aa100fa4c9
Needed for changing the hypercall handlers' argument type to PowerPCCPU. Signed-off-by: Andreas Färber <afaerber@suse.de>
1242 lines
33 KiB
C
1242 lines
33 KiB
C
/*
|
|
* PowerPC implementation of KVM hooks
|
|
*
|
|
* Copyright IBM Corp. 2007
|
|
* Copyright (C) 2011 Freescale Semiconductor, Inc.
|
|
*
|
|
* Authors:
|
|
* Jerone Young <jyoung5@us.ibm.com>
|
|
* Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
|
|
* Hollis Blanchard <hollisb@us.ibm.com>
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2 or later.
|
|
* See the COPYING file in the top-level directory.
|
|
*
|
|
*/
|
|
|
|
#include <dirent.h>
|
|
#include <sys/types.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/vfs.h>
|
|
|
|
#include <linux/kvm.h>
|
|
|
|
#include "qemu-common.h"
|
|
#include "qemu-timer.h"
|
|
#include "sysemu.h"
|
|
#include "kvm.h"
|
|
#include "kvm_ppc.h"
|
|
#include "cpu.h"
|
|
#include "cpus.h"
|
|
#include "device_tree.h"
|
|
#include "hw/sysbus.h"
|
|
#include "hw/spapr.h"
|
|
|
|
#include "hw/sysbus.h"
|
|
#include "hw/spapr.h"
|
|
#include "hw/spapr_vio.h"
|
|
|
|
//#define DEBUG_KVM
|
|
|
|
#ifdef DEBUG_KVM
|
|
#define dprintf(fmt, ...) \
|
|
do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
|
|
#else
|
|
#define dprintf(fmt, ...) \
|
|
do { } while (0)
|
|
#endif
|
|
|
|
#define PROC_DEVTREE_CPU "/proc/device-tree/cpus/"
|
|
|
|
const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
|
|
KVM_CAP_LAST_INFO
|
|
};
|
|
|
|
static int cap_interrupt_unset = false;
|
|
static int cap_interrupt_level = false;
|
|
static int cap_segstate;
|
|
static int cap_booke_sregs;
|
|
static int cap_ppc_smt;
|
|
static int cap_ppc_rma;
|
|
static int cap_spapr_tce;
|
|
static int cap_hior;
|
|
|
|
/* XXX We have a race condition where we actually have a level triggered
|
|
* interrupt, but the infrastructure can't expose that yet, so the guest
|
|
* takes but ignores it, goes to sleep and never gets notified that there's
|
|
* still an interrupt pending.
|
|
*
|
|
* As a quick workaround, let's just wake up again 20 ms after we injected
|
|
* an interrupt. That way we can assure that we're always reinjecting
|
|
* interrupts in case the guest swallowed them.
|
|
*/
|
|
static QEMUTimer *idle_timer;
|
|
|
|
static void kvm_kick_cpu(void *opaque)
|
|
{
|
|
PowerPCCPU *cpu = opaque;
|
|
|
|
qemu_cpu_kick(CPU(cpu));
|
|
}
|
|
|
|
int kvm_arch_init(KVMState *s)
|
|
{
|
|
cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ);
|
|
cap_interrupt_level = kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL);
|
|
cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE);
|
|
cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS);
|
|
cap_ppc_smt = kvm_check_extension(s, KVM_CAP_PPC_SMT);
|
|
cap_ppc_rma = kvm_check_extension(s, KVM_CAP_PPC_RMA);
|
|
cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE);
|
|
cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR);
|
|
|
|
if (!cap_interrupt_level) {
|
|
fprintf(stderr, "KVM: Couldn't find level irq capability. Expect the "
|
|
"VM to stall at times!\n");
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvm_arch_sync_sregs(CPUPPCState *cenv)
|
|
{
|
|
struct kvm_sregs sregs;
|
|
int ret;
|
|
|
|
if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
|
|
/* What we're really trying to say is "if we're on BookE, we use
|
|
the native PVR for now". This is the only sane way to check
|
|
it though, so we potentially confuse users that they can run
|
|
BookE guests on BookS. Let's hope nobody dares enough :) */
|
|
return 0;
|
|
} else {
|
|
if (!cap_segstate) {
|
|
fprintf(stderr, "kvm error: missing PVR setting capability\n");
|
|
return -ENOSYS;
|
|
}
|
|
}
|
|
|
|
ret = kvm_vcpu_ioctl(cenv, KVM_GET_SREGS, &sregs);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
sregs.pvr = cenv->spr[SPR_PVR];
|
|
return kvm_vcpu_ioctl(cenv, KVM_SET_SREGS, &sregs);
|
|
}
|
|
|
|
/* Set up a shared TLB array with KVM */
|
|
static int kvm_booke206_tlb_init(CPUPPCState *env)
|
|
{
|
|
struct kvm_book3e_206_tlb_params params = {};
|
|
struct kvm_config_tlb cfg = {};
|
|
struct kvm_enable_cap encap = {};
|
|
unsigned int entries = 0;
|
|
int ret, i;
|
|
|
|
if (!kvm_enabled() ||
|
|
!kvm_check_extension(env->kvm_state, KVM_CAP_SW_TLB)) {
|
|
return 0;
|
|
}
|
|
|
|
assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN);
|
|
|
|
for (i = 0; i < BOOKE206_MAX_TLBN; i++) {
|
|
params.tlb_sizes[i] = booke206_tlb_size(env, i);
|
|
params.tlb_ways[i] = booke206_tlb_ways(env, i);
|
|
entries += params.tlb_sizes[i];
|
|
}
|
|
|
|
assert(entries == env->nb_tlb);
|
|
assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t));
|
|
|
|
env->tlb_dirty = true;
|
|
|
|
cfg.array = (uintptr_t)env->tlb.tlbm;
|
|
cfg.array_len = sizeof(ppcmas_tlb_t) * entries;
|
|
cfg.params = (uintptr_t)¶ms;
|
|
cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV;
|
|
|
|
encap.cap = KVM_CAP_SW_TLB;
|
|
encap.args[0] = (uintptr_t)&cfg;
|
|
|
|
ret = kvm_vcpu_ioctl(env, KVM_ENABLE_CAP, &encap);
|
|
if (ret < 0) {
|
|
fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n",
|
|
__func__, strerror(-ret));
|
|
return ret;
|
|
}
|
|
|
|
env->kvm_sw_tlb = true;
|
|
return 0;
|
|
}
|
|
|
|
|
|
#if defined(TARGET_PPC64)
|
|
static void kvm_get_fallback_smmu_info(CPUPPCState *env,
|
|
struct kvm_ppc_smmu_info *info)
|
|
{
|
|
memset(info, 0, sizeof(*info));
|
|
|
|
/* We don't have the new KVM_PPC_GET_SMMU_INFO ioctl, so
|
|
* need to "guess" what the supported page sizes are.
