qemu/hw/arm_timer.c
Mark Langsdorf 104a26a236 arm: Set frequencies for arm_timer
Use qdev properties to allow board modelers to set the frequencies
for the sp804 timer. Each of the sp804's timers can have an
individual frequency. The timers default to 1MHz.

Signed-off-by: Mark Langsdorf <mark.langsdorf@calxeda.com>
Reviewed-by: Andreas Färber <afaerber@suse.de>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2012-01-04 13:41:42 +00:00

370 lines
9.8 KiB
C

/*
* ARM PrimeCell Timer modules.
*
* Copyright (c) 2005-2006 CodeSourcery.
* Written by Paul Brook
*
* This code is licensed under the GPL.
*/
#include "sysbus.h"
#include "qemu-timer.h"
#include "qemu-common.h"
#include "qdev.h"
/* Common timer implementation. */
#define TIMER_CTRL_ONESHOT (1 << 0)
#define TIMER_CTRL_32BIT (1 << 1)
#define TIMER_CTRL_DIV1 (0 << 2)
#define TIMER_CTRL_DIV16 (1 << 2)
#define TIMER_CTRL_DIV256 (2 << 2)
#define TIMER_CTRL_IE (1 << 5)
#define TIMER_CTRL_PERIODIC (1 << 6)
#define TIMER_CTRL_ENABLE (1 << 7)
typedef struct {
ptimer_state *timer;
uint32_t control;
uint32_t limit;
int freq;
int int_level;
qemu_irq irq;
} arm_timer_state;
/* Check all active timers, and schedule the next timer interrupt. */
static void arm_timer_update(arm_timer_state *s)
{
/* Update interrupts. */
if (s->int_level && (s->control & TIMER_CTRL_IE)) {
qemu_irq_raise(s->irq);
} else {
qemu_irq_lower(s->irq);
}
}
static uint32_t arm_timer_read(void *opaque, target_phys_addr_t offset)
{
arm_timer_state *s = (arm_timer_state *)opaque;
switch (offset >> 2) {
case 0: /* TimerLoad */
case 6: /* TimerBGLoad */
return s->limit;
case 1: /* TimerValue */
return ptimer_get_count(s->timer);
case 2: /* TimerControl */
return s->control;
case 4: /* TimerRIS */
return s->int_level;
case 5: /* TimerMIS */
if ((s->control & TIMER_CTRL_IE) == 0)
return 0;
return s->int_level;
default:
hw_error("%s: Bad offset %x\n", __func__, (int)offset);
return 0;
}
}
/* Reset the timer limit after settings have changed. */
static void arm_timer_recalibrate(arm_timer_state *s, int reload)
{
uint32_t limit;
if ((s->control & (TIMER_CTRL_PERIODIC | TIMER_CTRL_ONESHOT)) == 0) {
/* Free running. */
if (s->control & TIMER_CTRL_32BIT)
limit = 0xffffffff;
else
limit = 0xffff;
} else {
/* Periodic. */
limit = s->limit;
}
ptimer_set_limit(s->timer, limit, reload);
}
static void arm_timer_write(void *opaque, target_phys_addr_t offset,
uint32_t value)
{
arm_timer_state *s = (arm_timer_state *)opaque;
int freq;
switch (offset >> 2) {
case 0: /* TimerLoad */
s->limit = value;
arm_timer_recalibrate(s, 1);
break;
case 1: /* TimerValue */
/* ??? Linux seems to want to write to this readonly register.
