3b28c27067
set_helper_retaddr() is only used in accel/tcg/user-exec.c. clear_helper_retaddr() is only used in accel/tcg/cpu-exec.c and accel/tcg/user-exec.c. No need to expose their definitions to all user-emulation files including "exec/cpu_ldst.h", move them to a new "user-retaddr.h" header (restricted to accel/tcg/). Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-Id: <20231211212003.21686-19-philmd@linaro.org>
1099 lines
33 KiB
C
1099 lines
33 KiB
C
/*
|
|
* emulator main execution loop
|
|
*
|
|
* Copyright (c) 2003-2005 Fabrice Bellard
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qemu/qemu-print.h"
|
|
#include "qapi/error.h"
|
|
#include "qapi/type-helpers.h"
|
|
#include "hw/core/tcg-cpu-ops.h"
|
|
#include "trace.h"
|
|
#include "disas/disas.h"
|
|
#include "exec/exec-all.h"
|
|
#include "tcg/tcg.h"
|
|
#include "qemu/atomic.h"
|
|
#include "qemu/rcu.h"
|
|
#include "exec/log.h"
|
|
#include "qemu/main-loop.h"
|
|
#include "sysemu/cpus.h"
|
|
#include "exec/cpu-all.h"
|
|
#include "sysemu/cpu-timers.h"
|
|
#include "exec/replay-core.h"
|
|
#include "sysemu/tcg.h"
|
|
#include "exec/helper-proto-common.h"
|
|
#include "tb-jmp-cache.h"
|
|
#include "tb-hash.h"
|
|
#include "tb-context.h"
|
|
#include "internal-common.h"
|
|
#include "internal-target.h"
|
|
#if defined(CONFIG_USER_ONLY)
|
|
#include "user-retaddr.h"
|
|
#endif
|
|
|
|
/* -icount align implementation. */
|
|
|
|
typedef struct SyncClocks {
|
|
int64_t diff_clk;
|
|
int64_t last_cpu_icount;
|
|
int64_t realtime_clock;
|
|
} SyncClocks;
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
/* Allow the guest to have a max 3ms advance.
|
|
* The difference between the 2 clocks could therefore
|
|
* oscillate around 0.
|
|
*/
|
|
#define VM_CLOCK_ADVANCE 3000000
|
|
#define THRESHOLD_REDUCE 1.5
|
|
#define MAX_DELAY_PRINT_RATE 2000000000LL
|
|
#define MAX_NB_PRINTS 100
|
|
|
|
int64_t max_delay;
|
|
int64_t max_advance;
|
|
|
|
static void align_clocks(SyncClocks *sc, CPUState *cpu)
|
|
{
|
|
int64_t cpu_icount;
|
|
|
|
if (!icount_align_option) {
|
|
return;
|
|
}
|
|
|
|
cpu_icount = cpu->icount_extra + cpu->neg.icount_decr.u16.low;
|
|
sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount);
|
|
sc->last_cpu_icount = cpu_icount;
|
|
|
|
if (sc->diff_clk > VM_CLOCK_ADVANCE) {
|
|
#ifndef _WIN32
|
|
struct timespec sleep_delay, rem_delay;
|
|
sleep_delay.tv_sec = sc->diff_clk / 1000000000LL;
|
|
sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL;
|
|
if (nanosleep(&sleep_delay, &rem_delay) < 0) {
|
|
sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec;
|
|
} else {
|
|
sc->diff_clk = 0;
|
|
}
|
|
#else
|
|
Sleep(sc->diff_clk / SCALE_MS);
|
|
sc->diff_clk = 0;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
static void print_delay(const SyncClocks *sc)
|
|
{
|
|
static float threshold_delay;
|
|
static int64_t last_realtime_clock;
|
|
static int nb_prints;
|
|
|
|
if (icount_align_option &&
|
|
sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE &&
|
|
nb_prints < MAX_NB_PRINTS) {
|
|
if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) ||
|
|
(-sc->diff_clk / (float)1000000000LL <
|
|
(threshold_delay - THRESHOLD_REDUCE))) {
|
|
threshold_delay = (-sc->diff_clk / 1000000000LL) + 1;
|
|
qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n",
|
|
threshold_delay - 1,
|
|
threshold_delay);
|
|
nb_prints++;
|
|
last_realtime_clock = sc->realtime_clock;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void init_delay_params(SyncClocks *sc, CPUState *cpu)
|
|
{
|
|
if (!icount_align_option) {
|
|
return;
|
|
}
|
|
sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
|
|
sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock;
|
|
sc->last_cpu_icount
|
|
= cpu->icount_extra + cpu->neg.icount_decr.u16.low;
|
|
if (sc->diff_clk < max_delay) {
|
|
max_delay = sc->diff_clk;
|
|
}
|
|
if (sc->diff_clk > max_advance) {
|
|
max_advance = sc->diff_clk;
|
|
}
|
|
|
|
/* Print every 2s max if the guest is late. We limit the number
|
|
of printed messages to NB_PRINT_MAX(currently 100) */
|
|
print_delay(sc);
|
|
}
|
|
#else
|
|
static void align_clocks(SyncClocks *sc, const CPUState *cpu)
|
|
{
|
|
}
|
|
|
|
static void init_delay_params(SyncClocks *sc, const CPUState *cpu)
|
|
{
|
|
}
|
|
#endif /* CONFIG USER ONLY */
|
|
|
|
uint32_t curr_cflags(CPUState *cpu)
|
|
{
|
|
uint32_t cflags = cpu->tcg_cflags;
|
|
|
|
/*
|
|
* Record gdb single-step. We should be exiting the TB by raising
|
|
* EXCP_DEBUG, but to simplify other tests, disable chaining too.
