7b77f048e2
For clarity and easier maintenence, create target/mips/fpu_helper.c, and move all FPU-related content form target/mips/op_helper.c to that file. Signed-off-by: Aleksandar Markovic <amarkovic@wavecomp.com> Reviewed-by: Aleksandar Rikalo <aleksandar.rikalo@rt-rk.com> Message-Id: <1580745443-24650-3-git-send-email-aleksandar.markovic@rt-rk.com>
1912 lines
74 KiB
C
1912 lines
74 KiB
C
/*
|
|
* Helpers for emulation of FPU-related MIPS instructions.
|
|
*
|
|
* Copyright (C) 2004-2005 Jocelyn Mayer
|
|
* Copyright (C) 2020 Wave Computing, Inc.
|
|
* Copyright (C) 2020 Aleksandar Markovic <amarkovic@wavecomp.com>
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qemu/main-loop.h"
|
|
#include "cpu.h"
|
|
#include "internal.h"
|
|
#include "qemu/host-utils.h"
|
|
#include "exec/helper-proto.h"
|
|
#include "exec/exec-all.h"
|
|
#include "exec/cpu_ldst.h"
|
|
#include "exec/memop.h"
|
|
#include "sysemu/kvm.h"
|
|
#include "fpu/softfloat.h"
|
|
|
|
|
|
/* Complex FPU operations which may need stack space. */
|
|
|
|
#define FLOAT_TWO32 make_float32(1 << 30)
|
|
#define FLOAT_TWO64 make_float64(1ULL << 62)
|
|
|
|
#define FP_TO_INT32_OVERFLOW 0x7fffffff
|
|
#define FP_TO_INT64_OVERFLOW 0x7fffffffffffffffULL
|
|
|
|
/* convert MIPS rounding mode in FCR31 to IEEE library */
|
|
unsigned int ieee_rm[] = {
|
|
float_round_nearest_even,
|
|
float_round_to_zero,
|
|
float_round_up,
|
|
float_round_down
|
|
};
|
|
|
|
target_ulong helper_cfc1(CPUMIPSState *env, uint32_t reg)
|
|
{
|
|
target_ulong arg1 = 0;
|
|
|
|
switch (reg) {
|
|
case 0:
|
|
arg1 = (int32_t)env->active_fpu.fcr0;
|
|
break;
|
|
case 1:
|
|
/* UFR Support - Read Status FR */
|
|
if (env->active_fpu.fcr0 & (1 << FCR0_UFRP)) {
|
|
if (env->CP0_Config5 & (1 << CP0C5_UFR)) {
|
|
arg1 = (int32_t)
|
|
((env->CP0_Status & (1 << CP0St_FR)) >> CP0St_FR);
|
|
} else {
|
|
do_raise_exception(env, EXCP_RI, GETPC());
|
|
}
|
|
}
|
|
break;
|
|
case 5:
|
|
/* FRE Support - read Config5.FRE bit */
|
|
if (env->active_fpu.fcr0 & (1 << FCR0_FREP)) {
|
|
if (env->CP0_Config5 & (1 << CP0C5_UFE)) {
|
|
arg1 = (env->CP0_Config5 >> CP0C5_FRE) & 1;
|
|
} else {
|
|
helper_raise_exception(env, EXCP_RI);
|
|
}
|
|
}
|
|
break;
|
|
case 25:
|
|
arg1 = ((env->active_fpu.fcr31 >> 24) & 0xfe) |
|
|
((env->active_fpu.fcr31 >> 23) & 0x1);
|
|
break;
|
|
case 26:
|
|
arg1 = env->active_fpu.fcr31 & 0x0003f07c;
|
|
break;
|
|
case 28:
|
|
arg1 = (env->active_fpu.fcr31 & 0x00000f83) |
|
|
((env->active_fpu.fcr31 >> 22) & 0x4);
|
|
break;
|
|
default:
|
|
arg1 = (int32_t)env->active_fpu.fcr31;
|
|
break;
|
|
}
|
|
|
|
return arg1;
|
|
}
|
|
|
|
void helper_ctc1(CPUMIPSState *env, target_ulong arg1, uint32_t fs, uint32_t rt)
|
|
{
|
|
switch (fs) {
|
|
case 1:
|
|
/* UFR Alias - Reset Status FR */
|
|
if (!((env->active_fpu.fcr0 & (1 << FCR0_UFRP)) && (rt == 0))) {
|
|
return;
|
|
}
|
|
if (env->CP0_Config5 & (1 << CP0C5_UFR)) {
|
|
env->CP0_Status &= ~(1 << CP0St_FR);
|
|
compute_hflags(env);
|
|
} else {
|
|
do_raise_exception(env, EXCP_RI, GETPC());
|
|
}
|
|
break;
|
|
case 4:
|
|
/* UNFR Alias - Set Status FR */
|
|
if (!((env->active_fpu.fcr0 & (1 << FCR0_UFRP)) && (rt == 0))) {
|
|
return;
|
|
}
|
|
if (env->CP0_Config5 & (1 << CP0C5_UFR)) {
|
|
env->CP0_Status |= (1 << CP0St_FR);
|
|
compute_hflags(env);
|
|
} else {
|
|
do_raise_exception(env, EXCP_RI, GETPC());
|
|
}
|
|
break;
|
|
case 5:
|
|
/* FRE Support - clear Config5.FRE bit */
|
|
if (!((env->active_fpu.fcr0 & (1 << FCR0_FREP)) && (rt == 0))) {
|
|
return;
|
|
}
|
|
if (env->CP0_Config5 & (1 << CP0C5_UFE)) {
|
|
env->CP0_Config5 &= ~(1 << CP0C5_FRE);
|
|
compute_hflags(env);
|
|
} else {
|
|
helper_raise_exception(env, EXCP_RI);
|
|
}
|
|
break;
|
|
case 6:
|
|
/* FRE Support - set Config5.FRE bit */
|
|
if (!((env->active_fpu.fcr0 & (1 << FCR0_FREP)) && (rt == 0))) {
|
|
return;
|
|
}
|
|
if (env->CP0_Config5 & (1 << CP0C5_UFE)) {
|
|
env->CP0_Config5 |= (1 << CP0C5_FRE);
|
|
compute_hflags(env);
|
|
} else {
|
|
helper_raise_exception(env, EXCP_RI);
|
|
}
|
|
break;
|
|
case 25:
|
|
if ((env->insn_flags & ISA_MIPS32R6) || (arg1 & 0xffffff00)) {
|
|
return;
|
|
}
|
|
env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0x017fffff) |
|
|
((arg1 & 0xfe) << 24) |
|
|
((arg1 & 0x1) << 23);
|
|
break;
|
|
case 26:
|
|
if (arg1 & 0x007c0000) {
|
|
return;
|
|
}
|
|
env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfffc0f83) |
|
|
(arg1 & 0x0003f07c);
|
|
break;
|
|
case 28:
|
|
if (arg1 & 0x007c0000) {
|
|
return;
|
|
}
|
|
env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfefff07c) |
|
|
(arg1 & 0x00000f83) |
|
|
((arg1 & 0x4) << 22);
|
|
break;
|
|
case 31:
|
|
env->active_fpu.fcr31 = (arg1 & env->active_fpu.fcr31_rw_bitmask) |
|
|
(env->active_fpu.fcr31 & ~(env->active_fpu.fcr31_rw_bitmask));
|
|
break;
|
|
default:
|
|
if (env->insn_flags & ISA_MIPS32R6) {
|
|
do_raise_exception(env, EXCP_RI, GETPC());
|
|
}
|
|
return;
|
|
}
|
|
restore_fp_status(env);
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status);
|
|
if ((GET_FP_ENABLE(env->active_fpu.fcr31) | 0x20) &
|
|
GET_FP_CAUSE(env->active_fpu.fcr31)) {
|
|
do_raise_exception(env, EXCP_FPE, GETPC());
|
|
}
|
|
}
|
|
|
|
int ieee_ex_to_mips(int xcpt)
|
|
{
|
|
int ret = 0;
|
|
if (xcpt) {
|
|
if (xcpt & float_flag_invalid) {
|
|
ret |= FP_INVALID;
|
|
}
|
|
if (xcpt & float_flag_overflow) {
|
|
ret |= FP_OVERFLOW;
|
|
}
|
|
if (xcpt & float_flag_underflow) {
|
|
ret |= FP_UNDERFLOW;
|
|
}
|
|
if (xcpt & float_flag_divbyzero) {
|
|
ret |= FP_DIV0;
|
|
}
|
|
if (xcpt & float_flag_inexact) {
|
|
ret |= FP_INEXACT;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static inline void update_fcr31(CPUMIPSState *env, uintptr_t pc)
|
|
{
|
|
int tmp = ieee_ex_to_mips(get_float_exception_flags(
|
|
&env->active_fpu.fp_status));
|
|
|
|
SET_FP_CAUSE(env->active_fpu.fcr31, tmp);
|
|
|
|
if (tmp) {
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status);
|
|
|
|
if (GET_FP_ENABLE(env->active_fpu.fcr31) & tmp) {
|
|
do_raise_exception(env, EXCP_FPE, pc);
|
|
} else {
|
|
UPDATE_FP_FLAGS(env->active_fpu.fcr31, tmp);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Float support.
|
|
* Single precition routines have a "s" suffix, double precision a
|
|
* "d" suffix, 32bit integer "w", 64bit integer "l", paired single "ps",
|
|
* paired single lower "pl", paired single upper "pu".
