8110fa1d94
Generated using: $ ./scripts/codeconverter/converter.py -i \ --pattern=TypeCheckMacro $(git grep -l '' -- '*.[ch]') Reviewed-by: Daniel P. Berrangé <berrange@redhat.com> Reviewed-by: Juan Quintela <quintela@redhat.com> Message-Id: <20200831210740.126168-12-ehabkost@redhat.com> Reviewed-by: Juan Quintela <quintela@redhat.com> Message-Id: <20200831210740.126168-13-ehabkost@redhat.com> Message-Id: <20200831210740.126168-14-ehabkost@redhat.com> Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
2378 lines
68 KiB
C
2378 lines
68 KiB
C
/*
|
|
* QEMU LSI53C895A SCSI Host Bus Adapter emulation
|
|
*
|
|
* Copyright (c) 2006 CodeSourcery.
|
|
* Written by Paul Brook
|
|
*
|
|
* This code is licensed under the LGPL.
|
|
*/
|
|
|
|
/* Note:
|
|
* LSI53C810 emulation is incorrect, in the sense that it supports
|
|
* features added in later evolutions. This should not be a problem,
|
|
* as well-behaved operating systems will not try to use them.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
|
|
#include "hw/irq.h"
|
|
#include "hw/pci/pci.h"
|
|
#include "hw/scsi/scsi.h"
|
|
#include "migration/vmstate.h"
|
|
#include "sysemu/dma.h"
|
|
#include "qemu/log.h"
|
|
#include "qemu/module.h"
|
|
#include "trace.h"
|
|
#include "qom/object.h"
|
|
|
|
static const char *names[] = {
|
|
"SCNTL0", "SCNTL1", "SCNTL2", "SCNTL3", "SCID", "SXFER", "SDID", "GPREG",
|
|
"SFBR", "SOCL", "SSID", "SBCL", "DSTAT", "SSTAT0", "SSTAT1", "SSTAT2",
|
|
"DSA0", "DSA1", "DSA2", "DSA3", "ISTAT", "0x15", "0x16", "0x17",
|
|
"CTEST0", "CTEST1", "CTEST2", "CTEST3", "TEMP0", "TEMP1", "TEMP2", "TEMP3",
|
|
"DFIFO", "CTEST4", "CTEST5", "CTEST6", "DBC0", "DBC1", "DBC2", "DCMD",
|
|
"DNAD0", "DNAD1", "DNAD2", "DNAD3", "DSP0", "DSP1", "DSP2", "DSP3",
|
|
"DSPS0", "DSPS1", "DSPS2", "DSPS3", "SCRATCHA0", "SCRATCHA1", "SCRATCHA2", "SCRATCHA3",
|
|
"DMODE", "DIEN", "SBR", "DCNTL", "ADDER0", "ADDER1", "ADDER2", "ADDER3",
|
|
"SIEN0", "SIEN1", "SIST0", "SIST1", "SLPAR", "0x45", "MACNTL", "GPCNTL",
|
|
"STIME0", "STIME1", "RESPID", "0x4b", "STEST0", "STEST1", "STEST2", "STEST3",
|
|
"SIDL", "0x51", "0x52", "0x53", "SODL", "0x55", "0x56", "0x57",
|
|
"SBDL", "0x59", "0x5a", "0x5b", "SCRATCHB0", "SCRATCHB1", "SCRATCHB2", "SCRATCHB3",
|
|
};
|
|
|
|
#define LSI_MAX_DEVS 7
|
|
|
|
#define LSI_SCNTL0_TRG 0x01
|
|
#define LSI_SCNTL0_AAP 0x02
|
|
#define LSI_SCNTL0_EPC 0x08
|
|
#define LSI_SCNTL0_WATN 0x10
|
|
#define LSI_SCNTL0_START 0x20
|
|
|
|
#define LSI_SCNTL1_SST 0x01
|
|
#define LSI_SCNTL1_IARB 0x02
|
|
#define LSI_SCNTL1_AESP 0x04
