422148d3e5
Postcopy sends RAMBlock names and offsets over the wire (since it can't rely on the order of ramaddr being the same), and it starts out with HVA fault addresses from the kernel. qemu_ram_block_from_host translates a HVA into a RAMBlock, an offset in the RAMBlock and the global ram_addr_t value. Rewrite qemu_ram_addr_from_host to use qemu_ram_block_from_host. Provide qemu_ram_get_idstr since its the actual name text sent on the wire. Signed-off-by: Dr. David Alan Gilbert <dgilbert@redhat.com> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Juan Quintela <quintela@redhat.com> Reviewed-by: Amit Shah <amit.shah@redhat.com> Signed-off-by: Juan Quintela <quintela@redhat.com>
293 lines
10 KiB
C
293 lines
10 KiB
C
/*
|
|
* Declarations for cpu physical memory functions
|
|
*
|
|
* Copyright 2011 Red Hat, Inc. and/or its affiliates
|
|
*
|
|
* Authors:
|
|
* Avi Kivity <avi@redhat.com>
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2 or
|
|
* later. See the COPYING file in the top-level directory.
|
|
*
|
|
*/
|
|
|
|
/*
|
|
* This header is for use by exec.c and memory.c ONLY. Do not include it.
|
|
* The functions declared here will be removed soon.
|
|
*/
|
|
|
|
#ifndef RAM_ADDR_H
|
|
#define RAM_ADDR_H
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
#include "hw/xen/xen.h"
|
|
|
|
struct RAMBlock {
|
|
struct rcu_head rcu;
|
|
struct MemoryRegion *mr;
|
|
uint8_t *host;
|
|
ram_addr_t offset;
|
|
ram_addr_t used_length;
|
|
ram_addr_t max_length;
|
|
void (*resized)(const char*, uint64_t length, void *host);
|
|
uint32_t flags;
|
|
/* Protected by iothread lock. */
|
|
char idstr[256];
|
|
/* RCU-enabled, writes protected by the ramlist lock */
|
|
QLIST_ENTRY(RAMBlock) next;
|
|
int fd;
|
|
};
|
|
|
|
static inline void *ramblock_ptr(RAMBlock *block, ram_addr_t offset)
|
|
{
|
|
assert(offset < block->used_length);
|
|
assert(block->host);
|
|
return (char *)block->host + offset;
|
|
}
|
|
|
|
typedef struct RAMList {
|
|
QemuMutex mutex;
|
|
/* Protected by the iothread lock. */
|
|
unsigned long *dirty_memory[DIRTY_MEMORY_NUM];
|
|
RAMBlock *mru_block;
|
|
/* RCU-enabled, writes protected by the ramlist lock. */
|
|
QLIST_HEAD(, RAMBlock) blocks;
|
|
uint32_t version;
|
|
} RAMList;
|
|
extern RAMList ram_list;
|
|
|
|
ram_addr_t last_ram_offset(void);
|
|
void qemu_mutex_lock_ramlist(void);
|
|
void qemu_mutex_unlock_ramlist(void);
|
|
|
|
ram_addr_t qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
|
|
bool share, const char *mem_path,
|
|
Error **errp);
|
|
ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
|
|
MemoryRegion *mr, Error **errp);
|
|
ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp);
|
|
ram_addr_t qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t max_size,
|
|
void (*resized)(const char*,
|
|
uint64_t length,
|
|
void *host),
|
|
MemoryRegion *mr, Error **errp);
|
|
int qemu_get_ram_fd(ram_addr_t addr);
|
|
void *qemu_get_ram_block_host_ptr(ram_addr_t addr);
|
|
void *qemu_get_ram_ptr(ram_addr_t addr);
|
|
void qemu_ram_free(ram_addr_t addr);
|
|
void qemu_ram_free_from_ptr(ram_addr_t addr);
|
|
|
|
int qemu_ram_resize(ram_addr_t base, ram_addr_t newsize, Error **errp);
|
|
|
|
#define DIRTY_CLIENTS_ALL ((1 << DIRTY_MEMORY_NUM) - 1)
|
|
