qemu/target/i386/hvf/hvf.c
David Edmondson fea4500841 target/i386: Populate x86_ext_save_areas offsets using cpuid where possible
Rather than relying on the X86XSaveArea structure definition,
determine the offset of XSAVE state areas using CPUID leaf 0xd where
possible (KVM and HVF).

Signed-off-by: David Edmondson <david.edmondson@oracle.com>
Message-Id: <20210705104632.2902400-8-david.edmondson@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-07-06 08:33:48 +02:00

663 lines
21 KiB
C

/* Copyright 2008 IBM Corporation
* 2008 Red Hat, Inc.
* Copyright 2011 Intel Corporation
* Copyright 2016 Veertu, Inc.
* Copyright 2017 The Android Open Source Project
*
* QEMU Hypervisor.framework support
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of version 2 of the GNU General Public
* License as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*
* This file contain code under public domain from the hvdos project:
* https://github.com/mist64/hvdos
*
* Parts Copyright (c) 2011 NetApp, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "qemu/osdep.h"
#include "qemu-common.h"
#include "qemu/error-report.h"
#include "sysemu/hvf.h"
#include "sysemu/hvf_int.h"
#include "sysemu/runstate.h"
#include "hvf-i386.h"
#include "vmcs.h"
#include "vmx.h"
#include "x86.h"
#include "x86_descr.h"
#include "x86_mmu.h"
#include "x86_decode.h"
#include "x86_emu.h"
#include "x86_task.h"
#include "x86hvf.h"
#include <Hypervisor/hv.h>
#include <Hypervisor/hv_vmx.h>
#include <sys/sysctl.h>
#include "hw/i386/apic_internal.h"
#include "qemu/main-loop.h"
#include "qemu/accel.h"
#include "target/i386/cpu.h"
void vmx_update_tpr(CPUState *cpu)
{
/* TODO: need integrate APIC handling */
X86CPU *x86_cpu = X86_CPU(cpu);
int tpr = cpu_get_apic_tpr(x86_cpu->apic_state) << 4;
int irr = apic_get_highest_priority_irr(x86_cpu->apic_state);
wreg(cpu->hvf->fd, HV_X86_TPR, tpr);
if (irr == -1) {
wvmcs(cpu->hvf->fd, VMCS_TPR_THRESHOLD, 0);
} else {
wvmcs(cpu->hvf->fd, VMCS_TPR_THRESHOLD, (irr > tpr) ? tpr >> 4 :
irr >> 4);
}
}
static void update_apic_tpr(CPUState *cpu)
{
X86CPU *x86_cpu = X86_CPU(cpu);
int tpr = rreg(cpu->hvf->fd, HV_X86_TPR) >> 4;
cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
}
#define VECTORING_INFO_VECTOR_MASK 0xff
void hvf_handle_io(CPUArchState *env, uint16_t port, void *buffer,
int direction, int size, int count)
{
int i;
uint8_t *ptr = buffer;
for (i = 0; i < count; i++) {
address_space_rw(&address_space_io, port, MEMTXATTRS_UNSPECIFIED,
ptr, size,
direction);
ptr += size;
}
}
static bool ept_emulation_fault(hvf_slot *slot, uint64_t gpa, uint64_t ept_qual)
{
int read, write;
/* EPT fault on an instruction fetch doesn't make sense here */
if (ept_qual & EPT_VIOLATION_INST_FETCH) {
return false;
}
/* EPT fault must be a read fault or a write fault */
read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
if ((read | write) == 0) {
return false;
}
if (write && slot) {
if (slot->flags & HVF_SLOT_LOG) {
memory_region_set_dirty(slot->region, gpa - slot->start, 1);
hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size,
HV_MEMORY_READ | HV_MEMORY_WRITE);
}
}
/*
* The EPT violation must have been caused by accessing a
* guest-physical address that is a translation of a guest-linear
* address.
