a5fd8ee1f7
No code change, only move code from main.c to s390x/cpu_loop.c. Signed-off-by: Laurent Vivier <laurent@vivier.eu> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Acked-by: Cornelia Huck <cohuck@redhat.com> Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org> Message-Id: <20180411185651.21351-16-laurent@vivier.eu>
1629 lines
48 KiB
C
1629 lines
48 KiB
C
/*
|
|
* qemu user main
|
|
*
|
|
* Copyright (c) 2003-2008 Fabrice Bellard
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#include "qemu/osdep.h"
|
|
#include "qemu-version.h"
|
|
#include <sys/syscall.h>
|
|
#include <sys/resource.h>
|
|
|
|
#include "qapi/error.h"
|
|
#include "qemu.h"
|
|
#include "qemu/path.h"
|
|
#include "qemu/config-file.h"
|
|
#include "qemu/cutils.h"
|
|
#include "qemu/help_option.h"
|
|
#include "cpu.h"
|
|
#include "exec/exec-all.h"
|
|
#include "tcg.h"
|
|
#include "qemu/timer.h"
|
|
#include "qemu/envlist.h"
|
|
#include "elf.h"
|
|
#include "trace/control.h"
|
|
#include "target_elf.h"
|
|
#include "cpu_loop-common.h"
|
|
|
|
char *exec_path;
|
|
|
|
int singlestep;
|
|
static const char *filename;
|
|
static const char *argv0;
|
|
static int gdbstub_port;
|
|
static envlist_t *envlist;
|
|
static const char *cpu_model;
|
|
static const char *cpu_type;
|
|
unsigned long mmap_min_addr;
|
|
unsigned long guest_base;
|
|
int have_guest_base;
|
|
|
|
/*
|
|
* When running 32-on-64 we should make sure we can fit all of the possible
|
|
* guest address space into a contiguous chunk of virtual host memory.
|
|
*
|
|
* This way we will never overlap with our own libraries or binaries or stack
|
|
* or anything else that QEMU maps.
|
|
*
|
|
* Many cpus reserve the high bit (or more than one for some 64-bit cpus)
|
|
* of the address for the kernel. Some cpus rely on this and user space
|
|
* uses the high bit(s) for pointer tagging and the like. For them, we
|
|
* must preserve the expected address space.
|
|
*/
|
|
#ifndef MAX_RESERVED_VA
|
|
# if HOST_LONG_BITS > TARGET_VIRT_ADDR_SPACE_BITS
|
|
# if TARGET_VIRT_ADDR_SPACE_BITS == 32 && \
|
|
(TARGET_LONG_BITS == 32 || defined(TARGET_ABI32))
|
|
/* There are a number of places where we assign reserved_va to a variable
|
|
of type abi_ulong and expect it to fit. Avoid the last page. */
|
|
# define MAX_RESERVED_VA (0xfffffffful & TARGET_PAGE_MASK)
|
|
# else
|
|
# define MAX_RESERVED_VA (1ul << TARGET_VIRT_ADDR_SPACE_BITS)
|
|
# endif
|
|
# else
|
|
# define MAX_RESERVED_VA 0
|
|
# endif
|
|
#endif
|
|
|
|
/* That said, reserving *too* much vm space via mmap can run into problems
|
|
with rlimits, oom due to page table creation, etc. We will still try it,
|
|
if directed by the command-line option, but not by default. */
|
|
#if HOST_LONG_BITS == 64 && TARGET_VIRT_ADDR_SPACE_BITS <= 32
|
|
unsigned long reserved_va = MAX_RESERVED_VA;
|
|
#else
|
|
unsigned long reserved_va;
|
|
#endif
|
|
|
|
static void usage(int exitcode);
|
|
|
|
static const char *interp_prefix = CONFIG_QEMU_INTERP_PREFIX;
|
|
const char *qemu_uname_release;
|
|
|
|
/* XXX: on x86 MAP_GROWSDOWN only works if ESP <= address + 32, so
|
|
we allocate a bigger stack. Need a better solution, for example
|
|
by remapping the process stack directly at the right place */
|
|
unsigned long guest_stack_size = 8 * 1024 * 1024UL;
|
|
|
|
void gemu_log(const char *fmt, ...)
|
|
{
|
|
va_list ap;
|
|
|
|
va_start(ap, fmt);
|
|
vfprintf(stderr, fmt, ap);
|
|
va_end(ap);
|
|
}
|
|
|
|
#if defined(TARGET_I386)
|
|
int cpu_get_pic_interrupt(CPUX86State *env)
|
|
{
|
|
return -1;
|
|
}
|
|
#endif
|
|
|
|
/***********************************************************/
|
|
/* Helper routines for implementing atomic operations. */
|
|
|
|
/* Make sure everything is in a consistent state for calling fork(). */
|
|
void fork_start(void)
|
|
{
|
|
start_exclusive();
|
|
mmap_fork_start();
|
|
qemu_mutex_lock(&tb_ctx.tb_lock);
|
|
cpu_list_lock();
|
|
}
|
|
|
|
void fork_end(int child)
|
|
{
|
|
mmap_fork_end(child);
|
|
if (child) {
|
|
CPUState *cpu, *next_cpu;
|
|
/* Child processes created by fork() only have a single thread.
|
|
Discard information about the parent threads. */
|
|
CPU_FOREACH_SAFE(cpu, next_cpu) {
|
|
if (cpu != thread_cpu) {
|
|
QTAILQ_REMOVE(&cpus, cpu, node);
|
|
}
|
|
}
|
|
qemu_mutex_init(&tb_ctx.tb_lock);
|
|
qemu_init_cpu_list();
|
|
gdbserver_fork(thread_cpu);
|
|
/* qemu_init_cpu_list() takes care of reinitializing the
|
|
* exclusive state, so we don't need to end_exclusive() here.
|
|
*/
|
|
} else {
|
|
qemu_mutex_unlock(&tb_ctx.tb_lock);
|
|
cpu_list_unlock();
|
|
end_exclusive();
|
|
}
|
|
}
|
|
|
|
#ifdef TARGET_TILEGX
|
|
|
|
static void gen_sigill_reg(CPUTLGState *env)
|
|
{
|
|
target_siginfo_t info;
|
|
|
|
info.si_signo = TARGET_SIGILL;
|
|
info.si_errno = 0;
|
|
info.si_code = TARGET_ILL_PRVREG;
|
|
info._sifields._sigfault._addr = env->pc;
|
|
queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
|
|
}
|
|
|
|
static void do_signal(CPUTLGState *env, int signo, int sigcode)
|
|
{
|
|
target_siginfo_t info;
|
|
|
|
info.si_signo = signo;
|
|
info.si_errno = 0;
|
|
info._sifields._sigfault._addr = env->pc;
|
|
|
|
if (signo == TARGET_SIGSEGV) {
|
|
/* The passed in sigcode is a dummy; check for a page mapping
|
|
and pass either MAPERR or ACCERR. */
|
|
target_ulong addr = env->excaddr;
|
|
info._sifields._sigfault._addr = addr;
|
|
if (page_check_range(addr, 1, PAGE_VALID) < 0) {
|
|
sigcode = TARGET_SEGV_MAPERR;
|
|
} else {
|
|
sigcode = TARGET_SEGV_ACCERR;
|
|
}
|
|
}
|
|
info.si_code = sigcode;
|
|
|
|
queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
|
|
}
|
|
|
|
static void gen_sigsegv_maperr(CPUTLGState *env, target_ulong addr)
|
|
{
|
|
env->excaddr = addr;
|
|
do_signal(env, TARGET_SIGSEGV, 0);
|
|
}
|
|
|
|
static void set_regval(CPUTLGState *env, uint8_t reg, uint64_t val)
|
|
{
|
|
if (unlikely(reg >= TILEGX_R_COUNT)) {
|
|
switch (reg) {
|
|
case TILEGX_R_SN:
|
|
case TILEGX_R_ZERO:
|
|
return;
|
|
case TILEGX_R_IDN0:
|
|
case TILEGX_R_IDN1:
|
|
case TILEGX_R_UDN0:
|
|
case TILEGX_R_UDN1:
|
|
case TILEGX_R_UDN2:
|
|
case TILEGX_R_UDN3:
|
|
gen_sigill_reg(env);
|
|
return;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
env->regs[reg] = val;
|
|
}
|
|
|
|
/*
|
|
* Compare the 8-byte contents of the CmpValue SPR with the 8-byte value in
|
|
* memory at the address held in the first source register. If the values are
|
|
* not equal, then no memory operation is performed. If the values are equal,
|
|
* the 8-byte quantity from the second source register is written into memory
|
|
* at the address held in the first source register. In either case, the result
|
|
* of the instruction is the value read from memory. The compare and write to
|
|
* memory are atomic and thus can be used for synchronization purposes. This
|
|
* instruction only operates for addresses aligned to a 8-byte boundary.
