qemu/target/riscv/insn_trans/trans_rvzce.c.inc
Jason Chien 3011c1dd9c target/riscv: Update $ra with current $pc in trans_cm_jalt()
The original implementation sets $pc to the address read from the jump
vector table first and links $ra with the address of the next instruction
after the updated $pc. After jumping to the updated $pc and executing the
next ret instruction, the program jumps to $ra, which is in the same
function currently executing, which results in an infinite loop.
This commit stores the jump address in a temporary, updates $ra with the
current $pc, and copies the temporary to $pc.

Signed-off-by: Jason Chien <jason.chien@sifive.com>
Reviewed-by: Frank Chang <frank.chang@sifive.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-ID: <20240207081820.28559-1-jason.chien@sifive.com>
Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
2024-03-08 15:37:20 +10:00

318 lines
7.7 KiB
C++

/*
* RISC-V translation routines for the Zc[b,mp,mt] Standard Extensions.
*
* Copyright (c) 2021-2022 PLCT Lab
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#define REQUIRE_ZCB(ctx) do { \
if (!ctx->cfg_ptr->ext_zcb) \
return false; \
} while (0)
#define REQUIRE_ZCMP(ctx) do { \
if (!ctx->cfg_ptr->ext_zcmp) \
return false; \
} while (0)
#define REQUIRE_ZCMT(ctx) do { \
if (!ctx->cfg_ptr->ext_zcmt) \
return false; \
} while (0)
static bool trans_c_zext_b(DisasContext *ctx, arg_c_zext_b *a)
{
REQUIRE_ZCB(ctx);
return gen_unary(ctx, a, EXT_NONE, tcg_gen_ext8u_tl);
}
static bool trans_c_zext_h(DisasContext *ctx, arg_c_zext_h *a)
{
REQUIRE_ZCB(ctx);
REQUIRE_ZBB(ctx);
return gen_unary(ctx, a, EXT_NONE, tcg_gen_ext16u_tl);
}
static bool trans_c_sext_b(DisasContext *ctx, arg_c_sext_b *a)
{
REQUIRE_ZCB(ctx);
REQUIRE_ZBB(ctx);
return gen_unary(ctx, a, EXT_NONE, tcg_gen_ext8s_tl);
}
static bool trans_c_sext_h(DisasContext *ctx, arg_c_sext_h *a)
{
REQUIRE_ZCB(ctx);
REQUIRE_ZBB(ctx);
return gen_unary(ctx, a, EXT_NONE, tcg_gen_ext16s_tl);
}
static bool trans_c_zext_w(DisasContext *ctx, arg_c_zext_w *a)
{
REQUIRE_64BIT(ctx);
REQUIRE_ZCB(ctx);
REQUIRE_ZBA(ctx);
return gen_unary(ctx, a, EXT_NONE, tcg_gen_ext32u_tl);
}
static bool trans_c_not(DisasContext *ctx, arg_c_not *a)
{
REQUIRE_ZCB(ctx);
return gen_unary(ctx, a, EXT_NONE, tcg_gen_not_tl);
}
static bool trans_c_mul(DisasContext *ctx, arg_c_mul *a)
{
REQUIRE_ZCB(ctx);
REQUIRE_M_OR_ZMMUL(ctx);
return gen_arith(ctx, a, EXT_NONE, tcg_gen_mul_tl, NULL);
}
static bool trans_c_lbu(DisasContext *ctx, arg_c_lbu *a)
{
REQUIRE_ZCB(ctx);
return gen_load(ctx, a, MO_UB);
}
static bool trans_c_lhu(DisasContext *ctx, arg_c_lhu *a)
{
REQUIRE_ZCB(ctx);
return gen_load(ctx, a, MO_UW);
}
static bool trans_c_lh(DisasContext *ctx, arg_c_lh *a)
{
REQUIRE_ZCB(ctx);
return gen_load(ctx, a, MO_SW);
}
static bool trans_c_sb(DisasContext *ctx, arg_c_sb *a)
{
REQUIRE_ZCB(ctx);
return gen_store(ctx, a, MO_UB);
}
static bool trans_c_sh(DisasContext *ctx, arg_c_sh *a)
{
REQUIRE_ZCB(ctx);
return gen_store(ctx, a, MO_UW);
}
#define X_S0 8
#define X_S1 9
#define X_Sn 16
static uint32_t decode_push_pop_list(DisasContext *ctx, target_ulong rlist)
{
uint32_t reg_bitmap = 0;
if (has_ext(ctx, RVE) && rlist > 6) {
return 0;
}
switch (rlist) {
case 15:
reg_bitmap |= 1 << (X_Sn + 11) ;
reg_bitmap |= 1 << (X_Sn + 10) ;
/* FALL THROUGH */
case 14:
reg_bitmap |= 1 << (X_Sn + 9) ;
/* FALL THROUGH */
case 13:
reg_bitmap |= 1 << (X_Sn + 8) ;
/* FALL THROUGH */
case 12:
reg_bitmap |= 1 << (X_Sn + 7) ;
/* FALL THROUGH */
case 11:
reg_bitmap |= 1 << (X_Sn + 6) ;
/* FALL THROUGH */
case 10:
reg_bitmap |= 1 << (X_Sn + 5) ;
