qemu/linux-user/syscall.c
bellard 9af9eaaa76 endian fix
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@83 c046a42c-6fe2-441c-8c8c-71466251a162
2003-04-07 21:34:41 +00:00

2391 lines
76 KiB
C

/*
* Linux syscalls
*
* Copyright (c) 2003 Fabrice Bellard
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <elf.h>
#include <endian.h>
#include <errno.h>
#include <unistd.h>
#include <fcntl.h>
#include <time.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <sys/time.h>
#include <sys/stat.h>
#include <sys/mount.h>
#include <sys/resource.h>
#include <sys/mman.h>
#include <sys/swap.h>
#include <signal.h>
#include <sched.h>
#include <sys/socket.h>
#include <sys/uio.h>
#include <sys/poll.h>
#include <sys/times.h>
//#include <sys/user.h>
#include <netinet/tcp.h>
#define termios host_termios
#define winsize host_winsize
#define termio host_termio
#define sgttyb host_sgttyb /* same as target */
#define tchars host_tchars /* same as target */
#define ltchars host_ltchars /* same as target */
#include <linux/termios.h>
#include <linux/unistd.h>
#include <linux/utsname.h>
#include <linux/cdrom.h>
#include <linux/hdreg.h>
#include <linux/soundcard.h>
#include <linux/dirent.h>
#include "qemu.h"
//#define DEBUG
#ifndef PAGE_SIZE
#define PAGE_SIZE 4096
#define PAGE_MASK ~(PAGE_SIZE - 1)
#endif
//#include <linux/msdos_fs.h>
#define VFAT_IOCTL_READDIR_BOTH _IOR('r', 1, struct dirent [2])
#define VFAT_IOCTL_READDIR_SHORT _IOR('r', 2, struct dirent [2])
void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
long do_sigreturn(CPUX86State *env);
long do_rt_sigreturn(CPUX86State *env);
#define __NR_sys_uname __NR_uname
#define __NR_sys_getcwd1 __NR_getcwd
#define __NR_sys_statfs __NR_statfs
#define __NR_sys_fstatfs __NR_fstatfs
#define __NR_sys_getdents __NR_getdents
#define __NR_sys_getdents64 __NR_getdents64
#define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo
#ifdef __alpha__
#define __NR__llseek __NR_lseek
#endif
#ifdef __NR_gettid
_syscall0(int, gettid)
#else
static int gettid(void) {
return -ENOSYS;
}
#endif
_syscall1(int,sys_uname,struct new_utsname *,buf)
_syscall2(int,sys_getcwd1,char *,buf,size_t,size)
_syscall3(int, sys_getdents, uint, fd, struct dirent *, dirp, uint, count);
_syscall3(int, sys_getdents64, uint, fd, struct dirent64 *, dirp, uint, count);
_syscall5(int, _llseek, uint, fd, ulong, hi, ulong, lo,
loff_t *, res, uint, wh);
_syscall2(int,sys_statfs,const char *,path,struct kernel_statfs *,buf)
_syscall2(int,sys_fstatfs,int,fd,struct kernel_statfs *,buf)
_syscall3(int,sys_rt_sigqueueinfo,int,pid,int,sig,siginfo_t *,uinfo)
extern int personality(int);
extern int flock(int, int);
extern int setfsuid(int);
extern int setfsgid(int);
extern int setresuid(uid_t, uid_t, uid_t);
extern int getresuid(uid_t *, uid_t *, uid_t *);
extern int setresgid(gid_t, gid_t, gid_t);
extern int getresgid(gid_t *, gid_t *, gid_t *);
static inline long get_errno(long ret)
{
if (ret == -1)
return -errno;
else
return ret;
}
static inline int is_error(long ret)
{
return (unsigned long)ret >= (unsigned long)(-4096);
}
static char *target_brk;
static char *target_original_brk;
void target_set_brk(char *new_brk)
{
target_brk = new_brk;
target_original_brk = new_brk;
}
static long do_brk(char *new_brk)
{
char *brk_page;
long mapped_addr;
int new_alloc_size;
if (!new_brk)
return (long)target_brk;
if (new_brk < target_original_brk)
return -ENOMEM;
brk_page = (char *)(((unsigned long)target_brk + PAGE_SIZE - 1) & PAGE_MASK);
/* If the new brk is less than this, set it and we're done... */
if (new_brk < brk_page) {
target_brk = new_brk;
return (long)target_brk;
}
/* We need to allocate more memory after the brk... */
new_alloc_size = ((new_brk - brk_page + 1)+(PAGE_SIZE-1)) & PAGE_MASK;
mapped_addr = get_errno((long)mmap((caddr_t)brk_page, new_alloc_size,
PROT_READ|PROT_WRITE,
MAP_ANON|MAP_FIXED|MAP_PRIVATE, 0, 0));
if (is_error(mapped_addr)) {
return mapped_addr;
} else {
target_brk = new_brk;
return (long)target_brk;
}
}
static inline fd_set *target_to_host_fds(fd_set *fds,
target_long *target_fds, int n)
{
#if !defined(BSWAP_NEEDED) && !defined(WORDS_BIGENDIAN)
return (fd_set *)target_fds;
#else
int i, b;
if (target_fds) {
FD_ZERO(fds);
for(i = 0;i < n; i++) {
b = (tswapl(target_fds[i / TARGET_LONG_BITS]) >>
(i & (TARGET_LONG_BITS - 1))) & 1;
if (b)
FD_SET(i, fds);
}
return fds;
} else {
return NULL;
}
#endif
}
static inline void host_to_target_fds(target_long *target_fds,
fd_set *fds, int n)
{
#if !defined(BSWAP_NEEDED) && !defined(WORDS_BIGENDIAN)
/* nothing to do */
#else
int i, nw, j, k;
target_long v;
if (target_fds) {
nw = n / TARGET_LONG_BITS;
k = 0;
for(i = 0;i < nw; i++) {
v = 0;
for(j = 0; j < TARGET_LONG_BITS; j++) {
v |= ((FD_ISSET(k, fds) != 0) << j);
k++;
}
target_fds[i] = tswapl(v);
}
}
#endif
}
static inline void target_to_host_timeval(struct timeval *tv,
const struct target_timeval *target_tv)
{
tv->tv_sec = tswapl(target_tv->tv_sec);
tv->tv_usec = tswapl(target_tv->tv_usec);
}
static inline void host_to_target_timeval(struct target_timeval *target_tv,
const struct timeval *tv)
{
target_tv->tv_sec = tswapl(tv->tv_sec);
target_tv->tv_usec = tswapl(tv->tv_usec);
}
static long do_select(long n,
target_long *target_rfds, target_long *target_wfds,
target_long *target_efds, struct target_timeval *target_tv)
{
fd_set rfds, wfds, efds;
fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
struct timeval tv, *tv_ptr;
long ret;
rfds_ptr = target_to_host_fds(&rfds, target_rfds, n);
wfds_ptr = target_to_host_fds(&wfds, target_wfds, n);
efds_ptr = target_to_host_fds(&efds, target_efds, n);
if (target_tv) {
target_to_host_timeval(&tv, target_tv);
tv_ptr = &tv;
} else {
tv_ptr = NULL;
}
ret = get_errno(select(n, rfds_ptr, wfds_ptr, efds_ptr, tv_ptr));
if (!is_error(ret)) {
host_to_target_fds(target_rfds, rfds_ptr, n);
host_to_target_fds(target_wfds, wfds_ptr, n);
host_to_target_fds(target_efds, efds_ptr, n);
if (target_tv) {
host_to_target_timeval(target_tv, &tv);
}
}
return ret;
}
static inline void target_to_host_sockaddr(struct sockaddr *addr,
struct target_sockaddr *target_addr,
socklen_t len)
{
memcpy(addr, target_addr, len);
addr->sa_family = tswap16(target_addr->sa_family);
}
static inline void host_to_target_sockaddr(struct target_sockaddr *target_addr,
struct sockaddr *addr,
socklen_t len)
{
memcpy(target_addr, addr, len);
target_addr->sa_family = tswap16(addr->sa_family);
}
static inline void target_to_host_cmsg(struct msghdr *msgh,
struct target_msghdr *target_msgh)
{
struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
struct target_cmsghdr *target_cmsg = TARGET_CMSG_FIRSTHDR(target_msgh);
socklen_t space = 0;
while (cmsg && target_cmsg) {
void *data = CMSG_DATA(cmsg);
void *target_data = TARGET_CMSG_DATA(target_cmsg);
int len = tswapl(target_cmsg->cmsg_len)
- TARGET_CMSG_ALIGN(sizeof (struct target_cmsghdr));
space += CMSG_SPACE(len);
if (space > msgh->msg_controllen) {
space -= CMSG_SPACE(len);
gemu_log("Host cmsg overflow");
break;
}
cmsg->cmsg_level = tswap32(target_cmsg->cmsg_level);
