qemu/hw/riscv/virt.c
Alistair Francis 7d10ff8a4d hw/riscv: virt: Use the PLIC config helper function
Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Bin Meng <bmeng.cn@gmail.com>
Tested-by: Bin Meng <bmeng.cn@gmail.com>
Message-id: 20211022060133.3045020-5-alistair.francis@opensource.wdc.com
2021-10-28 14:39:23 +10:00

1039 lines
39 KiB
C

/*
* QEMU RISC-V VirtIO Board
*
* Copyright (c) 2017 SiFive, Inc.
*
* RISC-V machine with 16550a UART and VirtIO MMIO
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/units.h"
#include "qemu/error-report.h"
#include "qapi/error.h"
#include "hw/boards.h"
#include "hw/loader.h"
#include "hw/sysbus.h"
#include "hw/qdev-properties.h"
#include "hw/char/serial.h"
#include "target/riscv/cpu.h"
#include "hw/riscv/riscv_hart.h"
#include "hw/riscv/virt.h"
#include "hw/riscv/boot.h"
#include "hw/riscv/numa.h"
#include "hw/intc/riscv_aclint.h"
#include "hw/intc/sifive_plic.h"
#include "hw/misc/sifive_test.h"
#include "chardev/char.h"
#include "sysemu/device_tree.h"
#include "sysemu/sysemu.h"
#include "hw/pci/pci.h"
#include "hw/pci-host/gpex.h"
#include "hw/display/ramfb.h"
static const MemMapEntry virt_memmap[] = {
[VIRT_DEBUG] = { 0x0, 0x100 },
[VIRT_MROM] = { 0x1000, 0xf000 },
[VIRT_TEST] = { 0x100000, 0x1000 },
[VIRT_RTC] = { 0x101000, 0x1000 },
[VIRT_CLINT] = { 0x2000000, 0x10000 },
[VIRT_ACLINT_SSWI] = { 0x2F00000, 0x4000 },
[VIRT_PCIE_PIO] = { 0x3000000, 0x10000 },
[VIRT_PLIC] = { 0xc000000, VIRT_PLIC_SIZE(VIRT_CPUS_MAX * 2) },
[VIRT_UART0] = { 0x10000000, 0x100 },
[VIRT_VIRTIO] = { 0x10001000, 0x1000 },
[VIRT_FW_CFG] = { 0x10100000, 0x18 },
[VIRT_FLASH] = { 0x20000000, 0x4000000 },
[VIRT_PCIE_ECAM] = { 0x30000000, 0x10000000 },
[VIRT_PCIE_MMIO] = { 0x40000000, 0x40000000 },
[VIRT_DRAM] = { 0x80000000, 0x0 },
};
/* PCIe high mmio is fixed for RV32 */
#define VIRT32_HIGH_PCIE_MMIO_BASE 0x300000000ULL
#define VIRT32_HIGH_PCIE_MMIO_SIZE (4 * GiB)
/* PCIe high mmio for RV64, size is fixed but base depends on top of RAM */
#define VIRT64_HIGH_PCIE_MMIO_SIZE (16 * GiB)
static MemMapEntry virt_high_pcie_memmap;
#define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
static PFlashCFI01 *virt_flash_create1(RISCVVirtState *s,
const char *name,
const char *alias_prop_name)
{
/*
* Create a single flash device. We use the same parameters as
* the flash devices on the ARM virt board.
*/
DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
qdev_prop_set_uint8(dev, "width", 4);
qdev_prop_set_uint8(dev, "device-width", 2);
qdev_prop_set_bit(dev, "big-endian", false);
qdev_prop_set_uint16(dev, "id0", 0x89);
qdev_prop_set_uint16(dev, "id1", 0x18);
qdev_prop_set_uint16(dev, "id2", 0x00);
qdev_prop_set_uint16(dev, "id3", 0x00);
qdev_prop_set_string(dev, "name", name);
object_property_add_child(OBJECT(s), name, OBJECT(dev));
object_property_add_alias(OBJECT(s), alias_prop_name,
OBJECT(dev), "drive");
return PFLASH_CFI01(dev);
}
static void virt_flash_create(RISCVVirtState *s)
{
s->flash[0] = virt_flash_create1(s, "virt.flash0", "pflash0");
s->flash[1] = virt_flash_create1(s, "virt.flash1", "pflash1");
}
static void virt_flash_map1(PFlashCFI01 *flash,
hwaddr base, hwaddr size,
MemoryRegion *sysmem)
{
DeviceState *dev = DEVICE(flash);
assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
memory_region_add_subregion(sysmem, base,
sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
0));
}
static void virt_flash_map(RISCVVirtState *s,
MemoryRegion *sysmem)
{
hwaddr flashsize = virt_memmap[VIRT_FLASH].size / 2;
hwaddr flashbase = virt_memmap[VIRT_FLASH].base;
virt_flash_map1(s->flash[0], flashbase, flashsize,
sysmem);
virt_flash_map1(s->flash[1], flashbase + flashsize, flashsize,
sysmem);
}
static void create_pcie_irq_map(void *fdt, char *nodename,
uint32_t plic_phandle)
{
int pin, dev;
uint32_t
full_irq_map[GPEX_NUM_IRQS * GPEX_NUM_IRQS * FDT_INT_MAP_WIDTH] = {};
uint32_t *irq_map = full_irq_map;
/* This code creates a standard swizzle of interrupts such that
* each device's first interrupt is based on it's PCI_SLOT number.
* (See pci_swizzle_map_irq_fn())
*
* We only need one entry per interrupt in the table (not one per
* possible slot) seeing the interrupt-map-mask will allow the table
* to wrap to any number of devices.