Ignore it. */
break;
case 2: /* TimerControl */
if (s->control & TIMER_CTRL_ENABLE) {
/* Pause the timer if it is running. This may cause some
inaccuracy dure to rounding, but avoids a whole lot of other
messyness. */
ptimer_stop(s->timer);
}
s->control = value;
freq = s->freq;
/* ??? Need to recalculate expiry time after changing divisor. */
switch ((value >> 2) & 3) {
case 1: freq >>= 4; break;
case 2: freq >>= 8; break;
}
arm_timer_recalibrate(s, s->control & TIMER_CTRL_ENABLE);
ptimer_set_freq(s->timer, freq);
if (s->control & TIMER_CTRL_ENABLE) {
/* Restart the timer if still enabled. */
ptimer_run(s->timer, (s->control & TIMER_CTRL_ONESHOT) != 0);
}
break;
case 3: /* TimerIntClr */
s->int_level = 0;
break;
case 6: /* TimerBGLoad */
s->limit = value;
arm_timer_recalibrate(s, 0);
break;
default:
hw_error("%s: Bad offset %x\n", __func__, (int)offset);
}
arm_timer_update(s);
}
static void arm_timer_tick(void *opaque)
{
arm_timer_state *s = (arm_timer_state *)opaque;
s->int_level = 1;
arm_timer_update(s);
}
static const VMStateDescription vmstate_arm_timer = {
.name = "arm_timer",
.version_id = 1,
.minimum_version_id = 1,
.minimum_version_id_old = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(control, arm_timer_state),
VMSTATE_UINT32(limit, arm_timer_state),
VMSTATE_INT32(int_level, arm_timer_state),
VMSTATE_PTIMER(timer, arm_timer_state),
VMSTATE_END_OF_LIST()
}
};
static arm_timer_state *arm_timer_init(uint32_t freq)
{
arm_timer_state *s;
QEMUBH *bh;
s = (arm_timer_state *)g_malloc0(sizeof(arm_timer_state));
s->freq = freq;
s->control = TIMER_CTRL_IE;
bh = qemu_bh_new(arm_timer_tick, s);
s->timer = ptimer_init(bh);
vmstate_register(NULL, -1, &vmstate_arm_timer, s);
return s;
}
/* ARM PrimeCell SP804 dual timer module.
* Docs at
* http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0271d/index.html
*/
typedef struct {
SysBusDevice busdev;
MemoryRegion iomem;
arm_timer_state *timer[2];
uint32_t freq0, freq1;
int level[2];
qemu_irq irq;
} sp804_state;
static const uint8_t sp804_ids[] = {
/* Timer ID */
0x04, 0x18, 0x14, 0,
/* PrimeCell ID */
0xd, 0xf0, 0x05, 0xb1
};
/* Merge the IRQs from the two component devices. */
static void sp804_set_irq(void *opaque, int irq, int level)
{
sp804_state *s = (sp804_state *)opaque;
s->level[irq] = level;
qemu_set_irq(s->irq, s->level[0] || s->level[1]);
}
static uint64_t sp804_read(void *opaque, target_phys_addr_t offset,
unsigned size)
{
sp804_state *s = (sp804_state *)opaque;
if (offset < 0x20) {
return arm_timer_read(s->timer[0], offset);
}
if (offset < 0x40) {
return arm_timer_read(s->timer[1], offset - 0x20);
}
/* TimerPeriphID */
if (offset >= 0xfe0 && offset <= 0xffc) {
return sp804_ids[(offset - 0xfe0) >> 2];
}
switch (offset) {
/* Integration Test control registers, which we won't support */
case 0xf00: /* TimerITCR */
case 0xf04: /* TimerITOP (strictly write only but..) */
return 0;
}
hw_error("%s: Bad offset %x\n", __func__, (int)offset);
return 0;
}
static void sp804_write(void *opaque, target_phys_addr_t offset,
uint64_t value, unsigned size)
{
sp804_state *s = (sp804_state *)opaque;
if (offset < 0x20) {
arm_timer_write(s->timer[0], offset, value);
return;
}