|
|
*
|
|
* For that to work we make a few assumptions:
|
|
*
|
|
* - If KVM_CAP_PPC_GET_PVINFO is supported we are running "PR"
|
|
* KVM which only supports 4K and 16M pages, but supports them
|
|
* regardless of the backing store characteritics. We also don't
|
|
* support 1T segments.
|
|
*
|
|
* This is safe as if HV KVM ever supports that capability or PR
|
|
* KVM grows supports for more page/segment sizes, those versions
|
|
* will have implemented KVM_CAP_PPC_GET_SMMU_INFO and thus we
|
|
* will not hit this fallback
|
|
*
|
|
* - Else we are running HV KVM. This means we only support page
|
|
* sizes that fit in the backing store. Additionally we only
|
|
* advertize 64K pages if the processor is ARCH 2.06 and we assume
|
|
* P7 encodings for the SLB and hash table. Here too, we assume
|
|
* support for any newer processor will mean a kernel that
|
|
* implements KVM_CAP_PPC_GET_SMMU_INFO and thus doesn't hit
|
|
* this fallback.
|
|
*/
|
|
if (kvm_check_extension(env->kvm_state, KVM_CAP_PPC_GET_PVINFO)) {
|
|
/* No flags */
|
|
info->flags = 0;
|
|
info->slb_size = 64;
|
|
|
|
/* Standard 4k base page size segment */
|
|
info->sps[0].page_shift = 12;
|
|
info->sps[0].slb_enc = 0;
|
|
info->sps[0].enc[0].page_shift = 12;
|
|
info->sps[0].enc[0].pte_enc = 0;
|
|
|
|
/* Standard 16M large page size segment */
|
|
info->sps[1].page_shift = 24;
|
|
info->sps[1].slb_enc = SLB_VSID_L;
|
|
info->sps[1].enc[0].page_shift = 24;
|
|
info->sps[1].enc[0].pte_enc = 0;
|
|
} else {
|
|
int i = 0;
|
|
|
|
/* HV KVM has backing store size restrictions */
|
|
info->flags = KVM_PPC_PAGE_SIZES_REAL;
|
|
|
|
if (env->mmu_model & POWERPC_MMU_1TSEG) {
|
|
info->flags |= KVM_PPC_1T_SEGMENTS;
|
|
}
|
|
|
|
if (env->mmu_model == POWERPC_MMU_2_06) {
|
|
info->slb_size = 32;
|
|
} else {
|
|
info->slb_size = 64;
|
|
}
|
|
|
|
/* Standard 4k base page size segment */
|
|
info->sps[i].page_shift = 12;
|
|
info->sps[i].slb_enc = 0;
|
|
info->sps[i].enc[0].page_shift = 12;
|
|
info->sps[i].enc[0].pte_enc = 0;
|
|
i++;
|
|
|
|
/* 64K on MMU 2.06 */
|
|
if (env->mmu_model == POWERPC_MMU_2_06) {
|
|
info->sps[i].page_shift = 16;
|
|
info->sps[i].slb_enc = 0x110;
|
|
info->sps[i].enc[0].page_shift = 16;
|
|
info->sps[i].enc[0].pte_enc = 1;
|
|
i++;
|
|
}
|
|
|
|
/* Standard 16M large page size segment */
|
|
info->sps[i].page_shift = 24;
|
|
info->sps[i].slb_enc = SLB_VSID_L;
|
|
info->sps[i].enc[0].page_shift = 24;
|
|
info->sps[i].enc[0].pte_enc = 0;
|
|
}
|
|
}
|
|
|
|
static void kvm_get_smmu_info(CPUPPCState *env, struct kvm_ppc_smmu_info *info)
|
|
{
|
|
int ret;
|
|
|
|
if (kvm_check_extension(env->kvm_state, KVM_CAP_PPC_GET_SMMU_INFO)) {
|
|
ret = kvm_vm_ioctl(env->kvm_state, KVM_PPC_GET_SMMU_INFO, info);
|
|
if (ret == 0) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
kvm_get_fallback_smmu_info(env, info);
|
|
}
|
|
|
|
static long getrampagesize(void)
|
|
{
|
|
struct statfs fs;
|
|
int ret;
|
|
|
|
if (!mem_path) {
|
|
/* guest RAM is backed by normal anonymous pages */
|
|
return getpagesize();
|
|
}
|
|
|
|
do {
|
|
ret = statfs(mem_path, &fs);
|
|
} while (ret != 0 && errno == EINTR);
|
|
|
|
if (ret != 0) {
|
|
fprintf(stderr, "Couldn't statfs() memory path: %s\n",
|
|
strerror(errno));
|
|
exit(1);
|
|
}
|
|
|
|
#define HUGETLBFS_MAGIC 0x958458f6
|
|
|
|
if (fs.f_type != HUGETLBFS_MAGIC) {
|
|
/* Explicit mempath, but it's ordinary pages */
|
|
return getpagesize();
|
|
}
|
|
|
|
/* It's hugepage, return the huge page size */
|
|
return fs.f_bsize;
|
|
}
|
|
|
|
static bool kvm_valid_page_size(uint32_t flags, long rampgsize, uint32_t shift)
|
|
{
|
|
if (!(flags & KVM_PPC_PAGE_SIZES_REAL)) {
|
|
return true;
|
|
}
|
|
|
|
return (1ul << shift) <= rampgsize;
|
|
}
|
|
|
|
static void kvm_fixup_page_sizes(CPUPPCState *env)
|
|
{
|
|
static struct kvm_ppc_smmu_info smmu_info;
|
|
static bool has_smmu_info;
|
|
long rampagesize;
|
|
int iq, ik, jq, jk;
|
|
|
|
/* We only handle page sizes for 64-bit server guests for now */
|
|
if (!(env->mmu_model & POWERPC_MMU_64)) {
|
|
return;
|
|
}
|
|
|
|
