qemu/target/avr/helper.c
Claudio Fontana 7827168471 cpu: tcg_ops: move to tcg-cpu-ops.h, keep a pointer in CPUClass
we cannot in principle make the TCG Operations field definitions
conditional on CONFIG_TCG in code that is included by both common_ss
and specific_ss modules.

Therefore, what we can do safely to restrict the TCG fields to TCG-only
builds, is to move all tcg cpu operations into a separate header file,
which is only included by TCG, target-specific code.

This leaves just a NULL pointer in the cpu.h for the non-TCG builds.

This also tidies up the code in all targets a bit, having all TCG cpu
operations neatly contained by a dedicated data struct.

Signed-off-by: Claudio Fontana <cfontana@suse.de>
Message-Id: <20210204163931.7358-16-cfontana@suse.de>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2021-02-05 10:24:15 -10:00

350 lines
9.7 KiB
C

/*
* QEMU AVR CPU helpers
*
* Copyright (c) 2016-2020 Michael Rolnik
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see
* <http://www.gnu.org/licenses/lgpl-2.1.html>
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "hw/core/tcg-cpu-ops.h"
#include "exec/exec-all.h"
#include "exec/address-spaces.h"
#include "exec/helper-proto.h"
bool avr_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
{
bool ret = false;
CPUClass *cc = CPU_GET_CLASS(cs);
AVRCPU *cpu = AVR_CPU(cs);
CPUAVRState *env = &cpu->env;
if (interrupt_request & CPU_INTERRUPT_RESET) {
if (cpu_interrupts_enabled(env)) {
cs->exception_index = EXCP_RESET;
cc->tcg_ops->do_interrupt(cs);
cs->interrupt_request &= ~CPU_INTERRUPT_RESET;
ret = true;
}
}
if (interrupt_request & CPU_INTERRUPT_HARD) {
if (cpu_interrupts_enabled(env) && env->intsrc != 0) {
int index = ctz32(env->intsrc);
cs->exception_index = EXCP_INT(index);
cc->tcg_ops->do_interrupt(cs);
env->intsrc &= env->intsrc - 1; /* clear the interrupt */
cs->interrupt_request &= ~CPU_INTERRUPT_HARD;
ret = true;
}
}
return ret;
}
void avr_cpu_do_interrupt(CPUState *cs)
{
AVRCPU *cpu = AVR_CPU(cs);
CPUAVRState *env = &cpu->env;
uint32_t ret = env->pc_w;
int vector = 0;
int size = avr_feature(env, AVR_FEATURE_JMP_CALL) ? 2 : 1;
int base = 0;
if (cs->exception_index == EXCP_RESET) {
vector = 0;
} else if (env->intsrc != 0) {
vector = ctz32(env->intsrc) + 1;
}
if (avr_feature(env, AVR_FEATURE_3_BYTE_PC)) {
cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8);
cpu_stb_data(env, env->sp--, (ret & 0xff0000) >> 16);
} else if (avr_feature(env, AVR_FEATURE_2_BYTE_PC)) {
cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
cpu_stb_data(env, env->sp--, (ret & 0x00ff00) >> 8);
} else {
cpu_stb_data(env, env->sp--, (ret & 0x0000ff));
}
env->pc_w = base + vector * size;
env->sregI = 0; /* clear Global Interrupt Flag */
cs->exception_index = -1;
}
int avr_cpu_memory_rw_debug(CPUState *cs, vaddr addr, uint8_t *buf,
int len, bool is_write)
{
return cpu_memory_rw_debug(cs, addr, buf, len, is_write);
}
hwaddr avr_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
{
return addr; /* I assume 1:1 address correspondance */
}
bool avr_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
MMUAccessType access_type, int mmu_idx,
bool probe, uintptr_t retaddr)
{
int prot = 0;
MemTxAttrs attrs = {};
uint32_t paddr;
address &= TARGET_PAGE_MASK;
if (mmu_idx == MMU_CODE_IDX) {
/* access to code in flash */
paddr = OFFSET_CODE + address;
prot = PAGE_READ | PAGE_EXEC;
if (paddr + TARGET_PAGE_SIZE > OFFSET_DATA) {
error_report("execution left flash memory");
abort();
}
} else if (address < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
/*
* access to CPU registers, exit and rebuilt this TB to use full access
* incase it touches specially handled registers like SREG or SP
*/
AVRCPU *cpu = AVR_CPU(cs);
CPUAVRState *env = &cpu->env;
env->fullacc = 1;
cpu_loop_exit_restore(cs, retaddr);
} else {
/* access to memory. nothing special */
paddr = OFFSET_DATA + address;
prot = PAGE_READ | PAGE_WRITE;
}
tlb_set_page_with_attrs(cs, address, paddr, attrs, prot,
mmu_idx, TARGET_PAGE_SIZE);
return true;
}
/*
* helpers
*/
void helper_sleep(CPUAVRState *env)
{
CPUState *cs = env_cpu(env);
cs->exception_index = EXCP_HLT;
cpu_loop_exit(cs);
}
void helper_unsupported(CPUAVRState *env)
{
CPUState *cs = env_cpu(env);
/*
* I count not find what happens on the real platform, so
