_buf);
return ret;
}
static int filename_decompose(const char *filename, char *path, char *prefix,
char *postfix, size_t buf_len, Error **errp)
{
const char *p, *q;
if (filename == NULL || !strlen(filename)) {
error_setg(errp, "No filename provided");
return VMDK_ERROR;
}
p = strrchr(filename, '/');
if (p == NULL) {
p = strrchr(filename, '\\');
}
if (p == NULL) {
p = strrchr(filename, ':');
}
if (p != NULL) {
p++;
if (p - filename >= buf_len) {
return VMDK_ERROR;
}
pstrcpy(path, p - filename + 1, filename);
} else {
p = filename;
path[0] = '\0';
}
q = strrchr(p, '.');
if (q == NULL) {
pstrcpy(prefix, buf_len, p);
postfix[0] = '\0';
} else {
if (q - p >= buf_len) {
return VMDK_ERROR;
}
pstrcpy(prefix, q - p + 1, p);
pstrcpy(postfix, buf_len, q);
}
return VMDK_OK;
}
static int vmdk_create(const char *filename, QemuOpts *opts, Error **errp)
{
int idx = 0;
BlockDriverState *new_bs = NULL;
Error *local_err = NULL;
char *desc = NULL;
int64_t total_size = 0, filesize;
char *adapter_type = NULL;
char *backing_file = NULL;
char *fmt = NULL;
int flags = 0;
int ret = 0;
bool flat, split, compress;
GString *ext_desc_lines;
char path[PATH_MAX], prefix[PATH_MAX], postfix[PATH_MAX];
const int64_t split_size = 0x80000000; /* VMDK has constant split size */
const char *desc_extent_line;
char parent_desc_line[BUF_SIZE] = "";
uint32_t parent_cid = 0xffffffff;
uint32_t number_heads = 16;
bool zeroed_grain = false;
uint32_t desc_offset = 0, desc_len;
const char desc_template[] =
"# Disk DescriptorFile\n"
"version=1\n"
"CID=%" PRIx32 "\n"
"parentCID=%" PRIx32 "\n"
"createType=\"%s\"\n"
"%s"
"\n"
"# Extent description\n"
"%s"
"\n"
"# The Disk Data Base\n"
"#DDB\n"
"\n"
"ddb.virtualHWVersion = \"%d\"\n"
"ddb.geometry.cylinders = \"%" PRId64 "\"\n"
"ddb.geometry.heads = \"%" PRIu32 "\"\n"
"ddb.geometry.sectors = \"63\"\n"
"ddb.adapterType = \"%s\"\n";
ext_desc_lines = g_string_new(NULL);
if (filename_decompose(filename, path, prefix, postfix, PATH_MAX, errp)) {
ret = -EINVAL;
goto exit;
}
/* Read out options */
total_size = qemu_opt_get_size_del(opts, BLOCK_OPT_SIZE, 0);
adapter_type = qemu_opt_get_del(opts, BLOCK_OPT_ADAPTER_TYPE);
backing_file = qemu_opt_get_del(opts, BLOCK_OPT_BACKING_FILE);
if (qemu_opt_get_bool_del(opts, BLOCK_OPT_COMPAT6, false)) {
flags |= BLOCK_FLAG_COMPAT6;
}
fmt = qemu_opt_get_del(opts, BLOCK_OPT_SUBFMT);
if (qemu_opt_get_bool_del(opts, BLOCK_OPT_ZEROED_GRAIN, false)) {
zeroed_grain = true;
}
if (!adapter_type) {
adapter_type = g_strdup("ide");
} else if (strcmp(adapter_type, "ide") &&
strcmp(adapter_type, "buslogic") &&
strcmp(adapter_type, "lsilogic") &&
strcmp(adapter_type, "legacyESX")) {
error_setg(errp, "Unknown adapter type: '%s'", adapter_type);
ret = -EINVAL;
goto exit;
}
if (strcmp(adapter_type, "ide") != 0) {
/* that's the number of heads with which vmware operates when
creating, exporting, etc. vmdk files with a non-ide adapter type */
number_heads = 255;
}
if (!fmt) {
/* Default format to monolithicSparse */
fmt = g_strdup("monolithicSparse");
} else if (strcmp(fmt, "monolithicFlat") &&
strcmp(fmt, "monolithicSparse") &&
strcmp(fmt, "twoGbMaxExtentSparse") &&
strcmp(fmt, "twoGbMaxExtentFlat") &&