/* Collect MMU info from kernel if not already */
|
|
if (!has_smmu_info) {
|
|
kvm_get_smmu_info(env, &smmu_info);
|
|
has_smmu_info = true;
|
|
}
|
|
|
|
rampagesize = getrampagesize();
|
|
|
|
/* Convert to QEMU form */
|
|
memset(&env->sps, 0, sizeof(env->sps));
|
|
|
|
for (ik = iq = 0; ik < KVM_PPC_PAGE_SIZES_MAX_SZ; ik++) {
|
|
struct ppc_one_seg_page_size *qsps = &env->sps.sps[iq];
|
|
struct kvm_ppc_one_seg_page_size *ksps = &smmu_info.sps[ik];
|
|
|
|
if (!kvm_valid_page_size(smmu_info.flags, rampagesize,
|
|
ksps->page_shift)) {
|
|
continue;
|
|
}
|
|
qsps->page_shift = ksps->page_shift;
|
|
qsps->slb_enc = ksps->slb_enc;
|
|
for (jk = jq = 0; jk < KVM_PPC_PAGE_SIZES_MAX_SZ; jk++) {
|
|
if (!kvm_valid_page_size(smmu_info.flags, rampagesize,
|
|
ksps->enc[jk].page_shift)) {
|
|
continue;
|
|
}
|
|
qsps->enc[jq].page_shift = ksps->enc[jk].page_shift;
|
|
qsps->enc[jq].pte_enc = ksps->enc[jk].pte_enc;
|
|
if (++jq >= PPC_PAGE_SIZES_MAX_SZ) {
|
|
break;
|
|
}
|
|
}
|
|
if (++iq >= PPC_PAGE_SIZES_MAX_SZ) {
|
|
break;
|
|
}
|
|
}
|
|
env->slb_nr = smmu_info.slb_size;
|
|
if (smmu_info.flags & KVM_PPC_1T_SEGMENTS) {
|
|
env->mmu_model |= POWERPC_MMU_1TSEG;
|
|
} else {
|
|
env->mmu_model &= ~POWERPC_MMU_1TSEG;
|
|
}
|
|
}
|
|
#else /* defined (TARGET_PPC64) */
|
|
|
|
static inline void kvm_fixup_page_sizes(CPUPPCState *env)
|
|
{
|
|
}
|
|
|
|
#endif /* !defined (TARGET_PPC64) */
|
|
|
|
int kvm_arch_init_vcpu(CPUPPCState *cenv)
|
|
{
|
|
PowerPCCPU *cpu = ppc_env_get_cpu(cenv);
|
|
int ret;
|
|
|
|
/* Gather server mmu info from KVM and update the CPU state */
|
|
kvm_fixup_page_sizes(cenv);
|
|
|
|
/* Synchronize sregs with kvm */
|
|
ret = kvm_arch_sync_sregs(cenv);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
idle_timer = qemu_new_timer_ns(vm_clock, kvm_kick_cpu, cpu);
|
|
|
|
/* Some targets support access to KVM's guest TLB. */
|
|
switch (cenv->mmu_model) {
|
|
case POWERPC_MMU_BOOKE206:
|
|
ret = kvm_booke206_tlb_init(cenv);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
void kvm_arch_reset_vcpu(CPUPPCState *env)
|
|
{
|
|
}
|
|
|
|
static void kvm_sw_tlb_put(CPUPPCState *env)
|
|
{
|
|
struct kvm_dirty_tlb dirty_tlb;
|
|
unsigned char *bitmap;
|
|
int ret;
|
|
|
|
if (!env->kvm_sw_tlb) {
|
|
return;
|
|
}
|
|
|
|
bitmap = g_malloc((env->nb_tlb + 7) / 8);
|
|
memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8);
|
|
|
|
dirty_tlb.bitmap = (uintptr_t)bitmap;
|
|
dirty_tlb.num_dirty = env->nb_tlb;
|
|
|
|
ret = kvm_vcpu_ioctl(env, KVM_DIRTY_TLB, &dirty_tlb);
|
|
if (ret) {
|
|
fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n",
|
|
__func__, strerror(-ret));
|
|
}
|
|
|
|
g_free(bitmap);
|
|
}
|
|
|
|
int kvm_arch_put_registers(CPUPPCState *env, int level)
|
|
{
|
|
struct kvm_regs regs;
|
|
int ret;
|
|
int i;
|
|
|
|
ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, ®s);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
regs.ctr = env->ctr;
|
|
regs.lr = env->lr;
|
|
regs.xer = env->xer;
|
|
regs.msr = env->msr;
|
|
regs.pc = env->nip;
|
|
|
|
regs.srr0 = env->spr[SPR_SRR0];
|
|
regs.srr1 = env->spr[SPR_SRR1];
|
|
|
|
regs.sprg0 = env->spr[SPR_SPRG0];
|
|
regs.sprg1 = env->spr[SPR_SPRG1];
|
|
regs.sprg2 = env->spr[SPR_SPRG2];
|
|
regs.sprg3 = env->spr[SPR_SPRG3];
|
|
regs.sprg4 = env->spr[SPR_SPRG4];
|
|
regs.sprg5 = env->spr[SPR_SPRG5];
|
|
regs.sprg6 = env->spr[SPR_SPRG6];
|
|
regs.sprg7 = env->spr[SPR_SPRG7];
|
|
|
|
regs.pid = env->spr[SPR_BOOKE_PID];
|
|
|
|
for (i = 0;i < 32; i++)
|
|
regs.gpr[i] = env->gpr[i];
|
|
|
|
ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, ®s);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (env->tlb_dirty) {
|
|
kvm_sw_tlb_put(env);
|
|
env->tlb_dirty = false;
|
|
}
|
|
|
|
if (cap_segstate && (level >= KVM_PUT_RESET_STATE)) {
|
|
struct kvm_sregs sregs;
|
|
|
|
sregs.pvr = env->spr[SPR_PVR];
|
|
|
|
sregs.u.s.sdr1 = env->spr[SPR_SDR1];
|
|
|
|
/* Sync SLB */
|
|
#ifdef TARGET_PPC64
|
|
for (i = 0; i < 64; i++) {
|
|
sregs.u.s.ppc64.slb[i].slbe = env->slb[i].esid;
|
|
sregs.u.s.ppc64.slb[i].slbv = env->slb[i].vsid;