*/
if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
(ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
return false;
}
if (!slot) {
return true;
}
if (!memory_region_is_ram(slot->region) &&
!(read && memory_region_is_romd(slot->region))) {
return true;
}
return false;
}
void hvf_arch_vcpu_destroy(CPUState *cpu)
{
X86CPU *x86_cpu = X86_CPU(cpu);
CPUX86State *env = &x86_cpu->env;
g_free(env->hvf_mmio_buf);
}
static void init_tsc_freq(CPUX86State *env)
{
size_t length;
uint64_t tsc_freq;
if (env->tsc_khz != 0) {
return;
}
length = sizeof(uint64_t);
if (sysctlbyname("machdep.tsc.frequency", &tsc_freq, &length, NULL, 0)) {
return;
}
env->tsc_khz = tsc_freq / 1000; /* Hz to KHz */
}
static void init_apic_bus_freq(CPUX86State *env)
{
size_t length;
uint64_t bus_freq;
if (env->apic_bus_freq != 0) {
return;
}
length = sizeof(uint64_t);
if (sysctlbyname("hw.busfrequency", &bus_freq, &length, NULL, 0)) {
return;
}
env->apic_bus_freq = bus_freq;
}
static inline bool tsc_is_known(CPUX86State *env)
{
return env->tsc_khz != 0;
}
static inline bool apic_bus_freq_is_known(CPUX86State *env)
{
return env->apic_bus_freq != 0;
}
int hvf_arch_init_vcpu(CPUState *cpu)
{
X86CPU *x86cpu = X86_CPU(cpu);
CPUX86State *env = &x86cpu->env;
init_emu();
init_decoder();
hvf_state->hvf_caps = g_new0(struct hvf_vcpu_caps, 1);
env->hvf_mmio_buf = g_new(char, 4096);
if (x86cpu->vmware_cpuid_freq) {
init_tsc_freq(env);
init_apic_bus_freq(env);
if (!tsc_is_known(env) || !apic_bus_freq_is_known(env)) {
error_report("vmware-cpuid-freq: feature couldn't be enabled");
}
}
if (hv_vmx_read_capability(HV_VMX_CAP_PINBASED,
&hvf_state->hvf_caps->vmx_cap_pinbased)) {
abort();
}
if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED,
&hvf_state->hvf_caps->vmx_cap_procbased)) {
abort();
}
if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED2,
&hvf_state->hvf_caps->vmx_cap_procbased2)) {
abort();
}
if (hv_vmx_read_capability(HV_VMX_CAP_ENTRY,
&hvf_state->hvf_caps->vmx_cap_entry)) {
abort();
}
/* set VMCS control fields */
wvmcs(cpu->hvf->fd, VMCS_PIN_BASED_CTLS,
cap2ctrl(hvf_state->hvf_caps->vmx_cap_pinbased,
VMCS_PIN_BASED_CTLS_EXTINT |
VMCS_PIN_BASED_CTLS_NMI |
VMCS_PIN_BASED_CTLS_VNMI));
wvmcs(cpu->hvf->fd, VMCS_PRI_PROC_BASED_CTLS,
cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased,
VMCS_PRI_PROC_BASED_CTLS_HLT |
VMCS_PRI_PROC_BASED_CTLS_MWAIT |
VMCS_PRI_PROC_BASED_CTLS_TSC_OFFSET |
VMCS_PRI_PROC_BASED_CTLS_TPR_SHADOW) |
VMCS_PRI_PROC_BASED_CTLS_SEC_CONTROL);
wvmcs(cpu->hvf->fd, VMCS_SEC_PROC_BASED_CTLS,
cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased2,
VMCS_PRI_PROC_BASED2_CTLS_APIC_ACCESSES));
wvmcs(cpu->hvf->fd, VMCS_ENTRY_CTLS, cap2ctrl(hvf_state->hvf_caps->vmx_cap_entry,
0));
wvmcs(cpu->hvf->fd, VMCS_EXCEPTION_BITMAP, 0); /* Double fault */
wvmcs(cpu->hvf->fd, VMCS_TPR_THRESHOLD, 0);
x86cpu = X86_CPU(cpu);
x86cpu->env.xsave_buf_len = 4096;
x86cpu->env.xsave_buf = qemu_memalign(4096, x86cpu->env.xsave_buf_len);
/*
* The allocated storage must be large enough for all of the
* possible XSAVE state components.