|
|
#define LSI_SCNTL1_RST 0x08
|
|
#define LSI_SCNTL1_CON 0x10
|
|
#define LSI_SCNTL1_DHP 0x20
|
|
#define LSI_SCNTL1_ADB 0x40
|
|
#define LSI_SCNTL1_EXC 0x80
|
|
|
|
#define LSI_SCNTL2_WSR 0x01
|
|
#define LSI_SCNTL2_VUE0 0x02
|
|
#define LSI_SCNTL2_VUE1 0x04
|
|
#define LSI_SCNTL2_WSS 0x08
|
|
#define LSI_SCNTL2_SLPHBEN 0x10
|
|
#define LSI_SCNTL2_SLPMD 0x20
|
|
#define LSI_SCNTL2_CHM 0x40
|
|
#define LSI_SCNTL2_SDU 0x80
|
|
|
|
#define LSI_ISTAT0_DIP 0x01
|
|
#define LSI_ISTAT0_SIP 0x02
|
|
#define LSI_ISTAT0_INTF 0x04
|
|
#define LSI_ISTAT0_CON 0x08
|
|
#define LSI_ISTAT0_SEM 0x10
|
|
#define LSI_ISTAT0_SIGP 0x20
|
|
#define LSI_ISTAT0_SRST 0x40
|
|
#define LSI_ISTAT0_ABRT 0x80
|
|
|
|
#define LSI_ISTAT1_SI 0x01
|
|
#define LSI_ISTAT1_SRUN 0x02
|
|
#define LSI_ISTAT1_FLSH 0x04
|
|
|
|
#define LSI_SSTAT0_SDP0 0x01
|
|
#define LSI_SSTAT0_RST 0x02
|
|
#define LSI_SSTAT0_WOA 0x04
|
|
#define LSI_SSTAT0_LOA 0x08
|
|
#define LSI_SSTAT0_AIP 0x10
|
|
#define LSI_SSTAT0_OLF 0x20
|
|
#define LSI_SSTAT0_ORF 0x40
|
|
#define LSI_SSTAT0_ILF 0x80
|
|
|
|
#define LSI_SIST0_PAR 0x01
|
|
#define LSI_SIST0_RST 0x02
|
|
#define LSI_SIST0_UDC 0x04
|
|
#define LSI_SIST0_SGE 0x08
|
|
#define LSI_SIST0_RSL 0x10
|
|
#define LSI_SIST0_SEL 0x20
|
|
#define LSI_SIST0_CMP 0x40
|
|
#define LSI_SIST0_MA 0x80
|
|
|
|
#define LSI_SIST1_HTH 0x01
|
|
#define LSI_SIST1_GEN 0x02
|
|
#define LSI_SIST1_STO 0x04
|
|
#define LSI_SIST1_SBMC 0x10
|
|
|
|
#define LSI_SOCL_IO 0x01
|
|
#define LSI_SOCL_CD 0x02
|
|
#define LSI_SOCL_MSG 0x04
|
|
#define LSI_SOCL_ATN 0x08
|
|
#define LSI_SOCL_SEL 0x10
|
|
#define LSI_SOCL_BSY 0x20
|
|
#define LSI_SOCL_ACK 0x40
|
|
#define LSI_SOCL_REQ 0x80
|
|
|
|
#define LSI_DSTAT_IID 0x01
|
|
#define LSI_DSTAT_SIR 0x04
|
|
#define LSI_DSTAT_SSI 0x08
|
|
#define LSI_DSTAT_ABRT 0x10
|
|
#define LSI_DSTAT_BF 0x20
|
|
#define LSI_DSTAT_MDPE 0x40
|
|
#define LSI_DSTAT_DFE 0x80
|
|
|
|
#define LSI_DCNTL_COM 0x01
|
|
#define LSI_DCNTL_IRQD 0x02
|
|
#define LSI_DCNTL_STD 0x04
|
|
#define LSI_DCNTL_IRQM 0x08
|
|
#define LSI_DCNTL_SSM 0x10
|
|
#define LSI_DCNTL_PFEN 0x20
|
|
#define LSI_DCNTL_PFF 0x40
|
|
#define LSI_DCNTL_CLSE 0x80
|
|
|
|
#define LSI_DMODE_MAN 0x01
|
|
#define LSI_DMODE_BOF 0x02
|
|
#define LSI_DMODE_ERMP 0x04
|
|
#define LSI_DMODE_ERL 0x08
|
|
#define LSI_DMODE_DIOM 0x10
|
|
#define LSI_DMODE_SIOM 0x20
|
|
|
|
#define LSI_CTEST2_DACK 0x01
|
|
#define LSI_CTEST2_DREQ 0x02
|
|
#define LSI_CTEST2_TEOP 0x04
|
|
#define LSI_CTEST2_PCICIE 0x08
|
|
#define LSI_CTEST2_CM 0x10
|
|