|
|
*/
|
|
|
|
/* unary operations, modifying fp status */
|
|
uint64_t helper_float_sqrt_d(CPUMIPSState *env, uint64_t fdt0)
|
|
{
|
|
fdt0 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
|
|
update_fcr31(env, GETPC());
|
|
return fdt0;
|
|
}
|
|
|
|
uint32_t helper_float_sqrt_s(CPUMIPSState *env, uint32_t fst0)
|
|
{
|
|
fst0 = float32_sqrt(fst0, &env->active_fpu.fp_status);
|
|
update_fcr31(env, GETPC());
|
|
return fst0;
|
|
}
|
|
|
|
uint64_t helper_float_cvtd_s(CPUMIPSState *env, uint32_t fst0)
|
|
{
|
|
uint64_t fdt2;
|
|
|
|
fdt2 = float32_to_float64(fst0, &env->active_fpu.fp_status);
|
|
update_fcr31(env, GETPC());
|
|
return fdt2;
|
|
}
|
|
|
|
uint64_t helper_float_cvtd_w(CPUMIPSState *env, uint32_t wt0)
|
|
{
|
|
uint64_t fdt2;
|
|
|
|
fdt2 = int32_to_float64(wt0, &env->active_fpu.fp_status);
|
|
update_fcr31(env, GETPC());
|
|
return fdt2;
|
|
}
|
|
|
|
uint64_t helper_float_cvtd_l(CPUMIPSState *env, uint64_t dt0)
|
|
{
|
|
uint64_t fdt2;
|
|
|
|
fdt2 = int64_to_float64(dt0, &env->active_fpu.fp_status);
|
|
update_fcr31(env, GETPC());
|
|
return fdt2;
|
|
}
|
|
|
|
uint64_t helper_float_cvt_l_d(CPUMIPSState *env, uint64_t fdt0)
|
|
{
|
|
uint64_t dt2;
|
|
|
|
dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
|
|
if (get_float_exception_flags(&env->active_fpu.fp_status)
|
|
& (float_flag_invalid | float_flag_overflow)) {
|
|
dt2 = FP_TO_INT64_OVERFLOW;
|
|
}
|
|
update_fcr31(env, GETPC());
|
|
return dt2;
|
|
}
|
|
|
|
uint64_t helper_float_cvt_l_s(CPUMIPSState *env, uint32_t fst0)
|
|
{
|
|
uint64_t dt2;
|
|
|
|
dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
|
|
if (get_float_exception_flags(&env->active_fpu.fp_status)
|
|
& (float_flag_invalid | float_flag_overflow)) {
|
|
dt2 = FP_TO_INT64_OVERFLOW;
|
|
}
|
|
update_fcr31(env, GETPC());
|
|
return dt2;
|
|
}
|
|
|
|
uint64_t helper_float_cvtps_pw(CPUMIPSState *env, uint64_t dt0)
|
|
{
|
|
uint32_t fst2;
|
|
uint32_t fsth2;
|
|
|
|
fst2 = int32_to_float32(dt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
|
|
fsth2 = int32_to_float32(dt0 >> 32, &env->active_fpu.fp_status);
|
|
update_fcr31(env, GETPC());
|
|
return ((uint64_t)fsth2 << 32) | fst2;
|
|
}
|
|
|
|
uint64_t helper_float_cvtpw_ps(CPUMIPSState *env, uint64_t fdt0)
|
|
{
|
|
uint32_t wt2;
|
|
uint32_t wth2;
|
|
int excp, excph;
|
|
|
|
wt2 = float32_to_int32(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
|
|
excp = get_float_exception_flags(&env->active_fpu.fp_status);
|
|
if (excp & (float_flag_overflow | float_flag_invalid)) {
|
|
wt2 = FP_TO_INT32_OVERFLOW;
|
|
}
|
|
|
|
set_float_exception_flags(0, &env->active_fpu.fp_status);
|
|
wth2 = float32_to_int32(fdt0 >> 32, &env->active_fpu.fp_status);
|
|
excph = get_float_exception_flags(&env->active_fpu.fp_status);
|
|
if (excph & (float_flag_overflow | float_flag_invalid)) {
|
|
wth2 = FP_TO_INT32_OVERFLOW;
|
|
}
|
|
|
|
set_float_exception_flags(excp | excph, &env->active_fpu.fp_status);
|
|
update_fcr31(env, GETPC());
|
|
|
|
return ((uint64_t)wth2 << 32) | wt2;
|
|
}
|
|
|
|
uint32_t helper_float_cvts_d(CPUMIPSState *env, uint64_t fdt0)
|
|
{
|
|
uint32_t fst2;
|
|
|
|
fst2 = float64_to_float32(fdt0, &env->active_fpu.fp_status);
|
|
update_fcr31(env, GETPC());
|
|
return fst2;
|
|
}
|
|
|
|
uint32_t helper_float_cvts_w(CPUMIPSState *env, uint32_t wt0)
|
|
{
|
|
uint32_t fst2;
|
|
|
|
fst2 = int32_to_float32(wt0, &env->active_fpu.fp_status);
|
|
update_fcr31(env, GETPC());
|
|
return fst2;
|
|
}
|
|
|
|
uint32_t helper_float_cvts_l(CPUMIPSState *env, uint64_t dt0)
|
|
{
|
|
uint32_t fst2;
|
|
|
|
fst2 = int64_to_float32(dt0, &env->active_fpu.fp_status);
|
|
update_fcr31(env, GETPC());
|
|
return fst2;
|
|
}
|
|
|
|
uint32_t helper_float_cvts_pl(CPUMIPSState *env, uint32_t wt0)
|
|
{
|
|
uint32_t wt2;
|
|
|
|
wt2 = wt0;
|
|
update_fcr31(env, GETPC());
|
|
return wt2;
|
|
}
|
|
|
|
uint32_t helper_float_cvts_pu(CPUMIPSState *env, uint32_t wth0)
|
|
{
|
|
uint32_t wt2;
|
|
|
|
wt2 = wth0;
|
|
update_fcr31(env, GETPC());
|
|
return wt2;
|
|
}
|
|
|
|
uint32_t helper_float_cvt_w_s(CPUMIPSState *env, uint32_t fst0)
|
|
{
|
|
uint32_t wt2;
|
|
|
|
wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
|
|
if (get_float_exception_flags(&env->active_fpu.fp_status)
|
|
& (float_flag_invalid | float_flag_overflow)) {
|
|
wt2 = FP_TO_INT32_OVERFLOW;
|
|
}
|
|
update_fcr31(env, GETPC());
|
|
return wt2;
|
|
}
|
|
|
|
uint32_t helper_float_cvt_w_d(CPUMIPSState *env, uint64_t fdt0)
|
|
{
|
|
uint32_t wt2;
|
|
|
|
wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
|
|
if (get_float_exception_flags(&env->active_fpu.fp_status)
|
|
& (float_flag_invalid | float_flag_overflow)) {
|
|
wt2 = FP_TO_INT32_OVERFLOW;
|
|
}
|
|
update_fcr31(env, GETPC());
|
|
return wt2;
|
|
}
|
|
|
|
uint64_t helper_float_round_l_d(CPUMIPSState *env, uint64_t fdt0)
|
|
{
|
|
uint64_t dt2;
|
|
|
|
set_float_rounding_mode(float_round_nearest_even,
|
|
&env->active_fpu.fp_status);
|
|
dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
|
|
restore_rounding_mode(env);
|
|
if (get_float_exception_flags(&env->active_fpu.fp_status)
|
|
& (float_flag_invalid | float_flag_overflow)) {
|
|
dt2 = FP_TO_INT64_OVERFLOW;
|
|
}
|
|
update_fcr31(env, GETPC());
|
|
return dt2;
|
|
}
|
|
|
|
uint64_t helper_float_round_l_s(CPUMIPSState *env, uint32_t fst0)
|
|
{
|
|
uint64_t dt2;
|
|
|
|
set_float_rounding_mode(float_round_nearest_even,
|
|
&env->active_fpu.fp_status);
|
|
dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
|
|
restore_rounding_mode(env);
|
|
if (get_float_exception_flags(&env->active_fpu.fp_status)
|
|
& (float_flag_invalid | float_flag_overflow)) {
|
|
dt2 = FP_TO_INT64_OVERFLOW;
|
|
}
|
|
update_fcr31(env, GETPC());
|
|
return dt2;
|
|
}
|
|
|
|
uint32_t helper_float_round_w_d(CPUMIPSState *env, uint64_t fdt0)
|
|
{
|
|
uint32_t wt2;
|
|
|
|
set_float_rounding_mode(float_round_nearest_even,
|
|
&env->active_fpu.fp_status);
|
|
wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
|
|
restore_rounding_mode(env);
|
|
if (get_float_exception_flags(&env->active_fpu.fp_status)
|
|
& (float_flag_invalid | float_flag_overflow)) {
|
|
wt2 = FP_TO_INT32_OVERFLOW;
|
|
}
|
|
update_fcr31(env, GETPC());
|
|
return wt2;
|
|
}
|
|
|
|
uint32_t helper_float_round_w_s(CPUMIPSState *env, uint32_t fst0)
|
|
{
|
|
uint32_t wt2;
|
|
|
|
set_float_rounding_mode(float_round_nearest_even,
|
|
&env->active_fpu.fp_status);
|
|
wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
|
|
restore_rounding_mode(env);
|
|
if (get_float_exception_flags(&env->active_fpu.fp_status)
|
|
& (float_flag_invalid | float_flag_overflow)) {
|
|
wt2 = FP_TO_INT32_OVERFLOW;
|
|
}
|
|
update_fcr31(env, GETPC());
|
|
return wt2;
|
|
}
|
|
|
|
uint64_t helper_float_trunc_l_d(CPUMIPSState *env, uint64_t fdt0)
|
|
{
|
|
uint64_t dt2;
|
|
|
|
dt2 = float64_to_int64_round_to_zero(fdt0,
|
|
&env->active_fpu.fp_status);
|
|
if (get_float_exception_flags(&env->active_fpu.fp_status)
|
|
& (float_flag_invalid | float_flag_overflow)) {
|
|
dt2 = FP_TO_INT64_OVERFLOW;
|
|
}
|
|
update_fcr31(env, GETPC());
|
|
return dt2;
|
|
}
|
|
|
|
uint64_t helper_float_trunc_l_s(CPUMIPSState *env, uint32_t fst0)
|
|
{
|
|
uint64_t dt2;
|
|
|
|
dt2 = float32_to_int64_round_to_zero(fst0, &env->active_fpu.fp_status);
|
|
if (get_float_exception_flags(&env->active_fpu.fp_status)
|
|
& (float_flag_invalid | float_flag_overflow)) {
|
|
dt2 = FP_TO_INT64_OVERFLOW;
|
|
}
|
|
update_fcr31(env, GETPC());
|
|
return dt2;
|
|
}
|
|
|
|
uint32_t helper_float_trunc_w_d(CPUMIPSState *env, uint64_t fdt0)
|
|
{
|
|
uint32_t wt2;
|
|
|
|
wt2 = float64_to_int32_round_to_zero(fdt0, &env->active_fpu.fp_status);