/* FALL THROUGH */
case 9:
reg_bitmap |= 1 << (X_Sn + 4) ;
/* FALL THROUGH */
case 8:
reg_bitmap |= 1 << (X_Sn + 3) ;
/* FALL THROUGH */
case 7:
reg_bitmap |= 1 << (X_Sn + 2) ;
/* FALL THROUGH */
case 6:
reg_bitmap |= 1 << X_S1 ;
/* FALL THROUGH */
case 5:
reg_bitmap |= 1 << X_S0;
/* FALL THROUGH */
case 4:
reg_bitmap |= 1 << xRA;
break;
default:
break;
}
return reg_bitmap;
}
static bool gen_pop(DisasContext *ctx, arg_cmpp *a, bool ret, bool ret_val)
{
REQUIRE_ZCMP(ctx);
uint32_t reg_bitmap = decode_push_pop_list(ctx, a->urlist);
if (reg_bitmap == 0) {
return false;
}
MemOp memop = get_ol(ctx) == MXL_RV32 ? MO_TEUL : MO_TEUQ;
int reg_size = memop_size(memop);
target_ulong stack_adj = ROUND_UP(ctpop32(reg_bitmap) * reg_size, 16) +
a->spimm;
TCGv sp = dest_gpr(ctx, xSP);
TCGv addr = tcg_temp_new();
int i;
tcg_gen_addi_tl(addr, sp, stack_adj - reg_size);
for (i = X_Sn + 11; i >= 0; i--) {
if (reg_bitmap & (1 << i)) {
TCGv dest = dest_gpr(ctx, i);
tcg_gen_qemu_ld_tl(dest, addr, ctx->mem_idx, memop);
gen_set_gpr(ctx, i, dest);
tcg_gen_subi_tl(addr, addr, reg_size);
}
}
tcg_gen_addi_tl(sp, sp, stack_adj);
gen_set_gpr(ctx, xSP, sp);
if (ret_val) {
gen_set_gpr(ctx, xA0, ctx->zero);
}
if (ret) {
TCGv ret_addr = get_gpr(ctx, xRA, EXT_SIGN);
tcg_gen_mov_tl(cpu_pc, ret_addr);
tcg_gen_lookup_and_goto_ptr();
ctx->base.is_jmp = DISAS_NORETURN;
}
return true;
}
static bool trans_cm_push(DisasContext *ctx, arg_cm_push *a)
{
REQUIRE_ZCMP(ctx);
uint32_t reg_bitmap = decode_push_pop_list(ctx, a->urlist);
if (reg_bitmap == 0) {
return false;
}
MemOp memop = get_ol(ctx) == MXL_RV32 ? MO_TEUL : MO_TEUQ;
int reg_size = memop_size(memop);
target_ulong stack_adj = ROUND_UP(ctpop32(reg_bitmap) * reg_size, 16) +
a->spimm;
TCGv sp = dest_gpr(ctx, xSP);
TCGv addr = tcg_temp_new();
int i;
tcg_gen_subi_tl(addr, sp, reg_size);
for (i = X_Sn + 11; i >= 0; i--) {
if (reg_bitmap & (1 << i)) {
TCGv val = get_gpr(ctx, i, EXT_NONE);
tcg_gen_qemu_st_tl(val, addr, ctx->mem_idx, memop);
tcg_gen_subi_tl(addr, addr, reg_size);
}
}
tcg_gen_subi_tl(sp, sp, stack_adj);
gen_set_gpr(ctx, xSP, sp);
return true;
}
static bool trans_cm_pop(DisasContext *ctx, arg_cm_pop *a)
{
return gen_pop(ctx, a, false, false);
}
static bool trans_cm_popret(DisasContext *ctx, arg_cm_popret *a)
{
return gen_pop(ctx, a, true, false);
}
static bool trans_cm_popretz(DisasContext *ctx, arg_cm_popret *a)
{
return gen_pop(ctx, a, true, true);
}
static bool trans_cm_mva01s(DisasContext *ctx, arg_cm_mva01s *a)
{
REQUIRE_ZCMP(ctx);
TCGv src1 = get_gpr(ctx, a->rs1, EXT_NONE);
TCGv src2 = get_gpr(ctx, a->rs2, EXT_NONE);
gen_set_gpr(ctx, xA0, src1);
gen_set_gpr(ctx, xA1, src2);
return true;
}
static bool trans_cm_mvsa01(DisasContext *ctx, arg_cm_mvsa01 *a)
{
REQUIRE_ZCMP(ctx);
if (a->rs1 == a->rs2) {
return false;
}
TCGv a0 = get_gpr(ctx, xA0, EXT_NONE);
TCGv a1 = get_gpr(ctx, xA1, EXT_NONE);
gen_set_gpr(ctx, a->rs1, a0);
gen_set_gpr(ctx, a->rs2, a1);
return true;
}
static bool trans_cm_jalt(DisasContext *ctx, arg_cm_jalt *a)
{
REQUIRE_ZCMT(ctx);
TCGv addr = tcg_temp_new();
/*
* Update pc to current for the non-unwinding exception
* that might come from cpu_ld*_code() in the helper.
*/
gen_update_pc(ctx, 0);
gen_helper_cm_jalt(addr, tcg_env, tcg_constant_i32(a->index));
/* c.jt vs c.jalt depends on the index. */
if (a->index >= 32) {
TCGv succ_pc = dest_gpr(ctx, xRA);
gen_pc_plus_diff(succ_pc, ctx, ctx->cur_insn_len);
gen_set_gpr(ctx, xRA, succ_pc);
}
tcg_gen_mov_tl(cpu_pc, addr);
tcg_gen_lookup_and_goto_ptr();
ctx->base.is_jmp = DISAS_NORETURN;
return true;
}