|
|
}
|
|
#endif
|
|
|
|
/* Sync SRs */
|
|
for (i = 0; i < 16; i++) {
|
|
sregs.u.s.ppc32.sr[i] = env->sr[i];
|
|
}
|
|
|
|
/* Sync BATs */
|
|
for (i = 0; i < 8; i++) {
|
|
/* Beware. We have to swap upper and lower bits here */
|
|
sregs.u.s.ppc32.dbat[i] = ((uint64_t)env->DBAT[0][i] << 32)
|
|
| env->DBAT[1][i];
|
|
sregs.u.s.ppc32.ibat[i] = ((uint64_t)env->IBAT[0][i] << 32)
|
|
| env->IBAT[1][i];
|
|
}
|
|
|
|
ret = kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if (cap_hior && (level >= KVM_PUT_RESET_STATE)) {
|
|
uint64_t hior = env->spr[SPR_HIOR];
|
|
struct kvm_one_reg reg = {
|
|
.id = KVM_REG_PPC_HIOR,
|
|
.addr = (uintptr_t) &hior,
|
|
};
|
|
|
|
ret = kvm_vcpu_ioctl(env, KVM_SET_ONE_REG, ®);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int kvm_arch_get_registers(CPUPPCState *env)
|
|
{
|
|
struct kvm_regs regs;
|
|
struct kvm_sregs sregs;
|
|
uint32_t cr;
|
|
int i, ret;
|
|
|
|
ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, ®s);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
cr = regs.cr;
|
|
for (i = 7; i >= 0; i--) {
|
|
env->crf[i] = cr & 15;
|
|
cr >>= 4;
|
|
}
|
|
|
|
env->ctr = regs.ctr;
|
|
env->lr = regs.lr;
|
|
env->xer = regs.xer;
|
|
env->msr = regs.msr;
|
|
env->nip = regs.pc;
|
|
|
|
env->spr[SPR_SRR0] = regs.srr0;
|
|
env->spr[SPR_SRR1] = regs.srr1;
|
|
|
|
env->spr[SPR_SPRG0] = regs.sprg0;
|
|
env->spr[SPR_SPRG1] = regs.sprg1;
|
|
env->spr[SPR_SPRG2] = regs.sprg2;
|
|
env->spr[SPR_SPRG3] = regs.sprg3;
|
|
env->spr[SPR_SPRG4] = regs.sprg4;
|
|
env->spr[SPR_SPRG5] = regs.sprg5;
|
|
env->spr[SPR_SPRG6] = regs.sprg6;
|
|
env->spr[SPR_SPRG7] = regs.sprg7;
|
|
|
|
env->spr[SPR_BOOKE_PID] = regs.pid;
|
|
|
|
for (i = 0;i < 32; i++)
|
|
env->gpr[i] = regs.gpr[i];
|
|
|
|
if (cap_booke_sregs) {
|
|
ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
if (sregs.u.e.features & KVM_SREGS_E_BASE) {
|
|
env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0;
|
|
env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1;
|
|
env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr;
|
|
env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear;
|
|
env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr;
|
|
env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr;
|
|
env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr;
|
|
env->spr[SPR_DECR] = sregs.u.e.dec;
|
|
env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff;
|
|
env->spr[SPR_TBU] = sregs.u.e.tb >> 32;
|
|
env->spr[SPR_VRSAVE] = sregs.u.e.vrsave;
|
|
}
|
|
|
|
if (sregs.u.e.features & KVM_SREGS_E_ARCH206) {
|
|
env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir;
|
|
env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0;
|
|
env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1;
|
|
env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar;
|
|
env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr;
|
|
}
|
|
|
|
if (sregs.u.e.features & KVM_SREGS_E_64) {
|
|
env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr;
|
|
}
|
|
|
|
if (sregs.u.e.features & KVM_SREGS_E_SPRG8) {
|
|
env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8;
|
|
}
|
|
|
|
if (sregs.u.e.features & KVM_SREGS_E_IVOR) {
|
|
env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0];
|
|
env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1];
|
|
env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2];
|
|
env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3];
|
|
env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4];
|
|
env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5];
|
|
env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6];
|
|
env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7];
|
|
env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8];
|
|
env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9];
|
|
env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10];
|
|
env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11];
|
|
env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12];
|
|
env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13];