cmsg->cmsg_type = tswap32(target_cmsg->cmsg_type);
cmsg->cmsg_len = CMSG_LEN(len);
if (cmsg->cmsg_level != SOL_SOCKET || cmsg->cmsg_type != SCM_RIGHTS) {
gemu_log("Unsupported ancillary data: %d/%d\n", cmsg->cmsg_level, cmsg->cmsg_type);
memcpy(data, target_data, len);
} else {
int *fd = (int *)data;
int *target_fd = (int *)target_data;
int i, numfds = len / sizeof(int);
for (i = 0; i < numfds; i++)
fd[i] = tswap32(target_fd[i]);
}
cmsg = CMSG_NXTHDR(msgh, cmsg);
target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg);
}
msgh->msg_controllen = space;
}
static inline void host_to_target_cmsg(struct target_msghdr *target_msgh,
struct msghdr *msgh)
{
struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
struct target_cmsghdr *target_cmsg = TARGET_CMSG_FIRSTHDR(target_msgh);
socklen_t space = 0;
while (cmsg && target_cmsg) {
void *data = CMSG_DATA(cmsg);
void *target_data = TARGET_CMSG_DATA(target_cmsg);
int len = cmsg->cmsg_len - CMSG_ALIGN(sizeof (struct cmsghdr));
space += TARGET_CMSG_SPACE(len);
if (space > tswapl(target_msgh->msg_controllen)) {
space -= TARGET_CMSG_SPACE(len);
gemu_log("Target cmsg overflow");
break;
}
target_cmsg->cmsg_level = tswap32(cmsg->cmsg_level);
target_cmsg->cmsg_type = tswap32(cmsg->cmsg_type);
target_cmsg->cmsg_len = tswapl(TARGET_CMSG_LEN(len));
if (cmsg->cmsg_level != SOL_SOCKET || cmsg->cmsg_type != SCM_RIGHTS) {
gemu_log("Unsupported ancillary data: %d/%d\n", cmsg->cmsg_level, cmsg->cmsg_type);
memcpy(target_data, data, len);
} else {
int *fd = (int *)data;
int *target_fd = (int *)target_data;
int i, numfds = len / sizeof(int);
for (i = 0; i < numfds; i++)
target_fd[i] = tswap32(fd[i]);
}
cmsg = CMSG_NXTHDR(msgh, cmsg);
target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg);
}
msgh->msg_controllen = tswapl(space);
}
static long do_setsockopt(int sockfd, int level, int optname,
void *optval, socklen_t optlen)
{
if (level == SOL_TCP) {
/* TCP options all take an 'int' value. */
int val;
if (optlen < sizeof(uint32_t))
return -EINVAL;
val = tswap32(*(uint32_t *)optval);
return get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
}
else if (level != SOL_SOCKET) {
gemu_log("Unsupported setsockopt level: %d\n", level);
return -ENOSYS;
}
switch (optname) {
/* Options with 'int' argument. */
case SO_DEBUG:
case SO_REUSEADDR:
case SO_TYPE:
case SO_ERROR:
case SO_DONTROUTE:
case SO_BROADCAST:
case SO_SNDBUF:
case SO_RCVBUF:
case SO_KEEPALIVE:
case SO_OOBINLINE:
case SO_NO_CHECK:
case SO_PRIORITY:
case SO_BSDCOMPAT:
case SO_PASSCRED:
case SO_TIMESTAMP:
case SO_RCVLOWAT:
case SO_RCVTIMEO:
case SO_SNDTIMEO:
{
int val;
if (optlen < sizeof(uint32_t))
return -EINVAL;
val = tswap32(*(uint32_t *)optval);
return get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
}
default:
gemu_log("Unsupported setsockopt SOL_SOCKET option: %d\n", optname);
return -ENOSYS;
}
}
static long do_getsockopt(int sockfd, int level, int optname,
void *optval, socklen_t *optlen)
{
gemu_log("getsockopt not yet supported\n");
return -ENOSYS;
}
static long do_socketcall(int num, int32_t *vptr)
{
long ret;
switch(num) {
case SOCKOP_socket:
{
int domain = tswap32(vptr[0]);
int type = tswap32(vptr[1]);
int protocol = tswap32(vptr[2]);
ret = get_errno(socket(domain, type, protocol));
}
break;
case SOCKOP_bind:
{
int sockfd = tswap32(vptr[0]);
void *target_addr = (void *)tswap32(vptr[1]);
socklen_t addrlen = tswap32(vptr[2]);
void *addr = alloca(addrlen);
target_to_host_sockaddr(addr, target_addr, addrlen);
ret = get_errno(bind(sockfd, addr, addrlen));
}
break;
case SOCKOP_connect:
{
int sockfd = tswap32(vptr[0]);
void *target_addr = (void *)tswap32(vptr[1]);
socklen_t addrlen = tswap32(vptr[2]);
void *addr = alloca(addrlen);
target_to_host_sockaddr(addr, target_addr, addrlen);
ret = get_errno(connect(sockfd, addr, addrlen));
}
break;
case SOCKOP_listen:
{
int sockfd = tswap32(vptr[0]);
int backlog = tswap32(vptr[1]);
ret = get_errno(listen(sockfd, backlog));
}
break;
case SOCKOP_accept:
{
int sockfd = tswap32(vptr[0]);
void *target_addr = (void *)tswap32(vptr[1]);
uint32_t *target_addrlen = (void *)tswap32(vptr[2]);
socklen_t addrlen = tswap32(*target_addrlen);
void *addr = alloca(addrlen);
ret = get_errno(accept(sockfd, addr, &addrlen));
if (!is_error(ret)) {
host_to_target_sockaddr(target_addr, addr, addrlen);
*target_addrlen = tswap32(addrlen);
}
}
break;
case SOCKOP_getsockname:
{
int sockfd = tswap32(vptr[0]);
void *target_addr = (void *)tswap32(vptr[1]);
uint32_t *target_addrlen = (void *)tswap32(vptr[2]);
socklen_t addrlen = tswap32(*target_addrlen);
void *addr = alloca(addrlen);
ret = get_errno(getsockname(sockfd, addr, &addrlen));
if (!is_error(ret)) {
host_to_target_sockaddr(target_addr, addr, addrlen);
*target_addrlen = tswap32(addrlen);
}
}
break;
case SOCKOP_getpeername:
{
int sockfd = tswap32(vptr[0]);
void *target_addr = (void *)tswap32(vptr[1]);
uint32_t *target_addrlen = (void *)tswap32(vptr[2]);
socklen_t addrlen = tswap32(*target_addrlen);
void *addr = alloca(addrlen);
ret = get_errno(getpeername(sockfd, addr, &addrlen));
if (!is_error(ret)) {
host_to_target_sockaddr(target_addr, addr, addrlen);
*target_addrlen = tswap32(addrlen);
}
}
break;
case SOCKOP_socketpair:
{
int domain = tswap32(vptr[0]);
int type = tswap32(vptr[1]);
int protocol = tswap32(vptr[2]);
int32_t *target_tab = (void *)tswap32(vptr[3]);
int tab[2];
ret = get_errno(socketpair(domain, type, protocol, tab));
if (!is_error(ret)) {
target_tab[0] = tswap32(tab[0]);
target_tab[1] = tswap32(tab[1]);
}
}
break;
case SOCKOP_send:
{
int sockfd = tswap32(vptr[0]);
void *msg = (void *)tswap32(vptr[1]);
size_t len = tswap32(vptr[2]);
int flags = tswap32(vptr[3]);
ret = get_errno(send(sockfd, msg, len, flags));
}
break;
case SOCKOP_recv:
{
int sockfd = tswap32(vptr[0]);
void *msg = (void *)tswap32(vptr[1]);
size_t len = tswap32(vptr[2]);
int flags = tswap32(vptr[3]);
ret = get_errno(recv(sockfd, msg, len, flags));
}
break;
case SOCKOP_sendto:
{
int sockfd = tswap32(vptr[0]);
void *msg = (void *)tswap32(vptr[1]);
size_t len = tswap32(vptr[2]);
int flags = tswap32(vptr[3]);
void *target_addr = (void *)tswap32(vptr[4]);
socklen_t addrlen = tswap32(vptr[5]);
void *addr = alloca(addrlen);
target_to_host_sockaddr(addr, target_addr, addrlen);
ret = get_errno(sendto(sockfd, msg, len, flags, addr, addrlen));
}
break;
case SOCKOP_recvfrom:
{
int sockfd = tswap32(vptr[0]);
void *msg = (void *)tswap32(vptr[1]);
size_t len = tswap32(vptr[2]);
int flags = tswap32(vptr[3]);
void *target_addr = (void *)tswap32(vptr[4]);
uint32_t *target_addrlen = (void *)tswap32(vptr[5]);
socklen_t addrlen = tswap32(*target_addrlen);
void *addr = alloca(addrlen);
ret = get_errno(recvfrom(sockfd, msg, len, flags, addr, &addrlen));
if (!is_error(ret)) {
host_to_target_sockaddr(target_addr, addr, addrlen);
*target_addrlen = tswap32(addrlen);
}
}
break;
case SOCKOP_shutdown:
{
int sockfd = tswap32(vptr[0]);
int how = tswap32(vptr[1]);
ret = get_errno(shutdown(sockfd, how));
}
break;
case SOCKOP_sendmsg:
case SOCKOP_recvmsg:
{
int fd;
struct target_msghdr *msgp;
struct msghdr msg;
int flags, count, i;