|
|
* Unaligned memory access causes an Unaligned Data Reference interrupt.
|
|
*
|
|
* Functional Description (64-bit)
|
|
* uint64_t memVal = memoryReadDoubleWord (rf[SrcA]);
|
|
* rf[Dest] = memVal;
|
|
* if (memVal == SPR[CmpValueSPR])
|
|
* memoryWriteDoubleWord (rf[SrcA], rf[SrcB]);
|
|
*
|
|
* Functional Description (32-bit)
|
|
* uint64_t memVal = signExtend32 (memoryReadWord (rf[SrcA]));
|
|
* rf[Dest] = memVal;
|
|
* if (memVal == signExtend32 (SPR[CmpValueSPR]))
|
|
* memoryWriteWord (rf[SrcA], rf[SrcB]);
|
|
*
|
|
*
|
|
* This function also processes exch and exch4 which need not process SPR.
|
|
*/
|
|
static void do_exch(CPUTLGState *env, bool quad, bool cmp)
|
|
{
|
|
target_ulong addr;
|
|
target_long val, sprval;
|
|
|
|
start_exclusive();
|
|
|
|
addr = env->atomic_srca;
|
|
if (quad ? get_user_s64(val, addr) : get_user_s32(val, addr)) {
|
|
goto sigsegv_maperr;
|
|
}
|
|
|
|
if (cmp) {
|
|
if (quad) {
|
|
sprval = env->spregs[TILEGX_SPR_CMPEXCH];
|
|
} else {
|
|
sprval = sextract64(env->spregs[TILEGX_SPR_CMPEXCH], 0, 32);
|
|
}
|
|
}
|
|
|
|
if (!cmp || val == sprval) {
|
|
target_long valb = env->atomic_srcb;
|
|
if (quad ? put_user_u64(valb, addr) : put_user_u32(valb, addr)) {
|
|
goto sigsegv_maperr;
|
|
}
|
|
}
|
|
|
|
set_regval(env, env->atomic_dstr, val);
|
|
end_exclusive();
|
|
return;
|
|
|
|
sigsegv_maperr:
|
|
end_exclusive();
|
|
gen_sigsegv_maperr(env, addr);
|
|
}
|
|
|
|
static void do_fetch(CPUTLGState *env, int trapnr, bool quad)
|
|
{
|
|
int8_t write = 1;
|
|
target_ulong addr;
|
|
target_long val, valb;
|
|
|
|
start_exclusive();
|
|
|
|
addr = env->atomic_srca;
|
|
valb = env->atomic_srcb;
|
|
if (quad ? get_user_s64(val, addr) : get_user_s32(val, addr)) {
|
|
goto sigsegv_maperr;
|
|
}
|
|
|
|
switch (trapnr) {
|
|
case TILEGX_EXCP_OPCODE_FETCHADD:
|
|
case TILEGX_EXCP_OPCODE_FETCHADD4:
|
|
valb += val;
|
|
break;
|
|
case TILEGX_EXCP_OPCODE_FETCHADDGEZ:
|
|
valb += val;
|
|
if (valb < 0) {
|
|
write = 0;
|
|
}
|
|
break;
|
|
case TILEGX_EXCP_OPCODE_FETCHADDGEZ4:
|
|
valb += val;
|
|
if ((int32_t)valb < 0) {
|
|
write = 0;
|
|
}
|
|
break;
|
|
case TILEGX_EXCP_OPCODE_FETCHAND:
|
|
case TILEGX_EXCP_OPCODE_FETCHAND4:
|
|
valb &= val;
|
|
break;
|
|
case TILEGX_EXCP_OPCODE_FETCHOR:
|
|
case TILEGX_EXCP_OPCODE_FETCHOR4:
|
|
valb |= val;
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
if (write) {
|
|
if (quad ? put_user_u64(valb, addr) : put_user_u32(valb, addr)) {
|
|
goto sigsegv_maperr;
|
|
}
|
|
}
|
|
|
|
set_regval(env, env->atomic_dstr, val);
|
|
end_exclusive();
|
|
return;
|
|
|
|
sigsegv_maperr:
|
|
end_exclusive();
|
|
gen_sigsegv_maperr(env, addr);
|
|
}
|
|
|
|
void cpu_loop(CPUTLGState *env)
|
|
{
|
|
CPUState *cs = CPU(tilegx_env_get_cpu(env));
|
|
int trapnr;
|
|
|
|
while (1) {
|
|
cpu_exec_start(cs);
|
|
trapnr = cpu_exec(cs);
|
|
cpu_exec_end(cs);
|
|
process_queued_cpu_work(cs);
|
|
|
|
switch (trapnr) {
|
|
case TILEGX_EXCP_SYSCALL:
|
|
{
|
|
abi_ulong ret = do_syscall(env, env->regs[TILEGX_R_NR],
|
|
env->regs[0], env->regs[1],
|
|
env->regs[2], env->regs[3],
|
|
env->regs[4], env->regs[5],
|
|
env->regs[6], env->regs[7]);
|
|
if (ret == -TARGET_ERESTARTSYS) {
|
|
env->pc -= 8;
|
|
} else if (ret != -TARGET_QEMU_ESIGRETURN) {
|
|
env->regs[TILEGX_R_RE] = ret;
|
|
env->regs[TILEGX_R_ERR] = TILEGX_IS_ERRNO(ret) ? -ret : 0;
|
|
}
|
|
break;
|
|
}
|
|
case TILEGX_EXCP_OPCODE_EXCH:
|
|
do_exch(env, true, false);
|
|
break;
|
|
case TILEGX_EXCP_OPCODE_EXCH4:
|
|
do_exch(env, false, false);
|
|
break;
|
|
case TILEGX_EXCP_OPCODE_CMPEXCH:
|
|
do_exch(env, true, true);
|
|
break;
|
|
case TILEGX_EXCP_OPCODE_CMPEXCH4:
|
|
do_exch(env, false, true);
|
|
break;
|
|
case TILEGX_EXCP_OPCODE_FETCHADD:
|
|
case TILEGX_EXCP_OPCODE_FETCHADDGEZ:
|
|
case TILEGX_EXCP_OPCODE_FETCHAND:
|
|
case TILEGX_EXCP_OPCODE_FETCHOR:
|
|
do_fetch(env, trapnr, true);
|
|
break;
|
|
case TILEGX_EXCP_OPCODE_FETCHADD4:
|
|
case TILEGX_EXCP_OPCODE_FETCHADDGEZ4:
|
|
case TILEGX_EXCP_OPCODE_FETCHAND4:
|
|
case TILEGX_EXCP_OPCODE_FETCHOR4:
|
|
do_fetch(env, trapnr, false);
|
|
break;
|
|
case TILEGX_EXCP_SIGNAL:
|
|
do_signal(env, env->signo, env->sigcode);
|
|
break;
|
|
case TILEGX_EXCP_REG_IDN_ACCESS:
|
|
case TILEGX_EXCP_REG_UDN_ACCESS:
|
|
gen_sigill_reg(env);
|
|
break;
|
|
case EXCP_ATOMIC:
|
|
cpu_exec_step_atomic(cs);
|
|
break;
|
|
default:
|
|
fprintf(stderr, "trapnr is %d[0x%x].\n", trapnr, trapnr);
|
|
g_assert_not_reached();
|
|
}
|
|
process_pending_signals(env);
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef TARGET_RISCV
|
|
|
|
void cpu_loop(CPURISCVState *env)
|
|
{
|
|
CPUState *cs = CPU(riscv_env_get_cpu(env));
|
|
int trapnr, signum, sigcode;
|
|
target_ulong sigaddr;
|
|
target_ulong ret;
|
|
|
|
for (;;) {
|
|
cpu_exec_start(cs);
|
|
trapnr = cpu_exec(cs);
|
|
cpu_exec_end(cs);
|
|
process_queued_cpu_work(cs);
|
|
|
|