#define DIRTY_CLIENTS_NOCODE (DIRTY_CLIENTS_ALL & ~(1 << DIRTY_MEMORY_CODE))
|
|
|
|
static inline bool cpu_physical_memory_get_dirty(ram_addr_t start,
|
|
ram_addr_t length,
|
|
unsigned client)
|
|
{
|
|
unsigned long end, page, next;
|
|
|
|
assert(client < DIRTY_MEMORY_NUM);
|
|
|
|
end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
|
|
page = start >> TARGET_PAGE_BITS;
|
|
next = find_next_bit(ram_list.dirty_memory[client], end, page);
|
|
|
|
return next < end;
|
|
}
|
|
|
|
static inline bool cpu_physical_memory_all_dirty(ram_addr_t start,
|
|
ram_addr_t length,
|
|
unsigned client)
|
|
{
|
|
unsigned long end, page, next;
|
|
|
|
assert(client < DIRTY_MEMORY_NUM);
|
|
|
|
end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
|
|
page = start >> TARGET_PAGE_BITS;
|
|
next = find_next_zero_bit(ram_list.dirty_memory[client], end, page);
|
|
|
|
return next >= end;
|
|
}
|
|
|
|
static inline bool cpu_physical_memory_get_dirty_flag(ram_addr_t addr,
|
|
unsigned client)
|
|
{
|
|
return cpu_physical_memory_get_dirty(addr, 1, client);
|
|
}
|
|
|
|
static inline bool cpu_physical_memory_is_clean(ram_addr_t addr)
|
|
{
|
|
bool vga = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_VGA);
|
|
bool code = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_CODE);
|
|
bool migration =
|
|
cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_MIGRATION);
|
|
return !(vga && code && migration);
|
|
}
|
|
|
|
static inline uint8_t cpu_physical_memory_range_includes_clean(ram_addr_t start,
|
|
ram_addr_t length,
|
|
uint8_t mask)
|
|
{
|
|
uint8_t ret = 0;
|
|
|
|
if (mask & (1 << DIRTY_MEMORY_VGA) &&
|
|
!cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_VGA)) {
|
|
ret |= (1 << DIRTY_MEMORY_VGA);
|
|
}
|
|
if (mask & (1 << DIRTY_MEMORY_CODE) &&
|
|
!cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_CODE)) {
|
|
ret |= (1 << DIRTY_MEMORY_CODE);
|
|
}
|
|
if (mask & (1 << DIRTY_MEMORY_MIGRATION) &&
|
|
!cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_MIGRATION)) {
|
|
ret |= (1 << DIRTY_MEMORY_MIGRATION);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static inline void cpu_physical_memory_set_dirty_flag(ram_addr_t addr,
|
|
unsigned client)
|
|
{
|
|
assert(client < DIRTY_MEMORY_NUM);
|
|
set_bit_atomic(addr >> TARGET_PAGE_BITS, ram_list.dirty_memory[client]);
|
|
}
|
|
|
|
static inline void cpu_physical_memory_set_dirty_range(ram_addr_t start,
|
|
ram_addr_t length,
|
|
uint8_t mask)
|
|
{
|
|
unsigned long end, page;
|
|
unsigned long **d = ram_list.dirty_memory;
|
|
|
|
end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
|
|
page = start >> TARGET_PAGE_BITS;
|
|
if (likely(mask & (1 << DIRTY_MEMORY_MIGRATION))) {
|
|
bitmap_set_atomic(d[DIRTY_MEMORY_MIGRATION], page, end - page);
|
|
}
|
|
if (unlikely(mask & (1 << DIRTY_MEMORY_VGA))) {
|
|
bitmap_set_atomic(d[DIRTY_MEMORY_VGA], page, end - page);
|
|
}
|
|
if (unlikely(mask & (1 << DIRTY_MEMORY_CODE))) {
|
|
bitmap_set_atomic(d[DIRTY_MEMORY_CODE], page, end - page);
|
|
}
|
|
xen_modified_memory(start, length);
|
|
}
|
|
|
|
#if !defined(_WIN32)
|
|
static inline void cpu_physical_memory_set_dirty_lebitmap(unsigned long *bitmap,
|
|
ram_addr_t start,
|
|
ram_addr_t pages)
|
|
{
|
|
unsigned long i, j;
|
|