#define LSI_CTEST2_CIO 0x20
|
|
#define LSI_CTEST2_SIGP 0x40
|
|
#define LSI_CTEST2_DDIR 0x80
|
|
|
|
#define LSI_CTEST5_BL2 0x04
|
|
#define LSI_CTEST5_DDIR 0x08
|
|
#define LSI_CTEST5_MASR 0x10
|
|
#define LSI_CTEST5_DFSN 0x20
|
|
#define LSI_CTEST5_BBCK 0x40
|
|
#define LSI_CTEST5_ADCK 0x80
|
|
|
|
#define LSI_CCNTL0_DILS 0x01
|
|
#define LSI_CCNTL0_DISFC 0x10
|
|
#define LSI_CCNTL0_ENNDJ 0x20
|
|
#define LSI_CCNTL0_PMJCTL 0x40
|
|
#define LSI_CCNTL0_ENPMJ 0x80
|
|
|
|
#define LSI_CCNTL1_EN64DBMV 0x01
|
|
#define LSI_CCNTL1_EN64TIBMV 0x02
|
|
#define LSI_CCNTL1_64TIMOD 0x04
|
|
#define LSI_CCNTL1_DDAC 0x08
|
|
#define LSI_CCNTL1_ZMOD 0x80
|
|
|
|
#define LSI_SBCL_ATN 0x08
|
|
#define LSI_SBCL_BSY 0x20
|
|
#define LSI_SBCL_ACK 0x40
|
|
#define LSI_SBCL_REQ 0x80
|
|
|
|
/* Enable Response to Reselection */
|
|
#define LSI_SCID_RRE 0x60
|
|
|
|
#define LSI_CCNTL1_40BIT (LSI_CCNTL1_EN64TIBMV|LSI_CCNTL1_64TIMOD)
|
|
|
|
#define PHASE_DO 0
|
|
#define PHASE_DI 1
|
|
#define PHASE_CMD 2
|
|
#define PHASE_ST 3
|
|
#define PHASE_MO 6
|
|
#define PHASE_MI 7
|
|
#define PHASE_MASK 7
|
|
|
|
/* Maximum length of MSG IN data. */
|
|
#define LSI_MAX_MSGIN_LEN 8
|
|
|
|
/* Flag set if this is a tagged command. */
|
|
#define LSI_TAG_VALID (1 << 16)
|
|
|
|
/* Maximum instructions to process. */
|
|
#define LSI_MAX_INSN 10000
|
|
|
|
typedef struct lsi_request {
|
|
SCSIRequest *req;
|
|
uint32_t tag;
|
|
uint32_t dma_len;
|
|
uint8_t *dma_buf;
|
|
uint32_t pending;
|
|
int out;
|
|
QTAILQ_ENTRY(lsi_request) next;
|
|
} lsi_request;
|
|
|
|
enum {
|
|
LSI_NOWAIT, /* SCRIPTS are running or stopped */
|
|
LSI_WAIT_RESELECT, /* Wait Reselect instruction has been issued */
|
|
LSI_DMA_SCRIPTS, /* processing DMA from lsi_execute_script */
|
|
LSI_DMA_IN_PROGRESS, /* DMA operation is in progress */
|
|
};
|
|
|
|
enum {
|
|
LSI_MSG_ACTION_COMMAND = 0,
|
|
LSI_MSG_ACTION_DISCONNECT = 1,
|
|
LSI_MSG_ACTION_DOUT = 2,
|
|
LSI_MSG_ACTION_DIN = 3,
|
|
};
|
|
|
|
struct LSIState {
|
|
/*< private >*/
|
|
PCIDevice parent_obj;
|
|
/*< public >*/
|
|
|
|
qemu_irq ext_irq;
|
|
MemoryRegion mmio_io;
|
|
MemoryRegion ram_io;
|
|
MemoryRegion io_io;
|
|
AddressSpace pci_io_as;
|
|
|
|
int carry; /* ??? Should this be an a visible register somewhere? */
|
|
int status;
|
|
int msg_action;
|
|
int msg_len;
|
|
uint8_t msg[LSI_MAX_MSGIN_LEN];
|
|
int waiting;
|
|
SCSIBus bus;
|
|
int current_lun;
|
|
/* The tag is a combination of the device ID and the SCSI tag. */
|
|
uint32_t select_tag;
|
|
int command_complete;
|
|