|
|
env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14];
|
|
env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15];
|
|
|
|
if (sregs.u.e.features & KVM_SREGS_E_SPE) {
|
|
env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0];
|
|
env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1];
|
|
env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2];
|
|
}
|
|
|
|
if (sregs.u.e.features & KVM_SREGS_E_PM) {
|
|
env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3];
|
|
}
|
|
|
|
if (sregs.u.e.features & KVM_SREGS_E_PC) {
|
|
env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4];
|
|
env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5];
|
|
}
|
|
}
|
|
|
|
if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) {
|
|
env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0;
|
|
env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1;
|
|
env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2;
|
|
env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff;
|
|
env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4;
|
|
env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6;
|
|
env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32;
|
|
env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg;
|
|
env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0];
|
|
env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1];
|
|
}
|
|
|
|
if (sregs.u.e.features & KVM_SREGS_EXP) {
|
|
env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr;
|
|
}
|
|
|
|
if (sregs.u.e.features & KVM_SREGS_E_PD) {
|
|
env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc;
|
|
env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc;
|
|
}
|
|
|
|
if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
|
|
env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr;
|
|
env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar;
|
|
env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0;
|
|
|
|
if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) {
|
|
env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1;
|
|
env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (cap_segstate) {
|
|
ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
ppc_store_sdr1(env, sregs.u.s.sdr1);
|
|
|
|
/* Sync SLB */
|
|
#ifdef TARGET_PPC64
|
|
for (i = 0; i < 64; i++) {
|
|
ppc_store_slb(env, sregs.u.s.ppc64.slb[i].slbe,
|
|
sregs.u.s.ppc64.slb[i].slbv);
|
|
}
|
|
#endif
|
|
|
|
/* Sync SRs */
|
|
for (i = 0; i < 16; i++) {
|
|
env->sr[i] = sregs.u.s.ppc32.sr[i];
|
|
}
|
|
|
|
/* Sync BATs */
|
|
for (i = 0; i < 8; i++) {
|
|
env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff;
|
|
env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32;
|
|
env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff;
|
|
env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvmppc_set_interrupt(CPUPPCState *env, int irq, int level)
|
|
{
|
|
unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET;
|
|
|
|
if (irq != PPC_INTERRUPT_EXT) {
|
|
return 0;
|
|
}
|
|
|
|
if (!kvm_enabled() || !cap_interrupt_unset || !cap_interrupt_level) {
|
|
return 0;
|
|
}
|
|
|
|
kvm_vcpu_ioctl(env, KVM_INTERRUPT, &virq);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#if defined(TARGET_PPCEMB)
|
|
#define PPC_INPUT_INT PPC40x_INPUT_INT
|
|
#elif defined(TARGET_PPC64)
|
|
#define PPC_INPUT_INT PPC970_INPUT_INT
|
|
#else
|
|
#define PPC_INPUT_INT PPC6xx_INPUT_INT
|
|
#endif
|
|
|
|
void kvm_arch_pre_run(CPUPPCState *env, struct kvm_run *run)
|
|
{
|
|
int r;
|
|
unsigned irq;
|
|
|
|
/* PowerPC QEMU tracks the various core input pins (interrupt, critical
|
|
* interrupt, reset, etc) in PPC-specific env->irq_input_state. */
|
|
if (!cap_interrupt_level &&
|
|
run->ready_for_interrupt_injection &&
|
|
(env->interrupt_request & CPU_INTERRUPT_HARD) &&
|
|
(env->irq_input_state & (1<<PPC_INPUT_INT)))
|
|
{
|
|
/* For now KVM disregards the 'irq' argument. However, in the
|
|
* future KVM could cache it in-kernel to avoid a heavyweight exit
|
|
* when reading the UIC.