*/
assert(hvf_get_supported_cpuid(0xd, 0, R_ECX) <= x86cpu->env.xsave_buf_len);
hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_STAR, 1);
hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_LSTAR, 1);
hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_CSTAR, 1);
hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_FMASK, 1);
hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_FSBASE, 1);
hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_GSBASE, 1);
hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_KERNELGSBASE, 1);
hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_TSC_AUX, 1);
hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_IA32_TSC, 1);
hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_IA32_SYSENTER_CS, 1);
hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_IA32_SYSENTER_EIP, 1);
hv_vcpu_enable_native_msr(cpu->hvf->fd, MSR_IA32_SYSENTER_ESP, 1);
return 0;
}
static void hvf_store_events(CPUState *cpu, uint32_t ins_len, uint64_t idtvec_info)
{
X86CPU *x86_cpu = X86_CPU(cpu);
CPUX86State *env = &x86_cpu->env;
env->exception_nr = -1;
env->exception_pending = 0;
env->exception_injected = 0;
env->interrupt_injected = -1;
env->nmi_injected = false;
env->ins_len = 0;
env->has_error_code = false;
if (idtvec_info & VMCS_IDT_VEC_VALID) {
switch (idtvec_info & VMCS_IDT_VEC_TYPE) {
case VMCS_IDT_VEC_HWINTR:
case VMCS_IDT_VEC_SWINTR:
env->interrupt_injected = idtvec_info & VMCS_IDT_VEC_VECNUM;
break;
case VMCS_IDT_VEC_NMI:
env->nmi_injected = true;
break;
case VMCS_IDT_VEC_HWEXCEPTION:
case VMCS_IDT_VEC_SWEXCEPTION:
env->exception_nr = idtvec_info & VMCS_IDT_VEC_VECNUM;
env->exception_injected = 1;
break;
case VMCS_IDT_VEC_PRIV_SWEXCEPTION:
default:
abort();
}
if ((idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWEXCEPTION ||
(idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWINTR) {
env->ins_len = ins_len;
}
if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
env->has_error_code = true;
env->error_code = rvmcs(cpu->hvf->fd, VMCS_IDT_VECTORING_ERROR);
}
}
if ((rvmcs(cpu->hvf->fd, VMCS_GUEST_INTERRUPTIBILITY) &
VMCS_INTERRUPTIBILITY_NMI_BLOCKING)) {
env->hflags2 |= HF2_NMI_MASK;
} else {
env->hflags2 &= ~HF2_NMI_MASK;
}
if (rvmcs(cpu->hvf->fd, VMCS_GUEST_INTERRUPTIBILITY) &
(VMCS_INTERRUPTIBILITY_STI_BLOCKING |
VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)) {
env->hflags |= HF_INHIBIT_IRQ_MASK;
} else {
env->hflags &= ~HF_INHIBIT_IRQ_MASK;
}
}
static void hvf_cpu_x86_cpuid(CPUX86State *env, uint32_t index, uint32_t count,
uint32_t *eax, uint32_t *ebx,
uint32_t *ecx, uint32_t *edx)
{
/*
* A wrapper extends cpu_x86_cpuid with 0x40000000 and 0x40000010 leafs,
* leafs 0x40000001-0x4000000F are filled with zeros
* Provides vmware-cpuid-freq support to hvf
*
* Note: leaf 0x40000000 not exposes HVF,
* leaving hypervisor signature empty
*/
if (index < 0x40000000 || index > 0x40000010 ||
!tsc_is_known(env) || !apic_bus_freq_is_known(env)) {
cpu_x86_cpuid(env, index, count, eax, ebx, ecx, edx);
return;
}
switch (index) {
case 0x40000000:
*eax = 0x40000010; /* Max available cpuid leaf */