QTAILQ_HEAD(, lsi_request) queue;
|
|
lsi_request *current;
|
|
|
|
uint32_t dsa;
|
|
uint32_t temp;
|
|
uint32_t dnad;
|
|
uint32_t dbc;
|
|
uint8_t istat0;
|
|
uint8_t istat1;
|
|
uint8_t dcmd;
|
|
uint8_t dstat;
|
|
uint8_t dien;
|
|
uint8_t sist0;
|
|
uint8_t sist1;
|
|
uint8_t sien0;
|
|
uint8_t sien1;
|
|
uint8_t mbox0;
|
|
uint8_t mbox1;
|
|
uint8_t dfifo;
|
|
uint8_t ctest2;
|
|
uint8_t ctest3;
|
|
uint8_t ctest4;
|
|
uint8_t ctest5;
|
|
uint8_t ccntl0;
|
|
uint8_t ccntl1;
|
|
uint32_t dsp;
|
|
uint32_t dsps;
|
|
uint8_t dmode;
|
|
uint8_t dcntl;
|
|
uint8_t scntl0;
|
|
uint8_t scntl1;
|
|
uint8_t scntl2;
|
|
uint8_t scntl3;
|
|
uint8_t sstat0;
|
|
uint8_t sstat1;
|
|
uint8_t scid;
|
|
uint8_t sxfer;
|
|
uint8_t socl;
|
|
uint8_t sdid;
|
|
uint8_t ssid;
|
|
uint8_t sfbr;
|
|
uint8_t sbcl;
|
|
uint8_t stest1;
|
|
uint8_t stest2;
|
|
uint8_t stest3;
|
|
uint8_t sidl;
|
|
uint8_t stime0;
|
|
uint8_t respid0;
|
|
uint8_t respid1;
|
|
uint32_t mmrs;
|
|
uint32_t mmws;
|
|
uint32_t sfs;
|
|
uint32_t drs;
|
|
uint32_t sbms;
|
|
uint32_t dbms;
|
|
uint32_t dnad64;
|
|
uint32_t pmjad1;
|
|
uint32_t pmjad2;
|
|
uint32_t rbc;
|
|
uint32_t ua;
|
|
uint32_t ia;
|
|
uint32_t sbc;
|
|
uint32_t csbc;
|
|
uint32_t scratch[18]; /* SCRATCHA-SCRATCHR */
|
|
uint8_t sbr;
|
|
uint32_t adder;
|
|
|
|
uint8_t script_ram[2048 * sizeof(uint32_t)];
|
|
};
|
|
typedef struct LSIState LSIState;
|
|
|
|
#define TYPE_LSI53C810 "lsi53c810"
|
|
#define TYPE_LSI53C895A "lsi53c895a"
|
|
|
|
DECLARE_INSTANCE_CHECKER(LSIState, LSI53C895A,
|
|
TYPE_LSI53C895A)
|
|
|
|
static const char *scsi_phases[] = {
|
|
"DOUT",
|
|
"DIN",
|
|
"CMD",
|
|
"STATUS",
|
|
"RSVOUT",
|
|
"RSVIN",
|
|
"MSGOUT",
|
|
"MSGIN"
|
|
};
|
|
|
|
static const char *scsi_phase_name(int phase)
|
|
{
|
|
return scsi_phases[phase & PHASE_MASK];
|
|
}
|
|
|
|
static inline int lsi_irq_on_rsl(LSIState *s)
|
|
{
|
|
return (s->sien0 & LSI_SIST0_RSL) && (s->scid & LSI_SCID_RRE);
|
|
}
|
|
|
|
static lsi_request *get_pending_req(LSIState *s)
|
|
{
|
|
lsi_request *p;
|
|
|
|
QTAILQ_FOREACH(p, &s->queue, next) {
|
|
if (p->pending) {
|
|
return p;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static void lsi_soft_reset(LSIState *s)
|
|
{
|
|
trace_lsi_reset();
|
|
s->carry = 0;
|
|
|
|
s->msg_action = LSI_MSG_ACTION_COMMAND;
|
|
s->msg_len = 0;
|
|
s->waiting = LSI_NOWAIT;
|
|
s->dsa = 0;
|
|
s->dnad = 0;
|
|
s->dbc = 0;
|
|
s->temp = 0;
|
|
memset(s->scratch, 0, sizeof(s->scratch));
|
|
s->istat0 = 0;
|
|
s->istat1 = 0;
|
|
s->dcmd = 0x40;
|
|
