7434951442
Section 13.7.15 Receive Length Error Count says: > Packets over 1522 bytes are oversized if LongPacketEnable is 0b > (RCTL.LPE). If LongPacketEnable (LPE) is 1b, then an incoming packet > is considered oversized if it exceeds 16384 bytes. > These lengths are based on bytes in the received packet from > <Destination Address> through <CRC>, inclusively. As QEMU processes packets without CRC, the number of bytes for CRC need to be subtracted. This change adds some size definitions to be used to derive the new size thresholds to eth.h. Signed-off-by: Akihiko Odaki <akihiko.odaki@daynix.com> Signed-off-by: Jason Wang <jasowang@redhat.com>
340 lines
10 KiB
C
340 lines
10 KiB
C
/*
|
|
* QEMU e1000(e) emulation - shared code
|
|
*
|
|
* Copyright (c) 2008 Qumranet
|
|
*
|
|
* Based on work done by:
|
|
* Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
|
|
* Copyright (c) 2007 Dan Aloni
|
|
* Copyright (c) 2004 Antony T Curtis
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qemu/units.h"
|
|
#include "hw/net/mii.h"
|
|
#include "hw/pci/pci_device.h"
|
|
#include "net/eth.h"
|
|
#include "net/net.h"
|
|
|
|
#include "e1000_common.h"
|
|
#include "e1000x_common.h"
|
|
|
|
#include "trace.h"
|
|
|
|
bool e1000x_rx_ready(PCIDevice *d, uint32_t *mac)
|
|
{
|
|
bool link_up = mac[STATUS] & E1000_STATUS_LU;
|
|
bool rx_enabled = mac[RCTL] & E1000_RCTL_EN;
|
|
bool pci_master = d->config[PCI_COMMAND] & PCI_COMMAND_MASTER;
|
|
|
|
if (!link_up || !rx_enabled || !pci_master) {
|
|
trace_e1000x_rx_can_recv_disabled(link_up, rx_enabled, pci_master);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool e1000x_is_vlan_packet(const void *buf, uint16_t vet)
|
|
{
|
|
uint16_t eth_proto = lduw_be_p(&PKT_GET_ETH_HDR(buf)->h_proto);
|
|
bool res = (eth_proto == vet);
|
|
|
|
trace_e1000x_vlan_is_vlan_pkt(res, eth_proto, vet);
|
|
|
|
return res;
|
|
}
|
|
|
|
bool e1000x_rx_vlan_filter(uint32_t *mac, const struct vlan_header *vhdr)
|
|
{
|
|
if (e1000x_vlan_rx_filter_enabled(mac)) {
|
|
uint16_t vid = lduw_be_p(&vhdr->h_tci);
|
|
uint32_t vfta =
|
|
ldl_le_p((uint32_t *)(mac + VFTA) +
|
|
((vid >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK));
|
|
if ((vfta & (1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK))) == 0) {
|
|
trace_e1000x_rx_flt_vlan_mismatch(vid);
|
|
return false;
|
|
}
|
|
|
|
trace_e1000x_rx_flt_vlan_match(vid);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool e1000x_rx_group_filter(uint32_t *mac, const struct eth_header *ehdr)
|
|
{
|
|
static const int mta_shift[] = { 4, 3, 2, 0 };
|
|
uint32_t f, ra[2], *rp, rctl = mac[RCTL];
|
|
|
|
if (is_broadcast_ether_addr(ehdr->h_dest)) {
|
|
if (rctl & E1000_RCTL_BAM) {
|
|
return true;
|
|
}
|
|
} else if (is_multicast_ether_addr(ehdr->h_dest)) {
|
|
if (rctl & E1000_RCTL_MPE) {
|
|
return true;
|
|
}
|
|
} else {
|
|
if (rctl & E1000_RCTL_UPE) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
for (rp = mac + RA; rp < mac + RA + 32; rp += 2) {
|
|
if (!(rp[1] & E1000_RAH_AV)) {
|
|
continue;
|
|
}
|
|
ra[0] = cpu_to_le32(rp[0]);
|
|
ra[1] = cpu_to_le32(rp[1]);
|
|
if (!memcmp(ehdr->h_dest, (uint8_t *)ra, ETH_ALEN)) {
|
|
trace_e1000x_rx_flt_ucast_match((int)(rp - mac - RA) / 2,
|
|
MAC_ARG(ehdr->h_dest));
|
|
return true;
|
|
}
|
|
}
|
|
trace_e1000x_rx_flt_ucast_mismatch(MAC_ARG(ehdr->h_dest));
|
|
|
|
f = mta_shift[(rctl >> E1000_RCTL_MO_SHIFT) & 3];
|
|
f = (((ehdr->h_dest[5] << 8) | ehdr->h_dest[4]) >> f) & 0xfff;
|
|
if (mac[MTA + (f >> 5)] & (1 << (f & 0x1f))) {
|
|
return true;
|
|
}
|
|
|
|
trace_e1000x_rx_flt_inexact_mismatch(MAC_ARG(ehdr->h_dest),
|
|
(rctl >> E1000_RCTL_MO_SHIFT) & 3,
|
|
f >> 5,
|
|
mac[MTA + (f >> 5)]);
|
|
|
|
return false;
|
|
}
|
|
|
|