|
|
*
|
|
* For singlestep and -d nochain, suppress goto_tb so that
|
|
* we can log -d cpu,exec after every TB.
|
|
*/
|
|
if (unlikely(cpu->singlestep_enabled)) {
|
|
cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | CF_SINGLE_STEP | 1;
|
|
} else if (qatomic_read(&one_insn_per_tb)) {
|
|
cflags |= CF_NO_GOTO_TB | 1;
|
|
} else if (qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) {
|
|
cflags |= CF_NO_GOTO_TB;
|
|
}
|
|
|
|
return cflags;
|
|
}
|
|
|
|
struct tb_desc {
|
|
vaddr pc;
|
|
uint64_t cs_base;
|
|
CPUArchState *env;
|
|
tb_page_addr_t page_addr0;
|
|
uint32_t flags;
|
|
uint32_t cflags;
|
|
};
|
|
|
|
static bool tb_lookup_cmp(const void *p, const void *d)
|
|
{
|
|
const TranslationBlock *tb = p;
|
|
const struct tb_desc *desc = d;
|
|
|
|
if ((tb_cflags(tb) & CF_PCREL || tb->pc == desc->pc) &&
|
|
tb_page_addr0(tb) == desc->page_addr0 &&
|
|
tb->cs_base == desc->cs_base &&
|
|
tb->flags == desc->flags &&
|
|
tb_cflags(tb) == desc->cflags) {
|
|
/* check next page if needed */
|
|
tb_page_addr_t tb_phys_page1 = tb_page_addr1(tb);
|
|
if (tb_phys_page1 == -1) {
|
|
return true;
|
|
} else {
|
|
tb_page_addr_t phys_page1;
|
|
vaddr virt_page1;
|
|
|
|
/*
|
|
* We know that the first page matched, and an otherwise valid TB
|
|
* encountered an incomplete instruction at the end of that page,
|
|
* therefore we know that generating a new TB from the current PC
|
|
* must also require reading from the next page -- even if the
|
|
* second pages do not match, and therefore the resulting insn
|
|
* is different for the new TB. Therefore any exception raised
|
|
* here by the faulting lookup is not premature.
|
|
*/
|
|
virt_page1 = TARGET_PAGE_ALIGN(desc->pc);
|
|
phys_page1 = get_page_addr_code(desc->env, virt_page1);
|
|
if (tb_phys_page1 == phys_page1) {
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static TranslationBlock *tb_htable_lookup(CPUState *cpu, vaddr pc,
|
|
uint64_t cs_base, uint32_t flags,
|
|
uint32_t cflags)
|
|
{
|
|
tb_page_addr_t phys_pc;
|
|
struct tb_desc desc;
|
|
uint32_t h;
|
|
|
|
desc.env = cpu_env(cpu);
|
|
desc.cs_base = cs_base;
|
|
desc.flags = flags;
|
|
desc.cflags = cflags;
|
|
desc.pc = pc;
|
|
phys_pc = get_page_addr_code(desc.env, pc);
|
|
if (phys_pc == -1) {
|
|
return NULL;
|
|
}
|
|
desc.page_addr0 = phys_pc;
|
|
h = tb_hash_func(phys_pc, (cflags & CF_PCREL ? 0 : pc),
|
|
flags, cs_base, cflags);
|
|
return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp);
|
|
}
|
|
|
|
/* Might cause an exception, so have a longjmp destination ready */
|
|
static inline TranslationBlock *tb_lookup(CPUState *cpu, vaddr pc,
|
|
uint64_t cs_base, uint32_t flags,
|
|
uint32_t cflags)
|
|
{
|
|
TranslationBlock *tb;
|
|
CPUJumpCache *jc;
|
|
uint32_t hash;
|
|
|
|
/* we should never be trying to look up an INVALID tb */
|
|
tcg_debug_assert(!(cflags & CF_INVALID));
|
|
|
|
hash = tb_jmp_cache_hash_func(pc);
|
|
jc = cpu->tb_jmp_cache;
|
|
|
|
tb = qatomic_read(&jc->array[hash].tb);
|
|
if (likely(tb &&
|
|
jc->array[hash].pc == pc &&
|
|
tb->cs_base == cs_base &&
|
|
tb->flags == flags &&
|
|
tb_cflags(tb) == cflags)) {
|
|
goto hit;
|
|
}
|
|
|
|
tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags);
|
|
if (tb == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
jc->array[hash].pc = pc;
|
|
qatomic_set(&jc->array[hash].tb, tb);
|
|
|
|
hit:
|
|
/*
|
|
* As long as tb is not NULL, the contents are consistent. Therefore,
|
|
* the virtual PC has to match for non-CF_PCREL translations.