s->dstat = 0;
|
|
s->dien = 0;
|
|
s->sist0 = 0;
|
|
s->sist1 = 0;
|
|
s->sien0 = 0;
|
|
s->sien1 = 0;
|
|
s->mbox0 = 0;
|
|
s->mbox1 = 0;
|
|
s->dfifo = 0;
|
|
s->ctest2 = LSI_CTEST2_DACK;
|
|
s->ctest3 = 0;
|
|
s->ctest4 = 0;
|
|
s->ctest5 = 0;
|
|
s->ccntl0 = 0;
|
|
s->ccntl1 = 0;
|
|
s->dsp = 0;
|
|
s->dsps = 0;
|
|
s->dmode = 0;
|
|
s->dcntl = 0;
|
|
s->scntl0 = 0xc0;
|
|
s->scntl1 = 0;
|
|
s->scntl2 = 0;
|
|
s->scntl3 = 0;
|
|
s->sstat0 = 0;
|
|
s->sstat1 = 0;
|
|
s->scid = 7;
|
|
s->sxfer = 0;
|
|
s->socl = 0;
|
|
s->sdid = 0;
|
|
s->ssid = 0;
|
|
s->sbcl = 0;
|
|
s->stest1 = 0;
|
|
s->stest2 = 0;
|
|
s->stest3 = 0;
|
|
s->sidl = 0;
|
|
s->stime0 = 0;
|
|
s->respid0 = 0x80;
|
|
s->respid1 = 0;
|
|
s->mmrs = 0;
|
|
s->mmws = 0;
|
|
s->sfs = 0;
|
|
s->drs = 0;
|
|
s->sbms = 0;
|
|
s->dbms = 0;
|
|
s->dnad64 = 0;
|
|
s->pmjad1 = 0;
|
|
s->pmjad2 = 0;
|
|
s->rbc = 0;
|
|
s->ua = 0;
|
|
s->ia = 0;
|
|
s->sbc = 0;
|
|
s->csbc = 0;
|
|
s->sbr = 0;
|
|
assert(QTAILQ_EMPTY(&s->queue));
|
|
assert(!s->current);
|
|
}
|
|
|
|
static int lsi_dma_40bit(LSIState *s)
|
|
{
|
|
if ((s->ccntl1 & LSI_CCNTL1_40BIT) == LSI_CCNTL1_40BIT)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static int lsi_dma_ti64bit(LSIState *s)
|
|
{
|
|
if ((s->ccntl1 & LSI_CCNTL1_EN64TIBMV) == LSI_CCNTL1_EN64TIBMV)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static int lsi_dma_64bit(LSIState *s)
|
|
{
|
|
if ((s->ccntl1 & LSI_CCNTL1_EN64DBMV) == LSI_CCNTL1_EN64DBMV)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static uint8_t lsi_reg_readb(LSIState *s, int offset);
|
|
static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val);
|
|
static void lsi_execute_script(LSIState *s);
|
|
static void lsi_reselect(LSIState *s, lsi_request *p);
|
|
|
|
static inline void lsi_mem_read(LSIState *s, dma_addr_t addr,
|
|
void *buf, dma_addr_t len)
|
|
{
|
|
if (s->dmode & LSI_DMODE_SIOM) {
|
|
address_space_read(&s->pci_io_as, addr, MEMTXATTRS_UNSPECIFIED,
|
|
buf, len);
|
|
} else {
|
|
pci_dma_read(PCI_DEVICE(s), addr, buf, len);
|
|
}
|
|
}
|
|
|
|
static inline void lsi_mem_write(LSIState *s, dma_addr_t addr,
|
|
const void *buf, dma_addr_t len)
|
|
{
|
|
if (s->dmode & LSI_DMODE_DIOM) {
|
|
address_space_write(&s->pci_io_as, addr, MEMTXATTRS_UNSPECIFIED,
|
|
buf, len);
|
|
} else {
|
|
pci_dma_write(PCI_DEVICE(s), addr, buf, len);
|
|
}
|
|
}
|
|
|
|
static inline uint32_t read_dword(LSIState *s, uint32_t addr)
|
|
{
|
|
uint32_t buf;
|
|
|
|
pci_dma_read(PCI_DEVICE(s), addr, &buf, 4);
|
|
return cpu_to_le32(buf);