|
|
if (get_float_exception_flags(&env->active_fpu.fp_status)
|
|
& (float_flag_invalid | float_flag_overflow)) {
|
|
wt2 = FP_TO_INT32_OVERFLOW;
|
|
}
|
|
update_fcr31(env, GETPC());
|
|
return wt2;
|
|
}
|
|
|
|
uint32_t helper_float_trunc_w_s(CPUMIPSState *env, uint32_t fst0)
|
|
{
|
|
uint32_t wt2;
|
|
|
|
wt2 = float32_to_int32_round_to_zero(fst0, &env->active_fpu.fp_status);
|
|
if (get_float_exception_flags(&env->active_fpu.fp_status)
|
|
& (float_flag_invalid | float_flag_overflow)) {
|
|
wt2 = FP_TO_INT32_OVERFLOW;
|
|
}
|
|
update_fcr31(env, GETPC());
|
|
return wt2;
|
|
}
|
|
|
|
uint64_t helper_float_ceil_l_d(CPUMIPSState *env, uint64_t fdt0)
|
|
{
|
|
uint64_t dt2;
|
|
|
|
set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
|
|
dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
|
|
restore_rounding_mode(env);
|
|
if (get_float_exception_flags(&env->active_fpu.fp_status)
|
|
& (float_flag_invalid | float_flag_overflow)) {
|
|
dt2 = FP_TO_INT64_OVERFLOW;
|
|
}
|
|
update_fcr31(env, GETPC());
|
|
return dt2;
|
|
}
|
|
|
|
uint64_t helper_float_ceil_l_s(CPUMIPSState *env, uint32_t fst0)
|
|
{
|
|
uint64_t dt2;
|
|
|
|
set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
|
|
dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
|
|
restore_rounding_mode(env);
|
|
if (get_float_exception_flags(&env->active_fpu.fp_status)
|
|
& (float_flag_invalid | float_flag_overflow)) {
|
|
dt2 = FP_TO_INT64_OVERFLOW;
|
|
}
|
|
update_fcr31(env, GETPC());
|
|
return dt2;
|
|
}
|
|
|
|
uint32_t helper_float_ceil_w_d(CPUMIPSState *env, uint64_t fdt0)
|
|
{
|
|
uint32_t wt2;
|
|
|
|
set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
|
|
wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
|
|
restore_rounding_mode(env);
|
|
if (get_float_exception_flags(&env->active_fpu.fp_status)
|
|
& (float_flag_invalid | float_flag_overflow)) {
|
|
wt2 = FP_TO_INT32_OVERFLOW;
|
|
}
|
|
update_fcr31(env, GETPC());
|
|
return wt2;
|
|
}
|
|
|
|
uint32_t helper_float_ceil_w_s(CPUMIPSState *env, uint32_t fst0)
|
|
{
|
|
uint32_t wt2;
|
|
|
|
set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
|
|
wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
|
|
restore_rounding_mode(env);
|
|
if (get_float_exception_flags(&env->active_fpu.fp_status)
|
|
& (float_flag_invalid | float_flag_overflow)) {
|
|
wt2 = FP_TO_INT32_OVERFLOW;
|
|
}
|
|
update_fcr31(env, GETPC());
|
|
return wt2;
|
|
}
|
|
|
|
uint64_t helper_float_floor_l_d(CPUMIPSState *env, uint64_t fdt0)
|
|
{
|
|
uint64_t dt2;
|
|
|
|
set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
|
|
dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
|
|
restore_rounding_mode(env);
|
|
if (get_float_exception_flags(&env->active_fpu.fp_status)
|
|
& (float_flag_invalid | float_flag_overflow)) {
|
|
dt2 = FP_TO_INT64_OVERFLOW;
|
|
}
|
|
update_fcr31(env, GETPC());
|
|
return dt2;
|
|
}
|
|
|
|
uint64_t helper_float_floor_l_s(CPUMIPSState *env, uint32_t fst0)
|
|
{
|
|
uint64_t dt2;
|
|
|
|
set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
|
|
dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
|
|
restore_rounding_mode(env);
|
|
if (get_float_exception_flags(&env->active_fpu.fp_status)
|
|
& (float_flag_invalid | float_flag_overflow)) {
|
|
dt2 = FP_TO_INT64_OVERFLOW;
|
|
}
|
|
update_fcr31(env, GETPC());
|
|
return dt2;
|
|
}
|
|
|
|
uint32_t helper_float_floor_w_d(CPUMIPSState *env, uint64_t fdt0)
|
|
{
|
|
uint32_t wt2;
|
|
|
|
set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
|
|
wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
|
|
restore_rounding_mode(env);
|
|
if (get_float_exception_flags(&env->active_fpu.fp_status)
|
|
& (float_flag_invalid | float_flag_overflow)) {
|
|
wt2 = FP_TO_INT32_OVERFLOW;
|
|
}
|
|
update_fcr31(env, GETPC());
|
|
return wt2;
|
|
}
|
|
|
|
uint32_t helper_float_floor_w_s(CPUMIPSState *env, uint32_t fst0)
|
|
{
|
|
uint32_t wt2;
|
|
|
|
set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
|
|
wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
|
|
restore_rounding_mode(env);
|
|
if (get_float_exception_flags(&env->active_fpu.fp_status)
|
|
& (float_flag_invalid | float_flag_overflow)) {
|
|
wt2 = FP_TO_INT32_OVERFLOW;
|
|
}
|
|
update_fcr31(env, GETPC());
|
|
return wt2;
|
|
}
|
|
|
|
uint64_t helper_float_cvt_2008_l_d(CPUMIPSState *env, uint64_t fdt0)
|
|
{
|
|
uint64_t dt2;
|
|
|
|
dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
|
|
if (get_float_exception_flags(&env->active_fpu.fp_status)
|
|
& float_flag_invalid) {
|
|
if (float64_is_any_nan(fdt0)) {
|
|
dt2 = 0;
|
|
}
|
|
}
|
|
update_fcr31(env, GETPC());
|
|
return dt2;
|
|
}
|
|
|
|
uint64_t helper_float_cvt_2008_l_s(CPUMIPSState *env, uint32_t fst0)
|
|
{
|
|
uint64_t dt2;
|
|
|
|
dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
|
|
if (get_float_exception_flags(&env->active_fpu.fp_status)
|
|
& float_flag_invalid) {
|
|
if (float32_is_any_nan(fst0)) {
|
|
dt2 = 0;
|
|
}
|
|
}
|
|
update_fcr31(env, GETPC());
|
|
return dt2;
|
|
}
|
|
|
|
uint32_t helper_float_cvt_2008_w_d(CPUMIPSState *env, uint64_t fdt0)
|
|
{
|
|
uint32_t wt2;
|
|
|
|
wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
|
|
if (get_float_exception_flags(&env->active_fpu.fp_status)
|
|
& float_flag_invalid) {
|
|
if (float64_is_any_nan(fdt0)) {
|
|
wt2 = 0;
|
|
}
|
|
}
|
|
update_fcr31(env, GETPC());
|
|
return wt2;
|
|
}
|
|
|
|
uint32_t helper_float_cvt_2008_w_s(CPUMIPSState *env, uint32_t fst0)
|
|
{
|
|
uint32_t wt2;
|
|
|
|
wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
|
|
if (get_float_exception_flags(&env->active_fpu.fp_status)
|
|
& float_flag_invalid) {
|
|
if (float32_is_any_nan(fst0)) {
|
|
wt2 = 0;
|
|
}
|
|
}
|
|
update_fcr31(env, GETPC());
|
|
return wt2;
|
|
}
|
|
|
|
uint64_t helper_float_round_2008_l_d(CPUMIPSState *env, uint64_t fdt0)
|
|
{
|
|
uint64_t dt2;
|
|
|
|
set_float_rounding_mode(float_round_nearest_even,
|
|
&env->active_fpu.fp_status);
|
|
dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
|
|
restore_rounding_mode(env);
|
|
if (get_float_exception_flags(&env->active_fpu.fp_status)
|
|
& float_flag_invalid) {
|
|
if (float64_is_any_nan(fdt0)) {
|
|
dt2 = 0;
|
|
}
|
|
}
|
|
update_fcr31(env, GETPC());
|
|
return dt2;
|
|
}
|
|
|
|
uint64_t helper_float_round_2008_l_s(CPUMIPSState *env, uint32_t fst0)
|
|
{
|
|
uint64_t dt2;
|
|
|
|
set_float_rounding_mode(float_round_nearest_even,
|
|
&env->active_fpu.fp_status);
|
|
dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
|
|
restore_rounding_mode(env);
|
|
if (get_float_exception_flags(&env->active_fpu.fp_status)
|
|
& float_flag_invalid) {
|
|
if (float32_is_any_nan(fst0)) {
|
|
dt2 = 0;
|
|
}
|
|
}
|
|
update_fcr31(env, GETPC());
|
|
return dt2;
|
|
}
|
|
|
|
uint32_t helper_float_round_2008_w_d(CPUMIPSState *env, uint64_t fdt0)
|
|
{
|
|
uint32_t wt2;
|
|
|
|
set_float_rounding_mode(float_round_nearest_even,
|
|
&env->active_fpu.fp_status);
|
|
wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
|
|
restore_rounding_mode(env);
|
|
if (get_float_exception_flags(&env->active_fpu.fp_status)
|
|
& float_flag_invalid) {
|
|
if (float64_is_any_nan(fdt0)) {
|
|
wt2 = 0;
|
|
}
|
|
}
|
|
update_fcr31(env, GETPC());
|
|
return wt2;
|
|
}
|
|
|
|
uint32_t helper_float_round_2008_w_s(CPUMIPSState *env, uint32_t fst0)
|
|
{
|
|
uint32_t wt2;
|
|
|
|
set_float_rounding_mode(float_round_nearest_even,
|
|
&env->active_fpu.fp_status);
|
|
wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
|
|
restore_rounding_mode(env);
|
|
if (get_float_exception_flags(&env->active_fpu.fp_status)
|
|
& float_flag_invalid) {
|
|