signum = 0;
|
|
sigcode = 0;
|
|
sigaddr = 0;
|
|
|
|
switch (trapnr) {
|
|
case EXCP_INTERRUPT:
|
|
/* just indicate that signals should be handled asap */
|
|
break;
|
|
case EXCP_ATOMIC:
|
|
cpu_exec_step_atomic(cs);
|
|
break;
|
|
case RISCV_EXCP_U_ECALL:
|
|
env->pc += 4;
|
|
if (env->gpr[xA7] == TARGET_NR_arch_specific_syscall + 15) {
|
|
/* riscv_flush_icache_syscall is a no-op in QEMU as
|
|
self-modifying code is automatically detected */
|
|
ret = 0;
|
|
} else {
|
|
ret = do_syscall(env,
|
|
env->gpr[xA7],
|
|
env->gpr[xA0],
|
|
env->gpr[xA1],
|
|
env->gpr[xA2],
|
|
env->gpr[xA3],
|
|
env->gpr[xA4],
|
|
env->gpr[xA5],
|
|
0, 0);
|
|
}
|
|
if (ret == -TARGET_ERESTARTSYS) {
|
|
env->pc -= 4;
|
|
} else if (ret != -TARGET_QEMU_ESIGRETURN) {
|
|
env->gpr[xA0] = ret;
|
|
}
|
|
if (cs->singlestep_enabled) {
|
|
goto gdbstep;
|
|
}
|
|
break;
|
|
case RISCV_EXCP_ILLEGAL_INST:
|
|
signum = TARGET_SIGILL;
|
|
sigcode = TARGET_ILL_ILLOPC;
|
|
break;
|
|
case RISCV_EXCP_BREAKPOINT:
|
|
signum = TARGET_SIGTRAP;
|
|
sigcode = TARGET_TRAP_BRKPT;
|
|
sigaddr = env->pc;
|
|
break;
|
|
case RISCV_EXCP_INST_PAGE_FAULT:
|
|
case RISCV_EXCP_LOAD_PAGE_FAULT:
|
|
case RISCV_EXCP_STORE_PAGE_FAULT:
|
|
signum = TARGET_SIGSEGV;
|
|
sigcode = TARGET_SEGV_MAPERR;
|
|
break;
|
|
case EXCP_DEBUG:
|
|
gdbstep:
|
|
signum = gdb_handlesig(cs, TARGET_SIGTRAP);
|
|
sigcode = TARGET_TRAP_BRKPT;
|
|
break;
|
|
default:
|
|
EXCP_DUMP(env, "\nqemu: unhandled CPU exception %#x - aborting\n",
|
|
trapnr);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
if (signum) {
|
|
target_siginfo_t info = {
|
|
.si_signo = signum,
|
|
.si_errno = 0,
|
|
.si_code = sigcode,
|
|
._sifields._sigfault._addr = sigaddr
|
|
};
|
|
queue_signal(env, info.si_signo, QEMU_SI_KILL, &info);
|
|
}
|
|
|
|
process_pending_signals(env);
|
|
}
|
|
}
|
|
|
|
#endif /* TARGET_RISCV */
|
|
|
|
#ifdef TARGET_HPPA
|
|
|
|
static abi_ulong hppa_lws(CPUHPPAState *env)
|
|
{
|
|
uint32_t which = env->gr[20];
|
|
abi_ulong addr = env->gr[26];
|
|
abi_ulong old = env->gr[25];
|
|
abi_ulong new = env->gr[24];
|
|
abi_ulong size, ret;
|
|
|
|
switch (which) {
|
|
default:
|
|
return -TARGET_ENOSYS;
|
|
|
|
case 0: /* elf32 atomic 32bit cmpxchg */
|
|
if ((addr & 3) || !access_ok(VERIFY_WRITE, addr, 4)) {
|
|
return -TARGET_EFAULT;
|
|
}
|
|
old = tswap32(old);
|
|
new = tswap32(new);
|
|
ret = atomic_cmpxchg((uint32_t *)g2h(addr), old, new);
|
|
ret = tswap32(ret);
|
|
break;
|
|
|
|
case 2: /* elf32 atomic "new" cmpxchg */
|
|
size = env->gr[23];
|
|
if (size >= 4) {
|
|
return -TARGET_ENOSYS;
|
|
}
|
|
if (((addr | old | new) & ((1 << size) - 1))
|
|
|| !access_ok(VERIFY_WRITE, addr, 1 << size)
|
|
|| !access_ok(VERIFY_READ, old, 1 << size)
|
|
|| !access_ok(VERIFY_READ, new, 1 << size)) {
|
|
return -TARGET_EFAULT;
|
|
}
|
|
/* Note that below we use host-endian loads so that the cmpxchg
|
|
can be host-endian as well. */
|
|
switch (size) {
|
|
case 0:
|
|
old = *(uint8_t *)g2h(old);
|
|
new = *(uint8_t *)g2h(new);
|
|
ret = atomic_cmpxchg((uint8_t *)g2h(addr), old, new);
|
|
ret = ret != old;
|
|
break;
|
|
case 1:
|
|
old = *(uint16_t *)g2h(old);
|
|
new = *(uint16_t *)g2h(new);
|
|
ret = atomic_cmpxchg((uint16_t *)g2h(addr), old, new);
|
|
ret = ret != old;
|
|
break;
|
|
case 2:
|
|
old = *(uint32_t *)g2h(old);
|
|
new = *(uint32_t *)g2h(new);
|
|
ret = atomic_cmpxchg((uint32_t *)g2h(addr), old, new);
|
|
ret = ret != old;
|
|
break;
|
|
case 3:
|
|
{
|
|
uint64_t o64, n64, r64;
|
|
o64 = *(uint64_t *)g2h(old);
|
|
n64 = *(uint64_t *)g2h(new);
|
|
#ifdef CONFIG_ATOMIC64
|
|
r64 = atomic_cmpxchg__nocheck((uint64_t *)g2h(addr), o64, n64);
|
|
ret = r64 != o64;
|
|
#else
|
|
start_exclusive();
|
|
r64 = *(uint64_t *)g2h(addr);
|
|
ret = 1;
|
|
if (r64 == o64) {
|
|
*(uint64_t *)g2h(addr) = n64;
|
|
ret = 0;
|
|
}
|
|
end_exclusive();
|
|
#endif
|
|
}
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
|
|
env->gr[28] = ret;
|
|
return 0;
|
|
}
|
|
|
|
void cpu_loop(CPUHPPAState *env)
|
|
{
|
|
CPUState *cs = CPU(hppa_env_get_cpu(env));
|
|
target_siginfo_t info;
|
|
abi_ulong ret;
|
|
int trapnr;
|
|
|
|
while (1) {
|
|
cpu_exec_start(cs);
|
|
trapnr = cpu_exec(cs);
|
|
cpu_exec_end(cs);
|
|
process_queued_cpu_work(cs);
|
|
|
|
switch (trapnr) {
|
|
case EXCP_SYSCALL:
|
|
ret = do_syscall(env, env->gr[20],
|
|
env->gr[26], env->gr[25],
|
|
env->gr[24], env->gr[23],
|
|
env->gr[22], env->gr[21], 0, 0);
|
|
switch (ret) {
|
|
default:
|
|
env->gr[28] = ret;
|
|
/* We arrived here by faking the gateway page. Return. */
|
|
env->iaoq_f = env->gr[31];
|
|
env->iaoq_b = env->gr[31] + 4;
|
|
break;
|
|
case -TARGET_ERESTARTSYS:
|
|
case -TARGET_QEMU_ESIGRETURN:
|
|
break;
|
|
}
|
|
break;
|
|
case EXCP_SYSCALL_LWS:
|
|
env->gr[21] = hppa_lws(env);
|
|
/* We arrived here by faking the gateway page. Return. */
|
|
env->iaoq_f = env->gr[31];