|
|
*/
|
|
assert((tb_cflags(tb) & CF_PCREL) || tb->pc == pc);
|
|
return tb;
|
|
}
|
|
|
|
static void log_cpu_exec(vaddr pc, CPUState *cpu,
|
|
const TranslationBlock *tb)
|
|
{
|
|
if (qemu_log_in_addr_range(pc)) {
|
|
qemu_log_mask(CPU_LOG_EXEC,
|
|
"Trace %d: %p [%08" PRIx64
|
|
"/%016" VADDR_PRIx "/%08x/%08x] %s\n",
|
|
cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc,
|
|
tb->flags, tb->cflags, lookup_symbol(pc));
|
|
|
|
if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
|
|
FILE *logfile = qemu_log_trylock();
|
|
if (logfile) {
|
|
int flags = 0;
|
|
|
|
if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) {
|
|
flags |= CPU_DUMP_FPU;
|
|
}
|
|
#if defined(TARGET_I386)
|
|
flags |= CPU_DUMP_CCOP;
|
|
#endif
|
|
if (qemu_loglevel_mask(CPU_LOG_TB_VPU)) {
|
|
flags |= CPU_DUMP_VPU;
|
|
}
|
|
cpu_dump_state(cpu, logfile, flags);
|
|
qemu_log_unlock(logfile);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool check_for_breakpoints_slow(CPUState *cpu, vaddr pc,
|
|
uint32_t *cflags)
|
|
{
|
|
CPUBreakpoint *bp;
|
|
bool match_page = false;
|
|
|
|
/*
|
|
* Singlestep overrides breakpoints.
|
|
* This requirement is visible in the record-replay tests, where
|
|
* we would fail to make forward progress in reverse-continue.
|
|
*
|
|
* TODO: gdb singlestep should only override gdb breakpoints,
|
|
* so that one could (gdb) singlestep into the guest kernel's
|
|
* architectural breakpoint handler.
|
|
*/
|
|
if (cpu->singlestep_enabled) {
|
|
return false;
|
|
}
|
|
|
|
QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
|
|
/*
|
|
* If we have an exact pc match, trigger the breakpoint.
|
|
* Otherwise, note matches within the page.
|
|
*/
|
|
if (pc == bp->pc) {
|
|
bool match_bp = false;
|
|
|
|
if (bp->flags & BP_GDB) {
|
|
match_bp = true;
|
|
} else if (bp->flags & BP_CPU) {
|
|
#ifdef CONFIG_USER_ONLY
|
|
g_assert_not_reached();
|
|
#else
|
|
const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
|
|
assert(tcg_ops->debug_check_breakpoint);
|
|
match_bp = tcg_ops->debug_check_breakpoint(cpu);
|
|
#endif
|
|
}
|
|
|
|
if (match_bp) {
|
|
cpu->exception_index = EXCP_DEBUG;
|
|
return true;
|
|
}
|
|
} else if (((pc ^ bp->pc) & TARGET_PAGE_MASK) == 0) {
|
|
match_page = true;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Within the same page as a breakpoint, single-step,
|
|
* returning to helper_lookup_tb_ptr after each insn looking
|
|
* for the actual breakpoint.
|
|
*
|
|
* TODO: Perhaps better to record all of the TBs associated
|
|
* with a given virtual page that contains a breakpoint, and
|
|
* then invalidate them when a new overlapping breakpoint is
|
|
* set on the page. Non-overlapping TBs would not be
|
|
* invalidated, nor would any TB need to be invalidated as
|
|
* breakpoints are removed.
|
|
*/
|
|
if (match_page) {
|
|
*cflags = (*cflags & ~CF_COUNT_MASK) | CF_NO_GOTO_TB | 1;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static inline bool check_for_breakpoints(CPUState *cpu, vaddr pc,
|
|
uint32_t *cflags)
|
|
{
|
|
return unlikely(!QTAILQ_EMPTY(&cpu->breakpoints)) &&
|
|
check_for_breakpoints_slow(cpu, pc, cflags);
|
|
}
|
|
|
|
/**
|
|
* helper_lookup_tb_ptr: quick check for next tb
|
|
* @env: current cpu state
|
|
*
|
|
* Look for an existing TB matching the current cpu state.
|
|
* If found, return the code pointer. If not found, return
|
|
* the tcg epilogue so that we return into cpu_tb_exec.
|
|
*/
|
|
const void *HELPER(lookup_tb_ptr)(CPUArchState *env)
|
|
{
|
|
CPUState *cpu = env_cpu(env);
|
|
TranslationBlock *tb;
|
|
vaddr pc;
|
|
uint64_t cs_base;
|
|
uint32_t flags, cflags;
|
|
|
|
/*
|
|
* By definition we've just finished a TB, so I/O is OK.
|
|
* Avoid the possibility of calling cpu_io_recompile() if
|
|
* a page table walk triggered by tb_lookup() calling
|
|
* probe_access_internal() happens to touch an MMIO device.
|
|
* The next TB, if we chain to it, will clear the flag again.