|
|
*/
|
|
irq = KVM_INTERRUPT_SET;
|
|
|
|
dprintf("injected interrupt %d\n", irq);
|
|
r = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &irq);
|
|
if (r < 0)
|
|
printf("cpu %d fail inject %x\n", env->cpu_index, irq);
|
|
|
|
/* Always wake up soon in case the interrupt was level based */
|
|
qemu_mod_timer(idle_timer, qemu_get_clock_ns(vm_clock) +
|
|
(get_ticks_per_sec() / 50));
|
|
}
|
|
|
|
/* We don't know if there are more interrupts pending after this. However,
|
|
* the guest will return to userspace in the course of handling this one
|
|
* anyways, so we will get a chance to deliver the rest. */
|
|
}
|
|
|
|
void kvm_arch_post_run(CPUPPCState *env, struct kvm_run *run)
|
|
{
|
|
}
|
|
|
|
int kvm_arch_process_async_events(CPUPPCState *env)
|
|
{
|
|
return env->halted;
|
|
}
|
|
|
|
static int kvmppc_handle_halt(CPUPPCState *env)
|
|
{
|
|
if (!(env->interrupt_request & CPU_INTERRUPT_HARD) && (msr_ee)) {
|
|
env->halted = 1;
|
|
env->exception_index = EXCP_HLT;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* map dcr access to existing qemu dcr emulation */
|
|
static int kvmppc_handle_dcr_read(CPUPPCState *env, uint32_t dcrn, uint32_t *data)
|
|
{
|
|
if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0)
|
|
fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kvmppc_handle_dcr_write(CPUPPCState *env, uint32_t dcrn, uint32_t data)
|
|
{
|
|
if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0)
|
|
fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arch_handle_exit(CPUPPCState *env, struct kvm_run *run)
|
|
{
|
|
int ret;
|
|
|
|
switch (run->exit_reason) {
|
|
case KVM_EXIT_DCR:
|
|
if (run->dcr.is_write) {
|
|
dprintf("handle dcr write\n");
|
|
ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data);
|
|
} else {
|
|
dprintf("handle dcr read\n");
|
|
ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data);
|
|
}
|
|
break;
|
|
case KVM_EXIT_HLT:
|
|
dprintf("handle halt\n");
|
|
ret = kvmppc_handle_halt(env);
|
|
break;
|
|
#ifdef CONFIG_PSERIES
|
|
case KVM_EXIT_PAPR_HCALL:
|
|
dprintf("handle PAPR hypercall\n");
|
|
run->papr_hcall.ret = spapr_hypercall(ppc_env_get_cpu(env),
|
|
run->papr_hcall.nr,
|
|
run->papr_hcall.args);
|
|
ret = 0;
|
|
break;
|
|
#endif
|
|
default:
|
|
fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
|
|
ret = -1;
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int read_cpuinfo(const char *field, char *value, int len)
|
|
{
|
|
FILE *f;
|
|
int ret = -1;
|
|
int field_len = strlen(field);
|
|
char line[512];
|
|
|
|
f = fopen("/proc/cpuinfo", "r");
|
|
if (!f) {
|
|
return -1;
|
|
}
|
|
|
|
do {
|
|
if(!fgets(line, sizeof(line), f)) {
|
|
break;
|
|
}
|
|
if (!strncmp(line, field, field_len)) {
|
|
pstrcpy(value, len, line);
|
|
ret = 0;
|
|
break;
|
|
}
|
|
} while(*line);
|
|
|
|
fclose(f);
|
|
|
|
return ret;
|
|
}
|
|
|
|
uint32_t kvmppc_get_tbfreq(void)
|
|
{
|
|
char line[512];
|
|
char *ns;
|
|
uint32_t retval = get_ticks_per_sec();
|
|
|
|
if (read_cpuinfo("timebase", line, sizeof(line))) {
|
|
return retval;
|
|
}
|
|
|
|
if (!(ns = strchr(line, ':'))) {
|
|
return retval;
|
|
}
|
|
|
|
ns++;
|
|
|
|
retval = atoi(ns);
|
|
return retval;
|
|
}
|
|
|
|
/* Try to find a device tree node for a CPU with clock-frequency property */
|
|
static int kvmppc_find_cpu_dt(char *buf, int buf_len)
|
|
{
|
|
struct dirent *dirp;
|
|
DIR *dp;
|
|
|
|
if ((dp = opendir(PROC_DEVTREE_CPU)) == NULL) {
|
|
printf("Can't open directory " PROC_DEVTREE_CPU "\n");
|
|
return -1;
|
|
}
|
|
|
|
buf[0] = '\0';
|
|
while ((dirp = readdir(dp)) != NULL) {
|
|
FILE *f;
|
|
snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU,
|
|
dirp->d_name);
|
|
f = fopen(buf, "r");
|
|
if (f) {
|
|
snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name);
|
|
fclose(f);
|
|
break;
|
|
}
|
|
buf[0] = '\0';
|
|
}
|
|
closedir(dp);
|
|
if (buf[0] == '\0') {
|
|
printf("Unknown host!\n");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Read a CPU node property from the host device tree that's a single