|
|
env->iaoq_b = env->gr[31] + 4;
|
|
break;
|
|
case EXCP_ITLB_MISS:
|
|
case EXCP_DTLB_MISS:
|
|
case EXCP_NA_ITLB_MISS:
|
|
case EXCP_NA_DTLB_MISS:
|
|
case EXCP_IMP:
|
|
case EXCP_DMP:
|
|
case EXCP_DMB:
|
|
case EXCP_PAGE_REF:
|
|
case EXCP_DMAR:
|
|
case EXCP_DMPI:
|
|
info.si_signo = TARGET_SIGSEGV;
|
|
info.si_errno = 0;
|
|
info.si_code = TARGET_SEGV_ACCERR;
|
|
info._sifields._sigfault._addr = env->cr[CR_IOR];
|
|
queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
|
|
break;
|
|
case EXCP_UNALIGN:
|
|
info.si_signo = TARGET_SIGBUS;
|
|
info.si_errno = 0;
|
|
info.si_code = 0;
|
|
info._sifields._sigfault._addr = env->cr[CR_IOR];
|
|
queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
|
|
break;
|
|
case EXCP_ILL:
|
|
case EXCP_PRIV_OPR:
|
|
case EXCP_PRIV_REG:
|
|
info.si_signo = TARGET_SIGILL;
|
|
info.si_errno = 0;
|
|
info.si_code = TARGET_ILL_ILLOPN;
|
|
info._sifields._sigfault._addr = env->iaoq_f;
|
|
queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
|
|
break;
|
|
case EXCP_OVERFLOW:
|
|
case EXCP_COND:
|
|
case EXCP_ASSIST:
|
|
info.si_signo = TARGET_SIGFPE;
|
|
info.si_errno = 0;
|
|
info.si_code = 0;
|
|
info._sifields._sigfault._addr = env->iaoq_f;
|
|
queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
|
|
break;
|
|
case EXCP_DEBUG:
|
|
trapnr = gdb_handlesig(cs, TARGET_SIGTRAP);
|
|
if (trapnr) {
|
|
info.si_signo = trapnr;
|
|
info.si_errno = 0;
|
|
info.si_code = TARGET_TRAP_BRKPT;
|
|
queue_signal(env, trapnr, QEMU_SI_FAULT, &info);
|
|
}
|
|
break;
|
|
case EXCP_INTERRUPT:
|
|
/* just indicate that signals should be handled asap */
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
process_pending_signals(env);
|
|
}
|
|
}
|
|
|
|
#endif /* TARGET_HPPA */
|
|
|
|
#ifdef TARGET_XTENSA
|
|
|
|
static void xtensa_rfw(CPUXtensaState *env)
|
|
{
|
|
xtensa_restore_owb(env);
|
|
env->pc = env->sregs[EPC1];
|
|
}
|
|
|
|
static void xtensa_rfwu(CPUXtensaState *env)
|
|
{
|
|
env->sregs[WINDOW_START] |= (1 << env->sregs[WINDOW_BASE]);
|
|
xtensa_rfw(env);
|
|
}
|
|
|
|
static void xtensa_rfwo(CPUXtensaState *env)
|
|
{
|
|
env->sregs[WINDOW_START] &= ~(1 << env->sregs[WINDOW_BASE]);
|
|
xtensa_rfw(env);
|
|
}
|
|
|
|
static void xtensa_overflow4(CPUXtensaState *env)
|
|
{
|
|
put_user_ual(env->regs[0], env->regs[5] - 16);
|
|
put_user_ual(env->regs[1], env->regs[5] - 12);
|
|
put_user_ual(env->regs[2], env->regs[5] - 8);
|
|
put_user_ual(env->regs[3], env->regs[5] - 4);
|
|
xtensa_rfwo(env);
|
|
}
|
|
|
|
static void xtensa_underflow4(CPUXtensaState *env)
|
|
{
|
|
get_user_ual(env->regs[0], env->regs[5] - 16);
|
|
get_user_ual(env->regs[1], env->regs[5] - 12);
|
|
get_user_ual(env->regs[2], env->regs[5] - 8);
|
|
get_user_ual(env->regs[3], env->regs[5] - 4);
|
|
xtensa_rfwu(env);
|
|
}
|
|
|
|
static void xtensa_overflow8(CPUXtensaState *env)
|
|
{
|
|
put_user_ual(env->regs[0], env->regs[9] - 16);
|
|
get_user_ual(env->regs[0], env->regs[1] - 12);
|
|
put_user_ual(env->regs[1], env->regs[9] - 12);
|
|
put_user_ual(env->regs[2], env->regs[9] - 8);
|
|
put_user_ual(env->regs[3], env->regs[9] - 4);
|
|
put_user_ual(env->regs[4], env->regs[0] - 32);
|
|
put_user_ual(env->regs[5], env->regs[0] - 28);
|
|
put_user_ual(env->regs[6], env->regs[0] - 24);
|
|
put_user_ual(env->regs[7], env->regs[0] - 20);
|
|
xtensa_rfwo(env);
|
|
}
|
|
|
|
static void xtensa_underflow8(CPUXtensaState *env)
|
|
{
|
|
get_user_ual(env->regs[0], env->regs[9] - 16);
|
|
get_user_ual(env->regs[1], env->regs[9] - 12);
|
|
get_user_ual(env->regs[2], env->regs[9] - 8);
|
|
get_user_ual(env->regs[7], env->regs[1] - 12);
|
|
get_user_ual(env->regs[3], env->regs[9] - 4);
|
|
get_user_ual(env->regs[4], env->regs[7] - 32);
|
|
get_user_ual(env->regs[5], env->regs[7] - 28);
|
|
get_user_ual(env->regs[6], env->regs[7] - 24);
|
|
get_user_ual(env->regs[7], env->regs[7] - 20);
|
|
xtensa_rfwu(env);
|
|
}
|
|
|
|
static void xtensa_overflow12(CPUXtensaState *env)
|
|
{
|
|
put_user_ual(env->regs[0], env->regs[13] - 16);
|
|
get_user_ual(env->regs[0], env->regs[1] - 12);
|
|
put_user_ual(env->regs[1], env->regs[13] - 12);
|
|
put_user_ual(env->regs[2], env->regs[13] - 8);
|
|
put_user_ual(env->regs[3], env->regs[13] - 4);
|
|
put_user_ual(env->regs[4], env->regs[0] - 48);
|
|
put_user_ual(env->regs[5], env->regs[0] - 44);
|
|
put_user_ual(env->regs[6], env->regs[0] - 40);
|
|
put_user_ual(env->regs[7], env->regs[0] - 36);
|
|
put_user_ual(env->regs[8], env->regs[0] - 32);
|
|
put_user_ual(env->regs[9], env->regs[0] - 28);
|
|
put_user_ual(env->regs[10], env->regs[0] - 24);
|
|
put_user_ual(env->regs[11], env->regs[0] - 20);
|
|
xtensa_rfwo(env);
|
|
}
|
|
|
|
static void xtensa_underflow12(CPUXtensaState *env)
|
|
{
|
|
get_user_ual(env->regs[0], env->regs[13] - 16);
|
|
get_user_ual(env->regs[1], env->regs[13] - 12);
|
|
get_user_ual(env->regs[2], env->regs[13] - 8);