*/
for (dev = 0; dev < GPEX_NUM_IRQS; dev++) {
int devfn = dev * 0x8;
for (pin = 0; pin < GPEX_NUM_IRQS; pin++) {
int irq_nr = PCIE_IRQ + ((pin + PCI_SLOT(devfn)) % GPEX_NUM_IRQS);
int i = 0;
irq_map[i] = cpu_to_be32(devfn << 8);
i += FDT_PCI_ADDR_CELLS;
irq_map[i] = cpu_to_be32(pin + 1);
i += FDT_PCI_INT_CELLS;
irq_map[i++] = cpu_to_be32(plic_phandle);
i += FDT_PLIC_ADDR_CELLS;
irq_map[i] = cpu_to_be32(irq_nr);
irq_map += FDT_INT_MAP_WIDTH;
}
}
qemu_fdt_setprop(fdt, nodename, "interrupt-map",
full_irq_map, sizeof(full_irq_map));
qemu_fdt_setprop_cells(fdt, nodename, "interrupt-map-mask",
0x1800, 0, 0, 0x7);
}
static void create_fdt_socket_cpus(RISCVVirtState *s, int socket,
char *clust_name, uint32_t *phandle,
bool is_32_bit, uint32_t *intc_phandles)
{
int cpu;
uint32_t cpu_phandle;
MachineState *mc = MACHINE(s);
char *name, *cpu_name, *core_name, *intc_name;
for (cpu = s->soc[socket].num_harts - 1; cpu >= 0; cpu--) {
cpu_phandle = (*phandle)++;
cpu_name = g_strdup_printf("/cpus/cpu@%d",
s->soc[socket].hartid_base + cpu);
qemu_fdt_add_subnode(mc->fdt, cpu_name);
qemu_fdt_setprop_string(mc->fdt, cpu_name, "mmu-type",
(is_32_bit) ? "riscv,sv32" : "riscv,sv48");
name = riscv_isa_string(&s->soc[socket].harts[cpu]);
qemu_fdt_setprop_string(mc->fdt, cpu_name, "riscv,isa", name);
g_free(name);
qemu_fdt_setprop_string(mc->fdt, cpu_name, "compatible", "riscv");
qemu_fdt_setprop_string(mc->fdt, cpu_name, "status", "okay");
qemu_fdt_setprop_cell(mc->fdt, cpu_name, "reg",
s->soc[socket].hartid_base + cpu);
qemu_fdt_setprop_string(mc->fdt, cpu_name, "device_type", "cpu");
riscv_socket_fdt_write_id(mc, mc->fdt, cpu_name, socket);
qemu_fdt_setprop_cell(mc->fdt, cpu_name, "phandle", cpu_phandle);
intc_phandles[cpu] = (*phandle)++;
intc_name = g_strdup_printf("%s/interrupt-controller", cpu_name);
qemu_fdt_add_subnode(mc->fdt, intc_name);
qemu_fdt_setprop_cell(mc->fdt, intc_name, "phandle",
intc_phandles[cpu]);
qemu_fdt_setprop_string(mc->fdt, intc_name, "compatible",
"riscv,cpu-intc");
qemu_fdt_setprop(mc->fdt, intc_name, "interrupt-controller", NULL, 0);
qemu_fdt_setprop_cell(mc->fdt, intc_name, "#interrupt-cells", 1);
core_name = g_strdup_printf("%s/core%d", clust_name, cpu);
qemu_fdt_add_subnode(mc->fdt, core_name);
qemu_fdt_setprop_cell(mc->fdt, core_name, "cpu", cpu_phandle);
g_free(core_name);
g_free(intc_name);
g_free(cpu_name);
}
}
static void create_fdt_socket_memory(RISCVVirtState *s,
const MemMapEntry *memmap, int socket)
{
char *mem_name;
uint64_t addr, size;
MachineState *mc = MACHINE(s);
addr = memmap[VIRT_DRAM].base + riscv_socket_mem_offset(mc, socket);
size = riscv_socket_mem_size(mc, socket);
mem_name = g_strdup_printf("/memory@%lx", (long)addr);
qemu_fdt_add_subnode(mc->fdt, mem_name);
qemu_fdt_setprop_cells(mc->fdt, mem_name, "reg",
addr >> 32, addr, size >> 32, size);
qemu_fdt_setprop_string(mc->fdt, mem_name, "device_type", "memory");
riscv_socket_fdt_write_id(mc, mc->fdt, mem_name, socket);
g_free(mem_name);
}
static void create_fdt_socket_clint(RISCVVirtState *s,
const MemMapEntry *memmap, int socket,
uint32_t *intc_phandles)
{
int cpu;
char *clint_name;
uint32_t *clint_cells;
unsigned long clint_addr;
MachineState *mc = MACHINE(s);
static const char * const clint_compat[2] = {
"sifive,clint0", "riscv,clint0"
};
clint_cells = g_new0(uint32_t, s->soc[socket].num_harts * 4);
for (cpu = 0; cpu < s->soc[socket].num_harts; cpu++) {
clint_cells[cpu * 4 + 0] = cpu_to_be32(intc_phandles[cpu]);
clint_cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT);
clint_cells[cpu * 4 + 2] = cpu_to_be32(intc_phandles[cpu]);
clint_cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER);
}
clint_addr = memmap[VIRT_CLINT].base + (memmap[VIRT_CLINT].size * socket);
clint_name = g_strdup_printf("/soc/clint@%lx", clint_addr);
qemu_fdt_add_subnode(mc->fdt, clint_name);
qemu_fdt_setprop_string_array(mc->fdt, clint_name, "compatible",
(char **)&clint_compat,
ARRAY_SIZE(clint_compat));
qemu_fdt_setprop_cells(mc->fdt, clint_name, "reg",
0x0, clint_addr, 0x0, memmap[VIRT_CLINT].size);
qemu_fdt_setprop(mc->fdt, clint_name, "interrupts-extended",