if (float32_is_any_nan(fst0)) {
|
|
wt2 = 0;
|
|
}
|
|
}
|
|
update_fcr31(env, GETPC());
|
|
return wt2;
|
|
}
|
|
|
|
uint64_t helper_float_trunc_2008_l_d(CPUMIPSState *env, uint64_t fdt0)
|
|
{
|
|
uint64_t dt2;
|
|
|
|
dt2 = float64_to_int64_round_to_zero(fdt0, &env->active_fpu.fp_status);
|
|
if (get_float_exception_flags(&env->active_fpu.fp_status)
|
|
& float_flag_invalid) {
|
|
if (float64_is_any_nan(fdt0)) {
|
|
dt2 = 0;
|
|
}
|
|
}
|
|
update_fcr31(env, GETPC());
|
|
return dt2;
|
|
}
|
|
|
|
uint64_t helper_float_trunc_2008_l_s(CPUMIPSState *env, uint32_t fst0)
|
|
{
|
|
uint64_t dt2;
|
|
|
|
dt2 = float32_to_int64_round_to_zero(fst0, &env->active_fpu.fp_status);
|
|
if (get_float_exception_flags(&env->active_fpu.fp_status)
|
|
& float_flag_invalid) {
|
|
if (float32_is_any_nan(fst0)) {
|
|
dt2 = 0;
|
|
}
|
|
}
|
|
update_fcr31(env, GETPC());
|
|
return dt2;
|
|
}
|
|
|
|
uint32_t helper_float_trunc_2008_w_d(CPUMIPSState *env, uint64_t fdt0)
|
|
{
|
|
uint32_t wt2;
|
|
|
|
wt2 = float64_to_int32_round_to_zero(fdt0, &env->active_fpu.fp_status);
|
|
if (get_float_exception_flags(&env->active_fpu.fp_status)
|
|
& float_flag_invalid) {
|
|
if (float64_is_any_nan(fdt0)) {
|
|
wt2 = 0;
|
|
}
|
|
}
|
|
update_fcr31(env, GETPC());
|
|
return wt2;
|
|
}
|
|
|
|
uint32_t helper_float_trunc_2008_w_s(CPUMIPSState *env, uint32_t fst0)
|
|
{
|
|
uint32_t wt2;
|
|
|
|
wt2 = float32_to_int32_round_to_zero(fst0, &env->active_fpu.fp_status);
|
|
if (get_float_exception_flags(&env->active_fpu.fp_status)
|
|
& float_flag_invalid) {
|
|
if (float32_is_any_nan(fst0)) {
|
|
wt2 = 0;
|
|
}
|
|
}
|
|
update_fcr31(env, GETPC());
|
|
return wt2;
|
|
}
|
|
|
|
uint64_t helper_float_ceil_2008_l_d(CPUMIPSState *env, uint64_t fdt0)
|
|
{
|
|
uint64_t dt2;
|
|
|
|
set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
|
|
dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
|
|
restore_rounding_mode(env);
|
|
if (get_float_exception_flags(&env->active_fpu.fp_status)
|
|
& float_flag_invalid) {
|
|
if (float64_is_any_nan(fdt0)) {
|
|
dt2 = 0;
|
|
}
|
|
}
|
|
update_fcr31(env, GETPC());
|
|
return dt2;
|
|
}
|
|
|
|
uint64_t helper_float_ceil_2008_l_s(CPUMIPSState *env, uint32_t fst0)
|
|
{
|
|
uint64_t dt2;
|
|
|
|
set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
|
|
dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
|
|
restore_rounding_mode(env);
|
|
if (get_float_exception_flags(&env->active_fpu.fp_status)
|
|
& float_flag_invalid) {
|
|
if (float32_is_any_nan(fst0)) {
|
|
dt2 = 0;
|
|
}
|
|
}
|
|
update_fcr31(env, GETPC());
|
|
return dt2;
|
|
}
|
|
|
|
uint32_t helper_float_ceil_2008_w_d(CPUMIPSState *env, uint64_t fdt0)
|
|
{
|
|
uint32_t wt2;
|
|
|
|
set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
|
|
wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
|
|
restore_rounding_mode(env);
|
|
if (get_float_exception_flags(&env->active_fpu.fp_status)
|
|
& float_flag_invalid) {
|
|
if (float64_is_any_nan(fdt0)) {
|
|
wt2 = 0;
|
|
}
|
|
}
|
|
update_fcr31(env, GETPC());
|
|
return wt2;
|
|
}
|
|
|
|
uint32_t helper_float_ceil_2008_w_s(CPUMIPSState *env, uint32_t fst0)
|
|
{
|
|
uint32_t wt2;
|
|
|
|
set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
|
|
wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
|
|
restore_rounding_mode(env);
|
|
if (get_float_exception_flags(&env->active_fpu.fp_status)
|
|
& float_flag_invalid) {
|
|
if (float32_is_any_nan(fst0)) {
|
|
wt2 = 0;
|
|
}
|
|
}
|
|
update_fcr31(env, GETPC());
|
|
return wt2;
|
|
}
|
|
|
|
uint64_t helper_float_floor_2008_l_d(CPUMIPSState *env, uint64_t fdt0)
|
|
{
|
|
uint64_t dt2;
|
|
|
|
set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
|
|
dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
|
|
restore_rounding_mode(env);
|
|
if (get_float_exception_flags(&env->active_fpu.fp_status)
|
|
& float_flag_invalid) {
|
|
if (float64_is_any_nan(fdt0)) {
|
|
dt2 = 0;
|
|
}
|
|
}
|
|
update_fcr31(env, GETPC());
|
|
return dt2;
|
|
}
|
|
|
|
uint64_t helper_float_floor_2008_l_s(CPUMIPSState *env, uint32_t fst0)
|
|
{
|
|
uint64_t dt2;
|
|
|
|
set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
|
|
dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
|
|
restore_rounding_mode(env);
|
|
if (get_float_exception_flags(&env->active_fpu.fp_status)
|
|
& float_flag_invalid) {
|
|
if (float32_is_any_nan(fst0)) {
|
|
dt2 = 0;
|
|
}
|
|
}
|
|
update_fcr31(env, GETPC());
|
|
return dt2;
|
|
}
|
|
|
|
uint32_t helper_float_floor_2008_w_d(CPUMIPSState *env, uint64_t fdt0)
|
|
{
|
|
uint32_t wt2;
|
|
|
|
set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
|
|
wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
|
|
restore_rounding_mode(env);
|
|
if (get_float_exception_flags(&env->active_fpu.fp_status)
|
|
& float_flag_invalid) {
|
|
if (float64_is_any_nan(fdt0)) {
|
|
wt2 = 0;
|
|
}
|
|
}
|
|
update_fcr31(env, GETPC());
|
|
return wt2;
|
|
}
|
|
|
|
uint32_t helper_float_floor_2008_w_s(CPUMIPSState *env, uint32_t fst0)
|
|
{
|
|
uint32_t wt2;
|
|
|
|
set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
|
|
wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
|
|
restore_rounding_mode(env);
|
|
if (get_float_exception_flags(&env->active_fpu.fp_status)
|
|
& float_flag_invalid) {
|
|
if (float32_is_any_nan(fst0)) {
|
|
wt2 = 0;
|
|
}
|
|
}
|
|
update_fcr31(env, GETPC());
|
|
return wt2;
|
|
}
|
|
|
|
/* unary operations, not modifying fp status */
|
|
#define FLOAT_UNOP(name) \
|
|
uint64_t helper_float_ ## name ## _d(uint64_t fdt0) \
|
|
{ \
|
|
return float64_ ## name(fdt0); \
|
|
} \
|
|
uint32_t helper_float_ ## name ## _s(uint32_t fst0) \
|
|
{ \
|
|
return float32_ ## name(fst0); \
|
|
} \
|
|
uint64_t helper_float_ ## name ## _ps(uint64_t fdt0) \
|
|
{ \
|
|
uint32_t wt0; \
|
|
uint32_t wth0; \
|
|
\
|
|
wt0 = float32_ ## name(fdt0 & 0XFFFFFFFF); \
|
|
wth0 = float32_ ## name(fdt0 >> 32); \
|
|
return ((uint64_t)wth0 << 32) | wt0; \
|
|
}
|
|
FLOAT_UNOP(abs)
|
|
FLOAT_UNOP(chs)
|
|
#undef FLOAT_UNOP
|
|
|
|
/* MIPS specific unary operations */
|
|
uint64_t helper_float_recip_d(CPUMIPSState *env, uint64_t fdt0)
|
|
{
|
|
uint64_t fdt2;
|
|
|
|
fdt2 = float64_div(float64_one, fdt0, &env->active_fpu.fp_status);
|
|
update_fcr31(env, GETPC());
|
|
return fdt2;
|
|
}
|
|
|
|
uint32_t helper_float_recip_s(CPUMIPSState *env, uint32_t fst0)
|
|
{
|
|
uint32_t fst2;
|
|
|
|
fst2 = float32_div(float32_one, fst0, &env->active_fpu.fp_status);
|
|
update_fcr31(env, GETPC());
|
|
return fst2;
|
|
}
|
|
|
|
uint64_t helper_float_rsqrt_d(CPUMIPSState *env, uint64_t fdt0)
|
|
{
|
|
uint64_t fdt2;
|
|
|
|
fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
|
|
fdt2 = float64_div(float64_one, fdt2, &env->active_fpu.fp_status);
|
|
update_fcr31(env, GETPC());
|
|
return fdt2;
|
|
}
|
|
|
|
uint32_t helper_float_rsqrt_s(CPUMIPSState *env, uint32_t fst0)
|
|
{
|
|
uint32_t fst2;
|
|
|
|
fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
|
|
fst2 = float32_div(float32_one, fst2, &env->active_fpu.fp_status);
|
|
update_fcr31(env, GETPC());
|
|
return fst2;
|
|
}
|
|
|
|
uint64_t helper_float_recip1_d(CPUMIPSState *env, uint64_t fdt0)
|
|
{
|
|
uint64_t fdt2;
|
|
|
|
fdt2 = float64_div(float64_one, fdt0, &env->active_fpu.fp_status);
|
|
update_fcr31(env, GETPC());
|
|
return fdt2;
|
|
}
|
|
|
|
uint32_t helper_float_recip1_s(CPUMIPSState *env, uint32_t fst0)
|
|
{
|
|
uint32_t fst2;
|
|
|
|
fst2 = float32_div(float32_one, fst0, &env->active_fpu.fp_status);
|
|
update_fcr31(env, GETPC());
|
|
return fst2;
|
|
}
|
|
|
|
uint64_t helper_float_recip1_ps(CPUMIPSState *env, uint64_t fdt0)
|
|
{
|
|
uint32_t fst2;
|
|
uint32_t fsth2;