|
|
get_user_ual(env->regs[11], env->regs[1] - 12);
|
|
get_user_ual(env->regs[3], env->regs[13] - 4);
|
|
get_user_ual(env->regs[4], env->regs[11] - 48);
|
|
get_user_ual(env->regs[5], env->regs[11] - 44);
|
|
get_user_ual(env->regs[6], env->regs[11] - 40);
|
|
get_user_ual(env->regs[7], env->regs[11] - 36);
|
|
get_user_ual(env->regs[8], env->regs[11] - 32);
|
|
get_user_ual(env->regs[9], env->regs[11] - 28);
|
|
get_user_ual(env->regs[10], env->regs[11] - 24);
|
|
get_user_ual(env->regs[11], env->regs[11] - 20);
|
|
xtensa_rfwu(env);
|
|
}
|
|
|
|
void cpu_loop(CPUXtensaState *env)
|
|
{
|
|
CPUState *cs = CPU(xtensa_env_get_cpu(env));
|
|
target_siginfo_t info;
|
|
abi_ulong ret;
|
|
int trapnr;
|
|
|
|
while (1) {
|
|
cpu_exec_start(cs);
|
|
trapnr = cpu_exec(cs);
|
|
cpu_exec_end(cs);
|
|
process_queued_cpu_work(cs);
|
|
|
|
env->sregs[PS] &= ~PS_EXCM;
|
|
switch (trapnr) {
|
|
case EXCP_INTERRUPT:
|
|
break;
|
|
|
|
case EXC_WINDOW_OVERFLOW4:
|
|
xtensa_overflow4(env);
|
|
break;
|
|
case EXC_WINDOW_UNDERFLOW4:
|
|
xtensa_underflow4(env);
|
|
break;
|
|
case EXC_WINDOW_OVERFLOW8:
|
|
xtensa_overflow8(env);
|
|
break;
|
|
case EXC_WINDOW_UNDERFLOW8:
|
|
xtensa_underflow8(env);
|
|
break;
|
|
case EXC_WINDOW_OVERFLOW12:
|
|
xtensa_overflow12(env);
|
|
break;
|
|
case EXC_WINDOW_UNDERFLOW12:
|
|
xtensa_underflow12(env);
|
|
break;
|
|
|
|
case EXC_USER:
|
|
switch (env->sregs[EXCCAUSE]) {
|
|
case ILLEGAL_INSTRUCTION_CAUSE:
|
|
case PRIVILEGED_CAUSE:
|
|
info.si_signo = TARGET_SIGILL;
|
|
info.si_errno = 0;
|
|
info.si_code =
|
|
env->sregs[EXCCAUSE] == ILLEGAL_INSTRUCTION_CAUSE ?
|
|
TARGET_ILL_ILLOPC : TARGET_ILL_PRVOPC;
|
|
info._sifields._sigfault._addr = env->sregs[EPC1];
|
|
queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
|
|
break;
|
|
|
|
case SYSCALL_CAUSE:
|
|
env->pc += 3;
|
|
ret = do_syscall(env, env->regs[2],
|
|
env->regs[6], env->regs[3],
|
|
env->regs[4], env->regs[5],
|
|
env->regs[8], env->regs[9], 0, 0);
|
|
switch (ret) {
|
|
default:
|
|
env->regs[2] = ret;
|
|
break;
|
|
|
|
case -TARGET_ERESTARTSYS:
|
|
env->pc -= 3;
|
|
break;
|
|
|
|
case -TARGET_QEMU_ESIGRETURN:
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case ALLOCA_CAUSE:
|
|
env->sregs[PS] = deposit32(env->sregs[PS],
|
|
PS_OWB_SHIFT,
|
|
PS_OWB_LEN,
|
|
env->sregs[WINDOW_BASE]);
|
|
|
|
switch (env->regs[0] & 0xc0000000) {
|
|
case 0x00000000:
|
|
case 0x40000000:
|
|
xtensa_rotate_window(env, -1);
|
|
xtensa_underflow4(env);
|
|
break;
|
|
|
|
case 0x80000000:
|
|
xtensa_rotate_window(env, -2);
|
|
xtensa_underflow8(env);
|
|
break;
|
|
|
|
case 0xc0000000:
|
|
xtensa_rotate_window(env, -3);
|
|
xtensa_underflow12(env);
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case INTEGER_DIVIDE_BY_ZERO_CAUSE:
|
|
info.si_signo = TARGET_SIGFPE;
|
|
info.si_errno = 0;
|
|
info.si_code = TARGET_FPE_INTDIV;
|
|
info._sifields._sigfault._addr = env->sregs[EPC1];
|
|
queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
|
|
break;
|
|
|
|
case LOAD_PROHIBITED_CAUSE:
|
|
case STORE_PROHIBITED_CAUSE:
|
|
info.si_signo = TARGET_SIGSEGV;
|
|
info.si_errno = 0;
|
|
info.si_code = TARGET_SEGV_ACCERR;
|
|
info._sifields._sigfault._addr = env->sregs[EXCVADDR];
|
|
queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
|
|
break;
|
|
|
|
default:
|
|
fprintf(stderr, "exccause = %d\n", env->sregs[EXCCAUSE]);
|
|
g_assert_not_reached();
|
|
}
|
|
break;
|
|
case EXCP_DEBUG:
|
|
trapnr = gdb_handlesig(cs, TARGET_SIGTRAP);
|
|
if (trapnr) {
|
|
info.si_signo = trapnr;
|
|
info.si_errno = 0;
|
|
info.si_code = TARGET_TRAP_BRKPT;
|
|
queue_signal(env, trapnr, QEMU_SI_FAULT, &info);
|
|
}
|
|
break;
|
|
case EXC_DEBUG:
|
|
default:
|
|
fprintf(stderr, "trapnr = %d\n", trapnr);
|
|
g_assert_not_reached();
|
|
}
|
|
process_pending_signals(env);
|
|
}
|
|
}
|
|
|
|
#endif /* TARGET_XTENSA */
|
|
|
|
__thread CPUState *thread_cpu;
|
|
|
|
bool qemu_cpu_is_self(CPUState *cpu)
|
|
{
|
|
return thread_cpu == cpu;
|
|
}
|
|
|
|
void qemu_cpu_kick(CPUState *cpu)
|
|
{
|
|
cpu_exit(cpu);
|
|
}
|
|
|
|
void task_settid(TaskState *ts)
|
|
{
|
|
if (ts->ts_tid == 0) {
|
|
ts->ts_tid = (pid_t)syscall(SYS_gettid);
|
|
}
|
|
}
|
|
|
|
void stop_all_tasks(void)
|
|
{
|
|
/*
|
|
* We trust that when using NPTL, start_exclusive()
|
|
* handles thread stopping correctly.
|
|
*/
|
|
start_exclusive();
|
|
}
|
|
|
|
/* Assumes contents are already zeroed. */
|
|
void init_task_state(TaskState *ts)
|
|
{
|
|
ts->used = 1;
|
|
}
|
|
|
|
CPUArchState *cpu_copy(CPUArchState *env)
|
|
{
|
|
CPUState *cpu = ENV_GET_CPU(env);
|
|
CPUState *new_cpu = cpu_create(cpu_type);
|
|
CPUArchState *new_env = new_cpu->env_ptr;
|
|
CPUBreakpoint *bp;
|
|
CPUWatchpoint *wp;
|
|
|
|
/* Reset non arch specific state */
|
|
cpu_reset(new_cpu);
|
|
|
|
memcpy(new_env, env, sizeof(CPUArchState));
|
|
|
|
/* Clone all break/watchpoints.