bool e1000x_hw_rx_enabled(uint32_t *mac)
|
|
{
|
|
if (!(mac[STATUS] & E1000_STATUS_LU)) {
|
|
trace_e1000x_rx_link_down(mac[STATUS]);
|
|
return false;
|
|
}
|
|
|
|
if (!(mac[RCTL] & E1000_RCTL_EN)) {
|
|
trace_e1000x_rx_disabled(mac[RCTL]);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool e1000x_is_oversized(uint32_t *mac, size_t size)
|
|
{
|
|
size_t header_size = sizeof(struct eth_header) + sizeof(struct vlan_header);
|
|
/* this is the size past which hardware will
|
|
drop packets when setting LPE=0 */
|
|
size_t maximum_short_size = header_size + ETH_MTU;
|
|
/* this is the size past which hardware will
|
|
drop packets when setting LPE=1 */
|
|
size_t maximum_large_size = 16 * KiB - ETH_FCS_LEN;
|
|
|
|
if ((size > maximum_large_size ||
|
|
(size > maximum_short_size && !(mac[RCTL] & E1000_RCTL_LPE)))
|
|
&& !(mac[RCTL] & E1000_RCTL_SBP)) {
|
|
e1000x_inc_reg_if_not_full(mac, ROC);
|
|
trace_e1000x_rx_oversized(size);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void e1000x_restart_autoneg(uint32_t *mac, uint16_t *phy, QEMUTimer *timer)
|
|
{
|
|
e1000x_update_regs_on_link_down(mac, phy);
|
|
trace_e1000x_link_negotiation_start();
|
|
timer_mod(timer, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
|
|
}
|
|
|
|
void e1000x_reset_mac_addr(NICState *nic, uint32_t *mac_regs,
|
|
uint8_t *mac_addr)
|
|
{
|
|
int i;
|
|
|
|
mac_regs[RA] = 0;
|
|
mac_regs[RA + 1] = E1000_RAH_AV;
|
|
for (i = 0; i < 4; i++) {
|
|
mac_regs[RA] |= mac_addr[i] << (8 * i);
|
|
mac_regs[RA + 1] |=
|
|
(i < 2) ? mac_addr[i + 4] << (8 * i) : 0;
|
|
}
|
|
|
|
qemu_format_nic_info_str(qemu_get_queue(nic), mac_addr);
|
|
trace_e1000x_mac_indicate(MAC_ARG(mac_addr));
|
|
}
|
|
|
|
void e1000x_update_regs_on_autoneg_done(uint32_t *mac, uint16_t *phy)
|
|
{
|
|
e1000x_update_regs_on_link_up(mac, phy);
|
|
phy[MII_ANLPAR] |= MII_ANLPAR_ACK;
|
|
phy[MII_BMSR] |= MII_BMSR_AN_COMP;
|
|
trace_e1000x_link_negotiation_done();
|
|
}
|
|
|
|
void
|
|
e1000x_core_prepare_eeprom(uint16_t *eeprom,
|
|
const uint16_t *templ,
|
|
uint32_t templ_size,
|
|
uint16_t dev_id,
|
|
const uint8_t *macaddr)
|
|
{
|
|
uint16_t checksum = 0;
|
|
int i;
|
|
|
|
memmove(eeprom, templ, templ_size);
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
eeprom[i] = (macaddr[2 * i + 1] << 8) | macaddr[2 * i];
|
|
}
|
|
|
|
eeprom[11] = eeprom[13] = dev_id;
|
|
|
|
for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
|
|
checksum += eeprom[i];
|
|
}
|
|
|
|
checksum = (uint16_t) EEPROM_SUM - checksum;
|
|
|
|
eeprom[EEPROM_CHECKSUM_REG] = checksum;
|
|
}
|
|
|
|
uint32_t
|
|
e1000x_rxbufsize(uint32_t rctl)
|
|
{
|
|
rctl &= E1000_RCTL_BSEX | E1000_RCTL_SZ_16384 | E1000_RCTL_SZ_8192 |
|
|
E1000_RCTL_SZ_4096 | E1000_RCTL_SZ_2048 | E1000_RCTL_SZ_1024 |
|
|
E1000_RCTL_SZ_512 | E1000_RCTL_SZ_256;
|
|
switch (rctl) {
|
|
case E1000_RCTL_BSEX | E1000_RCTL_SZ_16384:
|
|
return 16384;
|
|
case E1000_RCTL_BSEX | E1000_RCTL_SZ_8192:
|
|
return 8192;
|
|
case E1000_RCTL_BSEX | E1000_RCTL_SZ_4096:
|
|
return 4096;
|
|
case E1000_RCTL_SZ_1024:
|
|
return 1024;
|
|
case E1000_RCTL_SZ_512:
|
|
return 512;
|
|
case E1000_RCTL_SZ_256:
|
|
return 256;
|
|
}
|
|
return 2048;
|
|
}
|
|
|
|
void
|
|
e1000x_update_rx_total_stats(uint32_t *mac,
|
|
eth_pkt_types_e pkt_type,
|
|
size_t pkt_size,
|
|
size_t pkt_fcs_size)
|
|
{
|
|
static const int PRCregs[6] = { PRC64, PRC127, PRC255, PRC511,
|
|
PRC1023, PRC1522 };
|
|
|
|
e1000x_increase_size_stats(mac, PRCregs, pkt_fcs_size);
|
|
e1000x_inc_reg_if_not_full(mac, TPR);
|
|
e1000x_inc_reg_if_not_full(mac, GPRC);
|
|
/* TOR - Total Octets Received:
|
|
* This register includes bytes received in a packet from the <Destination
|
|
* Address> field through the <CRC> field, inclusively.