|
|
*/
|
|
cpu->neg.can_do_io = true;
|
|
cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
|
|
|
|
cflags = curr_cflags(cpu);
|
|
if (check_for_breakpoints(cpu, pc, &cflags)) {
|
|
cpu_loop_exit(cpu);
|
|
}
|
|
|
|
tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
|
|
if (tb == NULL) {
|
|
return tcg_code_gen_epilogue;
|
|
}
|
|
|
|
if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) {
|
|
log_cpu_exec(pc, cpu, tb);
|
|
}
|
|
|
|
return tb->tc.ptr;
|
|
}
|
|
|
|
/* Execute a TB, and fix up the CPU state afterwards if necessary */
|
|
/*
|
|
* Disable CFI checks.
|
|
* TCG creates binary blobs at runtime, with the transformed code.
|
|
* A TB is a blob of binary code, created at runtime and called with an
|
|
* indirect function call. Since such function did not exist at compile time,
|
|
* the CFI runtime has no way to verify its signature and would fail.
|
|
* TCG is not considered a security-sensitive part of QEMU so this does not
|
|
* affect the impact of CFI in environment with high security requirements
|
|
*/
|
|
static inline TranslationBlock * QEMU_DISABLE_CFI
|
|
cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit)
|
|
{
|
|
uintptr_t ret;
|
|
TranslationBlock *last_tb;
|
|
const void *tb_ptr = itb->tc.ptr;
|
|
|
|
if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) {
|
|
log_cpu_exec(log_pc(cpu, itb), cpu, itb);
|
|
}
|
|
|
|
qemu_thread_jit_execute();
|
|
ret = tcg_qemu_tb_exec(cpu_env(cpu), tb_ptr);
|
|
cpu->neg.can_do_io = true;
|
|
qemu_plugin_disable_mem_helpers(cpu);
|
|
/*
|
|
* TODO: Delay swapping back to the read-write region of the TB
|
|
* until we actually need to modify the TB. The read-only copy,
|
|
* coming from the rx region, shares the same host TLB entry as
|
|
* the code that executed the exit_tb opcode that arrived here.
|
|
* If we insist on touching both the RX and the RW pages, we
|
|
* double the host TLB pressure.
|
|
*/
|
|
last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK));
|
|
*tb_exit = ret & TB_EXIT_MASK;
|
|
|
|
trace_exec_tb_exit(last_tb, *tb_exit);
|
|
|
|
if (*tb_exit > TB_EXIT_IDX1) {
|
|
/* We didn't start executing this TB (eg because the instruction
|
|
* counter hit zero); we must restore the guest PC to the address
|
|
* of the start of the TB.
|
|
*/
|
|
CPUClass *cc = cpu->cc;
|
|
const TCGCPUOps *tcg_ops = cc->tcg_ops;
|
|
|
|
if (tcg_ops->synchronize_from_tb) {
|
|
tcg_ops->synchronize_from_tb(cpu, last_tb);
|
|
} else {
|
|
tcg_debug_assert(!(tb_cflags(last_tb) & CF_PCREL));
|
|
assert(cc->set_pc);
|
|
cc->set_pc(cpu, last_tb->pc);
|
|
}
|
|
if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
|
|
vaddr pc = log_pc(cpu, last_tb);
|
|
if (qemu_log_in_addr_range(pc)) {
|
|
qemu_log("Stopped execution of TB chain before %p [%016"
|
|
VADDR_PRIx "] %s\n",
|
|
last_tb->tc.ptr, pc, lookup_symbol(pc));
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If gdb single-step, and we haven't raised another exception,
|
|
* raise a debug exception. Single-step with another exception
|
|
* is handled in cpu_handle_exception.
|
|
*/
|
|
if (unlikely(cpu->singlestep_enabled) && cpu->exception_index == -1) {
|
|
cpu->exception_index = EXCP_DEBUG;
|
|
cpu_loop_exit(cpu);
|
|
}
|
|
|
|
return last_tb;
|
|
}
|
|
|
|
|
|
static void cpu_exec_enter(CPUState *cpu)
|
|
{
|
|
const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
|
|
|
|
if (tcg_ops->cpu_exec_enter) {
|
|
tcg_ops->cpu_exec_enter(cpu);
|
|
}
|
|
}
|
|
|
|
static void cpu_exec_exit(CPUState *cpu)
|
|
{
|
|
const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
|
|
|
|
if (tcg_ops->cpu_exec_exit) {
|
|
tcg_ops->cpu_exec_exit(cpu);
|
|
}
|
|
}
|
|
|
|
static void cpu_exec_longjmp_cleanup(CPUState *cpu)
|
|
{
|
|
/* Non-buggy compilers preserve this; assert the correct value. */
|
|
g_assert(cpu == current_cpu);
|
|
|
|
#ifdef CONFIG_USER_ONLY
|
|
clear_helper_retaddr();
|
|
if (have_mmap_lock()) {
|
|
mmap_unlock();
|
|
}
|
|
#else
|
|
/*
|
|
* For softmmu, a tlb_fill fault during translation will land here,
|
|
* and we need to release any page locks held. In system mode we
|
|
* have one tcg_ctx per thread, so we know it was this cpu doing
|
|
* the translation.
|
|
*
|
|
* Alternative 1: Install a cleanup to be called via an exception
|
|
* handling safe longjmp. It seems plausible that all our hosts
|
|
* support such a thing. We'd have to properly register unwind info
|
|
* for the JIT for EH, rather that just for GDB.