clint_cells, s->soc[socket].num_harts * sizeof(uint32_t) * 4);
riscv_socket_fdt_write_id(mc, mc->fdt, clint_name, socket);
g_free(clint_name);
g_free(clint_cells);
}
static void create_fdt_socket_aclint(RISCVVirtState *s,
const MemMapEntry *memmap, int socket,
uint32_t *intc_phandles)
{
int cpu;
char *name;
unsigned long addr;
uint32_t aclint_cells_size;
uint32_t *aclint_mswi_cells;
uint32_t *aclint_sswi_cells;
uint32_t *aclint_mtimer_cells;
MachineState *mc = MACHINE(s);
aclint_mswi_cells = g_new0(uint32_t, s->soc[socket].num_harts * 2);
aclint_mtimer_cells = g_new0(uint32_t, s->soc[socket].num_harts * 2);
aclint_sswi_cells = g_new0(uint32_t, s->soc[socket].num_harts * 2);
for (cpu = 0; cpu < s->soc[socket].num_harts; cpu++) {
aclint_mswi_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
aclint_mswi_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_M_SOFT);
aclint_mtimer_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
aclint_mtimer_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_M_TIMER);
aclint_sswi_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
aclint_sswi_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_S_SOFT);
}
aclint_cells_size = s->soc[socket].num_harts * sizeof(uint32_t) * 2;
addr = memmap[VIRT_CLINT].base + (memmap[VIRT_CLINT].size * socket);
name = g_strdup_printf("/soc/mswi@%lx", addr);
qemu_fdt_add_subnode(mc->fdt, name);
qemu_fdt_setprop_string(mc->fdt, name, "compatible", "riscv,aclint-mswi");
qemu_fdt_setprop_cells(mc->fdt, name, "reg",
0x0, addr, 0x0, RISCV_ACLINT_SWI_SIZE);
qemu_fdt_setprop(mc->fdt, name, "interrupts-extended",
aclint_mswi_cells, aclint_cells_size);
qemu_fdt_setprop(mc->fdt, name, "interrupt-controller", NULL, 0);
qemu_fdt_setprop_cell(mc->fdt, name, "#interrupt-cells", 0);
riscv_socket_fdt_write_id(mc, mc->fdt, name, socket);
g_free(name);
addr = memmap[VIRT_CLINT].base + RISCV_ACLINT_SWI_SIZE +
(memmap[VIRT_CLINT].size * socket);
name = g_strdup_printf("/soc/mtimer@%lx", addr);
qemu_fdt_add_subnode(mc->fdt, name);
qemu_fdt_setprop_string(mc->fdt, name, "compatible",
"riscv,aclint-mtimer");
qemu_fdt_setprop_cells(mc->fdt, name, "reg",
0x0, addr + RISCV_ACLINT_DEFAULT_MTIME,
0x0, memmap[VIRT_CLINT].size - RISCV_ACLINT_SWI_SIZE -
RISCV_ACLINT_DEFAULT_MTIME,
0x0, addr + RISCV_ACLINT_DEFAULT_MTIMECMP,
0x0, RISCV_ACLINT_DEFAULT_MTIME);
qemu_fdt_setprop(mc->fdt, name, "interrupts-extended",
aclint_mtimer_cells, aclint_cells_size);
riscv_socket_fdt_write_id(mc, mc->fdt, name, socket);
g_free(name);
addr = memmap[VIRT_ACLINT_SSWI].base +
(memmap[VIRT_ACLINT_SSWI].size * socket);
name = g_strdup_printf("/soc/sswi@%lx", addr);
qemu_fdt_add_subnode(mc->fdt, name);
qemu_fdt_setprop_string(mc->fdt, name, "compatible", "riscv,aclint-sswi");
qemu_fdt_setprop_cells(mc->fdt, name, "reg",
0x0, addr, 0x0, memmap[VIRT_ACLINT_SSWI].size);
qemu_fdt_setprop(mc->fdt, name, "interrupts-extended",
aclint_sswi_cells, aclint_cells_size);
qemu_fdt_setprop(mc->fdt, name, "interrupt-controller", NULL, 0);
qemu_fdt_setprop_cell(mc->fdt, name, "#interrupt-cells", 0);
riscv_socket_fdt_write_id(mc, mc->fdt, name, socket);
g_free(name);
g_free(aclint_mswi_cells);
g_free(aclint_mtimer_cells);
g_free(aclint_sswi_cells);
}
static void create_fdt_socket_plic(RISCVVirtState *s,
const MemMapEntry *memmap, int socket,
uint32_t *phandle, uint32_t *intc_phandles,
uint32_t *plic_phandles)
{
int cpu;
char *plic_name;
uint32_t *plic_cells;
unsigned long plic_addr;
MachineState *mc = MACHINE(s);
static const char * const plic_compat[2] = {
"sifive,plic-1.0.0", "riscv,plic0"
};
plic_cells = g_new0(uint32_t, s->soc[socket].num_harts * 4);
for (cpu = 0; cpu < s->soc[socket].num_harts; cpu++) {
plic_cells[cpu * 4 + 0] = cpu_to_be32(intc_phandles[cpu]);
plic_cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_EXT);
plic_cells[cpu * 4 + 2] = cpu_to_be32(intc_phandles[cpu]);
plic_cells[cpu * 4 + 3] = cpu_to_be32(IRQ_S_EXT);
}
plic_phandles[socket] = (*phandle)++;
plic_addr = memmap[VIRT_PLIC].base + (memmap[VIRT_PLIC].size * socket);
plic_name = g_strdup_printf("/soc/plic@%lx", plic_addr);
qemu_fdt_add_subnode(mc->fdt, plic_name);