|
|
|
|
fst2 = float32_div(float32_one, fdt0 & 0XFFFFFFFF,
|
|
&env->active_fpu.fp_status);
|
|
fsth2 = float32_div(float32_one, fdt0 >> 32, &env->active_fpu.fp_status);
|
|
update_fcr31(env, GETPC());
|
|
return ((uint64_t)fsth2 << 32) | fst2;
|
|
}
|
|
|
|
uint64_t helper_float_rsqrt1_d(CPUMIPSState *env, uint64_t fdt0)
|
|
{
|
|
uint64_t fdt2;
|
|
|
|
fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
|
|
fdt2 = float64_div(float64_one, fdt2, &env->active_fpu.fp_status);
|
|
update_fcr31(env, GETPC());
|
|
return fdt2;
|
|
}
|
|
|
|
uint32_t helper_float_rsqrt1_s(CPUMIPSState *env, uint32_t fst0)
|
|
{
|
|
uint32_t fst2;
|
|
|
|
fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
|
|
fst2 = float32_div(float32_one, fst2, &env->active_fpu.fp_status);
|
|
update_fcr31(env, GETPC());
|
|
return fst2;
|
|
}
|
|
|
|
uint64_t helper_float_rsqrt1_ps(CPUMIPSState *env, uint64_t fdt0)
|
|
{
|
|
uint32_t fst2;
|
|
uint32_t fsth2;
|
|
|
|
fst2 = float32_sqrt(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
|
|
fsth2 = float32_sqrt(fdt0 >> 32, &env->active_fpu.fp_status);
|
|
fst2 = float32_div(float32_one, fst2, &env->active_fpu.fp_status);
|
|
fsth2 = float32_div(float32_one, fsth2, &env->active_fpu.fp_status);
|
|
update_fcr31(env, GETPC());
|
|
return ((uint64_t)fsth2 << 32) | fst2;
|
|
}
|
|
|
|
#define FLOAT_RINT(name, bits) \
|
|
uint ## bits ## _t helper_float_ ## name(CPUMIPSState *env, \
|
|
uint ## bits ## _t fs) \
|
|
{ \
|
|
uint ## bits ## _t fdret; \
|
|
\
|
|
fdret = float ## bits ## _round_to_int(fs, &env->active_fpu.fp_status); \
|
|
update_fcr31(env, GETPC()); \
|
|
return fdret; \
|
|
}
|
|
|
|
FLOAT_RINT(rint_s, 32)
|
|
FLOAT_RINT(rint_d, 64)
|
|
#undef FLOAT_RINT
|
|
|
|
#define FLOAT_CLASS_SIGNALING_NAN 0x001
|
|
#define FLOAT_CLASS_QUIET_NAN 0x002
|
|
#define FLOAT_CLASS_NEGATIVE_INFINITY 0x004
|
|
#define FLOAT_CLASS_NEGATIVE_NORMAL 0x008
|
|
#define FLOAT_CLASS_NEGATIVE_SUBNORMAL 0x010
|
|
#define FLOAT_CLASS_NEGATIVE_ZERO 0x020
|
|
#define FLOAT_CLASS_POSITIVE_INFINITY 0x040
|
|
#define FLOAT_CLASS_POSITIVE_NORMAL 0x080
|
|
#define FLOAT_CLASS_POSITIVE_SUBNORMAL 0x100
|
|
#define FLOAT_CLASS_POSITIVE_ZERO 0x200
|
|
|
|
#define FLOAT_CLASS(name, bits) \
|
|
uint ## bits ## _t float_ ## name(uint ## bits ## _t arg, \
|
|
float_status *status) \
|
|
{ \
|
|
if (float ## bits ## _is_signaling_nan(arg, status)) { \
|
|
return FLOAT_CLASS_SIGNALING_NAN; \
|
|
} else if (float ## bits ## _is_quiet_nan(arg, status)) { \
|
|
return FLOAT_CLASS_QUIET_NAN; \
|
|
} else if (float ## bits ## _is_neg(arg)) { \
|
|
if (float ## bits ## _is_infinity(arg)) { \
|
|
return FLOAT_CLASS_NEGATIVE_INFINITY; \
|
|
} else if (float ## bits ## _is_zero(arg)) { \
|
|
return FLOAT_CLASS_NEGATIVE_ZERO; \
|
|
} else if (float ## bits ## _is_zero_or_denormal(arg)) { \
|
|
return FLOAT_CLASS_NEGATIVE_SUBNORMAL; \
|
|
} else { \
|
|
return FLOAT_CLASS_NEGATIVE_NORMAL; \
|
|
} \
|
|
} else { \
|
|
if (float ## bits ## _is_infinity(arg)) { \
|
|
return FLOAT_CLASS_POSITIVE_INFINITY; \
|
|
} else if (float ## bits ## _is_zero(arg)) { \
|
|
return FLOAT_CLASS_POSITIVE_ZERO; \
|
|
} else if (float ## bits ## _is_zero_or_denormal(arg)) { \
|
|
return FLOAT_CLASS_POSITIVE_SUBNORMAL; \
|
|
} else { \
|
|
return FLOAT_CLASS_POSITIVE_NORMAL; \
|
|
} \
|
|
} \
|
|
} \
|
|
\
|
|
uint ## bits ## _t helper_float_ ## name(CPUMIPSState *env, \
|
|
uint ## bits ## _t arg) \
|
|
{ \
|
|
return float_ ## name(arg, &env->active_fpu.fp_status); \
|
|
}
|
|
|
|
FLOAT_CLASS(class_s, 32)
|
|
FLOAT_CLASS(class_d, 64)
|
|
#undef FLOAT_CLASS
|
|
|
|
/* binary operations */
|
|
#define FLOAT_BINOP(name) \
|
|
uint64_t helper_float_ ## name ## _d(CPUMIPSState *env, \
|
|
uint64_t fdt0, uint64_t fdt1) \
|
|
{ \
|
|
uint64_t dt2; \
|
|
\
|
|
dt2 = float64_ ## name(fdt0, fdt1, &env->active_fpu.fp_status);\
|
|
update_fcr31(env, GETPC()); \
|
|
return dt2; \
|
|
} \
|
|
\
|
|
uint32_t helper_float_ ## name ## _s(CPUMIPSState *env, \
|
|
uint32_t fst0, uint32_t fst1) \
|
|
{ \
|
|
uint32_t wt2; \
|
|
\
|
|
wt2 = float32_ ## name(fst0, fst1, &env->active_fpu.fp_status);\
|
|
update_fcr31(env, GETPC()); \
|
|
return wt2; \
|
|
} \
|
|
\
|
|
uint64_t helper_float_ ## name ## _ps(CPUMIPSState *env, \
|
|
uint64_t fdt0, \
|
|
uint64_t fdt1) \
|
|
{ \
|
|
uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
|
|
uint32_t fsth0 = fdt0 >> 32; \
|
|
uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
|
|
uint32_t fsth1 = fdt1 >> 32; \
|
|
uint32_t wt2; \
|
|
uint32_t wth2; \
|
|
\
|
|
wt2 = float32_ ## name(fst0, fst1, &env->active_fpu.fp_status); \
|
|
wth2 = float32_ ## name(fsth0, fsth1, &env->active_fpu.fp_status); \
|
|
update_fcr31(env, GETPC()); \
|
|
return ((uint64_t)wth2 << 32) | wt2; \
|
|
}
|
|
|
|
FLOAT_BINOP(add)
|
|
FLOAT_BINOP(sub)
|
|
FLOAT_BINOP(mul)
|
|
FLOAT_BINOP(div)
|
|
#undef FLOAT_BINOP
|
|
|
|
/* MIPS specific binary operations */
|
|
uint64_t helper_float_recip2_d(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
|
|
{
|
|
fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
|
|
fdt2 = float64_chs(float64_sub(fdt2, float64_one,
|
|
&env->active_fpu.fp_status));
|
|
update_fcr31(env, GETPC());
|
|
return fdt2;
|
|
}
|
|
|
|
uint32_t helper_float_recip2_s(CPUMIPSState *env, uint32_t fst0, uint32_t fst2)
|
|
{
|
|
fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
|
|
fst2 = float32_chs(float32_sub(fst2, float32_one,
|
|
&env->active_fpu.fp_status));
|
|
update_fcr31(env, GETPC());
|
|
return fst2;
|
|
}
|
|
|
|
uint64_t helper_float_recip2_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
|
|
{
|
|
uint32_t fst0 = fdt0 & 0XFFFFFFFF;
|
|
uint32_t fsth0 = fdt0 >> 32;
|
|
uint32_t fst2 = fdt2 & 0XFFFFFFFF;
|
|
uint32_t fsth2 = fdt2 >> 32;
|
|
|
|
fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
|
|
fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
|
|
fst2 = float32_chs(float32_sub(fst2, float32_one,
|
|
&env->active_fpu.fp_status));
|
|
fsth2 = float32_chs(float32_sub(fsth2, float32_one,
|
|
&env->active_fpu.fp_status));
|
|
update_fcr31(env, GETPC());
|
|
return ((uint64_t)fsth2 << 32) | fst2;
|
|
}
|
|
|
|
uint64_t helper_float_rsqrt2_d(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
|
|
{
|
|
fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
|
|
fdt2 = float64_sub(fdt2, float64_one, &env->active_fpu.fp_status);
|
|
fdt2 = float64_chs(float64_div(fdt2, FLOAT_TWO64,
|
|
&env->active_fpu.fp_status));
|
|
update_fcr31(env, GETPC());
|
|
return fdt2;
|
|
}
|
|
|
|
uint32_t helper_float_rsqrt2_s(CPUMIPSState *env, uint32_t fst0, uint32_t fst2)
|
|
{
|
|
fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
|
|
fst2 = float32_sub(fst2, float32_one, &env->active_fpu.fp_status);
|
|
fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32,
|
|
&env->active_fpu.fp_status));
|
|
update_fcr31(env, GETPC());
|
|
return fst2;
|
|
}
|
|
|
|
uint64_t helper_float_rsqrt2_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
|
|
{
|
|
uint32_t fst0 = fdt0 & 0XFFFFFFFF;
|
|
uint32_t fsth0 = fdt0 >> 32;
|
|
uint32_t fst2 = fdt2 & 0XFFFFFFFF;
|
|
uint32_t fsth2 = fdt2 >> 32;
|
|
|
|
fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
|
|
fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
|
|
fst2 = float32_sub(fst2, float32_one, &env->active_fpu.fp_status);
|
|
fsth2 = float32_sub(fsth2, float32_one, &env->active_fpu.fp_status);
|
|
fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32,
|
|
&env->active_fpu.fp_status));
|
|
fsth2 = float32_chs(float32_div(fsth2, FLOAT_TWO32,
|
|
&env->active_fpu.fp_status));
|
|
update_fcr31(env, GETPC());
|
|
return ((uint64_t)fsth2 << 32) | fst2;