|
|
*
|
|
* Alternative 2: Set and restore cpu->jmp_env in tb_gen_code to
|
|
* capture the cpu_loop_exit longjmp, perform the cleanup, and
|
|
* jump again to arrive here.
|
|
*/
|
|
if (tcg_ctx->gen_tb) {
|
|
tb_unlock_pages(tcg_ctx->gen_tb);
|
|
tcg_ctx->gen_tb = NULL;
|
|
}
|
|
#endif
|
|
if (bql_locked()) {
|
|
bql_unlock();
|
|
}
|
|
assert_no_pages_locked();
|
|
}
|
|
|
|
void cpu_exec_step_atomic(CPUState *cpu)
|
|
{
|
|
CPUArchState *env = cpu_env(cpu);
|
|
TranslationBlock *tb;
|
|
vaddr pc;
|
|
uint64_t cs_base;
|
|
uint32_t flags, cflags;
|
|
int tb_exit;
|
|
|
|
if (sigsetjmp(cpu->jmp_env, 0) == 0) {
|
|
start_exclusive();
|
|
g_assert(cpu == current_cpu);
|
|
g_assert(!cpu->running);
|
|
cpu->running = true;
|
|
|
|
cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
|
|
|
|
cflags = curr_cflags(cpu);
|
|
/* Execute in a serial context. */
|
|
cflags &= ~CF_PARALLEL;
|
|
/* After 1 insn, return and release the exclusive lock. */
|
|
cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1;
|
|
/*
|
|
* No need to check_for_breakpoints here.
|
|
* We only arrive in cpu_exec_step_atomic after beginning execution
|
|
* of an insn that includes an atomic operation we can't handle.
|
|
* Any breakpoint for this insn will have been recognized earlier.
|
|
*/
|
|
|
|
tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
|
|
if (tb == NULL) {
|
|
mmap_lock();
|
|
tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
|
|
mmap_unlock();
|
|
}
|
|
|
|
cpu_exec_enter(cpu);
|
|
/* execute the generated code */
|
|
trace_exec_tb(tb, pc);
|
|
cpu_tb_exec(cpu, tb, &tb_exit);
|
|
cpu_exec_exit(cpu);
|
|
} else {
|
|
cpu_exec_longjmp_cleanup(cpu);
|
|
}
|
|
|
|
/*
|
|
* As we start the exclusive region before codegen we must still
|
|
* be in the region if we longjump out of either the codegen or
|
|
* the execution.
|
|
*/
|
|
g_assert(cpu_in_exclusive_context(cpu));
|
|
cpu->running = false;
|
|
end_exclusive();
|
|
}
|
|
|
|
void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr)
|
|
{
|
|
/*
|
|
* Get the rx view of the structure, from which we find the
|
|
* executable code address, and tb_target_set_jmp_target can
|
|
* produce a pc-relative displacement to jmp_target_addr[n].
|
|
*/
|
|
const TranslationBlock *c_tb = tcg_splitwx_to_rx(tb);
|
|
uintptr_t offset = tb->jmp_insn_offset[n];
|
|
uintptr_t jmp_rx = (uintptr_t)tb->tc.ptr + offset;
|
|
uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff;
|
|
|
|
tb->jmp_target_addr[n] = addr;
|
|
tb_target_set_jmp_target(c_tb, n, jmp_rx, jmp_rw);
|
|
}
|
|
|
|
static inline void tb_add_jump(TranslationBlock *tb, int n,
|
|
TranslationBlock *tb_next)
|
|
{
|
|
uintptr_t old;
|
|
|
|
qemu_thread_jit_write();
|
|
assert(n < ARRAY_SIZE(tb->jmp_list_next));
|
|
qemu_spin_lock(&tb_next->jmp_lock);
|
|
|
|
/* make sure the destination TB is valid */
|
|
if (tb_next->cflags & CF_INVALID) {
|
|
goto out_unlock_next;
|
|
}
|
|
/* Atomically claim the jump destination slot only if it was NULL */
|
|
old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL,
|
|
(uintptr_t)tb_next);
|
|
if (old) {
|
|
goto out_unlock_next;
|
|
}
|
|
|
|
/* patch the native jump address */
|
|
tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr);
|
|
|
|
/* add in TB jmp list */
|
|
tb->jmp_list_next[n] = tb_next->jmp_list_head;
|
|
tb_next->jmp_list_head = (uintptr_t)tb | n;
|
|
|
|
qemu_spin_unlock(&tb_next->jmp_lock);
|
|
|
|
qemu_log_mask(CPU_LOG_EXEC, "Linking TBs %p index %d -> %p\n",
|
|
tb->tc.ptr, n, tb_next->tc.ptr);