|
|
* Always include FCS length (4) in size.
|
|
*/
|
|
e1000x_grow_8reg_if_not_full(mac, TORL, pkt_size + 4);
|
|
e1000x_grow_8reg_if_not_full(mac, GORCL, pkt_size + 4);
|
|
|
|
switch (pkt_type) {
|
|
case ETH_PKT_BCAST:
|
|
e1000x_inc_reg_if_not_full(mac, BPRC);
|
|
break;
|
|
|
|
case ETH_PKT_MCAST:
|
|
e1000x_inc_reg_if_not_full(mac, MPRC);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
void
|
|
e1000x_increase_size_stats(uint32_t *mac, const int *size_regs, int size)
|
|
{
|
|
if (size > 1023) {
|
|
e1000x_inc_reg_if_not_full(mac, size_regs[5]);
|
|
} else if (size > 511) {
|
|
e1000x_inc_reg_if_not_full(mac, size_regs[4]);
|
|
} else if (size > 255) {
|
|
e1000x_inc_reg_if_not_full(mac, size_regs[3]);
|
|
} else if (size > 127) {
|
|
e1000x_inc_reg_if_not_full(mac, size_regs[2]);
|
|
} else if (size > 64) {
|
|
e1000x_inc_reg_if_not_full(mac, size_regs[1]);
|
|
} else if (size == 64) {
|
|
e1000x_inc_reg_if_not_full(mac, size_regs[0]);
|
|
}
|
|
}
|
|
|
|
void
|
|
e1000x_read_tx_ctx_descr(struct e1000_context_desc *d,
|
|
e1000x_txd_props *props)
|
|
{
|
|
uint32_t op = le32_to_cpu(d->cmd_and_length);
|
|
|
|
props->ipcss = d->lower_setup.ip_fields.ipcss;
|
|
props->ipcso = d->lower_setup.ip_fields.ipcso;
|
|
props->ipcse = le16_to_cpu(d->lower_setup.ip_fields.ipcse);
|
|
props->tucss = d->upper_setup.tcp_fields.tucss;
|
|
props->tucso = d->upper_setup.tcp_fields.tucso;
|
|
props->tucse = le16_to_cpu(d->upper_setup.tcp_fields.tucse);
|
|
props->paylen = op & 0xfffff;
|
|
props->hdr_len = d->tcp_seg_setup.fields.hdr_len;
|
|
props->mss = le16_to_cpu(d->tcp_seg_setup.fields.mss);
|
|
props->ip = (op & E1000_TXD_CMD_IP) ? 1 : 0;
|
|
props->tcp = (op & E1000_TXD_CMD_TCP) ? 1 : 0;
|
|
props->tse = (op & E1000_TXD_CMD_TSE) ? 1 : 0;
|
|
}
|
|
|
|
void e1000x_timestamp(uint32_t *mac, int64_t timadj, size_t lo, size_t hi)
|
|
{
|
|
int64_t ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
|
|
uint32_t timinca = mac[TIMINCA];
|
|
uint32_t incvalue = timinca & E1000_TIMINCA_INCVALUE_MASK;
|
|
uint32_t incperiod = MAX(timinca >> E1000_TIMINCA_INCPERIOD_SHIFT, 1);
|
|
int64_t timestamp = timadj + muldiv64(ns, incvalue, incperiod * 16);
|
|
|
|
mac[lo] = timestamp & 0xffffffff;
|
|
mac[hi] = timestamp >> 32;
|
|
}
|
|
|
|
void e1000x_set_timinca(uint32_t *mac, int64_t *timadj, uint32_t val)
|
|
{
|
|
int64_t ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
|
|
uint32_t old_val = mac[TIMINCA];
|
|
uint32_t old_incvalue = old_val & E1000_TIMINCA_INCVALUE_MASK;
|
|
uint32_t old_incperiod = MAX(old_val >> E1000_TIMINCA_INCPERIOD_SHIFT, 1);
|
|
uint32_t incvalue = val & E1000_TIMINCA_INCVALUE_MASK;
|
|
uint32_t incperiod = MAX(val >> E1000_TIMINCA_INCPERIOD_SHIFT, 1);
|
|
|
|
mac[TIMINCA] = val;
|
|
*timadj += (muldiv64(ns, incvalue, incperiod) - muldiv64(ns, old_incvalue, old_incperiod)) / 16;
|
|
}
|