|
|
}
|
|
|
|
static void lsi_stop_script(LSIState *s)
|
|
{
|
|
s->istat1 &= ~LSI_ISTAT1_SRUN;
|
|
}
|
|
|
|
static void lsi_set_irq(LSIState *s, int level)
|
|
{
|
|
PCIDevice *d = PCI_DEVICE(s);
|
|
|
|
if (s->ext_irq) {
|
|
qemu_set_irq(s->ext_irq, level);
|
|
} else {
|
|
pci_set_irq(d, level);
|
|
}
|
|
}
|
|
|
|
static void lsi_update_irq(LSIState *s)
|
|
{
|
|
int level;
|
|
static int last_level;
|
|
|
|
/* It's unclear whether the DIP/SIP bits should be cleared when the
|
|
Interrupt Status Registers are cleared or when istat0 is read.
|
|
We currently do the formwer, which seems to work. */
|
|
level = 0;
|
|
if (s->dstat) {
|
|
if (s->dstat & s->dien)
|
|
level = 1;
|
|
s->istat0 |= LSI_ISTAT0_DIP;
|
|
} else {
|
|
s->istat0 &= ~LSI_ISTAT0_DIP;
|
|
}
|
|
|
|
if (s->sist0 || s->sist1) {
|
|
if ((s->sist0 & s->sien0) || (s->sist1 & s->sien1))
|
|
level = 1;
|
|
s->istat0 |= LSI_ISTAT0_SIP;
|
|
} else {
|
|
s->istat0 &= ~LSI_ISTAT0_SIP;
|
|
}
|
|
if (s->istat0 & LSI_ISTAT0_INTF)
|
|
level = 1;
|
|
|
|
if (level != last_level) {
|
|
trace_lsi_update_irq(level, s->dstat, s->sist1, s->sist0);
|
|
last_level = level;
|
|
}
|
|
lsi_set_irq(s, level);
|
|
|
|
if (!s->current && !level && lsi_irq_on_rsl(s) && !(s->scntl1 & LSI_SCNTL1_CON)) {
|
|
lsi_request *p;
|
|
|
|
trace_lsi_update_irq_disconnected();
|
|
p = get_pending_req(s);
|
|
if (p) {
|
|
lsi_reselect(s, p);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Stop SCRIPTS execution and raise a SCSI interrupt. */
|
|
static void lsi_script_scsi_interrupt(LSIState *s, int stat0, int stat1)
|
|
{
|
|
uint32_t mask0;
|
|
uint32_t mask1;
|
|
|
|
trace_lsi_script_scsi_interrupt(stat1, stat0, s->sist1, s->sist0);
|
|
s->sist0 |= stat0;
|
|
s->sist1 |= stat1;
|
|
/* Stop processor on fatal or unmasked interrupt. As a special hack
|
|
we don't stop processing when raising STO. Instead continue
|
|
execution and stop at the next insn that accesses the SCSI bus. */
|
|
mask0 = s->sien0 | ~(LSI_SIST0_CMP | LSI_SIST0_SEL | LSI_SIST0_RSL);
|
|
mask1 = s->sien1 | ~(LSI_SIST1_GEN | LSI_SIST1_HTH);
|
|
mask1 &= ~LSI_SIST1_STO;
|
|
if (s->sist0 & mask0 || s->sist1 & mask1) {
|
|
lsi_stop_script(s);
|
|
}
|
|
lsi_update_irq(s);
|
|
}
|
|
|
|
/* Stop SCRIPTS execution and raise a DMA interrupt. */
|
|
static void lsi_script_dma_interrupt(LSIState *s, int stat)
|
|
{
|
|
trace_lsi_script_dma_interrupt(stat, s->dstat);
|
|
s->dstat |= stat;
|
|
lsi_update_irq(s);
|
|
lsi_stop_script(s);
|
|
}
|
|
|
|
static inline void lsi_set_phase(LSIState *s, int phase)