* it's EXCP_DEBUG for meanwhile
*/
cs->exception_index = EXCP_DEBUG;
if (qemu_loglevel_mask(LOG_UNIMP)) {
qemu_log("UNSUPPORTED\n");
cpu_dump_state(cs, stderr, 0);
}
cpu_loop_exit(cs);
}
void helper_debug(CPUAVRState *env)
{
CPUState *cs = env_cpu(env);
cs->exception_index = EXCP_DEBUG;
cpu_loop_exit(cs);
}
void helper_break(CPUAVRState *env)
{
CPUState *cs = env_cpu(env);
cs->exception_index = EXCP_DEBUG;
cpu_loop_exit(cs);
}
void helper_wdr(CPUAVRState *env)
{
CPUState *cs = env_cpu(env);
/* WD is not implemented yet, placeholder */
cs->exception_index = EXCP_DEBUG;
cpu_loop_exit(cs);
}
/*
* This function implements IN instruction
*
* It does the following
* a. if an IO register belongs to CPU, its value is read and returned
* b. otherwise io address is translated to mem address and physical memory
* is read.
* c. it caches the value for sake of SBI, SBIC, SBIS & CBI implementation
*
*/
target_ulong helper_inb(CPUAVRState *env, uint32_t port)
{
target_ulong data = 0;
switch (port) {
case 0x38: /* RAMPD */
data = 0xff & (env->rampD >> 16);
break;
case 0x39: /* RAMPX */
data = 0xff & (env->rampX >> 16);
break;
case 0x3a: /* RAMPY */
data = 0xff & (env->rampY >> 16);
break;
case 0x3b: /* RAMPZ */
data = 0xff & (env->rampZ >> 16);
break;
case 0x3c: /* EIND */
data = 0xff & (env->eind >> 16);
break;
case 0x3d: /* SPL */
data = env->sp & 0x00ff;
break;
case 0x3e: /* SPH */
data = env->sp >> 8;
break;
case 0x3f: /* SREG */
data = cpu_get_sreg(env);
break;
default:
/* not a special register, pass to normal memory access */
data = address_space_ldub(&address_space_memory,
OFFSET_IO_REGISTERS + port,
MEMTXATTRS_UNSPECIFIED, NULL);
}
return data;
}
/*
* This function implements OUT instruction
*
* It does the following
* a. if an IO register belongs to CPU, its value is written into the register
* b. otherwise io address is translated to mem address and physical memory
* is written.
* c. it caches the value for sake of SBI, SBIC, SBIS & CBI implementation
*
*/
void helper_outb(CPUAVRState *env, uint32_t port, uint32_t data)
{
data &= 0x000000ff;
switch (port) {
case 0x38: /* RAMPD */
if (avr_feature(env, AVR_FEATURE_RAMPD)) {
env->rampD = (data & 0xff) << 16;
}
break;
case 0x39: /* RAMPX */
if (avr_feature(env, AVR_FEATURE_RAMPX)) {
env->rampX = (data & 0xff) << 16;
}
break;
case 0x3a: /* RAMPY */
if (avr_feature(env, AVR_FEATURE_RAMPY)) {
env->rampY = (data & 0xff) << 16;
}
break;
case 0x3b: /* RAMPZ */
if (avr_feature(env, AVR_FEATURE_RAMPZ)) {
env->rampZ = (data & 0xff) << 16;
}
break;
case 0x3c: /* EIDN */
env->eind = (data & 0xff) << 16;
break;
case 0x3d: /* SPL */
env->sp = (env->sp & 0xff00) | (data);
break;
case 0x3e: /* SPH */
if (avr_feature(env, AVR_FEATURE_2_BYTE_SP)) {
env->sp = (env->sp & 0x00ff) | (data << 8);
}
break;
case 0x3f: /* SREG */
cpu_set_sreg(env, data);
break;
default:
/* not a special register, pass to normal memory access */
address_space_stb(&address_space_memory, OFFSET_IO_REGISTERS + port,
data, MEMTXATTRS_UNSPECIFIED, NULL);
}
}
/*
* this function implements LD instruction when there is a posibility to read
* from a CPU register
*/
target_ulong helper_fullrd(CPUAVRState *env, uint32_t addr)
{
uint8_t data;
env->fullacc = false;
if (addr < NUMBER_OF_CPU_REGISTERS) {
/* CPU registers */
data = env->r[addr];
} else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
/* IO registers */
data = helper_inb(env, addr - NUMBER_OF_CPU_REGISTERS);
} else {
/* memory */
data = address_space_ldub(&address_space_memory, OFFSET_DATA + addr,
MEMTXATTRS_UNSPECIFIED, NULL);
}
return data;
}
/*
* this function implements ST instruction when there is a posibility to write
* into a CPU register
*/
void helper_fullwr(CPUAVRState *env, uint32_t data, uint32_t addr)
{
env->fullacc = false;
/* Following logic assumes this: */
assert(OFFSET_CPU_REGISTERS == OFFSET_DATA);
assert(OFFSET_IO_REGISTERS == OFFSET_CPU_REGISTERS +
NUMBER_OF_CPU_REGISTERS);
if (addr < NUMBER_OF_CPU_REGISTERS) {
/* CPU registers */
env->r[addr] = data;
} else if (addr < NUMBER_OF_CPU_REGISTERS + NUMBER_OF_IO_REGISTERS) {
/* IO registers */
helper_outb(env, addr - NUMBER_OF_CPU_REGISTERS, data);
} else {
/* memory */
address_space_stb(&address_space_memory, OFFSET_DATA + addr, data,
MEMTXATTRS_UNSPECIFIED, NULL);
}
}