|
|
* integer (32-bit or 64-bit). Returns 0 if anything goes wrong
|
|
* (can't find or open the property, or doesn't understand the
|
|
* format) */
|
|
static uint64_t kvmppc_read_int_cpu_dt(const char *propname)
|
|
{
|
|
char buf[PATH_MAX];
|
|
union {
|
|
uint32_t v32;
|
|
uint64_t v64;
|
|
} u;
|
|
FILE *f;
|
|
int len;
|
|
|
|
if (kvmppc_find_cpu_dt(buf, sizeof(buf))) {
|
|
return -1;
|
|
}
|
|
|
|
strncat(buf, "/", sizeof(buf) - strlen(buf));
|
|
strncat(buf, propname, sizeof(buf) - strlen(buf));
|
|
|
|
f = fopen(buf, "rb");
|
|
if (!f) {
|
|
return -1;
|
|
}
|
|
|
|
len = fread(&u, 1, sizeof(u), f);
|
|
fclose(f);
|
|
switch (len) {
|
|
case 4:
|
|
/* property is a 32-bit quantity */
|
|
return be32_to_cpu(u.v32);
|
|
case 8:
|
|
return be64_to_cpu(u.v64);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
uint64_t kvmppc_get_clockfreq(void)
|
|
{
|
|
return kvmppc_read_int_cpu_dt("clock-frequency");
|
|
}
|
|
|
|
uint32_t kvmppc_get_vmx(void)
|
|
{
|
|
return kvmppc_read_int_cpu_dt("ibm,vmx");
|
|
}
|
|
|
|
uint32_t kvmppc_get_dfp(void)
|
|
{
|
|
return kvmppc_read_int_cpu_dt("ibm,dfp");
|
|
}
|
|
|
|
int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len)
|
|
{
|
|
uint32_t *hc = (uint32_t*)buf;
|
|
|
|
struct kvm_ppc_pvinfo pvinfo;
|
|
|
|
if (kvm_check_extension(env->kvm_state, KVM_CAP_PPC_GET_PVINFO) &&
|
|
!kvm_vm_ioctl(env->kvm_state, KVM_PPC_GET_PVINFO, &pvinfo)) {
|
|
memcpy(buf, pvinfo.hcall, buf_len);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Fallback to always fail hypercalls:
|
|
*
|
|
* li r3, -1
|
|
* nop
|
|
* nop
|
|
* nop
|
|
*/
|
|
|
|
hc[0] = 0x3860ffff;
|
|
hc[1] = 0x60000000;
|
|
hc[2] = 0x60000000;
|
|
hc[3] = 0x60000000;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void kvmppc_set_papr(CPUPPCState *env)
|
|
{
|
|
struct kvm_enable_cap cap = {};
|
|
int ret;
|
|
|
|
cap.cap = KVM_CAP_PPC_PAPR;
|
|
ret = kvm_vcpu_ioctl(env, KVM_ENABLE_CAP, &cap);
|
|
|
|
if (ret) {
|
|
cpu_abort(env, "This KVM version does not support PAPR\n");
|
|
}
|
|
}
|
|
|
|
int kvmppc_smt_threads(void)
|
|
{
|
|
return cap_ppc_smt ? cap_ppc_smt : 1;
|
|
}
|
|
|
|
#ifdef TARGET_PPC64
|
|
off_t kvmppc_alloc_rma(const char *name, MemoryRegion *sysmem)
|
|
{
|
|
void *rma;
|
|
off_t size;
|
|
int fd;
|
|
struct kvm_allocate_rma ret;
|
|
MemoryRegion *rma_region;
|
|
|
|
/* If cap_ppc_rma == 0, contiguous RMA allocation is not supported
|
|
* if cap_ppc_rma == 1, contiguous RMA allocation is supported, but
|
|
* not necessary on this hardware
|
|
* if cap_ppc_rma == 2, contiguous RMA allocation is needed on this hardware
|
|
*
|
|
* FIXME: We should allow the user to force contiguous RMA
|
|
* allocation in the cap_ppc_rma==1 case.
|
|
*/
|
|
if (cap_ppc_rma < 2) {
|
|
return 0;
|
|
}
|
|
|
|
fd = kvm_vm_ioctl(kvm_state, KVM_ALLOCATE_RMA, &ret);
|
|
if (fd < 0) {
|
|
fprintf(stderr, "KVM: Error on KVM_ALLOCATE_RMA: %s\n",
|
|
strerror(errno));
|
|
return -1;
|
|
}
|
|
|
|
size = MIN(ret.rma_size, 256ul << 20);
|
|
|
|
rma = mmap(NULL, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
|
|
if (rma == MAP_FAILED) {
|
|
fprintf(stderr, "KVM: Error mapping RMA: %s\n", strerror(errno));
|
|
return -1;
|
|
};
|
|
|
|
rma_region = g_new(MemoryRegion, 1);
|
|
memory_region_init_ram_ptr(rma_region, name, size, rma);
|
|
vmstate_register_ram_global(rma_region);
|
|
memory_region_add_subregion(sysmem, 0, rma_region);
|
|
|
|
return size;
|
|
}
|
|
|
|
uint64_t kvmppc_rma_size(uint64_t current_size, unsigned int hash_shift)
|
|
{
|
|
if (cap_ppc_rma >= 2) {
|
|
return current_size;
|
|
}
|
|
return MIN(current_size,
|
|
getrampagesize() << (hash_shift - 7));
|
|
}
|
|
#endif
|
|
|
|
void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t window_size, int *pfd)
|
|
{
|
|
struct kvm_create_spapr_tce args = {
|
|
.liobn = liobn,
|
|
.window_size = window_size,
|
|
};
|
|
long len;
|
|
int fd;
|
|
void *table;
|
|
|
|
/* Must set fd to -1 so we don't try to munmap when called for
|
|