|
|
}
|
|
|
|
uint64_t helper_float_addr_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt1)
|
|
{
|
|
uint32_t fst0 = fdt0 & 0XFFFFFFFF;
|
|
uint32_t fsth0 = fdt0 >> 32;
|
|
uint32_t fst1 = fdt1 & 0XFFFFFFFF;
|
|
uint32_t fsth1 = fdt1 >> 32;
|
|
uint32_t fst2;
|
|
uint32_t fsth2;
|
|
|
|
fst2 = float32_add(fst0, fsth0, &env->active_fpu.fp_status);
|
|
fsth2 = float32_add(fst1, fsth1, &env->active_fpu.fp_status);
|
|
update_fcr31(env, GETPC());
|
|
return ((uint64_t)fsth2 << 32) | fst2;
|
|
}
|
|
|
|
uint64_t helper_float_mulr_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt1)
|
|
{
|
|
uint32_t fst0 = fdt0 & 0XFFFFFFFF;
|
|
uint32_t fsth0 = fdt0 >> 32;
|
|
uint32_t fst1 = fdt1 & 0XFFFFFFFF;
|
|
uint32_t fsth1 = fdt1 >> 32;
|
|
uint32_t fst2;
|
|
uint32_t fsth2;
|
|
|
|
fst2 = float32_mul(fst0, fsth0, &env->active_fpu.fp_status);
|
|
fsth2 = float32_mul(fst1, fsth1, &env->active_fpu.fp_status);
|
|
update_fcr31(env, GETPC());
|
|
return ((uint64_t)fsth2 << 32) | fst2;
|
|
}
|
|
|
|
#define FLOAT_MINMAX(name, bits, minmaxfunc) \
|
|
uint ## bits ## _t helper_float_ ## name(CPUMIPSState *env, \
|
|
uint ## bits ## _t fs, \
|
|
uint ## bits ## _t ft) \
|
|
{ \
|
|
uint ## bits ## _t fdret; \
|
|
\
|
|
fdret = float ## bits ## _ ## minmaxfunc(fs, ft, \
|
|
&env->active_fpu.fp_status); \
|
|
update_fcr31(env, GETPC()); \
|
|
return fdret; \
|
|
}
|
|
|
|
FLOAT_MINMAX(max_s, 32, maxnum)
|
|
FLOAT_MINMAX(max_d, 64, maxnum)
|
|
FLOAT_MINMAX(maxa_s, 32, maxnummag)
|
|
FLOAT_MINMAX(maxa_d, 64, maxnummag)
|
|
|
|
FLOAT_MINMAX(min_s, 32, minnum)
|
|
FLOAT_MINMAX(min_d, 64, minnum)
|
|
FLOAT_MINMAX(mina_s, 32, minnummag)
|
|
FLOAT_MINMAX(mina_d, 64, minnummag)
|
|
#undef FLOAT_MINMAX
|
|
|
|
/* ternary operations */
|
|
#define UNFUSED_FMA(prefix, a, b, c, flags) \
|
|
{ \
|
|
a = prefix##_mul(a, b, &env->active_fpu.fp_status); \
|
|
if ((flags) & float_muladd_negate_c) { \
|
|
a = prefix##_sub(a, c, &env->active_fpu.fp_status); \
|
|
} else { \
|
|
a = prefix##_add(a, c, &env->active_fpu.fp_status); \
|
|
} \
|
|
if ((flags) & float_muladd_negate_result) { \
|
|
a = prefix##_chs(a); \
|
|
} \
|
|
}
|
|
|
|
/* FMA based operations */
|
|
#define FLOAT_FMA(name, type) \
|
|
uint64_t helper_float_ ## name ## _d(CPUMIPSState *env, \
|
|
uint64_t fdt0, uint64_t fdt1, \
|
|
uint64_t fdt2) \
|
|
{ \
|
|
UNFUSED_FMA(float64, fdt0, fdt1, fdt2, type); \
|
|
update_fcr31(env, GETPC()); \
|
|
return fdt0; \
|
|
} \
|
|
\
|
|
uint32_t helper_float_ ## name ## _s(CPUMIPSState *env, \
|
|
uint32_t fst0, uint32_t fst1, \
|
|
uint32_t fst2) \
|
|
{ \
|
|
UNFUSED_FMA(float32, fst0, fst1, fst2, type); \
|
|
update_fcr31(env, GETPC()); \
|
|
return fst0; \
|
|
} \
|
|
\
|
|
uint64_t helper_float_ ## name ## _ps(CPUMIPSState *env, \
|
|
uint64_t fdt0, uint64_t fdt1, \
|
|
uint64_t fdt2) \
|
|
{ \
|
|
uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
|
|
uint32_t fsth0 = fdt0 >> 32; \
|
|
uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
|
|
uint32_t fsth1 = fdt1 >> 32; \
|
|
uint32_t fst2 = fdt2 & 0XFFFFFFFF; \
|
|
uint32_t fsth2 = fdt2 >> 32; \
|
|
\
|
|
UNFUSED_FMA(float32, fst0, fst1, fst2, type); \
|
|
UNFUSED_FMA(float32, fsth0, fsth1, fsth2, type); \
|
|
update_fcr31(env, GETPC()); \
|
|
return ((uint64_t)fsth0 << 32) | fst0; \
|
|
}
|
|
FLOAT_FMA(madd, 0)
|
|
FLOAT_FMA(msub, float_muladd_negate_c)
|
|
FLOAT_FMA(nmadd, float_muladd_negate_result)
|
|
FLOAT_FMA(nmsub, float_muladd_negate_result | float_muladd_negate_c)
|
|
#undef FLOAT_FMA
|
|
|
|
#define FLOAT_FMADDSUB(name, bits, muladd_arg) \
|
|
uint ## bits ## _t helper_float_ ## name(CPUMIPSState *env, \
|
|
uint ## bits ## _t fs, \
|
|
uint ## bits ## _t ft, \
|
|
uint ## bits ## _t fd) \
|
|
{ \
|
|
uint ## bits ## _t fdret; \
|
|
\
|
|
fdret = float ## bits ## _muladd(fs, ft, fd, muladd_arg, \
|
|
&env->active_fpu.fp_status); \
|
|
update_fcr31(env, GETPC()); \
|
|
return fdret; \
|
|
}
|
|
|
|
FLOAT_FMADDSUB(maddf_s, 32, 0)
|
|
FLOAT_FMADDSUB(maddf_d, 64, 0)
|
|
FLOAT_FMADDSUB(msubf_s, 32, float_muladd_negate_product)
|
|
FLOAT_FMADDSUB(msubf_d, 64, float_muladd_negate_product)
|
|
#undef FLOAT_FMADDSUB
|
|
|
|
/* compare operations */
|
|
#define FOP_COND_D(op, cond) \
|
|
void helper_cmp_d_ ## op(CPUMIPSState *env, uint64_t fdt0, \
|
|
uint64_t fdt1, int cc) \
|
|
{ \
|
|
int c; \
|
|
c = cond; \
|
|
update_fcr31(env, GETPC()); \
|
|
if (c) \
|
|
SET_FP_COND(cc, env->active_fpu); \
|
|
else \
|
|
CLEAR_FP_COND(cc, env->active_fpu); \
|
|
} \
|
|
void helper_cmpabs_d_ ## op(CPUMIPSState *env, uint64_t fdt0, \
|
|
uint64_t fdt1, int cc) \
|
|
{ \
|
|
int c; \
|
|
fdt0 = float64_abs(fdt0); \
|
|
fdt1 = float64_abs(fdt1); \
|
|
c = cond; \
|
|
update_fcr31(env, GETPC()); \
|
|
if (c) \
|
|
SET_FP_COND(cc, env->active_fpu); \
|
|
else \
|
|
CLEAR_FP_COND(cc, env->active_fpu); \
|
|
}
|
|
|
|
/*
|
|
* NOTE: the comma operator will make "cond" to eval to false,
|
|
* but float64_unordered_quiet() is still called.
|
|
*/
|
|
FOP_COND_D(f, (float64_unordered_quiet(fdt1, fdt0,
|
|
&env->active_fpu.fp_status), 0))
|
|
FOP_COND_D(un, float64_unordered_quiet(fdt1, fdt0,
|
|
&env->active_fpu.fp_status))
|
|
FOP_COND_D(eq, float64_eq_quiet(fdt0, fdt1,
|
|
&env->active_fpu.fp_status))
|
|
FOP_COND_D(ueq, float64_unordered_quiet(fdt1, fdt0,
|
|
&env->active_fpu.fp_status)
|
|
|| float64_eq_quiet(fdt0, fdt1,
|
|
&env->active_fpu.fp_status))
|
|
FOP_COND_D(olt, float64_lt_quiet(fdt0, fdt1,
|
|
&env->active_fpu.fp_status))
|
|
FOP_COND_D(ult, float64_unordered_quiet(fdt1, fdt0,
|
|
&env->active_fpu.fp_status)
|
|
|| float64_lt_quiet(fdt0, fdt1,
|
|
&env->active_fpu.fp_status))
|
|
FOP_COND_D(ole, float64_le_quiet(fdt0, fdt1,
|
|
&env->active_fpu.fp_status))
|
|
FOP_COND_D(ule, float64_unordered_quiet(fdt1, fdt0,
|
|
&env->active_fpu.fp_status)
|
|
|| float64_le_quiet(fdt0, fdt1,
|
|
&env->active_fpu.fp_status))
|
|
/*
|
|
* NOTE: the comma operator will make "cond" to eval to false,
|
|
* but float64_unordered() is still called.
|
|
*/
|
|
FOP_COND_D(sf, (float64_unordered(fdt1, fdt0,
|
|
&env->active_fpu.fp_status), 0))
|
|
FOP_COND_D(ngle, float64_unordered(fdt1, fdt0,
|
|
&env->active_fpu.fp_status))
|
|
FOP_COND_D(seq, float64_eq(fdt0, fdt1,
|
|
&env->active_fpu.fp_status))
|
|
FOP_COND_D(ngl, float64_unordered(fdt1, fdt0,
|
|
&env->active_fpu.fp_status)
|
|
|| float64_eq(fdt0, fdt1,
|
|
&env->active_fpu.fp_status))
|
|
FOP_COND_D(lt, float64_lt(fdt0, fdt1,
|
|
&env->active_fpu.fp_status))
|
|
FOP_COND_D(nge, float64_unordered(fdt1, fdt0,
|
|
&env->active_fpu.fp_status)
|
|
|| float64_lt(fdt0, fdt1,
|
|
&env->active_fpu.fp_status))
|
|
FOP_COND_D(le, float64_le(fdt0, fdt1,
|
|
&env->active_fpu.fp_status))
|
|
FOP_COND_D(ngt, float64_unordered(fdt1, fdt0,
|
|
&env->active_fpu.fp_status)
|
|
|| float64_le(fdt0, fdt1,
|
|
&env->active_fpu.fp_status))
|
|
|
|
#define FOP_COND_S(op, cond) \
|
|
void helper_cmp_s_ ## op(CPUMIPSState *env, uint32_t fst0, \
|
|
uint32_t fst1, int cc) \
|
|
{ \
|
|
int c; \
|
|
c = cond; \
|
|
update_fcr31(env, GETPC()); \
|
|
if (c) \
|
|
SET_FP_COND(cc, env->active_fpu); \
|
|
else \
|
|
CLEAR_FP_COND(cc, env->active_fpu); \
|
|
} \
|
|
void helper_cmpabs_s_ ## op(CPUMIPSState *env, uint32_t fst0, \
|
|
uint32_t fst1, int cc) \
|
|
{ \
|
|
int c; \
|
|
fst0 = float32_abs(fst0); \
|
|
fst1 = float32_abs(fst1); \
|
|
c = cond; \
|
|
update_fcr31(env, GETPC()); \
|
|
if (c) \
|
|
SET_FP_COND(cc, env->active_fpu); \
|
|
else \
|
|
CLEAR_FP_COND(cc, env->active_fpu); \
|
|
}
|
|
|
|
/*
|
|
* NOTE: the comma operator will make "cond" to eval to false,
|
|
* but float32_unordered_quiet() is still called.