strcmp(fmt, "streamOptimized")) {
error_setg(errp, "Unknown subformat: '%s'", fmt);
ret = -EINVAL;
goto exit;
}
split = !(strcmp(fmt, "twoGbMaxExtentFlat") &&
strcmp(fmt, "twoGbMaxExtentSparse"));
flat = !(strcmp(fmt, "monolithicFlat") &&
strcmp(fmt, "twoGbMaxExtentFlat"));
compress = !strcmp(fmt, "streamOptimized");
if (flat) {
desc_extent_line = "RW %" PRId64 " FLAT \"%s\" 0\n";
} else {
desc_extent_line = "RW %" PRId64 " SPARSE \"%s\"\n";
}
if (flat && backing_file) {
error_setg(errp, "Flat image can't have backing file");
ret = -ENOTSUP;
goto exit;
}
if (flat && zeroed_grain) {
error_setg(errp, "Flat image can't enable zeroed grain");
ret = -ENOTSUP;
goto exit;
}
if (backing_file) {
BlockDriverState *bs = NULL;
ret = bdrv_open(&bs, backing_file, NULL, NULL, BDRV_O_NO_BACKING, NULL,
errp);
if (ret != 0) {
goto exit;
}
if (strcmp(bs->drv->format_name, "vmdk")) {
bdrv_unref(bs);
ret = -EINVAL;
goto exit;
}
parent_cid = vmdk_read_cid(bs, 0);
bdrv_unref(bs);
snprintf(parent_desc_line, sizeof(parent_desc_line),
"parentFileNameHint=\"%s\"", backing_file);
}
/* Create extents */
filesize = total_size;
while (filesize > 0) {
char desc_line[BUF_SIZE];
char ext_filename[PATH_MAX];
char desc_filename[PATH_MAX];
int64_t size = filesize;
if (split && size > split_size) {
size = split_size;
}
if (split) {
snprintf(desc_filename, sizeof(desc_filename), "%s-%c%03d%s",
prefix, flat ? 'f' : 's', ++idx, postfix);
} else if (flat) {
snprintf(desc_filename, sizeof(desc_filename), "%s-flat%s",
prefix, postfix);
} else {
snprintf(desc_filename, sizeof(desc_filename), "%s%s",
prefix, postfix);
}
snprintf(ext_filename, sizeof(ext_filename), "%s%s",
path, desc_filename);
if (vmdk_create_extent(ext_filename, size,
flat, compress, zeroed_grain, opts, errp)) {
ret = -EINVAL;
goto exit;
}
filesize -= size;
/* Format description line */
snprintf(desc_line, sizeof(desc_line),
desc_extent_line, size / BDRV_SECTOR_SIZE, desc_filename);
g_string_append(ext_desc_lines, desc_line);
}
/* generate descriptor file */
desc = g_strdup_printf(desc_template,
(uint32_t)time(NULL),
parent_cid,
fmt,
parent_desc_line,
ext_desc_lines->str,
(flags & BLOCK_FLAG_COMPAT6 ? 6 : 4),
total_size /
(int64_t)(63 * number_heads * BDRV_SECTOR_SIZE),
number_heads,
adapter_type);
desc_len = strlen(desc);
/* the descriptor offset = 0x200 */
if (!split && !flat) {
desc_offset = 0x200;
} else {
ret = bdrv_create_file(filename, opts, &local_err);
if (ret < 0) {
error_propagate(errp, local_err);
goto exit;
}
}
assert(new_bs == NULL);
ret = bdrv_open(&new_bs, filename, NULL, NULL,
BDRV_O_RDWR | BDRV_O_PROTOCOL, NULL, &local_err);
if (ret < 0) {
error_propagate(errp, local_err);
goto exit;
}
ret = bdrv_pwrite(new_bs, desc_offset, desc, desc_len);
if (ret < 0) {
error_setg_errno(errp, -ret, "Could not write description");
goto exit;
}
/* bdrv_pwrite write padding zeros to align to sector, we don't need that
* for description file */
if (desc_offset == 0) {
ret = bdrv_truncate(new_bs, desc_len);
if (ret < 0) {
error_setg_errno(errp, -ret, "Could not truncate file");
}
}
exit:
if (new_bs) {
bdrv_unref(new_bs);
}
g_free(adapter_type);
g_free(backing_file);