qemu_fdt_setprop_cell(mc->fdt, plic_name,
"#address-cells", FDT_PLIC_ADDR_CELLS);
qemu_fdt_setprop_cell(mc->fdt, plic_name,
"#interrupt-cells", FDT_PLIC_INT_CELLS);
qemu_fdt_setprop_string_array(mc->fdt, plic_name, "compatible",
(char **)&plic_compat,
ARRAY_SIZE(plic_compat));
qemu_fdt_setprop(mc->fdt, plic_name, "interrupt-controller", NULL, 0);
qemu_fdt_setprop(mc->fdt, plic_name, "interrupts-extended",
plic_cells, s->soc[socket].num_harts * sizeof(uint32_t) * 4);
qemu_fdt_setprop_cells(mc->fdt, plic_name, "reg",
0x0, plic_addr, 0x0, memmap[VIRT_PLIC].size);
qemu_fdt_setprop_cell(mc->fdt, plic_name, "riscv,ndev", VIRTIO_NDEV);
riscv_socket_fdt_write_id(mc, mc->fdt, plic_name, socket);
qemu_fdt_setprop_cell(mc->fdt, plic_name, "phandle",
plic_phandles[socket]);
g_free(plic_name);
g_free(plic_cells);
}
static void create_fdt_sockets(RISCVVirtState *s, const MemMapEntry *memmap,
bool is_32_bit, uint32_t *phandle,
uint32_t *irq_mmio_phandle,
uint32_t *irq_pcie_phandle,
uint32_t *irq_virtio_phandle)
{
int socket;
char *clust_name;
uint32_t *intc_phandles;
MachineState *mc = MACHINE(s);
uint32_t xplic_phandles[MAX_NODES];
qemu_fdt_add_subnode(mc->fdt, "/cpus");
qemu_fdt_setprop_cell(mc->fdt, "/cpus", "timebase-frequency",
RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ);
qemu_fdt_setprop_cell(mc->fdt, "/cpus", "#size-cells", 0x0);
qemu_fdt_setprop_cell(mc->fdt, "/cpus", "#address-cells", 0x1);
qemu_fdt_add_subnode(mc->fdt, "/cpus/cpu-map");
for (socket = (riscv_socket_count(mc) - 1); socket >= 0; socket--) {
clust_name = g_strdup_printf("/cpus/cpu-map/cluster%d", socket);
qemu_fdt_add_subnode(mc->fdt, clust_name);
intc_phandles = g_new0(uint32_t, s->soc[socket].num_harts);
create_fdt_socket_cpus(s, socket, clust_name, phandle,
is_32_bit, intc_phandles);
create_fdt_socket_memory(s, memmap, socket);
if (s->have_aclint) {
create_fdt_socket_aclint(s, memmap, socket, intc_phandles);
} else {
create_fdt_socket_clint(s, memmap, socket, intc_phandles);
}
create_fdt_socket_plic(s, memmap, socket, phandle,
intc_phandles, xplic_phandles);
g_free(intc_phandles);
g_free(clust_name);
}
for (socket = 0; socket < riscv_socket_count(mc); socket++) {
if (socket == 0) {
*irq_mmio_phandle = xplic_phandles[socket];
*irq_virtio_phandle = xplic_phandles[socket];
*irq_pcie_phandle = xplic_phandles[socket];
}
if (socket == 1) {
*irq_virtio_phandle = xplic_phandles[socket];
*irq_pcie_phandle = xplic_phandles[socket];
}
if (socket == 2) {
*irq_pcie_phandle = xplic_phandles[socket];
}
}
riscv_socket_fdt_write_distance_matrix(mc, mc->fdt);
}
static void create_fdt_virtio(RISCVVirtState *s, const MemMapEntry *memmap,
uint32_t irq_virtio_phandle)
{
int i;
char *name;
MachineState *mc = MACHINE(s);
for (i = 0; i < VIRTIO_COUNT; i++) {
name = g_strdup_printf("/soc/virtio_mmio@%lx",
(long)(memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size));
qemu_fdt_add_subnode(mc->fdt, name);
qemu_fdt_setprop_string(mc->fdt, name, "compatible", "virtio,mmio");
qemu_fdt_setprop_cells(mc->fdt, name, "reg",
0x0, memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size,
0x0, memmap[VIRT_VIRTIO].size);
qemu_fdt_setprop_cell(mc->fdt, name, "interrupt-parent",
irq_virtio_phandle);
qemu_fdt_setprop_cell(mc->fdt, name, "interrupts", VIRTIO_IRQ + i);
g_free(name);
}
}
static void create_fdt_pcie(RISCVVirtState *s, const MemMapEntry *memmap,
uint32_t irq_pcie_phandle)
{
char *name;
MachineState *mc = MACHINE(s);
name = g_strdup_printf("/soc/pci@%lx",
(long) memmap[VIRT_PCIE_ECAM].base);
qemu_fdt_add_subnode(mc->fdt, name);
qemu_fdt_setprop_cell(mc->fdt, name, "#address-cells",
FDT_PCI_ADDR_CELLS);
qemu_fdt_setprop_cell(mc->fdt, name, "#interrupt-cells",
FDT_PCI_INT_CELLS);
qemu_fdt_setprop_cell(mc->fdt, name, "#size-cells", 0x2);
qemu_fdt_setprop_string(mc->fdt, name, "compatible",
"pci-host-ecam-generic");
qemu_fdt_setprop_string(mc->fdt, name, "device_type", "pci");
qemu_fdt_setprop_cell(mc->fdt, name, "linux,pci-domain", 0);
qemu_fdt_setprop_cells(mc->fdt, name, "bus-range", 0,
memmap[VIRT_PCIE_ECAM].size / PCIE_MMCFG_SIZE_MIN - 1);
qemu_fdt_setprop(mc->fdt, name, "dma-coherent", NULL, 0);