|
|
*/
|
|
FOP_COND_S(f, (float32_unordered_quiet(fst1, fst0,
|
|
&env->active_fpu.fp_status), 0))
|
|
FOP_COND_S(un, float32_unordered_quiet(fst1, fst0,
|
|
&env->active_fpu.fp_status))
|
|
FOP_COND_S(eq, float32_eq_quiet(fst0, fst1,
|
|
&env->active_fpu.fp_status))
|
|
FOP_COND_S(ueq, float32_unordered_quiet(fst1, fst0,
|
|
&env->active_fpu.fp_status)
|
|
|| float32_eq_quiet(fst0, fst1,
|
|
&env->active_fpu.fp_status))
|
|
FOP_COND_S(olt, float32_lt_quiet(fst0, fst1,
|
|
&env->active_fpu.fp_status))
|
|
FOP_COND_S(ult, float32_unordered_quiet(fst1, fst0,
|
|
&env->active_fpu.fp_status)
|
|
|| float32_lt_quiet(fst0, fst1,
|
|
&env->active_fpu.fp_status))
|
|
FOP_COND_S(ole, float32_le_quiet(fst0, fst1,
|
|
&env->active_fpu.fp_status))
|
|
FOP_COND_S(ule, float32_unordered_quiet(fst1, fst0,
|
|
&env->active_fpu.fp_status)
|
|
|| float32_le_quiet(fst0, fst1,
|
|
&env->active_fpu.fp_status))
|
|
/*
|
|
* NOTE: the comma operator will make "cond" to eval to false,
|
|
* but float32_unordered() is still called.
|
|
*/
|
|
FOP_COND_S(sf, (float32_unordered(fst1, fst0,
|
|
&env->active_fpu.fp_status), 0))
|
|
FOP_COND_S(ngle, float32_unordered(fst1, fst0,
|
|
&env->active_fpu.fp_status))
|
|
FOP_COND_S(seq, float32_eq(fst0, fst1,
|
|
&env->active_fpu.fp_status))
|
|
FOP_COND_S(ngl, float32_unordered(fst1, fst0,
|
|
&env->active_fpu.fp_status)
|
|
|| float32_eq(fst0, fst1,
|
|
&env->active_fpu.fp_status))
|
|
FOP_COND_S(lt, float32_lt(fst0, fst1,
|
|
&env->active_fpu.fp_status))
|
|
FOP_COND_S(nge, float32_unordered(fst1, fst0,
|
|
&env->active_fpu.fp_status)
|
|
|| float32_lt(fst0, fst1,
|
|
&env->active_fpu.fp_status))
|
|
FOP_COND_S(le, float32_le(fst0, fst1,
|
|
&env->active_fpu.fp_status))
|
|
FOP_COND_S(ngt, float32_unordered(fst1, fst0,
|
|
&env->active_fpu.fp_status)
|
|
|| float32_le(fst0, fst1,
|
|
&env->active_fpu.fp_status))
|
|
|
|
#define FOP_COND_PS(op, condl, condh) \
|
|
void helper_cmp_ps_ ## op(CPUMIPSState *env, uint64_t fdt0, \
|
|
uint64_t fdt1, int cc) \
|
|
{ \
|
|
uint32_t fst0, fsth0, fst1, fsth1; \
|
|
int ch, cl; \
|
|
fst0 = fdt0 & 0XFFFFFFFF; \
|
|
fsth0 = fdt0 >> 32; \
|
|
fst1 = fdt1 & 0XFFFFFFFF; \
|
|
fsth1 = fdt1 >> 32; \
|
|
cl = condl; \
|
|
ch = condh; \
|
|
update_fcr31(env, GETPC()); \
|
|
if (cl) \
|
|
SET_FP_COND(cc, env->active_fpu); \
|
|
else \
|
|
CLEAR_FP_COND(cc, env->active_fpu); \
|
|
if (ch) \
|
|
SET_FP_COND(cc + 1, env->active_fpu); \
|
|
else \
|
|
CLEAR_FP_COND(cc + 1, env->active_fpu); \
|
|
} \
|
|
void helper_cmpabs_ps_ ## op(CPUMIPSState *env, uint64_t fdt0, \
|
|
uint64_t fdt1, int cc) \
|
|
{ \
|
|
uint32_t fst0, fsth0, fst1, fsth1; \
|
|
int ch, cl; \
|
|
fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \
|
|
fsth0 = float32_abs(fdt0 >> 32); \
|
|
fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \
|
|
fsth1 = float32_abs(fdt1 >> 32); \
|
|
cl = condl; \
|
|
ch = condh; \
|
|
update_fcr31(env, GETPC()); \
|
|
if (cl) \
|
|
SET_FP_COND(cc, env->active_fpu); \
|
|
else \
|
|
CLEAR_FP_COND(cc, env->active_fpu); \
|
|
if (ch) \
|
|
SET_FP_COND(cc + 1, env->active_fpu); \
|
|
else \
|
|
CLEAR_FP_COND(cc + 1, env->active_fpu); \
|
|
}
|
|
|
|
/*
|
|
* NOTE: the comma operator will make "cond" to eval to false,
|
|
* but float32_unordered_quiet() is still called.
|
|
*/
|
|
FOP_COND_PS(f, (float32_unordered_quiet(fst1, fst0,
|
|
&env->active_fpu.fp_status), 0),
|
|
(float32_unordered_quiet(fsth1, fsth0,
|
|
&env->active_fpu.fp_status), 0))
|
|
FOP_COND_PS(un, float32_unordered_quiet(fst1, fst0,
|
|
&env->active_fpu.fp_status),
|
|
float32_unordered_quiet(fsth1, fsth0,
|
|
&env->active_fpu.fp_status))
|
|
FOP_COND_PS(eq, float32_eq_quiet(fst0, fst1,
|
|
&env->active_fpu.fp_status),
|
|
float32_eq_quiet(fsth0, fsth1,
|
|
&env->active_fpu.fp_status))
|
|
FOP_COND_PS(ueq, float32_unordered_quiet(fst1, fst0,
|
|
&env->active_fpu.fp_status)
|
|
|| float32_eq_quiet(fst0, fst1,
|
|
&env->active_fpu.fp_status),
|
|
float32_unordered_quiet(fsth1, fsth0,
|
|
&env->active_fpu.fp_status)
|
|
|| float32_eq_quiet(fsth0, fsth1,
|
|
&env->active_fpu.fp_status))
|
|
FOP_COND_PS(olt, float32_lt_quiet(fst0, fst1,
|
|
&env->active_fpu.fp_status),
|
|
float32_lt_quiet(fsth0, fsth1,
|
|
&env->active_fpu.fp_status))
|
|
FOP_COND_PS(ult, float32_unordered_quiet(fst1, fst0,
|
|
&env->active_fpu.fp_status)
|
|
|| float32_lt_quiet(fst0, fst1,
|
|
&env->active_fpu.fp_status),
|
|
float32_unordered_quiet(fsth1, fsth0,
|
|
&env->active_fpu.fp_status)
|
|
|| float32_lt_quiet(fsth0, fsth1,
|
|
&env->active_fpu.fp_status))
|
|
FOP_COND_PS(ole, float32_le_quiet(fst0, fst1,
|
|
&env->active_fpu.fp_status),
|
|
float32_le_quiet(fsth0, fsth1,
|
|
&env->active_fpu.fp_status))
|
|
FOP_COND_PS(ule, float32_unordered_quiet(fst1, fst0,
|
|
&env->active_fpu.fp_status)
|
|
|| float32_le_quiet(fst0, fst1,
|
|
&env->active_fpu.fp_status),
|
|
float32_unordered_quiet(fsth1, fsth0,
|
|
&env->active_fpu.fp_status)
|
|
|| float32_le_quiet(fsth0, fsth1,
|
|
&env->active_fpu.fp_status))
|
|
/*
|
|
* NOTE: the comma operator will make "cond" to eval to false,
|
|
* but float32_unordered() is still called.
|
|
*/
|
|
FOP_COND_PS(sf, (float32_unordered(fst1, fst0,
|
|
&env->active_fpu.fp_status), 0),
|
|
(float32_unordered(fsth1, fsth0,
|
|
&env->active_fpu.fp_status), 0))
|
|
FOP_COND_PS(ngle, float32_unordered(fst1, fst0,
|
|
&env->active_fpu.fp_status),
|
|
float32_unordered(fsth1, fsth0,
|
|
&env->active_fpu.fp_status))
|
|
FOP_COND_PS(seq, float32_eq(fst0, fst1,
|
|
&env->active_fpu.fp_status),
|
|
float32_eq(fsth0, fsth1,
|
|
&env->active_fpu.fp_status))
|
|
FOP_COND_PS(ngl, float32_unordered(fst1, fst0,
|
|
&env->active_fpu.fp_status)
|
|
|| float32_eq(fst0, fst1,
|
|
&env->active_fpu.fp_status),
|
|
float32_unordered(fsth1, fsth0,
|
|
&env->active_fpu.fp_status)
|
|
|| float32_eq(fsth0, fsth1,
|
|
&env->active_fpu.fp_status))
|
|
FOP_COND_PS(lt, float32_lt(fst0, fst1,
|
|
&env->active_fpu.fp_status),
|
|
float32_lt(fsth0, fsth1,
|
|
&env->active_fpu.fp_status))
|
|
FOP_COND_PS(nge, float32_unordered(fst1, fst0,
|
|
&env->active_fpu.fp_status)
|
|
|| float32_lt(fst0, fst1,
|
|
&env->active_fpu.fp_status),
|
|
float32_unordered(fsth1, fsth0,
|
|
&env->active_fpu.fp_status)
|
|
|| float32_lt(fsth0, fsth1,
|
|
&env->active_fpu.fp_status))
|
|
FOP_COND_PS(le, float32_le(fst0, fst1,
|
|
&env->active_fpu.fp_status),
|
|
float32_le(fsth0, fsth1,
|
|
&env->active_fpu.fp_status))
|
|
FOP_COND_PS(ngt, float32_unordered(fst1, fst0,
|
|
&env->active_fpu.fp_status)
|
|
|| float32_le(fst0, fst1,
|
|
&env->active_fpu.fp_status),
|
|
float32_unordered(fsth1, fsth0,
|
|
&env->active_fpu.fp_status)
|
|
|| float32_le(fsth0, fsth1,
|
|
&env->active_fpu.fp_status))
|
|
|
|
/* R6 compare operations */
|
|
#define FOP_CONDN_D(op, cond) \
|
|
uint64_t helper_r6_cmp_d_ ## op(CPUMIPSState *env, uint64_t fdt0, \
|
|
uint64_t fdt1) \
|
|
{ \
|
|
uint64_t c; \
|
|
c = cond; \
|
|
update_fcr31(env, GETPC()); \
|
|
if (c) { \
|
|
return -1; \
|
|
} else { \
|
|
return 0; \
|
|
} \
|
|
}
|
|
|
|
/*
|
|
* NOTE: the comma operator will make "cond" to eval to false,
|
|
* but float64_unordered_quiet() is still called.