|
|
return;
|
|
|
|
out_unlock_next:
|
|
qemu_spin_unlock(&tb_next->jmp_lock);
|
|
return;
|
|
}
|
|
|
|
static inline bool cpu_handle_halt(CPUState *cpu)
|
|
{
|
|
#ifndef CONFIG_USER_ONLY
|
|
if (cpu->halted) {
|
|
const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
|
|
|
|
if (tcg_ops->cpu_exec_halt) {
|
|
tcg_ops->cpu_exec_halt(cpu);
|
|
}
|
|
if (!cpu_has_work(cpu)) {
|
|
return true;
|
|
}
|
|
|
|
cpu->halted = 0;
|
|
}
|
|
#endif /* !CONFIG_USER_ONLY */
|
|
|
|
return false;
|
|
}
|
|
|
|
static inline void cpu_handle_debug_exception(CPUState *cpu)
|
|
{
|
|
const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
|
|
CPUWatchpoint *wp;
|
|
|
|
if (!cpu->watchpoint_hit) {
|
|
QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
|
|
wp->flags &= ~BP_WATCHPOINT_HIT;
|
|
}
|
|
}
|
|
|
|
if (tcg_ops->debug_excp_handler) {
|
|
tcg_ops->debug_excp_handler(cpu);
|
|
}
|
|
}
|
|
|
|
static inline bool cpu_handle_exception(CPUState *cpu, int *ret)
|
|
{
|
|
if (cpu->exception_index < 0) {
|
|
#ifndef CONFIG_USER_ONLY
|
|
if (replay_has_exception()
|
|
&& cpu->neg.icount_decr.u16.low + cpu->icount_extra == 0) {
|
|
/* Execute just one insn to trigger exception pending in the log */
|
|
cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT)
|
|
| CF_NOIRQ | 1;
|
|
}
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
if (cpu->exception_index >= EXCP_INTERRUPT) {
|
|
/* exit request from the cpu execution loop */
|
|
*ret = cpu->exception_index;
|
|
if (*ret == EXCP_DEBUG) {
|
|
cpu_handle_debug_exception(cpu);
|
|
}
|
|
cpu->exception_index = -1;
|
|
return true;
|
|
}
|
|
|
|
#if defined(CONFIG_USER_ONLY)
|
|
/*
|
|
* If user mode only, we simulate a fake exception which will be
|
|
* handled outside the cpu execution loop.
|
|
*/
|
|
#if defined(TARGET_I386)
|
|
const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
|
|
tcg_ops->fake_user_interrupt(cpu);
|
|
#endif /* TARGET_I386 */
|
|
*ret = cpu->exception_index;
|
|
cpu->exception_index = -1;
|
|
return true;
|
|
#else
|
|
if (replay_exception()) {
|
|
const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
|
|
|
|
bql_lock();
|
|
tcg_ops->do_interrupt(cpu);
|
|
bql_unlock();
|
|
cpu->exception_index = -1;
|
|
|
|
if (unlikely(cpu->singlestep_enabled)) {
|
|
/*
|
|
* After processing the exception, ensure an EXCP_DEBUG is
|
|
* raised when single-stepping so that GDB doesn't miss the
|
|
* next instruction.
|
|
*/
|
|
*ret = EXCP_DEBUG;
|
|
cpu_handle_debug_exception(cpu);
|
|
return true;
|
|
}
|
|
} else if (!replay_has_interrupt()) {
|
|
/* give a chance to iothread in replay mode */
|
|
*ret = EXCP_INTERRUPT;
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
return false;
|
|
}
|
|
|
|
static inline bool icount_exit_request(CPUState *cpu)
|
|
{
|
|
if (!icount_enabled()) {
|
|
return false;
|
|
}
|
|
if (cpu->cflags_next_tb != -1 && !(cpu->cflags_next_tb & CF_USE_ICOUNT)) {
|
|
return false;
|
|
}
|
|
return cpu->neg.icount_decr.u16.low + cpu->icount_extra == 0;
|
|
}
|
|
|
|
static inline bool cpu_handle_interrupt(CPUState *cpu,
|
|
TranslationBlock **last_tb)
|
|
{
|
|
/*
|
|
* If we have requested custom cflags with CF_NOIRQ we should
|
|
* skip checking here. Any pending interrupts will get picked up
|
|
* by the next TB we execute under normal cflags.
|
|
*/
|
|
if (cpu->cflags_next_tb != -1 && cpu->cflags_next_tb & CF_NOIRQ) {
|
|
return false;
|
|
}
|
|
|
|
/* Clear the interrupt flag now since we're processing
|
|
* cpu->interrupt_request and cpu->exit_request.