qemu_fdt_setprop_cells(mc->fdt, name, "reg", 0,
memmap[VIRT_PCIE_ECAM].base, 0, memmap[VIRT_PCIE_ECAM].size);
qemu_fdt_setprop_sized_cells(mc->fdt, name, "ranges",
1, FDT_PCI_RANGE_IOPORT, 2, 0,
2, memmap[VIRT_PCIE_PIO].base, 2, memmap[VIRT_PCIE_PIO].size,
1, FDT_PCI_RANGE_MMIO,
2, memmap[VIRT_PCIE_MMIO].base,
2, memmap[VIRT_PCIE_MMIO].base, 2, memmap[VIRT_PCIE_MMIO].size,
1, FDT_PCI_RANGE_MMIO_64BIT,
2, virt_high_pcie_memmap.base,
2, virt_high_pcie_memmap.base, 2, virt_high_pcie_memmap.size);
create_pcie_irq_map(mc->fdt, name, irq_pcie_phandle);
g_free(name);
}
static void create_fdt_reset(RISCVVirtState *s, const MemMapEntry *memmap,
uint32_t *phandle)
{
char *name;
uint32_t test_phandle;
MachineState *mc = MACHINE(s);
test_phandle = (*phandle)++;
name = g_strdup_printf("/soc/test@%lx",
(long)memmap[VIRT_TEST].base);
qemu_fdt_add_subnode(mc->fdt, name);
{
static const char * const compat[3] = {
"sifive,test1", "sifive,test0", "syscon"
};
qemu_fdt_setprop_string_array(mc->fdt, name, "compatible",
(char **)&compat, ARRAY_SIZE(compat));
}
qemu_fdt_setprop_cells(mc->fdt, name, "reg",
0x0, memmap[VIRT_TEST].base, 0x0, memmap[VIRT_TEST].size);
qemu_fdt_setprop_cell(mc->fdt, name, "phandle", test_phandle);
test_phandle = qemu_fdt_get_phandle(mc->fdt, name);
g_free(name);
name = g_strdup_printf("/soc/reboot");
qemu_fdt_add_subnode(mc->fdt, name);
qemu_fdt_setprop_string(mc->fdt, name, "compatible", "syscon-reboot");
qemu_fdt_setprop_cell(mc->fdt, name, "regmap", test_phandle);
qemu_fdt_setprop_cell(mc->fdt, name, "offset", 0x0);
qemu_fdt_setprop_cell(mc->fdt, name, "value", FINISHER_RESET);
g_free(name);
name = g_strdup_printf("/soc/poweroff");
qemu_fdt_add_subnode(mc->fdt, name);
qemu_fdt_setprop_string(mc->fdt, name, "compatible", "syscon-poweroff");
qemu_fdt_setprop_cell(mc->fdt, name, "regmap", test_phandle);
qemu_fdt_setprop_cell(mc->fdt, name, "offset", 0x0);
qemu_fdt_setprop_cell(mc->fdt, name, "value", FINISHER_PASS);
g_free(name);
}
static void create_fdt_uart(RISCVVirtState *s, const MemMapEntry *memmap,
uint32_t irq_mmio_phandle)
{
char *name;
MachineState *mc = MACHINE(s);
name = g_strdup_printf("/soc/uart@%lx", (long)memmap[VIRT_UART0].base);
qemu_fdt_add_subnode(mc->fdt, name);
qemu_fdt_setprop_string(mc->fdt, name, "compatible", "ns16550a");
qemu_fdt_setprop_cells(mc->fdt, name, "reg",
0x0, memmap[VIRT_UART0].base,
0x0, memmap[VIRT_UART0].size);
qemu_fdt_setprop_cell(mc->fdt, name, "clock-frequency", 3686400);
qemu_fdt_setprop_cell(mc->fdt, name, "interrupt-parent", irq_mmio_phandle);
qemu_fdt_setprop_cell(mc->fdt, name, "interrupts", UART0_IRQ);
qemu_fdt_add_subnode(mc->fdt, "/chosen");
qemu_fdt_setprop_string(mc->fdt, "/chosen", "stdout-path", name);
g_free(name);
}
static void create_fdt_rtc(RISCVVirtState *s, const MemMapEntry *memmap,
uint32_t irq_mmio_phandle)
{
char *name;
MachineState *mc = MACHINE(s);
name = g_strdup_printf("/soc/rtc@%lx", (long)memmap[VIRT_RTC].base);
qemu_fdt_add_subnode(mc->fdt, name);
qemu_fdt_setprop_string(mc->fdt, name, "compatible",
"google,goldfish-rtc");
qemu_fdt_setprop_cells(mc->fdt, name, "reg",
0x0, memmap[VIRT_RTC].base, 0x0, memmap[VIRT_RTC].size);
qemu_fdt_setprop_cell(mc->fdt, name, "interrupt-parent",
irq_mmio_phandle);
qemu_fdt_setprop_cell(mc->fdt, name, "interrupts", RTC_IRQ);
g_free(name);
}
static void create_fdt_flash(RISCVVirtState *s, const MemMapEntry *memmap)
{
char *name;
MachineState *mc = MACHINE(s);
hwaddr flashsize = virt_memmap[VIRT_FLASH].size / 2;
hwaddr flashbase = virt_memmap[VIRT_FLASH].base;
name = g_strdup_printf("/flash@%" PRIx64, flashbase);
qemu_fdt_add_subnode(mc->fdt, name);
qemu_fdt_setprop_string(mc->fdt, name, "compatible", "cfi-flash");
qemu_fdt_setprop_sized_cells(mc->fdt, name, "reg",
2, flashbase, 2, flashsize,
2, flashbase + flashsize, 2, flashsize);
qemu_fdt_setprop_cell(mc->fdt, name, "bank-width", 4);
g_free(name);
}
static void create_fdt(RISCVVirtState *s, const MemMapEntry *memmap,
uint64_t mem_size, const char *cmdline, bool is_32_bit)
{
MachineState *mc = MACHINE(s);
uint32_t phandle = 1, irq_mmio_phandle = 1;
uint32_t irq_pcie_phandle = 1, irq_virtio_phandle = 1;