*ebx = 0; /* Leave signature empty */
*ecx = 0;
*edx = 0;
break;
case 0x40000010:
*eax = env->tsc_khz;
*ebx = env->apic_bus_freq / 1000; /* Hz to KHz */
*ecx = 0;
*edx = 0;
break;
default:
*eax = 0;
*ebx = 0;
*ecx = 0;
*edx = 0;
break;
}
}
int hvf_vcpu_exec(CPUState *cpu)
{
X86CPU *x86_cpu = X86_CPU(cpu);
CPUX86State *env = &x86_cpu->env;
int ret = 0;
uint64_t rip = 0;
if (hvf_process_events(cpu)) {
return EXCP_HLT;
}
do {
if (cpu->vcpu_dirty) {
hvf_put_registers(cpu);
cpu->vcpu_dirty = false;
}
if (hvf_inject_interrupts(cpu)) {
return EXCP_INTERRUPT;
}
vmx_update_tpr(cpu);
qemu_mutex_unlock_iothread();
if (!cpu_is_bsp(X86_CPU(cpu)) && cpu->halted) {
qemu_mutex_lock_iothread();
return EXCP_HLT;
}
hv_return_t r = hv_vcpu_run(cpu->hvf->fd);
assert_hvf_ok(r);
/* handle VMEXIT */
uint64_t exit_reason = rvmcs(cpu->hvf->fd, VMCS_EXIT_REASON);
uint64_t exit_qual = rvmcs(cpu->hvf->fd, VMCS_EXIT_QUALIFICATION);
uint32_t ins_len = (uint32_t)rvmcs(cpu->hvf->fd,
VMCS_EXIT_INSTRUCTION_LENGTH);
uint64_t idtvec_info = rvmcs(cpu->hvf->fd, VMCS_IDT_VECTORING_INFO);
hvf_store_events(cpu, ins_len, idtvec_info);
rip = rreg(cpu->hvf->fd, HV_X86_RIP);
env->eflags = rreg(cpu->hvf->fd, HV_X86_RFLAGS);
qemu_mutex_lock_iothread();
update_apic_tpr(cpu);
current_cpu = cpu;
ret = 0;
switch (exit_reason) {
case EXIT_REASON_HLT: {
macvm_set_rip(cpu, rip + ins_len);
if (!((cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
(env->eflags & IF_MASK))
&& !(cpu->interrupt_request & CPU_INTERRUPT_NMI) &&
!(idtvec_info & VMCS_IDT_VEC_VALID)) {
cpu->halted = 1;
ret = EXCP_HLT;
break;
}
ret = EXCP_INTERRUPT;
break;
}
case EXIT_REASON_MWAIT: {
ret = EXCP_INTERRUPT;
break;
}
/* Need to check if MMIO or unmapped fault */
case EXIT_REASON_EPT_FAULT:
{
hvf_slot *slot;
uint64_t gpa = rvmcs(cpu->hvf->fd, VMCS_GUEST_PHYSICAL_ADDRESS);
if (((idtvec_info & VMCS_IDT_VEC_VALID) == 0) &&
((exit_qual & EXIT_QUAL_NMIUDTI) != 0)) {
vmx_set_nmi_blocking(cpu);
}
slot = hvf_find_overlap_slot(gpa, 1);
/* mmio */
if (ept_emulation_fault(slot, gpa, exit_qual)) {
struct x86_decode decode;
load_regs(cpu);
decode_instruction(env, &decode);
exec_instruction(env, &decode);
store_regs(cpu);
break;
}
break;
}
case EXIT_REASON_INOUT:
{
uint32_t in = (exit_qual & 8) != 0;
uint32_t size = (exit_qual & 7) + 1;
uint32_t string = (exit_qual & 16) != 0;
uint32_t port = exit_qual >> 16;
/*uint32_t rep = (exit_qual & 0x20) != 0;*/
if (!string && in) {
uint64_t val = 0;
load_regs(cpu);
hvf_handle_io(env, port, &val, 0, size, 1);
if (size == 1) {
AL(env) = val;
} else if (size == 2) {
AX(env) = val;
} else if (size == 4) {
RAX(env) = (uint32_t)val;
} else {
RAX(env) = (uint64_t)val;
}
env->eip += ins_len;
store_regs(cpu);
break;
} else if (!string && !in) {
RAX(env) = rreg(cpu->hvf->fd, HV_X86_RAX);
hvf_handle_io(env, port, &RAX(env), 1, size, 1);
macvm_set_rip(cpu, rip + ins_len);
break;
}
struct x86_decode decode;
load_regs(cpu);
decode_instruction(env, &decode);
assert(ins_len == decode.len);
exec_instruction(env, &decode);
store_regs(cpu);
break;
}
case EXIT_REASON_CPUID: {
uint32_t rax = (uint32_t)rreg(cpu->hvf->fd, HV_X86_RAX);