|
|
* Ensure zeroing happens before reading cpu->exit_request or
|
|
* cpu->interrupt_request (see also smp_wmb in cpu_exit())
|
|
*/
|
|
qatomic_set_mb(&cpu->neg.icount_decr.u16.high, 0);
|
|
|
|
if (unlikely(qatomic_read(&cpu->interrupt_request))) {
|
|
int interrupt_request;
|
|
bql_lock();
|
|
interrupt_request = cpu->interrupt_request;
|
|
if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) {
|
|
/* Mask out external interrupts for this step. */
|
|
interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
|
|
}
|
|
if (interrupt_request & CPU_INTERRUPT_DEBUG) {
|
|
cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
|
|
cpu->exception_index = EXCP_DEBUG;
|
|
bql_unlock();
|
|
return true;
|
|
}
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) {
|
|
/* Do nothing */
|
|
} else if (interrupt_request & CPU_INTERRUPT_HALT) {
|
|
replay_interrupt();
|
|
cpu->interrupt_request &= ~CPU_INTERRUPT_HALT;
|
|
cpu->halted = 1;
|
|
cpu->exception_index = EXCP_HLT;
|
|
bql_unlock();
|
|
return true;
|
|
}
|
|
#if defined(TARGET_I386)
|
|
else if (interrupt_request & CPU_INTERRUPT_INIT) {
|
|
X86CPU *x86_cpu = X86_CPU(cpu);
|
|
CPUArchState *env = &x86_cpu->env;
|
|
replay_interrupt();
|
|
cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0);
|
|
do_cpu_init(x86_cpu);
|
|
cpu->exception_index = EXCP_HALTED;
|
|
bql_unlock();
|
|
return true;
|
|
}
|
|
#else
|
|
else if (interrupt_request & CPU_INTERRUPT_RESET) {
|
|
replay_interrupt();
|
|
cpu_reset(cpu);
|
|
bql_unlock();
|
|
return true;
|
|
}
|
|
#endif /* !TARGET_I386 */
|
|
/* The target hook has 3 exit conditions:
|
|
False when the interrupt isn't processed,
|
|
True when it is, and we should restart on a new TB,
|
|
and via longjmp via cpu_loop_exit. */
|
|
else {
|
|
const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
|
|
|
|
if (tcg_ops->cpu_exec_interrupt &&
|
|
tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) {
|
|
if (!tcg_ops->need_replay_interrupt ||
|
|
tcg_ops->need_replay_interrupt(interrupt_request)) {
|
|
replay_interrupt();
|
|
}
|
|
/*
|
|
* After processing the interrupt, ensure an EXCP_DEBUG is
|
|
* raised when single-stepping so that GDB doesn't miss the
|
|
* next instruction.
|
|
*/
|
|
if (unlikely(cpu->singlestep_enabled)) {
|
|
cpu->exception_index = EXCP_DEBUG;
|
|
bql_unlock();
|
|
return true;
|
|
}
|
|
cpu->exception_index = -1;
|
|
*last_tb = NULL;
|
|
}
|
|
/* The target hook may have updated the 'cpu->interrupt_request';
|
|
* reload the 'interrupt_request' value */
|
|
interrupt_request = cpu->interrupt_request;
|
|
}
|
|
#endif /* !CONFIG_USER_ONLY */
|
|
if (interrupt_request & CPU_INTERRUPT_EXITTB) {
|
|
cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
|
|
/* ensure that no TB jump will be modified as
|
|
the program flow was changed */
|
|
*last_tb = NULL;
|
|
}
|
|
|
|
/* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */
|
|
bql_unlock();
|
|
}
|
|
|
|
/* Finally, check if we need to exit to the main loop. */
|
|
if (unlikely(qatomic_read(&cpu->exit_request)) || icount_exit_request(cpu)) {
|
|
qatomic_set(&cpu->exit_request, 0);
|
|
if (cpu->exception_index == -1) {
|
|
cpu->exception_index = EXCP_INTERRUPT;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb,
|
|
vaddr pc, TranslationBlock **last_tb,
|
|
int *tb_exit)
|
|
{
|
|
int32_t insns_left;
|
|
|
|
trace_exec_tb(tb, pc);
|
|
tb = cpu_tb_exec(cpu, tb, tb_exit);
|
|
if (*tb_exit != TB_EXIT_REQUESTED) {
|
|
*last_tb = tb;
|
|
return;
|
|
}
|
|
|
|
*last_tb = NULL;
|
|
insns_left = qatomic_read(&cpu->neg.icount_decr.u32);
|
|
if (insns_left < 0) {
|
|
/* Something asked us to stop executing chained TBs; just
|
|
* continue round the main loop. Whatever requested the exit
|
|
* will also have set something else (eg exit_request or
|
|
* interrupt_request) which will be handled by
|
|
* cpu_handle_interrupt. cpu_handle_interrupt will also
|
|
* clear cpu->icount_decr.u16.high.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
/* Instruction counter expired. */
|
|
assert(icount_enabled());
|
|
#ifndef CONFIG_USER_ONLY
|
|
/* Ensure global icount has gone forward */
|
|
icount_update(cpu);
|
|
/* Refill decrementer and continue execution. */
|
|
insns_left = MIN(0xffff, cpu->icount_budget);
|
|
cpu->neg.icount_decr.u16.low = insns_left;
|
|
cpu->icount_extra = cpu->icount_budget - insns_left;
|
|
|
|
/*
|
|
* If the next tb has more instructions than we have left to
|
|
* execute we need to ensure we find/generate a TB with exactly
|
|
* insns_left instructions in it.