struct iovec *vec;
struct target_iovec *target_vec;
msgp = (void *)tswap32(vptr[1]);
msg.msg_name = (void *)tswapl(msgp->msg_name);
msg.msg_namelen = tswapl(msgp->msg_namelen);
msg.msg_controllen = 2 * tswapl(msgp->msg_controllen);
msg.msg_control = alloca(msg.msg_controllen);
msg.msg_flags = tswap32(msgp->msg_flags);
count = tswapl(msgp->msg_iovlen);
vec = alloca(count * sizeof(struct iovec));
target_vec = (void *)tswapl(msgp->msg_iov);
for(i = 0;i < count; i++) {
vec[i].iov_base = (void *)tswapl(target_vec[i].iov_base);
vec[i].iov_len = tswapl(target_vec[i].iov_len);
}
msg.msg_iovlen = count;
msg.msg_iov = vec;
fd = tswap32(vptr[0]);
flags = tswap32(vptr[2]);
if (num == SOCKOP_sendmsg) {
target_to_host_cmsg(&msg, msgp);
ret = get_errno(sendmsg(fd, &msg, flags));
} else {
ret = get_errno(recvmsg(fd, &msg, flags));
if (!is_error(ret))
host_to_target_cmsg(msgp, &msg);
}
}
break;
case SOCKOP_setsockopt:
{
int sockfd = tswap32(vptr[0]);
int level = tswap32(vptr[1]);
int optname = tswap32(vptr[2]);
void *optval = (void *)tswap32(vptr[3]);
socklen_t optlen = tswap32(vptr[4]);
ret = do_setsockopt(sockfd, level, optname, optval, optlen);
}
break;
case SOCKOP_getsockopt:
{
int sockfd = tswap32(vptr[0]);
int level = tswap32(vptr[1]);
int optname = tswap32(vptr[2]);
void *optval = (void *)tswap32(vptr[3]);
uint32_t *target_len = (void *)tswap32(vptr[4]);
socklen_t optlen = tswap32(*target_len);
ret = do_getsockopt(sockfd, level, optname, optval, &optlen);
if (!is_error(ret))
*target_len = tswap32(optlen);
}
break;
default:
gemu_log("Unsupported socketcall: %d\n", num);
ret = -ENOSYS;
break;
}
return ret;
}
/* kernel structure types definitions */
#define IFNAMSIZ 16
#define STRUCT(name, list...) STRUCT_ ## name,
#define STRUCT_SPECIAL(name) STRUCT_ ## name,
enum {
#include "syscall_types.h"
};
#undef STRUCT
#undef STRUCT_SPECIAL
#define STRUCT(name, list...) const argtype struct_ ## name ## _def[] = { list, TYPE_NULL };
#define STRUCT_SPECIAL(name)
#include "syscall_types.h"
#undef STRUCT
#undef STRUCT_SPECIAL
typedef struct IOCTLEntry {
int target_cmd;
int host_cmd;
const char *name;
int access;
const argtype arg_type[5];
} IOCTLEntry;
#define IOC_R 0x0001
#define IOC_W 0x0002
#define IOC_RW (IOC_R | IOC_W)
#define MAX_STRUCT_SIZE 4096
const IOCTLEntry ioctl_entries[] = {
#define IOCTL(cmd, access, types...) \
{ TARGET_ ## cmd, cmd, #cmd, access, { types } },
#include "ioctls.h"
{ 0, 0, },
};
static long do_ioctl(long fd, long cmd, long arg)
{
const IOCTLEntry *ie;
const argtype *arg_type;
long ret;
uint8_t buf_temp[MAX_STRUCT_SIZE];
ie = ioctl_entries;
for(;;) {
if (ie->target_cmd == 0) {
gemu_log("Unsupported ioctl: cmd=0x%04lx\n", cmd);
return -ENOSYS;
}
if (ie->target_cmd == cmd)
break;
ie++;
}
arg_type = ie->arg_type;
#if defined(DEBUG)
gemu_log("ioctl: cmd=0x%04lx (%s)\n", cmd, ie->name);
#endif
switch(arg_type[0]) {
case TYPE_NULL:
/* no argument */
ret = get_errno(ioctl(fd, ie->host_cmd));
break;
case TYPE_PTRVOID:
case TYPE_INT:
/* int argment */
ret = get_errno(ioctl(fd, ie->host_cmd, arg));
break;
case TYPE_PTR:
arg_type++;
switch(ie->access) {
case IOC_R:
ret = get_errno(ioctl(fd, ie->host_cmd, buf_temp));
if (!is_error(ret)) {
thunk_convert((void *)arg, buf_temp, arg_type, THUNK_TARGET);
}
break;
case IOC_W:
thunk_convert(buf_temp, (void *)arg, arg_type, THUNK_HOST);
ret = get_errno(ioctl(fd, ie->host_cmd, buf_temp));
break;
default:
case IOC_RW:
thunk_convert(buf_temp, (void *)arg, arg_type, THUNK_HOST);
ret = get_errno(ioctl(fd, ie->host_cmd, buf_temp));
if (!is_error(ret)) {
thunk_convert((void *)arg, buf_temp, arg_type, THUNK_TARGET);
}
break;
}
break;
default:
gemu_log("Unsupported ioctl type: cmd=0x%04lx type=%d\n", cmd, arg_type[0]);
ret = -ENOSYS;
break;
}
return ret;
}
bitmask_transtbl iflag_tbl[] = {
{ TARGET_IGNBRK, TARGET_IGNBRK, IGNBRK, IGNBRK },
{ TARGET_BRKINT, TARGET_BRKINT, BRKINT, BRKINT },
{ TARGET_IGNPAR, TARGET_IGNPAR, IGNPAR, IGNPAR },
{ TARGET_PARMRK, TARGET_PARMRK, PARMRK, PARMRK },
{ TARGET_INPCK, TARGET_INPCK, INPCK, INPCK },
{ TARGET_ISTRIP, TARGET_ISTRIP, ISTRIP, ISTRIP },
{ TARGET_INLCR, TARGET_INLCR, INLCR, INLCR },
{ TARGET_IGNCR, TARGET_IGNCR, IGNCR, IGNCR },
{ TARGET_ICRNL, TARGET_ICRNL, ICRNL, ICRNL },
{ TARGET_IUCLC, TARGET_IUCLC, IUCLC, IUCLC },
{ TARGET_IXON, TARGET_IXON, IXON, IXON },
{ TARGET_IXANY, TARGET_IXANY, IXANY, IXANY },
{ TARGET_IXOFF, TARGET_IXOFF, IXOFF, IXOFF },
{ TARGET_IMAXBEL, TARGET_IMAXBEL, IMAXBEL, IMAXBEL },
{ 0, 0, 0, 0 }
};
bitmask_transtbl oflag_tbl[] = {
{ TARGET_OPOST, TARGET_OPOST, OPOST, OPOST },
{ TARGET_OLCUC, TARGET_OLCUC, OLCUC, OLCUC },
{ TARGET_ONLCR, TARGET_ONLCR, ONLCR, ONLCR },
{ TARGET_OCRNL, TARGET_OCRNL, OCRNL, OCRNL },
{ TARGET_ONOCR, TARGET_ONOCR, ONOCR, ONOCR },
{ TARGET_ONLRET, TARGET_ONLRET, ONLRET, ONLRET },
{ TARGET_OFILL, TARGET_OFILL, OFILL, OFILL },
{ TARGET_OFDEL, TARGET_OFDEL, OFDEL, OFDEL },
{ TARGET_NLDLY, TARGET_NL0, NLDLY, NL0 },
{ TARGET_NLDLY, TARGET_NL1, NLDLY, NL1 },
{ TARGET_CRDLY, TARGET_CR0, CRDLY, CR0 },
{ TARGET_CRDLY, TARGET_CR1, CRDLY, CR1 },
{ TARGET_CRDLY, TARGET_CR2, CRDLY, CR2 },
{ TARGET_CRDLY, TARGET_CR3, CRDLY, CR3 },
{ TARGET_TABDLY, TARGET_TAB0, TABDLY, TAB0 },
{ TARGET_TABDLY, TARGET_TAB1, TABDLY, TAB1 },
{ TARGET_TABDLY, TARGET_TAB2, TABDLY, TAB2 },
{ TARGET_TABDLY, TARGET_TAB3, TABDLY, TAB3 },
{ TARGET_BSDLY, TARGET_BS0, BSDLY, BS0 },
{ TARGET_BSDLY, TARGET_BS1, BSDLY, BS1 },
{ TARGET_VTDLY, TARGET_VT0, VTDLY, VT0 },
{ TARGET_VTDLY, TARGET_VT1, VTDLY, VT1 },
{ TARGET_FFDLY, TARGET_FF0, FFDLY, FF0 },
{ TARGET_FFDLY, TARGET_FF1, FFDLY, FF1 },
{ 0, 0, 0, 0 }
};
bitmask_transtbl cflag_tbl[] = {
{ TARGET_CBAUD, TARGET_B0, CBAUD, B0 },
{ TARGET_CBAUD, TARGET_B50, CBAUD, B50 },
{ TARGET_CBAUD, TARGET_B75, CBAUD, B75 },
{ TARGET_CBAUD, TARGET_B110, CBAUD, B110 },
{ TARGET_CBAUD, TARGET_B134, CBAUD, B134 },
{ TARGET_CBAUD, TARGET_B150, CBAUD, B150 },
{ TARGET_CBAUD, TARGET_B200, CBAUD, B200 },
{ TARGET_CBAUD, TARGET_B300, CBAUD, B300 },
{ TARGET_CBAUD, TARGET_B600, CBAUD, B600 },
{ TARGET_CBAUD, TARGET_B1200, CBAUD, B1200 },
{ TARGET_CBAUD, TARGET_B1800, CBAUD, B1800 },
{ TARGET_CBAUD, TARGET_B2400, CBAUD, B2400 },
{ TARGET_CBAUD, TARGET_B4800, CBAUD, B4800 },
{ TARGET_CBAUD, TARGET_B9600, CBAUD, B9600 },
{ TARGET_CBAUD, TARGET_B19200, CBAUD, B19200 },
{ TARGET_CBAUD, TARGET_B38400, CBAUD, B38400 },
{ TARGET_CBAUD, TARGET_B57600, CBAUD, B57600 },
{ TARGET_CBAUD, TARGET_B115200, CBAUD, B115200 },
{ TARGET_CBAUD, TARGET_B230400, CBAUD, B230400 },
{ TARGET_CBAUD, TARGET_B460800, CBAUD, B460800 },
{ TARGET_CSIZE, TARGET_CS5, CSIZE, CS5 },
{ TARGET_CSIZE, TARGET_CS6, CSIZE, CS6 },
{ TARGET_CSIZE, TARGET_CS7, CSIZE, CS7 },
{ TARGET_CSIZE, TARGET_CS8, CSIZE, CS8 },
{ TARGET_CSTOPB, TARGET_CSTOPB, CSTOPB, CSTOPB },
{ TARGET_CREAD, TARGET_CREAD, CREAD, CREAD },
{ TARGET_PARENB, TARGET_PARENB, PARENB, PARENB },
{ TARGET_PARODD, TARGET_PARODD, PARODD, PARODD },
{ TARGET_HUPCL, TARGET_HUPCL, HUPCL, HUPCL },
{ TARGET_CLOCAL, TARGET_CLOCAL, CLOCAL, CLOCAL },
{ TARGET_CRTSCTS, TARGET_CRTSCTS, CRTSCTS, CRTSCTS },