|
|
Note: Once we support ptrace with hw-debug register access, make sure
|
|
BP_CPU break/watchpoints are handled correctly on clone. */
|
|
QTAILQ_INIT(&new_cpu->breakpoints);
|
|
QTAILQ_INIT(&new_cpu->watchpoints);
|
|
QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
|
|
cpu_breakpoint_insert(new_cpu, bp->pc, bp->flags, NULL);
|
|
}
|
|
QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
|
|
cpu_watchpoint_insert(new_cpu, wp->vaddr, wp->len, wp->flags, NULL);
|
|
}
|
|
|
|
return new_env;
|
|
}
|
|
|
|
static void handle_arg_help(const char *arg)
|
|
{
|
|
usage(EXIT_SUCCESS);
|
|
}
|
|
|
|
static void handle_arg_log(const char *arg)
|
|
{
|
|
int mask;
|
|
|
|
mask = qemu_str_to_log_mask(arg);
|
|
if (!mask) {
|
|
qemu_print_log_usage(stdout);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
qemu_log_needs_buffers();
|
|
qemu_set_log(mask);
|
|
}
|
|
|
|
static void handle_arg_dfilter(const char *arg)
|
|
{
|
|
qemu_set_dfilter_ranges(arg, NULL);
|
|
}
|
|
|
|
static void handle_arg_log_filename(const char *arg)
|
|
{
|
|
qemu_set_log_filename(arg, &error_fatal);
|
|
}
|
|
|
|
static void handle_arg_set_env(const char *arg)
|
|
{
|
|
char *r, *p, *token;
|
|
r = p = strdup(arg);
|
|
while ((token = strsep(&p, ",")) != NULL) {
|
|
if (envlist_setenv(envlist, token) != 0) {
|
|
usage(EXIT_FAILURE);
|
|
}
|
|
}
|
|
free(r);
|
|
}
|
|
|
|
static void handle_arg_unset_env(const char *arg)
|
|
{
|
|
char *r, *p, *token;
|
|
r = p = strdup(arg);
|
|
while ((token = strsep(&p, ",")) != NULL) {
|
|
if (envlist_unsetenv(envlist, token) != 0) {
|
|
usage(EXIT_FAILURE);
|
|
}
|
|
}
|
|
free(r);
|
|
}
|
|
|
|
static void handle_arg_argv0(const char *arg)
|
|
{
|
|
argv0 = strdup(arg);
|
|
}
|
|
|
|
static void handle_arg_stack_size(const char *arg)
|
|
{
|
|
char *p;
|
|
guest_stack_size = strtoul(arg, &p, 0);
|
|
if (guest_stack_size == 0) {
|
|
usage(EXIT_FAILURE);
|
|
}
|
|
|
|
if (*p == 'M') {
|
|
guest_stack_size *= 1024 * 1024;
|
|
} else if (*p == 'k' || *p == 'K') {
|
|
guest_stack_size *= 1024;
|
|
}
|
|
}
|
|
|
|
static void handle_arg_ld_prefix(const char *arg)
|
|
{
|
|
interp_prefix = strdup(arg);
|
|
}
|
|
|
|
static void handle_arg_pagesize(const char *arg)
|
|
{
|
|
qemu_host_page_size = atoi(arg);
|
|
if (qemu_host_page_size == 0 ||
|
|
(qemu_host_page_size & (qemu_host_page_size - 1)) != 0) {
|
|
fprintf(stderr, "page size must be a power of two\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
|
|
static void handle_arg_randseed(const char *arg)
|
|
{
|
|
unsigned long long seed;
|
|
|
|
if (parse_uint_full(arg, &seed, 0) != 0 || seed > UINT_MAX) {
|
|
fprintf(stderr, "Invalid seed number: %s\n", arg);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
srand(seed);
|
|
}
|
|
|
|
static void handle_arg_gdb(const char *arg)
|
|
{
|
|
gdbstub_port = atoi(arg);
|
|
}
|
|
|
|
static void handle_arg_uname(const char *arg)
|
|
{
|
|
qemu_uname_release = strdup(arg);
|
|
}
|
|
|
|
static void handle_arg_cpu(const char *arg)
|
|
{
|
|
cpu_model = strdup(arg);
|
|
if (cpu_model == NULL || is_help_option(cpu_model)) {
|
|
/* XXX: implement xxx_cpu_list for targets that still miss it */
|
|
#if defined(cpu_list)
|
|
cpu_list(stdout, &fprintf);
|
|
#endif
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
|
|
static void handle_arg_guest_base(const char *arg)
|
|
{
|
|
guest_base = strtol(arg, NULL, 0);
|
|
have_guest_base = 1;
|
|
}
|
|
|
|
static void handle_arg_reserved_va(const char *arg)
|
|
{
|
|
char *p;
|
|
int shift = 0;
|
|
reserved_va = strtoul(arg, &p, 0);
|
|
switch (*p) {
|
|
case 'k':
|
|
case 'K':
|
|
shift = 10;
|
|
break;
|
|
case 'M':
|
|
shift = 20;
|
|
break;
|
|
case 'G':
|
|
shift = 30;
|
|
break;
|
|
}
|
|
if (shift) {
|
|
unsigned long unshifted = reserved_va;
|
|
p++;
|
|
reserved_va <<= shift;
|
|
if (reserved_va >> shift != unshifted
|
|
|| (MAX_RESERVED_VA && reserved_va > MAX_RESERVED_VA)) {
|
|
fprintf(stderr, "Reserved virtual address too big\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
if (*p) {
|
|
fprintf(stderr, "Unrecognised -R size suffix '%s'\n", p);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
|
|
static void handle_arg_singlestep(const char *arg)
|
|
{
|
|
singlestep = 1;
|
|
}
|
|
|
|
static void handle_arg_strace(const char *arg)
|
|
{
|
|
do_strace = 1;
|
|
}
|
|
|
|
static void handle_arg_version(const char *arg)
|
|
{
|
|
printf("qemu-" TARGET_NAME " version " QEMU_FULL_VERSION
|
|
"\n" QEMU_COPYRIGHT "\n");
|
|
exit(EXIT_SUCCESS);
|
|
}
|
|
|
|
static char *trace_file;
|
|
static void handle_arg_trace(const char *arg)
|
|
{
|
|
g_free(trace_file);
|
|
trace_file = trace_opt_parse(arg);
|
|
}
|
|
|
|
struct qemu_argument {
|
|
const char *argv;
|
|
const char *env;
|
|
bool has_arg;
|
|
void (*handle_opt)(const char *arg);
|
|
const char *example;
|
|
const char *help;
|
|
};
|
|
|
|
static const struct qemu_argument arg_table[] = {
|
|
{"h", "", false, handle_arg_help,
|
|
"", "print this help"},
|
|
{"help", "", false, handle_arg_help,
|
|
"", ""},
|
|
{"g", "QEMU_GDB", true, handle_arg_gdb,
|
|
"port", "wait gdb connection to 'port'"},
|
|
{"L", "QEMU_LD_PREFIX", true, handle_arg_ld_prefix,
|
|
"path", "set the elf interpreter prefix to 'path'"},
|
|
{"s", "QEMU_STACK_SIZE", true, handle_arg_stack_size,
|
|
"size", "set the stack size to 'size' bytes"},
|
|
{"cpu", "QEMU_CPU", true, handle_arg_cpu,
|
|
"model", "select CPU (-cpu help for list)"},
|
|
{"E", "QEMU_SET_ENV", true, handle_arg_set_env,
|
|
"var=value", "sets targets environment variable (see below)"},
|
|
{"U", "QEMU_UNSET_ENV", true, handle_arg_unset_env,
|
|
"var", "unsets targets environment variable (see below)"},
|
|
{"0", "QEMU_ARGV0", true, handle_arg_argv0,
|
|
"argv0", "forces target process argv[0] to be 'argv0'"},
|
|
{"r", "QEMU_UNAME", true, handle_arg_uname,
|
|
"uname", "set qemu uname release string to 'uname'"},
|
|
{"B", "QEMU_GUEST_BASE", true, handle_arg_guest_base,
|
|
"address", "set guest_base address to 'address'"},
|
|
{"R", "QEMU_RESERVED_VA", true, handle_arg_reserved_va,
|
|
"size", "reserve 'size' bytes for guest virtual address space"},
|
|
{"d", "QEMU_LOG", true, handle_arg_log,
|
|
"item[,...]", "enable logging of specified items "
|
|
"(use '-d help' for a list of items)"},
|
|
{"dfilter", "QEMU_DFILTER", true, handle_arg_dfilter,
|
|
"range[,...]","filter logging based on address range"},
|
|
{"D", "QEMU_LOG_FILENAME", true, handle_arg_log_filename,
|
|
"logfile", "write logs to 'logfile' (default stderr)"},
|
|
{"p", "QEMU_PAGESIZE", true, handle_arg_pagesize,
|
|
"pagesize", "set the host page size to 'pagesize'"},
|
|
{"singlestep", "QEMU_SINGLESTEP", false, handle_arg_singlestep,
|
|
"", "run in singlestep mode"},
|
|
{"strace", "QEMU_STRACE", false, handle_arg_strace,
|
|
"", "log system calls"},
|
|
{"seed", "QEMU_RAND_SEED", true, handle_arg_randseed,
|
|
"", "Seed for pseudo-random number generator"},
|
|
{"trace", "QEMU_TRACE", true, handle_arg_trace,
|
|
"", "[[enable=]<pattern>][,events=<file>][,file=<file>]"},
|
|
{"version", "QEMU_VERSION", false, handle_arg_version,
|
|
"", "display version information and exit"},
|
|
{NULL, NULL, false, NULL, NULL, NULL}
|
|
};
|
|
|
|
static void usage(int exitcode)
|
|
{
|
|
const struct qemu_argument *arginfo;
|
|
int maxarglen;
|
|
int maxenvlen;
|
|
|
|
printf("usage: qemu-" TARGET_NAME " [options] program [arguments...]\n"
|
|
"Linux CPU emulator (compiled for " TARGET_NAME " emulation)\n"
|
|
"\n"
|
|
"Options and associated environment variables:\n"
|
|
"\n");
|
|
|
|
/* Calculate column widths. We must always have at least enough space
|
|
* for the column header.