g_free(fmt);
g_free(desc);
g_string_free(ext_desc_lines, true);
return ret;
}
static void vmdk_close(BlockDriverState *bs)
{
BDRVVmdkState *s = bs->opaque;
vmdk_free_extents(bs);
g_free(s->create_type);
migrate_del_blocker(s->migration_blocker);
error_free(s->migration_blocker);
}
static coroutine_fn int vmdk_co_flush(BlockDriverState *bs)
{
BDRVVmdkState *s = bs->opaque;
int i, err;
int ret = 0;
for (i = 0; i < s->num_extents; i++) {
err = bdrv_co_flush(s->extents[i].file);
if (err < 0) {
ret = err;
}
}
return ret;
}
static int64_t vmdk_get_allocated_file_size(BlockDriverState *bs)
{
int i;
int64_t ret = 0;
int64_t r;
BDRVVmdkState *s = bs->opaque;
ret = bdrv_get_allocated_file_size(bs->file);
if (ret < 0) {
return ret;
}
for (i = 0; i < s->num_extents; i++) {
if (s->extents[i].file == bs->file) {
continue;
}
r = bdrv_get_allocated_file_size(s->extents[i].file);
if (r < 0) {
return r;
}
ret += r;
}
return ret;
}
static int vmdk_has_zero_init(BlockDriverState *bs)
{
int i;
BDRVVmdkState *s = bs->opaque;
/* If has a flat extent and its underlying storage doesn't have zero init,
* return 0. */
for (i = 0; i < s->num_extents; i++) {
if (s->extents[i].flat) {
if (!bdrv_has_zero_init(s->extents[i].file)) {
return 0;
}
}
}
return 1;
}
static ImageInfo *vmdk_get_extent_info(VmdkExtent *extent)
{
ImageInfo *info = g_new0(ImageInfo, 1);
*info = (ImageInfo){
.filename = g_strdup(extent->file->filename),
.format = g_strdup(extent->type),
.virtual_size = extent->sectors * BDRV_SECTOR_SIZE,
.compressed = extent->compressed,
.has_compressed = extent->compressed,
.cluster_size = extent->cluster_sectors * BDRV_SECTOR_SIZE,
.has_cluster_size = !extent->flat,
};
return info;
}
static int vmdk_check(BlockDriverState *bs, BdrvCheckResult *result,
BdrvCheckMode fix)
{
BDRVVmdkState *s = bs->opaque;
VmdkExtent *extent = NULL;
int64_t sector_num = 0;
int64_t total_sectors = bdrv_getlength(bs) / BDRV_SECTOR_SIZE;
int ret;
uint64_t cluster_offset;
if (fix) {
return -ENOTSUP;
}
for (;;) {
if (sector_num >= total_sectors) {
return 0;
}
extent = find_extent(s, sector_num, extent);
if (!extent) {
fprintf(stderr,
"ERROR: could not find extent for sector %" PRId64 "\n",
sector_num);
break;
}
ret = get_cluster_offset(bs, extent, NULL,
sector_num << BDRV_SECTOR_BITS,
0, &cluster_offset);
if (ret == VMDK_ERROR) {
fprintf(stderr,
"ERROR: could not get cluster_offset for sector %"
PRId64 "\n", sector_num);
break;
}
if (ret == VMDK_OK && cluster_offset >= bdrv_getlength(extent->file)) {
fprintf(stderr,
"ERROR: cluster offset for sector %"
PRId64 " points after EOF\n", sector_num);
break;
}
sector_num += extent->cluster_sectors;
}
result->corruptions++;
return 0;
}
static ImageInfoSpecific *vmdk_get_specific_info(BlockDriverState *bs)
{
int i;
BDRVVmdkState *s = bs->opaque;
ImageInfoSpecific *spec_info = g_new0(ImageInfoSpecific, 1);
ImageInfoList **next;
*spec_info = (ImageInfoSpecific){
.kind = IMAGE_INFO_SPECIFIC_KIND_VMDK,
{
.vmdk = g_new0(ImageInfoSpecificVmdk, 1),
},
};
*spec_info->vmdk = (ImageInfoSpecificVmdk) {
.create_type = g_strdup(s->create_type),
.cid = s->cid,
.parent_cid = s->parent_cid,
};
next = &spec_info->vmdk->extents;