unsigned long page_number, c;
|
|
hwaddr addr;
|
|
ram_addr_t ram_addr;
|
|
unsigned long len = (pages + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
|
|
unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
|
|
unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
|
|
|
|
/* start address is aligned at the start of a word? */
|
|
if ((((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) &&
|
|
(hpratio == 1)) {
|
|
long k;
|
|
long nr = BITS_TO_LONGS(pages);
|
|
|
|
for (k = 0; k < nr; k++) {
|
|
if (bitmap[k]) {
|
|
unsigned long temp = leul_to_cpu(bitmap[k]);
|
|
unsigned long **d = ram_list.dirty_memory;
|
|
|
|
atomic_or(&d[DIRTY_MEMORY_MIGRATION][page + k], temp);
|
|
atomic_or(&d[DIRTY_MEMORY_VGA][page + k], temp);
|
|
if (tcg_enabled()) {
|
|
atomic_or(&d[DIRTY_MEMORY_CODE][page + k], temp);
|
|
}
|
|
}
|
|
}
|
|
xen_modified_memory(start, pages << TARGET_PAGE_BITS);
|
|
} else {
|
|
uint8_t clients = tcg_enabled() ? DIRTY_CLIENTS_ALL : DIRTY_CLIENTS_NOCODE;
|
|
/*
|
|
* bitmap-traveling is faster than memory-traveling (for addr...)
|
|
* especially when most of the memory is not dirty.
|
|
*/
|
|
for (i = 0; i < len; i++) {
|
|
if (bitmap[i] != 0) {
|
|
c = leul_to_cpu(bitmap[i]);
|
|
do {
|
|
j = ctzl(c);
|
|
c &= ~(1ul << j);
|
|
page_number = (i * HOST_LONG_BITS + j) * hpratio;
|
|
addr = page_number * TARGET_PAGE_SIZE;
|
|
ram_addr = start + addr;
|
|
cpu_physical_memory_set_dirty_range(ram_addr,
|
|
TARGET_PAGE_SIZE * hpratio, clients);
|
|
} while (c != 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif /* not _WIN32 */
|
|
|
|
bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
|
|
ram_addr_t length,
|
|
unsigned client);
|
|
|
|
static inline void cpu_physical_memory_clear_dirty_range(ram_addr_t start,
|
|
ram_addr_t length)
|
|
{
|
|
cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_MIGRATION);
|
|
cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_VGA);
|
|
cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_CODE);
|
|
}
|
|
|
|
|
|
static inline
|
|
uint64_t cpu_physical_memory_sync_dirty_bitmap(unsigned long *dest,
|
|
ram_addr_t start,
|
|
ram_addr_t length)
|
|
{
|
|
ram_addr_t addr;
|
|
unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
|
|
uint64_t num_dirty = 0;
|
|
|
|
/* start address is aligned at the start of a word? */
|
|
if (((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) {
|
|
int k;
|
|
int nr = BITS_TO_LONGS(length >> TARGET_PAGE_BITS);
|
|
unsigned long *src = ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION];
|
|
|
|
for (k = page; k < page + nr; k++) {
|
|
if (src[k]) {
|
|
unsigned long bits = atomic_xchg(&src[k], 0);
|
|
unsigned long new_dirty;
|
|
new_dirty = ~dest[k];
|
|
dest[k] |= bits;
|
|
new_dirty &= bits;
|
|
num_dirty += ctpopl(new_dirty);
|
|
}
|
|
}
|
|
} else {
|
|
for (addr = 0; addr < length; addr += TARGET_PAGE_SIZE) {
|
|
if (cpu_physical_memory_test_and_clear_dirty(
|
|
start + addr,
|
|
TARGET_PAGE_SIZE,
|
|
DIRTY_MEMORY_MIGRATION)) {
|
|
long k = (start + addr) >> TARGET_PAGE_BITS;
|
|
if (!test_and_set_bit(k, dest)) {
|
|
num_dirty++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return num_dirty;
|
|
}
|
|
|
|
void migration_bitmap_extend(ram_addr_t old, ram_addr_t new);
|
|
#endif
|
|
#endif
|