|
|
*/
|
|
maxarglen = strlen("Argument");
|
|
maxenvlen = strlen("Env-variable");
|
|
|
|
for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) {
|
|
int arglen = strlen(arginfo->argv);
|
|
if (arginfo->has_arg) {
|
|
arglen += strlen(arginfo->example) + 1;
|
|
}
|
|
if (strlen(arginfo->env) > maxenvlen) {
|
|
maxenvlen = strlen(arginfo->env);
|
|
}
|
|
if (arglen > maxarglen) {
|
|
maxarglen = arglen;
|
|
}
|
|
}
|
|
|
|
printf("%-*s %-*s Description\n", maxarglen+1, "Argument",
|
|
maxenvlen, "Env-variable");
|
|
|
|
for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) {
|
|
if (arginfo->has_arg) {
|
|
printf("-%s %-*s %-*s %s\n", arginfo->argv,
|
|
(int)(maxarglen - strlen(arginfo->argv) - 1),
|
|
arginfo->example, maxenvlen, arginfo->env, arginfo->help);
|
|
} else {
|
|
printf("-%-*s %-*s %s\n", maxarglen, arginfo->argv,
|
|
maxenvlen, arginfo->env,
|
|
arginfo->help);
|
|
}
|
|
}
|
|
|
|
printf("\n"
|
|
"Defaults:\n"
|
|
"QEMU_LD_PREFIX = %s\n"
|
|
"QEMU_STACK_SIZE = %ld byte\n",
|
|
interp_prefix,
|
|
guest_stack_size);
|
|
|
|
printf("\n"
|
|
"You can use -E and -U options or the QEMU_SET_ENV and\n"
|
|
"QEMU_UNSET_ENV environment variables to set and unset\n"
|
|
"environment variables for the target process.\n"
|
|
"It is possible to provide several variables by separating them\n"
|
|
"by commas in getsubopt(3) style. Additionally it is possible to\n"
|
|
"provide the -E and -U options multiple times.\n"
|
|
"The following lines are equivalent:\n"
|
|
" -E var1=val2 -E var2=val2 -U LD_PRELOAD -U LD_DEBUG\n"
|
|
" -E var1=val2,var2=val2 -U LD_PRELOAD,LD_DEBUG\n"
|
|
" QEMU_SET_ENV=var1=val2,var2=val2 QEMU_UNSET_ENV=LD_PRELOAD,LD_DEBUG\n"
|
|
"Note that if you provide several changes to a single variable\n"
|
|
"the last change will stay in effect.\n"
|
|
"\n"
|
|
QEMU_HELP_BOTTOM "\n");
|
|
|
|
exit(exitcode);
|
|
}
|
|
|
|
static int parse_args(int argc, char **argv)
|
|
{
|
|
const char *r;
|
|
int optind;
|
|
const struct qemu_argument *arginfo;
|
|
|
|
for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) {
|
|
if (arginfo->env == NULL) {
|
|
continue;
|
|
}
|
|
|
|
r = getenv(arginfo->env);
|
|
if (r != NULL) {
|
|
arginfo->handle_opt(r);
|
|
}
|
|
}
|
|
|
|
optind = 1;
|
|
for (;;) {
|
|
if (optind >= argc) {
|
|
break;
|
|
}
|
|
r = argv[optind];
|
|
if (r[0] != '-') {
|
|
break;
|
|
}
|
|
optind++;
|
|
r++;
|
|
if (!strcmp(r, "-")) {
|
|
break;
|
|
}
|
|
/* Treat --foo the same as -foo. */
|
|
if (r[0] == '-') {
|
|
r++;
|
|
}
|
|
|
|
for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) {
|
|
if (!strcmp(r, arginfo->argv)) {
|
|
if (arginfo->has_arg) {
|
|
if (optind >= argc) {
|
|
(void) fprintf(stderr,
|
|
"qemu: missing argument for option '%s'\n", r);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
arginfo->handle_opt(argv[optind]);
|
|
optind++;
|
|
} else {
|
|
arginfo->handle_opt(NULL);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* no option matched the current argv */
|
|
if (arginfo->handle_opt == NULL) {
|
|
(void) fprintf(stderr, "qemu: unknown option '%s'\n", r);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
|
|
if (optind >= argc) {
|
|
(void) fprintf(stderr, "qemu: no user program specified\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
filename = argv[optind];
|
|
exec_path = argv[optind];
|
|
|
|
return optind;
|
|
}
|
|
|
|
int main(int argc, char **argv, char **envp)
|
|
{
|
|
struct target_pt_regs regs1, *regs = ®s1;
|
|
struct image_info info1, *info = &info1;
|
|
struct linux_binprm bprm;
|
|
TaskState *ts;
|
|
CPUArchState *env;
|
|
CPUState *cpu;
|
|
int optind;
|
|
char **target_environ, **wrk;
|
|
char **target_argv;
|
|
int target_argc;
|
|
int i;
|
|
int ret;
|
|
int execfd;
|
|
|
|
module_call_init(MODULE_INIT_TRACE);
|
|
qemu_init_cpu_list();
|
|
module_call_init(MODULE_INIT_QOM);
|
|
|
|
envlist = envlist_create();
|
|
|
|
/* add current environment into the list */
|
|
for (wrk = environ; *wrk != NULL; wrk++) {
|
|
(void) envlist_setenv(envlist, *wrk);
|
|
}
|
|
|
|
/* Read the stack limit from the kernel. If it's "unlimited",
|
|
then we can do little else besides use the default. */
|
|
{
|
|
struct rlimit lim;
|
|
if (getrlimit(RLIMIT_STACK, &lim) == 0
|
|
&& lim.rlim_cur != RLIM_INFINITY
|
|
&& lim.rlim_cur == (target_long)lim.rlim_cur) {
|
|
guest_stack_size = lim.rlim_cur;
|
|
}
|
|
}
|
|
|
|
cpu_model = NULL;
|
|
|
|
srand(time(NULL));
|
|
|
|
qemu_add_opts(&qemu_trace_opts);
|
|
|
|
optind = parse_args(argc, argv);
|
|
|
|
if (!trace_init_backends()) {
|
|
exit(1);
|
|
}
|
|
trace_init_file(trace_file);
|
|
|
|
/* Zero out regs */
|
|
memset(regs, 0, sizeof(struct target_pt_regs));
|
|
|
|
/* Zero out image_info */
|
|
memset(info, 0, sizeof(struct image_info));
|
|
|
|
memset(&bprm, 0, sizeof (bprm));
|
|
|
|
/* Scan interp_prefix dir for replacement files. */
|
|
init_paths(interp_prefix);
|
|
|
|
init_qemu_uname_release();
|
|
|
|
execfd = qemu_getauxval(AT_EXECFD);
|
|
if (execfd == 0) {
|
|
execfd = open(filename, O_RDONLY);
|
|
if (execfd < 0) {
|
|
printf("Error while loading %s: %s\n", filename, strerror(errno));
|
|
_exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
|
|
if (cpu_model == NULL) {
|
|
cpu_model = cpu_get_model(get_elf_eflags(execfd));
|
|
}
|
|
cpu_type = parse_cpu_model(cpu_model);
|
|
|
|
tcg_exec_init(0);
|
|
/* NOTE: we need to init the CPU at this stage to get
|
|
qemu_host_page_size */
|
|
|
|
cpu = cpu_create(cpu_type);
|
|
env = cpu->env_ptr;
|
|
cpu_reset(cpu);
|
|
|
|
thread_cpu = cpu;
|
|
|
|
if (getenv("QEMU_STRACE")) {
|
|
do_strace = 1;
|
|
}
|
|
|
|
if (getenv("QEMU_RAND_SEED")) {
|
|
handle_arg_randseed(getenv("QEMU_RAND_SEED"));
|
|
}
|
|
|
|
target_environ = envlist_to_environ(envlist, NULL);
|
|
envlist_free(envlist);
|
|
|
|
/*
|
|
* Now that page sizes are configured in cpu_init() we can do
|
|
* proper page alignment for guest_base.