|
|
*/
|
|
FOP_CONDN_D(af, (float64_unordered_quiet(fdt1, fdt0,
|
|
&env->active_fpu.fp_status), 0))
|
|
FOP_CONDN_D(un, (float64_unordered_quiet(fdt1, fdt0,
|
|
&env->active_fpu.fp_status)))
|
|
FOP_CONDN_D(eq, (float64_eq_quiet(fdt0, fdt1,
|
|
&env->active_fpu.fp_status)))
|
|
FOP_CONDN_D(ueq, (float64_unordered_quiet(fdt1, fdt0,
|
|
&env->active_fpu.fp_status)
|
|
|| float64_eq_quiet(fdt0, fdt1,
|
|
&env->active_fpu.fp_status)))
|
|
FOP_CONDN_D(lt, (float64_lt_quiet(fdt0, fdt1,
|
|
&env->active_fpu.fp_status)))
|
|
FOP_CONDN_D(ult, (float64_unordered_quiet(fdt1, fdt0,
|
|
&env->active_fpu.fp_status)
|
|
|| float64_lt_quiet(fdt0, fdt1,
|
|
&env->active_fpu.fp_status)))
|
|
FOP_CONDN_D(le, (float64_le_quiet(fdt0, fdt1,
|
|
&env->active_fpu.fp_status)))
|
|
FOP_CONDN_D(ule, (float64_unordered_quiet(fdt1, fdt0,
|
|
&env->active_fpu.fp_status)
|
|
|| float64_le_quiet(fdt0, fdt1,
|
|
&env->active_fpu.fp_status)))
|
|
/*
|
|
* NOTE: the comma operator will make "cond" to eval to false,
|
|
* but float64_unordered() is still called.\
|
|
*/
|
|
FOP_CONDN_D(saf, (float64_unordered(fdt1, fdt0,
|
|
&env->active_fpu.fp_status), 0))
|
|
FOP_CONDN_D(sun, (float64_unordered(fdt1, fdt0,
|
|
&env->active_fpu.fp_status)))
|
|
FOP_CONDN_D(seq, (float64_eq(fdt0, fdt1,
|
|
&env->active_fpu.fp_status)))
|
|
FOP_CONDN_D(sueq, (float64_unordered(fdt1, fdt0,
|
|
&env->active_fpu.fp_status)
|
|
|| float64_eq(fdt0, fdt1,
|
|
&env->active_fpu.fp_status)))
|
|
FOP_CONDN_D(slt, (float64_lt(fdt0, fdt1,
|
|
&env->active_fpu.fp_status)))
|
|
FOP_CONDN_D(sult, (float64_unordered(fdt1, fdt0,
|
|
&env->active_fpu.fp_status)
|
|
|| float64_lt(fdt0, fdt1,
|
|
&env->active_fpu.fp_status)))
|
|
FOP_CONDN_D(sle, (float64_le(fdt0, fdt1,
|
|
&env->active_fpu.fp_status)))
|
|
FOP_CONDN_D(sule, (float64_unordered(fdt1, fdt0,
|
|
&env->active_fpu.fp_status)
|
|
|| float64_le(fdt0, fdt1,
|
|
&env->active_fpu.fp_status)))
|
|
FOP_CONDN_D(or, (float64_le_quiet(fdt1, fdt0,
|
|
&env->active_fpu.fp_status)
|
|
|| float64_le_quiet(fdt0, fdt1,
|
|
&env->active_fpu.fp_status)))
|
|
FOP_CONDN_D(une, (float64_unordered_quiet(fdt1, fdt0,
|
|
&env->active_fpu.fp_status)
|
|
|| float64_lt_quiet(fdt1, fdt0,
|
|
&env->active_fpu.fp_status)
|
|
|| float64_lt_quiet(fdt0, fdt1,
|
|
&env->active_fpu.fp_status)))
|
|
FOP_CONDN_D(ne, (float64_lt_quiet(fdt1, fdt0,
|
|
&env->active_fpu.fp_status)
|
|
|| float64_lt_quiet(fdt0, fdt1,
|
|
&env->active_fpu.fp_status)))
|
|
FOP_CONDN_D(sor, (float64_le(fdt1, fdt0,
|
|
&env->active_fpu.fp_status)
|
|
|| float64_le(fdt0, fdt1,
|
|
&env->active_fpu.fp_status)))
|
|
FOP_CONDN_D(sune, (float64_unordered(fdt1, fdt0,
|
|
&env->active_fpu.fp_status)
|
|
|| float64_lt(fdt1, fdt0,
|
|
&env->active_fpu.fp_status)
|
|
|| float64_lt(fdt0, fdt1,
|
|
&env->active_fpu.fp_status)))
|
|
FOP_CONDN_D(sne, (float64_lt(fdt1, fdt0,
|
|
&env->active_fpu.fp_status)
|
|
|| float64_lt(fdt0, fdt1,
|
|
&env->active_fpu.fp_status)))
|
|
|
|
#define FOP_CONDN_S(op, cond) \
|
|
uint32_t helper_r6_cmp_s_ ## op(CPUMIPSState *env, uint32_t fst0, \
|
|
uint32_t fst1) \
|
|
{ \
|
|
uint64_t c; \
|
|
c = cond; \
|
|
update_fcr31(env, GETPC()); \
|
|
if (c) { \
|
|
return -1; \
|
|
} else { \
|
|
return 0; \
|
|
} \
|
|
}
|
|
|
|
/*
|
|
* NOTE: the comma operator will make "cond" to eval to false,
|
|
* but float32_unordered_quiet() is still called.
|
|
*/
|
|
FOP_CONDN_S(af, (float32_unordered_quiet(fst1, fst0,
|
|
&env->active_fpu.fp_status), 0))
|
|
FOP_CONDN_S(un, (float32_unordered_quiet(fst1, fst0,
|
|
&env->active_fpu.fp_status)))
|
|
FOP_CONDN_S(eq, (float32_eq_quiet(fst0, fst1,
|
|
&env->active_fpu.fp_status)))
|
|
FOP_CONDN_S(ueq, (float32_unordered_quiet(fst1, fst0,
|
|
&env->active_fpu.fp_status)
|
|
|| float32_eq_quiet(fst0, fst1,
|
|
&env->active_fpu.fp_status)))
|
|
FOP_CONDN_S(lt, (float32_lt_quiet(fst0, fst1,
|
|
&env->active_fpu.fp_status)))
|
|
FOP_CONDN_S(ult, (float32_unordered_quiet(fst1, fst0,
|
|
&env->active_fpu.fp_status)
|
|
|| float32_lt_quiet(fst0, fst1,
|
|
&env->active_fpu.fp_status)))
|
|
FOP_CONDN_S(le, (float32_le_quiet(fst0, fst1,
|
|
&env->active_fpu.fp_status)))
|
|
FOP_CONDN_S(ule, (float32_unordered_quiet(fst1, fst0,
|
|
&env->active_fpu.fp_status)
|
|
|| float32_le_quiet(fst0, fst1,
|
|
&env->active_fpu.fp_status)))
|
|
/*
|
|
* NOTE: the comma operator will make "cond" to eval to false,
|
|
* but float32_unordered() is still called.
|
|
*/
|
|
FOP_CONDN_S(saf, (float32_unordered(fst1, fst0,
|
|
&env->active_fpu.fp_status), 0))
|
|
FOP_CONDN_S(sun, (float32_unordered(fst1, fst0,
|
|
&env->active_fpu.fp_status)))
|
|
FOP_CONDN_S(seq, (float32_eq(fst0, fst1,
|
|
&env->active_fpu.fp_status)))
|
|
FOP_CONDN_S(sueq, (float32_unordered(fst1, fst0,
|
|
&env->active_fpu.fp_status)
|
|
|| float32_eq(fst0, fst1,
|
|
&env->active_fpu.fp_status)))
|
|
FOP_CONDN_S(slt, (float32_lt(fst0, fst1,
|
|
&env->active_fpu.fp_status)))
|
|
FOP_CONDN_S(sult, (float32_unordered(fst1, fst0,
|
|
&env->active_fpu.fp_status)
|
|
|| float32_lt(fst0, fst1,
|
|
&env->active_fpu.fp_status)))
|
|
FOP_CONDN_S(sle, (float32_le(fst0, fst1,
|
|
&env->active_fpu.fp_status)))
|
|
FOP_CONDN_S(sule, (float32_unordered(fst1, fst0,
|
|
&env->active_fpu.fp_status)
|
|
|| float32_le(fst0, fst1,
|
|
&env->active_fpu.fp_status)))
|
|
FOP_CONDN_S(or, (float32_le_quiet(fst1, fst0,
|
|
&env->active_fpu.fp_status)
|
|
|| float32_le_quiet(fst0, fst1,
|
|
&env->active_fpu.fp_status)))
|
|
FOP_CONDN_S(une, (float32_unordered_quiet(fst1, fst0,
|
|
&env->active_fpu.fp_status)
|
|
|| float32_lt_quiet(fst1, fst0,
|
|
&env->active_fpu.fp_status)
|
|
|| float32_lt_quiet(fst0, fst1,
|
|
&env->active_fpu.fp_status)))
|
|
FOP_CONDN_S(ne, (float32_lt_quiet(fst1, fst0,
|
|
&env->active_fpu.fp_status)
|
|
|| float32_lt_quiet(fst0, fst1,
|
|
&env->active_fpu.fp_status)))
|
|
FOP_CONDN_S(sor, (float32_le(fst1, fst0,
|
|
&env->active_fpu.fp_status)
|
|
|| float32_le(fst0, fst1,
|
|
&env->active_fpu.fp_status)))
|
|
FOP_CONDN_S(sune, (float32_unordered(fst1, fst0,
|
|
&env->active_fpu.fp_status)
|
|
|| float32_lt(fst1, fst0,
|
|
&env->active_fpu.fp_status)
|
|
|| float32_lt(fst0, fst1,
|
|
&env->active_fpu.fp_status)))
|
|
FOP_CONDN_S(sne, (float32_lt(fst1, fst0,
|
|
&env->active_fpu.fp_status)
|
|
|| float32_lt(fst0, fst1,
|
|
&env->active_fpu.fp_status)))
|