for (i = 0; i < s->num_extents; i++) {
*next = g_new0(ImageInfoList, 1);
(*next)->value = vmdk_get_extent_info(&s->extents[i]);
(*next)->next = NULL;
next = &(*next)->next;
}
return spec_info;
}
static int vmdk_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
{
int i;
BDRVVmdkState *s = bs->opaque;
assert(s->num_extents);
bdi->needs_compressed_writes = s->extents[0].compressed;
if (!s->extents[0].flat) {
bdi->cluster_size = s->extents[0].cluster_sectors << BDRV_SECTOR_BITS;
}
/* See if we have multiple extents but they have different cases */
for (i = 1; i < s->num_extents; i++) {
if (bdi->needs_compressed_writes != s->extents[i].compressed ||
(bdi->cluster_size && bdi->cluster_size !=
s->extents[i].cluster_sectors << BDRV_SECTOR_BITS)) {
return -ENOTSUP;
}
}
return 0;
}
static void vmdk_detach_aio_context(BlockDriverState *bs)
{
BDRVVmdkState *s = bs->opaque;
int i;
for (i = 0; i < s->num_extents; i++) {
bdrv_detach_aio_context(s->extents[i].file);
}
}
static void vmdk_attach_aio_context(BlockDriverState *bs,
AioContext *new_context)
{
BDRVVmdkState *s = bs->opaque;
int i;
for (i = 0; i < s->num_extents; i++) {
bdrv_attach_aio_context(s->extents[i].file, new_context);
}
}
static QemuOptsList vmdk_create_opts = {
.name = "vmdk-create-opts",
.head = QTAILQ_HEAD_INITIALIZER(vmdk_create_opts.head),
.desc = {
{
.name = BLOCK_OPT_SIZE,
.type = QEMU_OPT_SIZE,
.help = "Virtual disk size"
},
{
.name = BLOCK_OPT_ADAPTER_TYPE,
.type = QEMU_OPT_STRING,
.help = "Virtual adapter type, can be one of "
"ide (default), lsilogic, buslogic or legacyESX"
},
{
.name = BLOCK_OPT_BACKING_FILE,
.type = QEMU_OPT_STRING,
.help = "File name of a base image"
},
{
.name = BLOCK_OPT_COMPAT6,
.type = QEMU_OPT_BOOL,
.help = "VMDK version 6 image",
.def_value_str = "off"
},
{
.name = BLOCK_OPT_SUBFMT,
.type = QEMU_OPT_STRING,
.help =
"VMDK flat extent format, can be one of "
"{monolithicSparse (default) | monolithicFlat | twoGbMaxExtentSparse | twoGbMaxExtentFlat | streamOptimized} "
},
{
.name = BLOCK_OPT_ZEROED_GRAIN,
.type = QEMU_OPT_BOOL,
.help = "Enable efficient zero writes "
"using the zeroed-grain GTE feature"
},
{ /* end of list */ }
}
};
static BlockDriver bdrv_vmdk = {
.format_name = "vmdk",
.instance_size = sizeof(BDRVVmdkState),
.bdrv_probe = vmdk_probe,
.bdrv_open = vmdk_open,
.bdrv_check = vmdk_check,
.bdrv_reopen_prepare = vmdk_reopen_prepare,
.bdrv_read = vmdk_co_read,
.bdrv_write = vmdk_co_write,
.bdrv_write_compressed = vmdk_write_compressed,
.bdrv_co_write_zeroes = vmdk_co_write_zeroes,
.bdrv_close = vmdk_close,
.bdrv_create = vmdk_create,
.bdrv_co_flush_to_disk = vmdk_co_flush,
.bdrv_co_get_block_status = vmdk_co_get_block_status,
.bdrv_get_allocated_file_size = vmdk_get_allocated_file_size,
.bdrv_has_zero_init = vmdk_has_zero_init,
.bdrv_get_specific_info = vmdk_get_specific_info,
.bdrv_refresh_limits = vmdk_refresh_limits,
.bdrv_get_info = vmdk_get_info,
.bdrv_detach_aio_context = vmdk_detach_aio_context,
.bdrv_attach_aio_context = vmdk_attach_aio_context,
.supports_backing = true,
.create_opts = &vmdk_create_opts,
};
static void bdrv_vmdk_init(void)
{
bdrv_register(&bdrv_vmdk);
}
block_init(bdrv_vmdk_init);