|
|
*/
|
|
guest_base = HOST_PAGE_ALIGN(guest_base);
|
|
|
|
if (reserved_va || have_guest_base) {
|
|
guest_base = init_guest_space(guest_base, reserved_va, 0,
|
|
have_guest_base);
|
|
if (guest_base == (unsigned long)-1) {
|
|
fprintf(stderr, "Unable to reserve 0x%lx bytes of virtual address "
|
|
"space for use as guest address space (check your virtual "
|
|
"memory ulimit setting or reserve less using -R option)\n",
|
|
reserved_va);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
if (reserved_va) {
|
|
mmap_next_start = reserved_va;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Read in mmap_min_addr kernel parameter. This value is used
|
|
* When loading the ELF image to determine whether guest_base
|
|
* is needed. It is also used in mmap_find_vma.
|
|
*/
|
|
{
|
|
FILE *fp;
|
|
|
|
if ((fp = fopen("/proc/sys/vm/mmap_min_addr", "r")) != NULL) {
|
|
unsigned long tmp;
|
|
if (fscanf(fp, "%lu", &tmp) == 1) {
|
|
mmap_min_addr = tmp;
|
|
qemu_log_mask(CPU_LOG_PAGE, "host mmap_min_addr=0x%lx\n", mmap_min_addr);
|
|
}
|
|
fclose(fp);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Prepare copy of argv vector for target.
|
|
*/
|
|
target_argc = argc - optind;
|
|
target_argv = calloc(target_argc + 1, sizeof (char *));
|
|
if (target_argv == NULL) {
|
|
(void) fprintf(stderr, "Unable to allocate memory for target_argv\n");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
/*
|
|
* If argv0 is specified (using '-0' switch) we replace
|
|
* argv[0] pointer with the given one.
|
|
*/
|
|
i = 0;
|
|
if (argv0 != NULL) {
|
|
target_argv[i++] = strdup(argv0);
|
|
}
|
|
for (; i < target_argc; i++) {
|
|
target_argv[i] = strdup(argv[optind + i]);
|
|
}
|
|
target_argv[target_argc] = NULL;
|
|
|
|
ts = g_new0(TaskState, 1);
|
|
init_task_state(ts);
|
|
/* build Task State */
|
|
ts->info = info;
|
|
ts->bprm = &bprm;
|
|
cpu->opaque = ts;
|
|
task_settid(ts);
|
|
|
|
ret = loader_exec(execfd, filename, target_argv, target_environ, regs,
|
|
info, &bprm);
|
|
if (ret != 0) {
|
|
printf("Error while loading %s: %s\n", filename, strerror(-ret));
|
|
_exit(EXIT_FAILURE);
|
|
}
|
|
|
|
for (wrk = target_environ; *wrk; wrk++) {
|
|
g_free(*wrk);
|
|
}
|
|
|
|
g_free(target_environ);
|
|
|
|
if (qemu_loglevel_mask(CPU_LOG_PAGE)) {
|
|
qemu_log("guest_base 0x%lx\n", guest_base);
|
|
log_page_dump();
|
|
|
|
qemu_log("start_brk 0x" TARGET_ABI_FMT_lx "\n", info->start_brk);
|
|
qemu_log("end_code 0x" TARGET_ABI_FMT_lx "\n", info->end_code);
|
|
qemu_log("start_code 0x" TARGET_ABI_FMT_lx "\n", info->start_code);
|
|
qemu_log("start_data 0x" TARGET_ABI_FMT_lx "\n", info->start_data);
|
|
qemu_log("end_data 0x" TARGET_ABI_FMT_lx "\n", info->end_data);
|
|
qemu_log("start_stack 0x" TARGET_ABI_FMT_lx "\n", info->start_stack);
|
|
qemu_log("brk 0x" TARGET_ABI_FMT_lx "\n", info->brk);
|
|
qemu_log("entry 0x" TARGET_ABI_FMT_lx "\n", info->entry);
|
|
qemu_log("argv_start 0x" TARGET_ABI_FMT_lx "\n", info->arg_start);
|
|
qemu_log("env_start 0x" TARGET_ABI_FMT_lx "\n",
|
|
info->arg_end + (abi_ulong)sizeof(abi_ulong));
|
|
qemu_log("auxv_start 0x" TARGET_ABI_FMT_lx "\n", info->saved_auxv);
|
|
}
|
|
|
|
target_set_brk(info->brk);
|
|
syscall_init();
|
|
signal_init();
|
|
|
|
/* Now that we've loaded the binary, GUEST_BASE is fixed. Delay
|
|
generating the prologue until now so that the prologue can take
|
|
the real value of GUEST_BASE into account. */
|
|
tcg_prologue_init(tcg_ctx);
|
|
tcg_region_init();
|
|
|
|
target_cpu_copy_regs(env, regs);
|
|
|
|
#if defined(TARGET_RISCV)
|
|
{
|
|
env->pc = regs->sepc;
|
|
env->gpr[xSP] = regs->sp;
|
|
}
|
|
#elif defined(TARGET_TILEGX)
|
|
{
|
|
int i;
|
|
for (i = 0; i < TILEGX_R_COUNT; i++) {
|
|
env->regs[i] = regs->regs[i];
|
|
}
|
|
for (i = 0; i < TILEGX_SPR_COUNT; i++) {
|
|
env->spregs[i] = 0;
|
|
}
|
|
env->pc = regs->pc;
|
|
}
|
|
#elif defined(TARGET_HPPA)
|
|
{
|
|
int i;
|
|
for (i = 1; i < 32; i++) {
|
|
env->gr[i] = regs->gr[i];
|
|
}
|
|
env->iaoq_f = regs->iaoq[0];
|
|
env->iaoq_b = regs->iaoq[1];
|
|
}
|
|
#elif defined(TARGET_XTENSA)
|
|
{
|
|
int i;
|
|
for (i = 0; i < 16; ++i) {
|
|
env->regs[i] = regs->areg[i];
|
|
}
|
|
env->sregs[WINDOW_START] = regs->windowstart;
|
|
env->pc = regs->pc;
|
|
}
|
|
#endif
|
|
|
|
if (gdbstub_port) {
|
|
if (gdbserver_start(gdbstub_port) < 0) {
|
|
fprintf(stderr, "qemu: could not open gdbserver on port %d\n",
|
|
gdbstub_port);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
gdb_handlesig(cpu, 0);
|
|
}
|
|
cpu_loop(env);
|
|
/* never exits */
|
|
return 0;
|
|
}
|