if (mc->dtb) {
mc->fdt = load_device_tree(mc->dtb, &s->fdt_size);
if (!mc->fdt) {
error_report("load_device_tree() failed");
exit(1);
}
goto update_bootargs;
} else {
mc->fdt = create_device_tree(&s->fdt_size);
if (!mc->fdt) {
error_report("create_device_tree() failed");
exit(1);
}
}
qemu_fdt_setprop_string(mc->fdt, "/", "model", "riscv-virtio,qemu");
qemu_fdt_setprop_string(mc->fdt, "/", "compatible", "riscv-virtio");
qemu_fdt_setprop_cell(mc->fdt, "/", "#size-cells", 0x2);
qemu_fdt_setprop_cell(mc->fdt, "/", "#address-cells", 0x2);
qemu_fdt_add_subnode(mc->fdt, "/soc");
qemu_fdt_setprop(mc->fdt, "/soc", "ranges", NULL, 0);
qemu_fdt_setprop_string(mc->fdt, "/soc", "compatible", "simple-bus");
qemu_fdt_setprop_cell(mc->fdt, "/soc", "#size-cells", 0x2);
qemu_fdt_setprop_cell(mc->fdt, "/soc", "#address-cells", 0x2);
create_fdt_sockets(s, memmap, is_32_bit, &phandle,
&irq_mmio_phandle, &irq_pcie_phandle, &irq_virtio_phandle);
create_fdt_virtio(s, memmap, irq_virtio_phandle);
create_fdt_pcie(s, memmap, irq_pcie_phandle);
create_fdt_reset(s, memmap, &phandle);
create_fdt_uart(s, memmap, irq_mmio_phandle);
create_fdt_rtc(s, memmap, irq_mmio_phandle);
create_fdt_flash(s, memmap);
update_bootargs:
if (cmdline) {
qemu_fdt_setprop_string(mc->fdt, "/chosen", "bootargs", cmdline);
}
}
static inline DeviceState *gpex_pcie_init(MemoryRegion *sys_mem,
hwaddr ecam_base, hwaddr ecam_size,
hwaddr mmio_base, hwaddr mmio_size,
hwaddr high_mmio_base,
hwaddr high_mmio_size,
hwaddr pio_base,
DeviceState *plic)
{
DeviceState *dev;
MemoryRegion *ecam_alias, *ecam_reg;
MemoryRegion *mmio_alias, *high_mmio_alias, *mmio_reg;
qemu_irq irq;
int i;
dev = qdev_new(TYPE_GPEX_HOST);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
ecam_alias = g_new0(MemoryRegion, 1);
ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
ecam_reg, 0, ecam_size);
memory_region_add_subregion(get_system_memory(), ecam_base, ecam_alias);
mmio_alias = g_new0(MemoryRegion, 1);
mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
mmio_reg, mmio_base, mmio_size);
memory_region_add_subregion(get_system_memory(), mmio_base, mmio_alias);
/* Map high MMIO space */
high_mmio_alias = g_new0(MemoryRegion, 1);
memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
mmio_reg, high_mmio_base, high_mmio_size);
memory_region_add_subregion(get_system_memory(), high_mmio_base,
high_mmio_alias);
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, pio_base);
for (i = 0; i < GPEX_NUM_IRQS; i++) {
irq = qdev_get_gpio_in(plic, PCIE_IRQ + i);
sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, irq);
gpex_set_irq_num(GPEX_HOST(dev), i, PCIE_IRQ + i);
}
return dev;
}
static FWCfgState *create_fw_cfg(const MachineState *mc)
{
hwaddr base = virt_memmap[VIRT_FW_CFG].base;
hwaddr size = virt_memmap[VIRT_FW_CFG].size;
FWCfgState *fw_cfg;
char *nodename;
fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16,
&address_space_memory);
fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)mc->smp.cpus);
nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
qemu_fdt_add_subnode(mc->fdt, nodename);
qemu_fdt_setprop_string(mc->fdt, nodename,
"compatible", "qemu,fw-cfg-mmio");
qemu_fdt_setprop_sized_cells(mc->fdt, nodename, "reg",
2, base, 2, size);
qemu_fdt_setprop(mc->fdt, nodename, "dma-coherent", NULL, 0);
g_free(nodename);
return fw_cfg;
}
static void virt_machine_init(MachineState *machine)
{
const MemMapEntry *memmap = virt_memmap;
RISCVVirtState *s = RISCV_VIRT_MACHINE(machine);
MemoryRegion *system_memory = get_system_memory();
MemoryRegion *mask_rom = g_new(MemoryRegion, 1);
char *plic_hart_config, *soc_name;
target_ulong start_addr = memmap[VIRT_DRAM].base;
target_ulong firmware_end_addr, kernel_start_addr;
uint32_t fdt_load_addr;
uint64_t kernel_entry;
DeviceState *mmio_plic, *virtio_plic, *pcie_plic;
int i, base_hartid, hart_count;
/* Check socket count limit */
if (VIRT_SOCKETS_MAX < riscv_socket_count(machine)) {
error_report("number of sockets/nodes should be less than %d",
VIRT_SOCKETS_MAX);
exit(1);
}
/* Initialize sockets */
mmio_plic = virtio_plic = pcie_plic = NULL;