{ 0, 0, 0, 0 }
};
bitmask_transtbl lflag_tbl[] = {
{ TARGET_ISIG, TARGET_ISIG, ISIG, ISIG },
{ TARGET_ICANON, TARGET_ICANON, ICANON, ICANON },
{ TARGET_XCASE, TARGET_XCASE, XCASE, XCASE },
{ TARGET_ECHO, TARGET_ECHO, ECHO, ECHO },
{ TARGET_ECHOE, TARGET_ECHOE, ECHOE, ECHOE },
{ TARGET_ECHOK, TARGET_ECHOK, ECHOK, ECHOK },
{ TARGET_ECHONL, TARGET_ECHONL, ECHONL, ECHONL },
{ TARGET_NOFLSH, TARGET_NOFLSH, NOFLSH, NOFLSH },
{ TARGET_TOSTOP, TARGET_TOSTOP, TOSTOP, TOSTOP },
{ TARGET_ECHOCTL, TARGET_ECHOCTL, ECHOCTL, ECHOCTL },
{ TARGET_ECHOPRT, TARGET_ECHOPRT, ECHOPRT, ECHOPRT },
{ TARGET_ECHOKE, TARGET_ECHOKE, ECHOKE, ECHOKE },
{ TARGET_FLUSHO, TARGET_FLUSHO, FLUSHO, FLUSHO },
{ TARGET_PENDIN, TARGET_PENDIN, PENDIN, PENDIN },
{ TARGET_IEXTEN, TARGET_IEXTEN, IEXTEN, IEXTEN },
{ 0, 0, 0, 0 }
};
static void target_to_host_termios (void *dst, const void *src)
{
struct host_termios *host = dst;
const struct target_termios *target = src;
host->c_iflag =
target_to_host_bitmask(tswap32(target->c_iflag), iflag_tbl);
host->c_oflag =
target_to_host_bitmask(tswap32(target->c_oflag), oflag_tbl);
host->c_cflag =
target_to_host_bitmask(tswap32(target->c_cflag), cflag_tbl);
host->c_lflag =
target_to_host_bitmask(tswap32(target->c_lflag), lflag_tbl);
host->c_line = target->c_line;
host->c_cc[VINTR] = target->c_cc[TARGET_VINTR];
host->c_cc[VQUIT] = target->c_cc[TARGET_VQUIT];
host->c_cc[VERASE] = target->c_cc[TARGET_VERASE];
host->c_cc[VKILL] = target->c_cc[TARGET_VKILL];
host->c_cc[VEOF] = target->c_cc[TARGET_VEOF];
host->c_cc[VTIME] = target->c_cc[TARGET_VTIME];
host->c_cc[VMIN] = target->c_cc[TARGET_VMIN];
host->c_cc[VSWTC] = target->c_cc[TARGET_VSWTC];
host->c_cc[VSTART] = target->c_cc[TARGET_VSTART];
host->c_cc[VSTOP] = target->c_cc[TARGET_VSTOP];
host->c_cc[VSUSP] = target->c_cc[TARGET_VSUSP];
host->c_cc[VEOL] = target->c_cc[TARGET_VEOL];
host->c_cc[VREPRINT] = target->c_cc[TARGET_VREPRINT];
host->c_cc[VDISCARD] = target->c_cc[TARGET_VDISCARD];
host->c_cc[VWERASE] = target->c_cc[TARGET_VWERASE];
host->c_cc[VLNEXT] = target->c_cc[TARGET_VLNEXT];
host->c_cc[VEOL2] = target->c_cc[TARGET_VEOL2];
}
static void host_to_target_termios (void *dst, const void *src)
{
struct target_termios *target = dst;
const struct host_termios *host = src;
target->c_iflag =
tswap32(host_to_target_bitmask(host->c_iflag, iflag_tbl));
target->c_oflag =
tswap32(host_to_target_bitmask(host->c_oflag, oflag_tbl));
target->c_cflag =
tswap32(host_to_target_bitmask(host->c_cflag, cflag_tbl));
target->c_lflag =
tswap32(host_to_target_bitmask(host->c_lflag, lflag_tbl));
target->c_line = host->c_line;
target->c_cc[TARGET_VINTR] = host->c_cc[VINTR];
target->c_cc[TARGET_VQUIT] = host->c_cc[VQUIT];
target->c_cc[TARGET_VERASE] = host->c_cc[VERASE];
target->c_cc[TARGET_VKILL] = host->c_cc[VKILL];
target->c_cc[TARGET_VEOF] = host->c_cc[VEOF];
target->c_cc[TARGET_VTIME] = host->c_cc[VTIME];
target->c_cc[TARGET_VMIN] = host->c_cc[VMIN];
target->c_cc[TARGET_VSWTC] = host->c_cc[VSWTC];
target->c_cc[TARGET_VSTART] = host->c_cc[VSTART];
target->c_cc[TARGET_VSTOP] = host->c_cc[VSTOP];
target->c_cc[TARGET_VSUSP] = host->c_cc[VSUSP];
target->c_cc[TARGET_VEOL] = host->c_cc[VEOL];
target->c_cc[TARGET_VREPRINT] = host->c_cc[VREPRINT];
target->c_cc[TARGET_VDISCARD] = host->c_cc[VDISCARD];
target->c_cc[TARGET_VWERASE] = host->c_cc[VWERASE];
target->c_cc[TARGET_VLNEXT] = host->c_cc[VLNEXT];
target->c_cc[TARGET_VEOL2] = host->c_cc[VEOL2];
}
StructEntry struct_termios_def = {
.convert = { host_to_target_termios, target_to_host_termios },
.size = { sizeof(struct target_termios), sizeof(struct host_termios) },
.align = { __alignof__(struct target_termios), __alignof__(struct host_termios) },
};
#ifdef TARGET_I386
/* NOTE: there is really one LDT for all the threads */
uint8_t *ldt_table;
static int read_ldt(void *ptr, unsigned long bytecount)
{
int size;
if (!ldt_table)
return 0;
size = TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE;
if (size > bytecount)
size = bytecount;
memcpy(ptr, ldt_table, size);
return size;
}
/* XXX: add locking support */
static int write_ldt(CPUX86State *env,
void *ptr, unsigned long bytecount, int oldmode)
{
struct target_modify_ldt_ldt_s ldt_info;
int seg_32bit, contents, read_exec_only, limit_in_pages;
int seg_not_present, useable;
uint32_t *lp, entry_1, entry_2;
if (bytecount != sizeof(ldt_info))
return -EINVAL;
memcpy(&ldt_info, ptr, sizeof(ldt_info));
tswap32s(&ldt_info.entry_number);
tswapls((long *)&ldt_info.base_addr);
tswap32s(&ldt_info.limit);
tswap32s(&ldt_info.flags);
if (ldt_info.entry_number >= TARGET_LDT_ENTRIES)
return -EINVAL;
seg_32bit = ldt_info.flags & 1;
contents = (ldt_info.flags >> 1) & 3;
read_exec_only = (ldt_info.flags >> 3) & 1;
limit_in_pages = (ldt_info.flags >> 4) & 1;
seg_not_present = (ldt_info.flags >> 5) & 1;
useable = (ldt_info.flags >> 6) & 1;
if (contents == 3) {
if (oldmode)
return -EINVAL;
if (seg_not_present == 0)
return -EINVAL;
}
/* allocate the LDT */
if (!ldt_table) {
ldt_table = malloc(TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE);
if (!ldt_table)
return -ENOMEM;
memset(ldt_table, 0, TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE);
env->ldt.base = ldt_table;
env->ldt.limit = 0xffff;
}
/* NOTE: same code as Linux kernel */
/* Allow LDTs to be cleared by the user. */
if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
if (oldmode ||
(contents == 0 &&
read_exec_only == 1 &&
seg_32bit == 0 &&
limit_in_pages == 0 &&
seg_not_present == 1 &&
useable == 0 )) {
entry_1 = 0;
entry_2 = 0;
goto install;
}
}
entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
(ldt_info.limit & 0x0ffff);
entry_2 = (ldt_info.base_addr & 0xff000000) |
((ldt_info.base_addr & 0x00ff0000) >> 16) |
(ldt_info.limit & 0xf0000) |
((read_exec_only ^ 1) << 9) |
(contents << 10) |
((seg_not_present ^ 1) << 15) |
(seg_32bit << 22) |
(limit_in_pages << 23) |
0x7000;
if (!oldmode)
entry_2 |= (useable << 20);
/* Install the new entry ... */
install:
lp = (uint32_t *)(ldt_table + (ldt_info.entry_number << 3));
lp[0] = tswap32(entry_1);
lp[1] = tswap32(entry_2);
return 0;
}
/* specific and weird i386 syscalls */
int do_modify_ldt(CPUX86State *env, int func, void *ptr, unsigned long bytecount)
{
int ret = -ENOSYS;
switch (func) {
case 0:
ret = read_ldt(ptr, bytecount);
break;
case 1:
ret = write_ldt(env, ptr, bytecount, 1);
break;
case 0x11:
ret = write_ldt(env, ptr, bytecount, 0);
break;
}
return ret;
}
/* vm86 emulation */
#define SAFE_MASK (0xDD5)
int do_vm86(CPUX86State *env, long subfunction,
struct target_vm86plus_struct * target_v86)
{
TaskState *ts = env->opaque;
int ret;
switch (subfunction) {
case TARGET_VM86_REQUEST_IRQ:
case TARGET_VM86_FREE_IRQ:
case TARGET_VM86_GET_IRQ_BITS:
case TARGET_VM86_GET_AND_RESET_IRQ:
gemu_log("qemu: unsupported vm86 subfunction (%ld)\n", subfunction);
ret = -EINVAL;
goto out;
case TARGET_VM86_PLUS_INSTALL_CHECK:
/* NOTE: on old vm86 stuff this will return the error
from verify_area(), because the subfunction is
interpreted as (invalid) address to vm86_struct.
So the installation check works.