* destroying the table, which the upper layers -will- do
|
|
*/
|
|
*pfd = -1;
|
|
if (!cap_spapr_tce) {
|
|
return NULL;
|
|
}
|
|
|
|
fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args);
|
|
if (fd < 0) {
|
|
fprintf(stderr, "KVM: Failed to create TCE table for liobn 0x%x\n",
|
|
liobn);
|
|
return NULL;
|
|
}
|
|
|
|
len = (window_size / SPAPR_TCE_PAGE_SIZE) * sizeof(sPAPRTCE);
|
|
/* FIXME: round this up to page size */
|
|
|
|
table = mmap(NULL, len, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
|
|
if (table == MAP_FAILED) {
|
|
fprintf(stderr, "KVM: Failed to map TCE table for liobn 0x%x\n",
|
|
liobn);
|
|
close(fd);
|
|
return NULL;
|
|
}
|
|
|
|
*pfd = fd;
|
|
return table;
|
|
}
|
|
|
|
int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t window_size)
|
|
{
|
|
long len;
|
|
|
|
if (fd < 0) {
|
|
return -1;
|
|
}
|
|
|
|
len = (window_size / SPAPR_TCE_PAGE_SIZE)*sizeof(sPAPRTCE);
|
|
if ((munmap(table, len) < 0) ||
|
|
(close(fd) < 0)) {
|
|
fprintf(stderr, "KVM: Unexpected error removing TCE table: %s",
|
|
strerror(errno));
|
|
/* Leak the table */
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvmppc_reset_htab(int shift_hint)
|
|
{
|
|
uint32_t shift = shift_hint;
|
|
|
|
if (!kvm_enabled()) {
|
|
/* Full emulation, tell caller to allocate htab itself */
|
|
return 0;
|
|
}
|
|
if (kvm_check_extension(kvm_state, KVM_CAP_PPC_ALLOC_HTAB)) {
|
|
int ret;
|
|
ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift);
|
|
if (ret == -ENOTTY) {
|
|
/* At least some versions of PR KVM advertise the
|
|
* capability, but don't implement the ioctl(). Oops.
|
|
* Return 0 so that we allocate the htab in qemu, as is
|
|
* correct for PR. */
|
|
return 0;
|
|
} else if (ret < 0) {
|
|
return ret;
|
|
}
|
|
return shift;
|
|
}
|
|
|
|
/* We have a kernel that predates the htab reset calls. For PR
|
|
* KVM, we need to allocate the htab ourselves, for an HV KVM of
|
|
* this era, it has allocated a 16MB fixed size hash table
|
|
* already. Kernels of this era have the GET_PVINFO capability
|
|
* only on PR, so we use this hack to determine the right
|
|
* answer */
|
|
if (kvm_check_extension(kvm_state, KVM_CAP_PPC_GET_PVINFO)) {
|
|
/* PR - tell caller to allocate htab */
|
|
return 0;
|
|
} else {
|
|
/* HV - assume 16MB kernel allocated htab */
|
|
return 24;
|
|
}
|
|
}
|
|
|
|
static inline uint32_t mfpvr(void)
|
|
{
|
|
uint32_t pvr;
|
|
|
|
asm ("mfpvr %0"
|
|
: "=r"(pvr));
|
|
return pvr;
|
|
}
|
|
|
|
static void alter_insns(uint64_t *word, uint64_t flags, bool on)
|
|
{
|
|
if (on) {
|
|
*word |= flags;
|
|
} else {
|
|
*word &= ~flags;
|
|
}
|
|
}
|
|
|
|
const ppc_def_t *kvmppc_host_cpu_def(void)
|
|
{
|
|
uint32_t host_pvr = mfpvr();
|
|
const ppc_def_t *base_spec;
|
|
ppc_def_t *spec;
|
|
uint32_t vmx = kvmppc_get_vmx();
|
|
uint32_t dfp = kvmppc_get_dfp();
|
|
|
|
base_spec = ppc_find_by_pvr(host_pvr);
|
|
|
|
spec = g_malloc0(sizeof(*spec));
|
|
memcpy(spec, base_spec, sizeof(*spec));
|
|
|
|
/* Now fix up the spec with information we can query from the host */
|
|
|
|
if (vmx != -1) {
|
|
/* Only override when we know what the host supports */
|
|
alter_insns(&spec->insns_flags, PPC_ALTIVEC, vmx > 0);
|
|
alter_insns(&spec->insns_flags2, PPC2_VSX, vmx > 1);
|
|
}
|
|
if (dfp != -1) {
|
|
/* Only override when we know what the host supports */
|
|
alter_insns(&spec->insns_flags2, PPC2_DFP, dfp);
|
|
}
|
|
|
|
return spec;
|
|
}
|
|
|
|
int kvmppc_fixup_cpu(CPUPPCState *env)
|
|
{
|
|
int smt;
|
|
|
|
/* Adjust cpu index for SMT */
|
|
smt = kvmppc_smt_threads();
|
|
env->cpu_index = (env->cpu_index / smp_threads) * smt
|
|
+ (env->cpu_index % smp_threads);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
bool kvm_arch_stop_on_emulation_error(CPUPPCState *env)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
int kvm_arch_on_sigbus_vcpu(CPUPPCState *env, int code, void *addr)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
int kvm_arch_on_sigbus(int code, void *addr)
|
|
{
|
|
return 1;
|
|
}
|