for (i = 0; i < riscv_socket_count(machine); i++) {
if (!riscv_socket_check_hartids(machine, i)) {
error_report("discontinuous hartids in socket%d", i);
exit(1);
}
base_hartid = riscv_socket_first_hartid(machine, i);
if (base_hartid < 0) {
error_report("can't find hartid base for socket%d", i);
exit(1);
}
hart_count = riscv_socket_hart_count(machine, i);
if (hart_count < 0) {
error_report("can't find hart count for socket%d", i);
exit(1);
}
soc_name = g_strdup_printf("soc%d", i);
object_initialize_child(OBJECT(machine), soc_name, &s->soc[i],
TYPE_RISCV_HART_ARRAY);
g_free(soc_name);
object_property_set_str(OBJECT(&s->soc[i]), "cpu-type",
machine->cpu_type, &error_abort);
object_property_set_int(OBJECT(&s->soc[i]), "hartid-base",
base_hartid, &error_abort);
object_property_set_int(OBJECT(&s->soc[i]), "num-harts",
hart_count, &error_abort);
sysbus_realize(SYS_BUS_DEVICE(&s->soc[i]), &error_abort);
/* Per-socket CLINT */
riscv_aclint_swi_create(
memmap[VIRT_CLINT].base + i * memmap[VIRT_CLINT].size,
base_hartid, hart_count, false);
riscv_aclint_mtimer_create(
memmap[VIRT_CLINT].base + i * memmap[VIRT_CLINT].size +
RISCV_ACLINT_SWI_SIZE,
RISCV_ACLINT_DEFAULT_MTIMER_SIZE, base_hartid, hart_count,
RISCV_ACLINT_DEFAULT_MTIMECMP, RISCV_ACLINT_DEFAULT_MTIME,
RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ, true);
/* Per-socket ACLINT SSWI */
if (s->have_aclint) {
riscv_aclint_swi_create(
memmap[VIRT_ACLINT_SSWI].base +
i * memmap[VIRT_ACLINT_SSWI].size,
base_hartid, hart_count, true);
}
/* Per-socket PLIC hart topology configuration string */
plic_hart_config = riscv_plic_hart_config_string(hart_count);
/* Per-socket PLIC */
s->plic[i] = sifive_plic_create(
memmap[VIRT_PLIC].base + i * memmap[VIRT_PLIC].size,
plic_hart_config, hart_count, base_hartid,
VIRT_PLIC_NUM_SOURCES,
VIRT_PLIC_NUM_PRIORITIES,
VIRT_PLIC_PRIORITY_BASE,
VIRT_PLIC_PENDING_BASE,
VIRT_PLIC_ENABLE_BASE,
VIRT_PLIC_ENABLE_STRIDE,
VIRT_PLIC_CONTEXT_BASE,
VIRT_PLIC_CONTEXT_STRIDE,
memmap[VIRT_PLIC].size);
g_free(plic_hart_config);
/* Try to use different PLIC instance based device type */
if (i == 0) {
mmio_plic = s->plic[i];
virtio_plic = s->plic[i];
pcie_plic = s->plic[i];
}
if (i == 1) {
virtio_plic = s->plic[i];
pcie_plic = s->plic[i];
}
if (i == 2) {
pcie_plic = s->plic[i];
}
}
if (riscv_is_32bit(&s->soc[0])) {
#if HOST_LONG_BITS == 64
/* limit RAM size in a 32-bit system */
if (machine->ram_size > 10 * GiB) {
machine->ram_size = 10 * GiB;
error_report("Limiting RAM size to 10 GiB");
}
#endif
virt_high_pcie_memmap.base = VIRT32_HIGH_PCIE_MMIO_BASE;
virt_high_pcie_memmap.size = VIRT32_HIGH_PCIE_MMIO_SIZE;
} else {
virt_high_pcie_memmap.size = VIRT64_HIGH_PCIE_MMIO_SIZE;
virt_high_pcie_memmap.base = memmap[VIRT_DRAM].base + machine->ram_size;
virt_high_pcie_memmap.base =
ROUND_UP(virt_high_pcie_memmap.base, virt_high_pcie_memmap.size);
}
/* register system main memory (actual RAM) */
memory_region_add_subregion(system_memory, memmap[VIRT_DRAM].base,
machine->ram);
/* create device tree */
create_fdt(s, memmap, machine->ram_size, machine->kernel_cmdline,
riscv_is_32bit(&s->soc[0]));
/* boot rom */
memory_region_init_rom(mask_rom, NULL, "riscv_virt_board.mrom",
memmap[VIRT_MROM].size, &error_fatal);
memory_region_add_subregion(system_memory, memmap[VIRT_MROM].base,
mask_rom);
if (riscv_is_32bit(&s->soc[0])) {
firmware_end_addr = riscv_find_and_load_firmware(machine,
RISCV32_BIOS_BIN, start_addr, NULL);
} else {
firmware_end_addr = riscv_find_and_load_firmware(machine,
RISCV64_BIOS_BIN, start_addr, NULL);
}
if (machine->kernel_filename) {
kernel_start_addr = riscv_calc_kernel_start_addr(&s->soc[0],
firmware_end_addr);
kernel_entry = riscv_load_kernel(machine->kernel_filename,
kernel_start_addr, NULL);
if (machine->initrd_filename) {
hwaddr start;
hwaddr end = riscv_load_initrd(machine->initrd_filename,
machine->ram_size, kernel_entry,
&start);
qemu_fdt_setprop_cell(machine->fdt, "/chosen",
"linux,initrd-start", start);
qemu_fdt_setprop_cell(machine->fdt, "/chosen", "linux,initrd-end",
end);
}
} else {
/*
* If dynamic firmware is used, it doesn't know where is the next mode
* if kernel argument is not set.