|
|
*/
|
|
if (insns_left > 0 && insns_left < tb->icount) {
|
|
assert(insns_left <= CF_COUNT_MASK);
|
|
assert(cpu->icount_extra == 0);
|
|
cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* main execution loop */
|
|
|
|
static int __attribute__((noinline))
|
|
cpu_exec_loop(CPUState *cpu, SyncClocks *sc)
|
|
{
|
|
int ret;
|
|
|
|
/* if an exception is pending, we execute it here */
|
|
while (!cpu_handle_exception(cpu, &ret)) {
|
|
TranslationBlock *last_tb = NULL;
|
|
int tb_exit = 0;
|
|
|
|
while (!cpu_handle_interrupt(cpu, &last_tb)) {
|
|
TranslationBlock *tb;
|
|
vaddr pc;
|
|
uint64_t cs_base;
|
|
uint32_t flags, cflags;
|
|
|
|
cpu_get_tb_cpu_state(cpu_env(cpu), &pc, &cs_base, &flags);
|
|
|
|
/*
|
|
* When requested, use an exact setting for cflags for the next
|
|
* execution. This is used for icount, precise smc, and stop-
|
|
* after-access watchpoints. Since this request should never
|
|
* have CF_INVALID set, -1 is a convenient invalid value that
|
|
* does not require tcg headers for cpu_common_reset.
|
|
*/
|
|
cflags = cpu->cflags_next_tb;
|
|
if (cflags == -1) {
|
|
cflags = curr_cflags(cpu);
|
|
} else {
|
|
cpu->cflags_next_tb = -1;
|
|
}
|
|
|
|
if (check_for_breakpoints(cpu, pc, &cflags)) {
|
|
break;
|
|
}
|
|
|
|
tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
|
|
if (tb == NULL) {
|
|
CPUJumpCache *jc;
|
|
uint32_t h;
|
|
|
|
mmap_lock();
|
|
tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
|
|
mmap_unlock();
|
|
|
|
/*
|
|
* We add the TB in the virtual pc hash table
|
|
* for the fast lookup
|
|
*/
|
|
h = tb_jmp_cache_hash_func(pc);
|
|
jc = cpu->tb_jmp_cache;
|
|
jc->array[h].pc = pc;
|
|
qatomic_set(&jc->array[h].tb, tb);
|
|
}
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
/*
|
|
* We don't take care of direct jumps when address mapping
|
|
* changes in system emulation. So it's not safe to make a
|
|
* direct jump to a TB spanning two pages because the mapping
|
|
* for the second page can change.
|
|
*/
|
|
if (tb_page_addr1(tb) != -1) {
|
|
last_tb = NULL;
|
|
}
|
|
#endif
|
|
/* See if we can patch the calling TB. */
|
|
if (last_tb) {
|
|
tb_add_jump(last_tb, tb_exit, tb);
|
|
}
|
|
|
|
cpu_loop_exec_tb(cpu, tb, pc, &last_tb, &tb_exit);
|
|
|
|
/* Try to align the host and virtual clocks
|
|
if the guest is in advance */
|
|
align_clocks(sc, cpu);
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int cpu_exec_setjmp(CPUState *cpu, SyncClocks *sc)
|
|
{
|
|
/* Prepare setjmp context for exception handling. */
|
|
if (unlikely(sigsetjmp(cpu->jmp_env, 0) != 0)) {
|
|
cpu_exec_longjmp_cleanup(cpu);
|
|
}
|
|
|
|
return cpu_exec_loop(cpu, sc);
|
|
}
|
|
|
|
int cpu_exec(CPUState *cpu)
|
|
{
|
|
int ret;
|
|
SyncClocks sc = { 0 };
|
|
|
|
/* replay_interrupt may need current_cpu */
|
|
current_cpu = cpu;
|
|
|
|
if (cpu_handle_halt(cpu)) {
|
|
return EXCP_HALTED;
|
|
}
|
|
|
|
RCU_READ_LOCK_GUARD();
|
|
cpu_exec_enter(cpu);
|
|
|
|
/*
|
|
* Calculate difference between guest clock and host clock.
|
|
* This delay includes the delay of the last cycle, so
|
|
* what we have to do is sleep until it is 0. As for the
|
|
* advance/delay we gain here, we try to fix it next time.
|
|
*/
|
|
init_delay_params(&sc, cpu);
|
|
|
|
ret = cpu_exec_setjmp(cpu, &sc);
|
|
|
|
cpu_exec_exit(cpu);
|
|
return ret;
|
|
}
|
|
|
|
bool tcg_exec_realizefn(CPUState *cpu, Error **errp)
|
|
{
|
|
static bool tcg_target_initialized;
|
|
|
|
if (!tcg_target_initialized) {
|
|
cpu->cc->tcg_ops->initialize();
|
|
tcg_target_initialized = true;
|
|
}
|
|
|
|
cpu->tb_jmp_cache = g_new0(CPUJumpCache, 1);
|
|
tlb_init(cpu);
|
|
#ifndef CONFIG_USER_ONLY
|
|
tcg_iommu_init_notifier_list(cpu);
|
|
#endif /* !CONFIG_USER_ONLY */
|
|
/* qemu_plugin_vcpu_init_hook delayed until cpu_index assigned. */
|
|
|
|
return true;
|
|
}
|
|
|
|
/* undo the initializations in reverse order */
|
|
void tcg_exec_unrealizefn(CPUState *cpu)
|
|
{
|
|
#ifndef CONFIG_USER_ONLY
|
|
tcg_iommu_free_notifier_list(cpu);
|
|
#endif /* !CONFIG_USER_ONLY */
|
|
|
|
tlb_destroy(cpu);
|
|
g_free_rcu(cpu->tb_jmp_cache, rcu);
|
|
}
|