uint32_t rbx = (uint32_t)rreg(cpu->hvf->fd, HV_X86_RBX);
uint32_t rcx = (uint32_t)rreg(cpu->hvf->fd, HV_X86_RCX);
uint32_t rdx = (uint32_t)rreg(cpu->hvf->fd, HV_X86_RDX);
if (rax == 1) {
/* CPUID1.ecx.OSXSAVE needs to know CR4 */
env->cr[4] = rvmcs(cpu->hvf->fd, VMCS_GUEST_CR4);
}
hvf_cpu_x86_cpuid(env, rax, rcx, &rax, &rbx, &rcx, &rdx);
wreg(cpu->hvf->fd, HV_X86_RAX, rax);
wreg(cpu->hvf->fd, HV_X86_RBX, rbx);
wreg(cpu->hvf->fd, HV_X86_RCX, rcx);
wreg(cpu->hvf->fd, HV_X86_RDX, rdx);
macvm_set_rip(cpu, rip + ins_len);
break;
}
case EXIT_REASON_XSETBV: {
X86CPU *x86_cpu = X86_CPU(cpu);
CPUX86State *env = &x86_cpu->env;
uint32_t eax = (uint32_t)rreg(cpu->hvf->fd, HV_X86_RAX);
uint32_t ecx = (uint32_t)rreg(cpu->hvf->fd, HV_X86_RCX);
uint32_t edx = (uint32_t)rreg(cpu->hvf->fd, HV_X86_RDX);
if (ecx) {
macvm_set_rip(cpu, rip + ins_len);
break;
}
env->xcr0 = ((uint64_t)edx << 32) | eax;
wreg(cpu->hvf->fd, HV_X86_XCR0, env->xcr0 | 1);
macvm_set_rip(cpu, rip + ins_len);
break;
}
case EXIT_REASON_INTR_WINDOW:
vmx_clear_int_window_exiting(cpu);
ret = EXCP_INTERRUPT;
break;
case EXIT_REASON_NMI_WINDOW:
vmx_clear_nmi_window_exiting(cpu);
ret = EXCP_INTERRUPT;
break;
case EXIT_REASON_EXT_INTR:
/* force exit and allow io handling */
ret = EXCP_INTERRUPT;
break;
case EXIT_REASON_RDMSR:
case EXIT_REASON_WRMSR:
{
load_regs(cpu);
if (exit_reason == EXIT_REASON_RDMSR) {
simulate_rdmsr(cpu);
} else {
simulate_wrmsr(cpu);
}
env->eip += ins_len;
store_regs(cpu);
break;
}
case EXIT_REASON_CR_ACCESS: {
int cr;
int reg;
load_regs(cpu);
cr = exit_qual & 15;
reg = (exit_qual >> 8) & 15;
switch (cr) {
case 0x0: {
macvm_set_cr0(cpu->hvf->fd, RRX(env, reg));
break;
}
case 4: {
macvm_set_cr4(cpu->hvf->fd, RRX(env, reg));
break;
}
case 8: {
X86CPU *x86_cpu = X86_CPU(cpu);
if (exit_qual & 0x10) {
RRX(env, reg) = cpu_get_apic_tpr(x86_cpu->apic_state);
} else {
int tpr = RRX(env, reg);
cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
ret = EXCP_INTERRUPT;
}
break;
}
default:
error_report("Unrecognized CR %d", cr);
abort();
}
env->eip += ins_len;
store_regs(cpu);
break;
}
case EXIT_REASON_APIC_ACCESS: { /* TODO */
struct x86_decode decode;
load_regs(cpu);
decode_instruction(env, &decode);
exec_instruction(env, &decode);
store_regs(cpu);
break;
}
case EXIT_REASON_TPR: {
ret = 1;
break;
}
case EXIT_REASON_TASK_SWITCH: {
uint64_t vinfo = rvmcs(cpu->hvf->fd, VMCS_IDT_VECTORING_INFO);
x68_segment_selector sel = {.sel = exit_qual & 0xffff};
vmx_handle_task_switch(cpu, sel, (exit_qual >> 30) & 0x3,
vinfo & VMCS_INTR_VALID, vinfo & VECTORING_INFO_VECTOR_MASK, vinfo
& VMCS_INTR_T_MASK);
break;
}
case EXIT_REASON_TRIPLE_FAULT: {
qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
ret = EXCP_INTERRUPT;
break;
}
case EXIT_REASON_RDPMC:
wreg(cpu->hvf->fd, HV_X86_RAX, 0);
wreg(cpu->hvf->fd, HV_X86_RDX, 0);
macvm_set_rip(cpu, rip + ins_len);
break;
case VMX_REASON_VMCALL:
env->exception_nr = EXCP0D_GPF;
env->exception_injected = 1;
env->has_error_code = true;
env->error_code = 0;
break;
default:
error_report("%llx: unhandled exit %llx", rip, exit_reason);
}
} while (ret == 0);
return ret;
}