*/
kernel_entry = 0;
}
if (drive_get(IF_PFLASH, 0, 0)) {
/*
* Pflash was supplied, let's overwrite the address we jump to after
* reset to the base of the flash.
*/
start_addr = virt_memmap[VIRT_FLASH].base;
}
/*
* Init fw_cfg. Must be done before riscv_load_fdt, otherwise the device
* tree cannot be altered and we get FDT_ERR_NOSPACE.
*/
s->fw_cfg = create_fw_cfg(machine);
rom_set_fw(s->fw_cfg);
/* Compute the fdt load address in dram */
fdt_load_addr = riscv_load_fdt(memmap[VIRT_DRAM].base,
machine->ram_size, machine->fdt);
/* load the reset vector */
riscv_setup_rom_reset_vec(machine, &s->soc[0], start_addr,
virt_memmap[VIRT_MROM].base,
virt_memmap[VIRT_MROM].size, kernel_entry,
fdt_load_addr, machine->fdt);
/* SiFive Test MMIO device */
sifive_test_create(memmap[VIRT_TEST].base);
/* VirtIO MMIO devices */
for (i = 0; i < VIRTIO_COUNT; i++) {
sysbus_create_simple("virtio-mmio",
memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size,
qdev_get_gpio_in(DEVICE(virtio_plic), VIRTIO_IRQ + i));
}
gpex_pcie_init(system_memory,
memmap[VIRT_PCIE_ECAM].base,
memmap[VIRT_PCIE_ECAM].size,
memmap[VIRT_PCIE_MMIO].base,
memmap[VIRT_PCIE_MMIO].size,
virt_high_pcie_memmap.base,
virt_high_pcie_memmap.size,
memmap[VIRT_PCIE_PIO].base,
DEVICE(pcie_plic));
serial_mm_init(system_memory, memmap[VIRT_UART0].base,
0, qdev_get_gpio_in(DEVICE(mmio_plic), UART0_IRQ), 399193,
serial_hd(0), DEVICE_LITTLE_ENDIAN);
sysbus_create_simple("goldfish_rtc", memmap[VIRT_RTC].base,
qdev_get_gpio_in(DEVICE(mmio_plic), RTC_IRQ));
virt_flash_create(s);
for (i = 0; i < ARRAY_SIZE(s->flash); i++) {
/* Map legacy -drive if=pflash to machine properties */
pflash_cfi01_legacy_drive(s->flash[i],
drive_get(IF_PFLASH, 0, i));
}
virt_flash_map(s, system_memory);
}
static void virt_machine_instance_init(Object *obj)
{
}
static bool virt_get_aclint(Object *obj, Error **errp)
{
MachineState *ms = MACHINE(obj);
RISCVVirtState *s = RISCV_VIRT_MACHINE(ms);
return s->have_aclint;
}
static void virt_set_aclint(Object *obj, bool value, Error **errp)
{
MachineState *ms = MACHINE(obj);
RISCVVirtState *s = RISCV_VIRT_MACHINE(ms);
s->have_aclint = value;
}
static void virt_machine_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "RISC-V VirtIO board";
mc->init = virt_machine_init;
mc->max_cpus = VIRT_CPUS_MAX;
mc->default_cpu_type = TYPE_RISCV_CPU_BASE;
mc->pci_allow_0_address = true;
mc->possible_cpu_arch_ids = riscv_numa_possible_cpu_arch_ids;
mc->cpu_index_to_instance_props = riscv_numa_cpu_index_to_props;
mc->get_default_cpu_node_id = riscv_numa_get_default_cpu_node_id;
mc->numa_mem_supported = true;
mc->default_ram_id = "riscv_virt_board.ram";
machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
object_class_property_add_bool(oc, "aclint", virt_get_aclint,
virt_set_aclint);
object_class_property_set_description(oc, "aclint",
"Set on/off to enable/disable "
"emulating ACLINT devices");
}
static const TypeInfo virt_machine_typeinfo = {
.name = MACHINE_TYPE_NAME("virt"),
.parent = TYPE_MACHINE,
.class_init = virt_machine_class_init,
.instance_init = virt_machine_instance_init,
.instance_size = sizeof(RISCVVirtState),
};
static void virt_machine_init_register_types(void)
{
type_register_static(&virt_machine_typeinfo);
}
type_init(virt_machine_init_register_types)