*/
ret = 0;
goto out;
}
ts->target_v86 = target_v86;
/* save current CPU regs */
ts->vm86_saved_regs.eax = 0; /* default vm86 syscall return code */
ts->vm86_saved_regs.ebx = env->regs[R_EBX];
ts->vm86_saved_regs.ecx = env->regs[R_ECX];
ts->vm86_saved_regs.edx = env->regs[R_EDX];
ts->vm86_saved_regs.esi = env->regs[R_ESI];
ts->vm86_saved_regs.edi = env->regs[R_EDI];
ts->vm86_saved_regs.ebp = env->regs[R_EBP];
ts->vm86_saved_regs.esp = env->regs[R_ESP];
ts->vm86_saved_regs.eflags = env->eflags;
ts->vm86_saved_regs.eip = env->eip;
ts->vm86_saved_regs.cs = env->segs[R_CS];
ts->vm86_saved_regs.ss = env->segs[R_SS];
ts->vm86_saved_regs.ds = env->segs[R_DS];
ts->vm86_saved_regs.es = env->segs[R_ES];
ts->vm86_saved_regs.fs = env->segs[R_FS];
ts->vm86_saved_regs.gs = env->segs[R_GS];
/* build vm86 CPU state */
env->eflags = (env->eflags & ~SAFE_MASK) |
(tswap32(target_v86->regs.eflags) & SAFE_MASK) | VM_MASK;
env->regs[R_EBX] = tswap32(target_v86->regs.ebx);
env->regs[R_ECX] = tswap32(target_v86->regs.ecx);
env->regs[R_EDX] = tswap32(target_v86->regs.edx);
env->regs[R_ESI] = tswap32(target_v86->regs.esi);
env->regs[R_EDI] = tswap32(target_v86->regs.edi);
env->regs[R_EBP] = tswap32(target_v86->regs.ebp);
env->regs[R_ESP] = tswap32(target_v86->regs.esp);
env->eip = tswap32(target_v86->regs.eip);
cpu_x86_load_seg(env, R_CS, tswap16(target_v86->regs.cs));
cpu_x86_load_seg(env, R_SS, tswap16(target_v86->regs.ss));
cpu_x86_load_seg(env, R_DS, tswap16(target_v86->regs.ds));
cpu_x86_load_seg(env, R_ES, tswap16(target_v86->regs.es));
cpu_x86_load_seg(env, R_FS, tswap16(target_v86->regs.fs));
cpu_x86_load_seg(env, R_GS, tswap16(target_v86->regs.gs));
ret = tswap32(target_v86->regs.eax); /* eax will be restored at
the end of the syscall */
/* now the virtual CPU is ready for vm86 execution ! */
out:
return ret;
}
/* this stack is the equivalent of the kernel stack associated with a
thread/process */
#define NEW_STACK_SIZE 8192
static int clone_func(void *arg)
{
CPUX86State *env = arg;
cpu_loop(env);
/* never exits */
return 0;
}
int do_fork(CPUX86State *env, unsigned int flags, unsigned long newsp)
{
int ret;
TaskState *ts;
uint8_t *new_stack;
CPUX86State *new_env;
if (flags & CLONE_VM) {
if (!newsp)
newsp = env->regs[R_ESP];
ts = malloc(sizeof(TaskState) + NEW_STACK_SIZE);
memset(ts, 0, sizeof(TaskState));
new_stack = ts->stack;
ts->used = 1;
/* add in task state list */
ts->next = first_task_state;
first_task_state = ts;
/* we create a new CPU instance. */
new_env = cpu_x86_init();
memcpy(new_env, env, sizeof(CPUX86State));
new_env->regs[R_ESP] = newsp;
new_env->regs[R_EAX] = 0;
new_env->opaque = ts;
ret = clone(clone_func, new_stack + NEW_STACK_SIZE, flags, new_env);
} else {
/* if no CLONE_VM, we consider it is a fork */
if ((flags & ~CSIGNAL) != 0)
return -EINVAL;
ret = fork();
}
return ret;
}
#endif
#define high2lowuid(x) (x)
#define high2lowgid(x) (x)
#define low2highuid(x) (x)
#define low2highgid(x) (x)
void syscall_init(void)
{
#define STRUCT(name, list...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def);
#define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def);
#include "syscall_types.h"
#undef STRUCT
#undef STRUCT_SPECIAL
}
long do_syscall(void *cpu_env, int num, long arg1, long arg2, long arg3,
long arg4, long arg5, long arg6)
{
long ret;
struct stat st;
struct kernel_statfs *stfs;
#ifdef DEBUG
gemu_log("syscall %d\n", num);
#endif
switch(num) {
case TARGET_NR_exit:
#ifdef HAVE_GPROF
_mcleanup();
#endif
/* XXX: should free thread stack and CPU env */
_exit(arg1);
ret = 0; /* avoid warning */
break;
case TARGET_NR_read:
ret = get_errno(read(arg1, (void *)arg2, arg3));
break;
case TARGET_NR_write:
ret = get_errno(write(arg1, (void *)arg2, arg3));
break;
case TARGET_NR_open:
ret = get_errno(open((const char *)arg1, arg2, arg3));
break;
case TARGET_NR_close:
ret = get_errno(close(arg1));
break;
case TARGET_NR_brk:
ret = do_brk((char *)arg1);
break;
case TARGET_NR_fork:
ret = get_errno(do_fork(cpu_env, SIGCHLD, 0));
break;
case TARGET_NR_waitpid:
{
int *status = (int *)arg2;
ret = get_errno(waitpid(arg1, status, arg3));
if (!is_error(ret) && status)
tswapls((long *)&status);
}
break;
case TARGET_NR_creat:
ret = get_errno(creat((const char *)arg1, arg2));
break;
case TARGET_NR_link:
ret = get_errno(link((const char *)arg1, (const char *)arg2));
break;
case TARGET_NR_unlink:
ret = get_errno(unlink((const char *)arg1));
break;
case TARGET_NR_execve:
{
char **argp, **envp;
int argc, envc;
uint32_t *p;
char **q;
argc = 0;
for (p = (void *)arg2; *p; p++)
argc++;
envc = 0;
for (p = (void *)arg3; *p; p++)
envc++;
argp = alloca((argc + 1) * sizeof(void *));
envp = alloca((envc + 1) * sizeof(void *));
for (p = (void *)arg2, q = argp; *p; p++, q++)
*q = (void *)tswap32(*p);
*q = NULL;
for (p = (void *)arg3, q = envp; *p; p++, q++)
*q = (void *)tswap32(*p);
*q = NULL;
ret = get_errno(execve((const char *)arg1, argp, envp));
}
break;
case TARGET_NR_chdir:
ret = get_errno(chdir((const char *)arg1));
break;
case TARGET_NR_time:
{
int *time_ptr = (int *)arg1;
ret = get_errno(time((time_t *)time_ptr));
if (!is_error(ret) && time_ptr)
tswap32s(time_ptr);
}
break;
case TARGET_NR_mknod:
ret = get_errno(mknod((const char *)arg1, arg2, arg3));
break;
case TARGET_NR_chmod:
ret = get_errno(chmod((const char *)arg1, arg2));
break;
case TARGET_NR_lchown:
ret = get_errno(chown((const char *)arg1, arg2, arg3));
break;
case TARGET_NR_break:
goto unimplemented;
case TARGET_NR_oldstat:
goto unimplemented;
case TARGET_NR_lseek:
ret = get_errno(lseek(arg1, arg2, arg3));
break;
case TARGET_NR_getpid:
ret = get_errno(getpid());
break;
case TARGET_NR_mount:
/* need to look at the data field */
goto unimplemented;
case TARGET_NR_umount:
ret = get_errno(umount((const char *)arg1));
break;
case TARGET_NR_setuid:
ret = get_errno(setuid(low2highuid(arg1)));
break;
case TARGET_NR_getuid:
ret = get_errno(getuid());
break;
case TARGET_NR_stime:
{
int *time_ptr = (int *)arg1;
if (time_ptr)
tswap32s(time_ptr);
ret = get_errno(stime((time_t *)time_ptr));
}
break;
case TARGET_NR_ptrace:
goto unimplemented;
case TARGET_NR_alarm:
ret = alarm(arg1);
break;
case TARGET_NR_oldfstat:
goto unimplemented;
case TARGET_NR_pause:
ret = get_errno(pause());
break;
case TARGET_NR_utime:
goto unimplemented;
case TARGET_NR_stty:
goto unimplemented;
case TARGET_NR_gtty:
goto unimplemented;
case TARGET_NR_access:
ret = get_errno(access((const char *)arg1, arg2));
break;
case TARGET_NR_nice:
ret = get_errno(nice(arg1));
break;
case TARGET_NR_ftime:
goto unimplemented;
case TARGET_NR_sync:
sync();
ret = 0;
break;
case TARGET_NR_kill:
ret = get_errno(kill(arg1, arg2));
break;
case TARGET_NR_rename:
ret = get_errno(rename((const char *)arg1, (const char *)arg2));
break;
case TARGET_NR_mkdir:
ret = get_errno(mkdir((const char *)arg1, arg2));
break;
case TARGET_NR_rmdir:
ret = get_errno(rmdir((const char *)arg1));
break;
case TARGET_NR_dup:
ret = get_errno(dup(arg1));
break;
case TARGET_NR_pipe:
{
int *pipe_ptr = (int *)arg1;
ret = get_errno(pipe(pipe_ptr));
if (!is_error(ret)) {
tswap32s(&pipe_ptr[0]);
tswap32s(&pipe_ptr[1]);
}
}
break;
case TARGET_NR_times:
{
struct target_tms *tmsp = (void *)arg1;
struct tms tms;
ret = get_errno(times(&tms));
if (tmsp) {
tmsp->tms_utime = tswapl(tms.tms_utime);
tmsp->tms_stime = tswapl(tms.tms_stime);
tmsp->tms_cutime = tswapl(tms.tms_cutime);
tmsp->tms_cstime = tswapl(tms.tms_cstime);
}
}
break;
case TARGET_NR_prof:
goto unimplemented;
case TARGET_NR_setgid:
ret = get_errno(setgid(low2highgid(arg1)));
break;
case TARGET_NR_getgid:
ret = get_errno(getgid());
break;
case TARGET_NR_signal:
goto unimplemented;
case TARGET_NR_geteuid:
ret = get_errno(geteuid());
break;
case TARGET_NR_getegid:
ret = get_errno(getegid());
break;
case TARGET_NR_acct:
goto unimplemented;
case TARGET_NR_umount2:
ret = get_errno(umount2((const char *)arg1, arg2));
break;
case TARGET_NR_lock:
goto unimplemented;
case TARGET_NR_ioctl:
ret = do_ioctl(arg1, arg2, arg3);
break;
case TARGET_NR_fcntl:
switch(arg2) {
case F_GETLK:
case F_SETLK:
case F_SETLKW:
goto unimplemented;
default:
ret = get_errno(fcntl(arg1, arg2, arg3));
break;
}
break;
case TARGET_NR_mpx:
goto unimplemented;
case TARGET_NR_setpgid:
ret = get_errno(setpgid(arg1, arg2));
break;
case TARGET_NR_ulimit:
goto unimplemented;
case TARGET_NR_oldolduname:
goto unimplemented;
case TARGET_NR_umask:
ret = get_errno(umask(arg1));
break;
case TARGET_NR_chroot:
ret = get_errno(chroot((const char *)arg1));
break;
case TARGET_NR_ustat:
goto unimplemented;
case TARGET_NR_dup2:
ret = get_errno(dup2(arg1, arg2));
break;
case TARGET_NR_getppid:
ret = get_errno(getppid());
break;
case TARGET_NR_getpgrp:
ret = get_errno(getpgrp());
break;
case TARGET_NR_setsid:
ret = get_errno(setsid());
break;
case TARGET_NR_sigaction:
{
struct target_old_sigaction *old_act = (void *)arg2;
struct target_old_sigaction *old_oact = (void *)arg3;
struct target_sigaction act, oact, *pact;
if (old_act) {
act._sa_handler = old_act->_sa_handler;
target_siginitset(&act.sa_mask, old_act->sa_mask);
act.sa_flags = old_act->sa_flags;
act.sa_restorer = old_act->sa_restorer;
pact = &act;
} else {
pact = NULL;
}
ret = get_errno(do_sigaction(arg1, pact, &oact));
if (!is_error(ret) && old_oact) {
old_oact->_sa_handler = oact._sa_handler;
old_oact->sa_mask = oact.sa_mask.sig[0];
old_oact->sa_flags = oact.sa_flags;
old_oact->sa_restorer = oact.sa_restorer;
}
}
break;
case TARGET_NR_rt_sigaction:
ret = get_errno(do_sigaction(arg1, (void *)arg2, (void *)arg3));
break;
case TARGET_NR_sgetmask:
{
sigset_t cur_set;
target_ulong target_set;
sigprocmask(0, NULL, &cur_set);
host_to_target_old_sigset(&target_set, &cur_set);
ret = target_set;
}
break;
case TARGET_NR_ssetmask:
{
sigset_t set, oset, cur_set;
target_ulong target_set = arg1;
sigprocmask(0, NULL, &cur_set);
target_to_host_old_sigset(&set, &target_set);
sigorset(&set, &set, &cur_set);
sigprocmask(SIG_SETMASK, &set, &oset);
host_to_target_old_sigset(&target_set, &oset);
ret = target_set;
}
break;
case TARGET_NR_sigprocmask:
{
int how = arg1;
sigset_t set, oldset, *set_ptr;
target_ulong *pset = (void *)arg2, *poldset = (void *)arg3;
if (pset) {
switch(how) {
case TARGET_SIG_BLOCK:
how = SIG_BLOCK;
break;
case TARGET_SIG_UNBLOCK:
how = SIG_UNBLOCK;
break;
case TARGET_SIG_SETMASK:
how = SIG_SETMASK;
break;
default:
ret = -EINVAL;
goto fail;
}
target_to_host_old_sigset(&set, pset);
set_ptr = &set;
} else {
how = 0;
set_ptr = NULL;
}
ret = get_errno(sigprocmask(arg1, set_ptr, &oldset));
if (!is_error(ret) && poldset) {
host_to_target_old_sigset(poldset, &oldset);
}
}
break;
case TARGET_NR_rt_sigprocmask:
{
int how = arg1;
sigset_t set, oldset, *set_ptr;
target_sigset_t *pset = (void *)arg2;
target_sigset_t *poldset = (void *)arg3;
if (pset) {
switch(how) {
case TARGET_SIG_BLOCK:
how = SIG_BLOCK;
break;
case TARGET_SIG_UNBLOCK:
how = SIG_UNBLOCK;
break;
case TARGET_SIG_SETMASK:
how = SIG_SETMASK;
break;
default:
ret = -EINVAL;
goto fail;
}
target_to_host_sigset(&set, pset);
set_ptr = &set;
} else {
how = 0;
set_ptr = NULL;
}
ret = get_errno(sigprocmask(how, set_ptr, &oldset));
if (!is_error(ret) && poldset) {
host_to_target_sigset(poldset, &oldset);
}
}
break;
case TARGET_NR_sigpending:
{
sigset_t set;
ret = get_errno(sigpending(&set));
if (!is_error(ret)) {
host_to_target_old_sigset((target_ulong *)arg1, &set);
}
}
break;
case TARGET_NR_rt_sigpending:
{
sigset_t set;
ret = get_errno(sigpending(&set));
if (!is_error(ret)) {
host_to_target_sigset((target_sigset_t *)arg1, &set);
}
}
break;
case TARGET_NR_sigsuspend:
{
sigset_t set;
target_to_host_old_sigset(&set, (target_ulong *)arg1);
ret = get_errno(sigsuspend(&set));
}
break;
case TARGET_NR_rt_sigsuspend:
{
sigset_t set;
target_to_host_sigset(&set, (target_sigset_t *)arg1);
ret = get_errno(sigsuspend(&set));
}
break;
case TARGET_NR_rt_sigtimedwait:
{
target_sigset_t *target_set = (void *)arg1;
target_siginfo_t *target_uinfo = (void *)arg2;
struct target_timespec *target_uts = (void *)arg3;
sigset_t set;
struct timespec uts, *puts;
siginfo_t uinfo;
target_to_host_sigset(&set, target_set);
if (target_uts) {
puts = &uts;
puts->tv_sec = tswapl(target_uts->tv_sec);
puts->tv_nsec = tswapl(target_uts->tv_nsec);
} else {
puts = NULL;
}
ret = get_errno(sigtimedwait(&set, &uinfo, puts));
if (!is_error(ret) && target_uinfo) {
host_to_target_siginfo(target_uinfo, &uinfo);
}
}
break;
case TARGET_NR_rt_sigqueueinfo:
{
siginfo_t uinfo;
target_to_host_siginfo(&uinfo, (target_siginfo_t *)arg3);
ret = get_errno(sys_rt_sigqueueinfo(arg1, arg2, &uinfo));
}
break;
case TARGET_NR_sigreturn:
/* NOTE: ret is eax, so not transcoding must be done */
ret = do_sigreturn(cpu_env);
break;
case TARGET_NR_rt_sigreturn:
/* NOTE: ret is eax, so not transcoding must be done */
ret = do_rt_sigreturn(cpu_env);
break;
case TARGET_NR_setreuid:
ret = get_errno(setreuid(arg1, arg2));
break;
case TARGET_NR_setregid:
ret = get_errno(setregid(arg1, arg2));
break;
case TARGET_NR_sethostname:
ret = get_errno(sethostname((const char *)arg1, arg2));
break;
case TARGET_NR_setrlimit:
{
/* XXX: convert resource ? */
int resource = arg1;
struct target_rlimit *target_rlim = (void *)arg2;
struct rlimit rlim;
rlim.rlim_cur = tswapl(target_rlim->rlim_cur);
rlim.rlim_max = tswapl(target_rlim->rlim_max);
ret = get_errno(setrlimit(resource, &rlim));
}
break;
case TARGET_NR_getrlimit:
{
/* XXX: convert resource ? */
int resource = arg1;
struct target_rlimit *target_rlim = (void *)arg2;
struct rlimit rlim;
ret = get_errno(getrlimit(resource, &rlim));
if (!is_error(ret)) {
target_rlim->rlim_cur = tswapl(rlim.rlim_cur);
target_rlim->rlim_max = tswapl(rlim.rlim_max);
}
}
break;
case TARGET_NR_getrusage:
goto unimplemented;
case TARGET_NR_gettimeofday:
{
struct target_timeval *target_tv = (void *)arg1;
struct timeval tv;
ret = get_errno(gettimeofday(&tv, NULL));
if (!is_error(ret)) {
host_to_target_timeval(target_tv, &tv);
}
}
break;
case TARGET_NR_settimeofday:
{
struct target_timeval *target_tv = (void *)arg1;
struct timeval tv;
target_to_host_timeval(&tv, target_tv);
ret = get_errno(settimeofday(&tv, NULL));
}
break;
case TARGET_NR_getgroups:
goto unimplemented;
case TARGET_NR_setgroups:
goto unimplemented;
case TARGET_NR_select:
goto unimplemented;
case TARGET_NR_symlink:
ret = get_errno(symlink((const char *)arg1, (const char *)arg2));
break;
case TARGET_NR_oldlstat:
goto unimplemented;
case TARGET_NR_readlink:
ret = get_errno(readlink((const char *)arg1, (char *)arg2, arg3));
break;
case TARGET_NR_uselib:
goto unimplemented;
case TARGET_NR_swapon:
ret = get_errno(swapon((const char *)arg1, arg2));
break;
case TARGET_NR_reboot:
goto unimplemented;
case TARGET_NR_readdir:
goto unimplemented;
#ifdef TARGET_I386
case TARGET_NR_mmap:
{
uint32_t v1, v2, v3, v4, v5, v6, *vptr;
vptr = (uint32_t *)arg1;
v1 = tswap32(vptr[0]);
v2 = tswap32(vptr[1]);
v3 = tswap32(vptr[2]);
v4 = tswap32(vptr[3]);
v5 = tswap32(vptr[4]);
v6 = tswap32(vptr[5]);
ret = get_errno((long)mmap((void *)v1, v2, v3, v4, v5, v6));
}
break;
#endif
#ifdef TARGET_I386
case TARGET_NR_mmap2:
#else
case TARGET_NR_mmap:
#endif
ret = get_errno((long)mmap((void *)arg1, arg2, arg3, arg4, arg5, arg6));
break;
case TARGET_NR_munmap:
ret = get_errno(munmap((void *)arg1, arg2));
break;
case TARGET_NR_mprotect:
ret = get_errno(mprotect((void *)arg1, arg2, arg3));
break;
case TARGET_NR_mremap:
ret = get_errno((long)mremap((void *)arg1, arg2, arg3, arg4));
break;
case TARGET_NR_msync:
ret = get_errno(msync((void *)arg1, arg2, arg3));
break;
case TARGET_NR_mlock:
ret = get_errno(mlock((void *)arg1, arg2));
break;
case TARGET_NR_munlock:
ret = get_errno(munlock((void *)arg1, arg2));
break;
case TARGET_NR_mlockall:
ret = get_errno(mlockall(arg1));
break;
case TARGET_NR_munlockall:
ret = get_errno(munlockall());
break;