if (offset < 0x40) {
arm_timer_write(s->timer[1], offset - 0x20, value);
return;
}
/* Technically we could be writing to the Test Registers, but not likely */
hw_error("%s: Bad offset %x\n", __func__, (int)offset);
}
static const MemoryRegionOps sp804_ops = {
.read = sp804_read,
.write = sp804_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static const VMStateDescription vmstate_sp804 = {
.name = "sp804",
.version_id = 1,
.minimum_version_id = 1,
.minimum_version_id_old = 1,
.fields = (VMStateField[]) {
VMSTATE_INT32_ARRAY(level, sp804_state, 2),
VMSTATE_END_OF_LIST()
}
};
static int sp804_init(SysBusDevice *dev)
{
sp804_state *s = FROM_SYSBUS(sp804_state, dev);
qemu_irq *qi;
qi = qemu_allocate_irqs(sp804_set_irq, s, 2);
sysbus_init_irq(dev, &s->irq);
/* The timers are configurable between 32kHz and 1MHz
* defaulting to 1MHz but overrideable as individual properties */
s->timer[0] = arm_timer_init(s->freq0);
s->timer[1] = arm_timer_init(s->freq1);
s->timer[0]->irq = qi[0];
s->timer[1]->irq = qi[1];
memory_region_init_io(&s->iomem, &sp804_ops, s, "sp804", 0x1000);
sysbus_init_mmio(dev, &s->iomem);
vmstate_register(&dev->qdev, -1, &vmstate_sp804, s);
return 0;
}
static SysBusDeviceInfo sp804_info = {
.init = sp804_init,
.qdev.name = "sp804",
.qdev.size = sizeof(sp804_state),
.qdev.props = (Property[]) {
DEFINE_PROP_UINT32("freq0", sp804_state, freq0, 1000000),
DEFINE_PROP_UINT32("freq1", sp804_state, freq1, 1000000),
DEFINE_PROP_END_OF_LIST(),
}
};
/* Integrator/CP timer module. */
typedef struct {
SysBusDevice busdev;
MemoryRegion iomem;
arm_timer_state *timer[3];
} icp_pit_state;
static uint64_t icp_pit_read(void *opaque, target_phys_addr_t offset,
unsigned size)
{
icp_pit_state *s = (icp_pit_state *)opaque;
int n;
/* ??? Don't know the PrimeCell ID for this device. */
n = offset >> 8;
if (n > 2) {
hw_error("%s: Bad timer %d\n", __func__, n);
}
return arm_timer_read(s->timer[n], offset & 0xff);
}
static void icp_pit_write(void *opaque, target_phys_addr_t offset,
uint64_t value, unsigned size)
{
icp_pit_state *s = (icp_pit_state *)opaque;
int n;
n = offset >> 8;
if (n > 2) {
hw_error("%s: Bad timer %d\n", __func__, n);
}
arm_timer_write(s->timer[n], offset & 0xff, value);
}
static const MemoryRegionOps icp_pit_ops = {
.read = icp_pit_read,
.write = icp_pit_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static int icp_pit_init(SysBusDevice *dev)
{
icp_pit_state *s = FROM_SYSBUS(icp_pit_state, dev);
/* Timer 0 runs at the system clock speed (40MHz). */
s->timer[0] = arm_timer_init(40000000);
/* The other two timers run at 1MHz. */
s->timer[1] = arm_timer_init(1000000);
s->timer[2] = arm_timer_init(1000000);
sysbus_init_irq(dev, &s->timer[0]->irq);
sysbus_init_irq(dev, &s->timer[1]->irq);
sysbus_init_irq(dev, &s->timer[2]->irq);
memory_region_init_io(&s->iomem, &icp_pit_ops, s, "icp_pit", 0x1000);
sysbus_init_mmio(dev, &s->iomem);
/* This device has no state to save/restore. The component timers will
save themselves. */
return 0;
}
static void arm_timer_register_devices(void)
{
sysbus_register_dev("integrator_pit", sizeof(icp_pit_state), icp_pit_init);
sysbus_register_withprop(&sp804_info);
}
device_init(arm_timer_register_devices)