case TARGET_NR_truncate:
ret = get_errno(truncate((const char *)arg1, arg2));
break;
case TARGET_NR_ftruncate:
ret = get_errno(ftruncate(arg1, arg2));
break;
case TARGET_NR_fchmod:
ret = get_errno(fchmod(arg1, arg2));
break;
case TARGET_NR_fchown:
ret = get_errno(fchown(arg1, arg2, arg3));
break;
case TARGET_NR_getpriority:
ret = get_errno(getpriority(arg1, arg2));
break;
case TARGET_NR_setpriority:
ret = get_errno(setpriority(arg1, arg2, arg3));
break;
case TARGET_NR_profil:
goto unimplemented;
case TARGET_NR_statfs:
stfs = (void *)arg2;
ret = get_errno(sys_statfs((const char *)arg1, stfs));
convert_statfs:
if (!is_error(ret)) {
tswap32s(&stfs->f_type);
tswap32s(&stfs->f_bsize);
tswap32s(&stfs->f_blocks);
tswap32s(&stfs->f_bfree);
tswap32s(&stfs->f_bavail);
tswap32s(&stfs->f_files);
tswap32s(&stfs->f_ffree);
tswap32s(&stfs->f_fsid.val[0]);
tswap32s(&stfs->f_fsid.val[1]);
tswap32s(&stfs->f_namelen);
}
break;
case TARGET_NR_fstatfs:
stfs = (void *)arg2;
ret = get_errno(sys_fstatfs(arg1, stfs));
goto convert_statfs;
case TARGET_NR_ioperm:
goto unimplemented;
case TARGET_NR_socketcall:
ret = do_socketcall(arg1, (int32_t *)arg2);
break;
case TARGET_NR_syslog:
goto unimplemented;
case TARGET_NR_setitimer:
{
struct target_itimerval *target_value = (void *)arg2;
struct target_itimerval *target_ovalue = (void *)arg3;
struct itimerval value, ovalue, *pvalue;
if (target_value) {
pvalue = &value;
target_to_host_timeval(&pvalue->it_interval,
&target_value->it_interval);
target_to_host_timeval(&pvalue->it_value,
&target_value->it_value);
} else {
pvalue = NULL;
}
ret = get_errno(setitimer(arg1, pvalue, &ovalue));
if (!is_error(ret) && target_ovalue) {
host_to_target_timeval(&target_ovalue->it_interval,
&ovalue.it_interval);
host_to_target_timeval(&target_ovalue->it_value,
&ovalue.it_value);
}
}
break;
case TARGET_NR_getitimer:
{
struct target_itimerval *target_value = (void *)arg2;
struct itimerval value;
ret = get_errno(getitimer(arg1, &value));
if (!is_error(ret) && target_value) {
host_to_target_timeval(&target_value->it_interval,
&value.it_interval);
host_to_target_timeval(&target_value->it_value,
&value.it_value);
}
}
break;
case TARGET_NR_stat:
ret = get_errno(stat((const char *)arg1, &st));
goto do_stat;
case TARGET_NR_lstat:
ret = get_errno(lstat((const char *)arg1, &st));
goto do_stat;
case TARGET_NR_fstat:
{
ret = get_errno(fstat(arg1, &st));
do_stat:
if (!is_error(ret)) {
struct target_stat *target_st = (void *)arg2;
target_st->st_dev = tswap16(st.st_dev);
target_st->st_ino = tswapl(st.st_ino);
target_st->st_mode = tswap32(st.st_mode);
target_st->st_nlink = tswap16(st.st_nlink);
target_st->st_uid = tswap16(st.st_uid);
target_st->st_gid = tswap16(st.st_gid);
target_st->st_rdev = tswap16(st.st_rdev);
target_st->st_size = tswapl(st.st_size);
target_st->st_blksize = tswapl(st.st_blksize);
target_st->st_blocks = tswapl(st.st_blocks);
target_st->target_st_atime = tswapl(st.st_atime);
target_st->target_st_mtime = tswapl(st.st_mtime);
target_st->target_st_ctime = tswapl(st.st_ctime);
}
}
break;
case TARGET_NR_olduname:
goto unimplemented;
case TARGET_NR_iopl:
goto unimplemented;
case TARGET_NR_vhangup:
ret = get_errno(vhangup());
break;
case TARGET_NR_idle:
goto unimplemented;
case TARGET_NR_wait4:
{
int status;
target_long *status_ptr = (void *)arg2;
struct rusage rusage, *rusage_ptr;
struct target_rusage *target_rusage = (void *)arg4;
if (target_rusage)
rusage_ptr = &rusage;
else
rusage_ptr = NULL;
ret = get_errno(wait4(arg1, &status, arg3, rusage_ptr));
if (!is_error(ret)) {
if (status_ptr)
*status_ptr = tswap32(status);
if (target_rusage) {
target_rusage->ru_utime.tv_sec = tswapl(rusage.ru_utime.tv_sec);
target_rusage->ru_utime.tv_usec = tswapl(rusage.ru_utime.tv_usec);
target_rusage->ru_stime.tv_sec = tswapl(rusage.ru_stime.tv_sec);
target_rusage->ru_stime.tv_usec = tswapl(rusage.ru_stime.tv_usec);
target_rusage->ru_maxrss = tswapl(rusage.ru_maxrss);
target_rusage->ru_ixrss = tswapl(rusage.ru_ixrss);
target_rusage->ru_idrss = tswapl(rusage.ru_idrss);
target_rusage->ru_isrss = tswapl(rusage.ru_isrss);
target_rusage->ru_minflt = tswapl(rusage.ru_minflt);
target_rusage->ru_majflt = tswapl(rusage.ru_majflt);
target_rusage->ru_nswap = tswapl(rusage.ru_nswap);
target_rusage->ru_inblock = tswapl(rusage.ru_inblock);
target_rusage->ru_oublock = tswapl(rusage.ru_oublock);
target_rusage->ru_msgsnd = tswapl(rusage.ru_msgsnd);
target_rusage->ru_msgrcv = tswapl(rusage.ru_msgrcv);
target_rusage->ru_nsignals = tswapl(rusage.ru_nsignals);
target_rusage->ru_nvcsw = tswapl(rusage.ru_nvcsw);
target_rusage->ru_nivcsw = tswapl(rusage.ru_nivcsw);
}
}
}
break;
case TARGET_NR_swapoff:
ret = get_errno(swapoff((const char *)arg1));
break;
case TARGET_NR_sysinfo:
goto unimplemented;
case TARGET_NR_ipc:
goto unimplemented;
case TARGET_NR_fsync:
ret = get_errno(fsync(arg1));
break;
case TARGET_NR_clone:
ret = get_errno(do_fork(cpu_env, arg1, arg2));
break;
case TARGET_NR_setdomainname:
ret = get_errno(setdomainname((const char *)arg1, arg2));
break;
case TARGET_NR_uname:
/* no need to transcode because we use the linux syscall */
ret = get_errno(sys_uname((struct new_utsname *)arg1));
break;
#ifdef TARGET_I386
case TARGET_NR_modify_ldt:
ret = get_errno(do_modify_ldt(cpu_env, arg1, (void *)arg2, arg3));
break;
case TARGET_NR_vm86old:
goto unimplemented;
case TARGET_NR_vm86:
ret = do_vm86(cpu_env, arg1, (void *)arg2);
break;
#endif
case TARGET_NR_adjtimex:
goto unimplemented;
case TARGET_NR_create_module:
case TARGET_NR_init_module:
case TARGET_NR_delete_module:
case TARGET_NR_get_kernel_syms:
goto unimplemented;
case TARGET_NR_quotactl:
goto unimplemented;
case TARGET_NR_getpgid:
ret = get_errno(getpgid(arg1));
break;
case TARGET_NR_fchdir:
ret = get_errno(fchdir(arg1));
break;
case TARGET_NR_bdflush:
goto unimplemented;
case TARGET_NR_sysfs:
goto unimplemented;
case TARGET_NR_personality:
ret = get_errno(personality(arg1));
break;
case TARGET_NR_afs_syscall:
goto unimplemented;
case TARGET_NR_setfsuid:
ret = get_errno(setfsuid(arg1));
break;
case TARGET_NR_setfsgid:
ret = get_errno(setfsgid(arg1));
break;
case TARGET_NR__llseek:
{
int64_t res;
ret = get_errno(_llseek(arg1, arg2, arg3, &res, arg5));
*(int64_t *)arg4 = tswap64(res);
}
break;
case TARGET_NR_getdents:
#if TARGET_LONG_SIZE != 4
#error not supported
#endif
{
struct dirent *dirp = (void *)arg2;
long count = arg3;
ret = get_errno(sys_getdents(arg1, dirp, count));
if (!is_error(ret)) {
struct dirent *de;
int len = ret;
int reclen;
de = dirp;
while (len > 0) {
reclen = de->d_reclen;
if (reclen > len)
break;
de->d_reclen = tswap16(reclen);
tswapls(&de->d_ino);
tswapls(&de->d_off);
de = (struct dirent *)((char *)de + reclen);
len -= reclen;
}
}
}
break;
case TARGET_NR_getdents64:
{
struct dirent64 *dirp = (void *)arg2;
long count = arg3;
ret = get_errno(sys_getdents64(arg1, dirp, count));
if (!is_error(ret)) {
struct dirent64 *de;
int len = ret;
int reclen;
de = dirp;
while (len > 0) {
reclen = de->d_reclen;
if (reclen > len)
break;
de->d_reclen = tswap16(reclen);
tswap64s(&de->d_ino);
tswap64s(&de->d_off);
de = (struct dirent64 *)((char *)de + reclen);
len -= reclen;
}
}
}
break;
case TARGET_NR__newselect:
ret = do_select(arg1, (void *)arg2, (void *)arg3, (void *)arg4,
(void *)arg5);
break;
case TARGET_NR_poll:
{
struct target_pollfd *target_pfd = (void *)arg1;
unsigned int nfds = arg2;
int timeout = arg3;
struct pollfd *pfd;
unsigned int i;
pfd = alloca(sizeof(struct pollfd) * nfds);
for(i = 0; i < nfds; i++) {
pfd[i].fd = tswap32(target_pfd[i].fd);
pfd[i].events = tswap16(target_pfd[i].events);
}
ret = get_errno(poll(pfd, nfds, timeout));
if (!is_error(ret)) {
for(i = 0; i < nfds; i++) {
target_pfd[i].revents = tswap16(pfd[i].revents);
}
}
}
break;
case TARGET_NR_flock:
/* NOTE: the flock constant seems to be the same for every
Linux platform */
ret = get_errno(flock(arg1, arg2));
break;
case TARGET_NR_readv:
{
int count = arg3;
int i;
struct iovec *vec;
struct target_iovec *target_vec = (void *)arg2;
vec = alloca(count * sizeof(struct iovec));
for(i = 0;i < count; i++) {
vec[i].iov_base = (void *)tswapl(target_vec[i].iov_base);
vec[i].iov_len = tswapl(target_vec[i].iov_len);
}
ret = get_errno(readv(arg1, vec, count));
}
break;
case TARGET_NR_writev:
{
int count = arg3;
int i;
struct iovec *vec;
struct target_iovec *target_vec = (void *)arg2;
vec = alloca(count * sizeof(struct iovec));
for(i = 0;i < count; i++) {
vec[i].iov_base = (void *)tswapl(target_vec[i].iov_base);
vec[i].iov_len = tswapl(target_vec[i].iov_len);
}
ret = get_errno(writev(arg1, vec, count));
}
break;
case TARGET_NR_getsid:
ret = get_errno(getsid(arg1));
break;
case TARGET_NR_fdatasync:
ret = get_errno(fdatasync(arg1));
break;
case TARGET_NR__sysctl:
goto unimplemented;
case TARGET_NR_sched_setparam:
{
struct sched_param *target_schp = (void *)arg2;
struct sched_param schp;
schp.sched_priority = tswap32(target_schp->sched_priority);
ret = get_errno(sched_setparam(arg1, &schp));
}
break;
case TARGET_NR_sched_getparam:
{
struct sched_param *target_schp = (void *)arg2;
struct sched_param schp;
ret = get_errno(sched_getparam(arg1, &schp));
if (!is_error(ret)) {
target_schp->sched_priority = tswap32(schp.sched_priority);
}
}
break;
case TARGET_NR_sched_setscheduler:
{
struct sched_param *target_schp = (void *)arg3;
struct sched_param schp;
schp.sched_priority = tswap32(target_schp->sched_priority);
ret = get_errno(sched_setscheduler(arg1, arg2, &schp));
}
break;
case TARGET_NR_sched_getscheduler:
ret = get_errno(sched_getscheduler(arg1));
break;
case TARGET_NR_sched_yield:
ret = get_errno(sched_yield());
break;
case TARGET_NR_sched_get_priority_max:
ret = get_errno(sched_get_priority_max(arg1));
break;
case TARGET_NR_sched_get_priority_min:
ret = get_errno(sched_get_priority_min(arg1));
break;
case TARGET_NR_sched_rr_get_interval:
{
struct target_timespec *target_ts = (void *)arg2;
struct timespec ts;
ret = get_errno(sched_rr_get_interval(arg1, &ts));
if (!is_error(ret)) {
target_ts->tv_sec = tswapl(ts.tv_sec);
target_ts->tv_nsec = tswapl(ts.tv_nsec);
}
}
break;
case TARGET_NR_nanosleep:
{
struct target_timespec *target_req = (void *)arg1;
struct target_timespec *target_rem = (void *)arg2;
struct timespec req, rem;
req.tv_sec = tswapl(target_req->tv_sec);
req.tv_nsec = tswapl(target_req->tv_nsec);
ret = get_errno(nanosleep(&req, &rem));
if (target_rem) {
target_rem->tv_sec = tswapl(rem.tv_sec);
target_rem->tv_nsec = tswapl(rem.tv_nsec);
}
}
break;
case TARGET_NR_setresuid:
ret = get_errno(setresuid(low2highuid(arg1),
low2highuid(arg2),
low2highuid(arg3)));
break;
case TARGET_NR_getresuid:
{
int ruid, euid, suid;
ret = get_errno(getresuid(&ruid, &euid, &suid));
if (!is_error(ret)) {
*(uint16_t *)arg1 = tswap16(high2lowuid(ruid));
*(uint16_t *)arg2 = tswap16(high2lowuid(euid));
*(uint16_t *)arg3 = tswap16(high2lowuid(suid));
}
}
break;
case TARGET_NR_setresgid:
ret = get_errno(setresgid(low2highgid(arg1),
low2highgid(arg2),
low2highgid(arg3)));
break;
case TARGET_NR_getresgid:
{
int rgid, egid, sgid;
ret = get_errno(getresgid(&rgid, &egid, &sgid));
if (!is_error(ret)) {
*(uint16_t *)arg1 = high2lowgid(tswap16(rgid));
*(uint16_t *)arg2 = high2lowgid(tswap16(egid));
*(uint16_t *)arg3 = high2lowgid(tswap16(sgid));
}
}
break;
case TARGET_NR_query_module:
goto unimplemented;
case TARGET_NR_nfsservctl:
goto unimplemented;
case TARGET_NR_prctl:
goto unimplemented;
case TARGET_NR_pread:
goto unimplemented;
case TARGET_NR_pwrite:
goto unimplemented;
case TARGET_NR_chown:
ret = get_errno(chown((const char *)arg1, arg2, arg3));
break;
case TARGET_NR_getcwd:
ret = get_errno(sys_getcwd1((char *)arg1, arg2));
break;
case TARGET_NR_capget:
goto unimplemented;
case TARGET_NR_capset:
goto unimplemented;
case TARGET_NR_sigaltstack:
goto unimplemented;
case TARGET_NR_sendfile:
goto unimplemented;
case TARGET_NR_getpmsg:
goto unimplemented;
case TARGET_NR_putpmsg:
goto unimplemented;
case TARGET_NR_vfork:
ret = get_errno(do_fork(cpu_env, CLONE_VFORK | CLONE_VM | SIGCHLD, 0));
break;
case TARGET_NR_ugetrlimit:
goto unimplemented;
case TARGET_NR_truncate64:
goto unimplemented;
case TARGET_NR_ftruncate64:
goto unimplemented;
case TARGET_NR_stat64:
ret = get_errno(stat((const char *)arg1, &st));
goto do_stat64;
case TARGET_NR_lstat64:
ret = get_errno(lstat((const char *)arg1, &st));
goto do_stat64;
case TARGET_NR_fstat64:
{
ret = get_errno(fstat(arg1, &st));
do_stat64:
if (!is_error(ret)) {
struct target_stat64 *target_st = (void *)arg2;
target_st->st_dev = tswap16(st.st_dev);
target_st->st_ino = tswapl(st.st_ino);
target_st->st_mode = tswap32(st.st_mode);
target_st->st_nlink = tswap16(st.st_nlink);
target_st->st_uid = tswap16(st.st_uid);
target_st->st_gid = tswap16(st.st_gid);
target_st->st_rdev = tswap16(st.st_rdev);
/* XXX: better use of kernel struct */
target_st->st_size = tswapl(st.st_size);
target_st->st_blksize = tswapl(st.st_blksize);
target_st->st_blocks = tswapl(st.st_blocks);
target_st->target_st_atime = tswapl(st.st_atime);
target_st->target_st_mtime = tswapl(st.st_mtime);
target_st->target_st_ctime = tswapl(st.st_ctime);
}
}
break;
case TARGET_NR_lchown32:
ret = get_errno(lchown((const char *)arg1, arg2, arg3));
break;
case TARGET_NR_getuid32:
ret = get_errno(getuid());
break;
case TARGET_NR_getgid32:
ret = get_errno(getgid());
break;
case TARGET_NR_geteuid32:
ret = get_errno(geteuid());
break;
case TARGET_NR_getegid32:
ret = get_errno(getegid());
break;
case TARGET_NR_setreuid32:
ret = get_errno(setreuid(arg1, arg2));
break;
case TARGET_NR_setregid32:
ret = get_errno(setregid(arg1, arg2));
break;
case TARGET_NR_getgroups32:
goto unimplemented;
case TARGET_NR_setgroups32:
goto unimplemented;
case TARGET_NR_fchown32:
ret = get_errno(fchown(arg1, arg2, arg3));
break;
case TARGET_NR_setresuid32:
ret = get_errno(setresuid(arg1, arg2, arg3));
break;
case TARGET_NR_getresuid32:
{
int ruid, euid, suid;
ret = get_errno(getresuid(&ruid, &euid, &suid));
if (!is_error(ret)) {
*(uint32_t *)arg1 = tswap32(ruid);
*(uint32_t *)arg2 = tswap32(euid);
*(uint32_t *)arg3 = tswap32(suid);
}
}
break;
case TARGET_NR_setresgid32:
ret = get_errno(setresgid(arg1, arg2, arg3));
break;
case TARGET_NR_getresgid32:
{
int rgid, egid, sgid;
ret = get_errno(getresgid(&rgid, &egid, &sgid));
if (!is_error(ret)) {
*(uint32_t *)arg1 = tswap32(rgid);
*(uint32_t *)arg2 = tswap32(egid);
*(uint32_t *)arg3 = tswap32(sgid);
}
}
break;
case TARGET_NR_chown32:
ret = get_errno(chown((const char *)arg1, arg2, arg3));
break;
case TARGET_NR_setuid32:
ret = get_errno(setuid(arg1));
break;
case TARGET_NR_setgid32:
ret = get_errno(setgid(arg1));
break;
case TARGET_NR_setfsuid32:
ret = get_errno(setfsuid(arg1));
break;
case TARGET_NR_setfsgid32:
ret = get_errno(setfsgid(arg1));
break;
case TARGET_NR_pivot_root:
goto unimplemented;
case TARGET_NR_mincore:
goto unimplemented;
case TARGET_NR_madvise:
goto unimplemented;
#if TARGET_LONG_BITS == 32
case TARGET_NR_fcntl64:
switch(arg2) {
case F_GETLK64:
case F_SETLK64:
case F_SETLKW64:
goto unimplemented;
default:
ret = get_errno(fcntl(arg1, arg2, arg3));
break;
}
break;
#endif
case TARGET_NR_security:
goto unimplemented;
case TARGET_NR_gettid:
ret = get_errno(gettid());
break;
case TARGET_NR_readahead:
goto unimplemented;
case TARGET_NR_setxattr:
case TARGET_NR_lsetxattr:
case TARGET_NR_fsetxattr:
case TARGET_NR_getxattr:
case TARGET_NR_lgetxattr:
case TARGET_NR_fgetxattr:
case TARGET_NR_listxattr:
case TARGET_NR_llistxattr:
case TARGET_NR_flistxattr:
case TARGET_NR_removexattr:
case TARGET_NR_lremovexattr:
case TARGET_NR_fremovexattr:
goto unimplemented_nowarn;
case TARGET_NR_set_thread_area:
case TARGET_NR_get_thread_area:
goto unimplemented_nowarn;
default:
unimplemented:
gemu_log("qemu: Unsupported syscall: %d\n", num);
unimplemented_nowarn:
ret = -ENOSYS;
break;
}
fail:
return ret;
}