|
|
{
|
|
s->sbcl &= ~PHASE_MASK;
|
|
s->sbcl |= phase | LSI_SBCL_REQ;
|
|
s->sstat1 = (s->sstat1 & ~PHASE_MASK) | phase;
|
|
}
|
|
|
|
static void lsi_bad_phase(LSIState *s, int out, int new_phase)
|
|
{
|
|
/* Trigger a phase mismatch. */
|
|
if (s->ccntl0 & LSI_CCNTL0_ENPMJ) {
|
|
if ((s->ccntl0 & LSI_CCNTL0_PMJCTL)) {
|
|
s->dsp = out ? s->pmjad1 : s->pmjad2;
|
|
} else {
|
|
s->dsp = (s->scntl2 & LSI_SCNTL2_WSR ? s->pmjad2 : s->pmjad1);
|
|
}
|
|
trace_lsi_bad_phase_jump(s->dsp);
|
|
} else {
|
|
trace_lsi_bad_phase_interrupt();
|
|
lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
|
|
lsi_stop_script(s);
|
|
}
|
|
lsi_set_phase(s, new_phase);
|
|
}
|
|
|
|
|
|
/* Resume SCRIPTS execution after a DMA operation. */
|
|
static void lsi_resume_script(LSIState *s)
|
|
{
|
|
if (s->waiting != 2) {
|
|
s->waiting = LSI_NOWAIT;
|
|
lsi_execute_script(s);
|
|
} else {
|
|
s->waiting = LSI_NOWAIT;
|
|
}
|
|
}
|
|
|
|
static void lsi_disconnect(LSIState *s)
|
|
{
|
|
s->scntl1 &= ~LSI_SCNTL1_CON;
|
|
s->sstat1 &= ~PHASE_MASK;
|
|
s->sbcl = 0;
|
|
}
|
|
|
|
static void lsi_bad_selection(LSIState *s, uint32_t id)
|
|
{
|
|
trace_lsi_bad_selection(id);
|
|
lsi_script_scsi_interrupt(s, 0, LSI_SIST1_STO);
|
|
lsi_disconnect(s);
|
|
}
|
|
|
|
/* Initiate a SCSI layer data transfer. */
|
|
static void lsi_do_dma(LSIState *s, int out)
|
|
{
|
|
uint32_t count;
|
|
dma_addr_t addr;
|
|
SCSIDevice *dev;
|
|
|
|
assert(s->current);
|
|
if (!s->current->dma_len) {
|
|
/* Wait until data is available. */
|
|
trace_lsi_do_dma_unavailable();
|
|
return;
|
|
}
|
|
|
|
dev = s->current->req->dev;
|
|
assert(dev);
|
|
|
|
count = s->dbc;
|
|
if (count > s->current->dma_len)
|
|
count = s->current->dma_len;
|
|
|
|
addr = s->dnad;
|
|
/* both 40 and Table Indirect 64-bit DMAs store upper bits in dnad64 */
|
|
if (lsi_dma_40bit(s) || lsi_dma_ti64bit(s))
|
|
addr |= ((uint64_t)s->dnad64 << 32);
|
|
else if (s->dbms)
|
|
addr |= ((uint64_t)s->dbms << 32);
|
|
else if (s->sbms)
|
|
addr |= ((uint64_t)s->sbms << 32);
|
|
|
|
trace_lsi_do_dma(addr, count);
|
|
s->csbc += count;
|
|
s->dnad += count;
|
|
s->dbc -= count;
|
|
if (s->current->dma_buf == NULL) {
|
|
s->current->dma_buf = scsi_req_get_buf(s->current->req);
|
|
}
|
|
/* ??? Set SFBR to first data byte. */
|
|
if (out) {
|
|
lsi_mem_read(s, addr, s->current->dma_buf, count);
|
|
} else {
|
|
lsi_mem_write(s, addr, s->current->dma_buf, count);
|
|
}
|
|
s->current->dma_len -= count;
|
|
if (s->current->dma_len == 0) {
|
|
s->current->dma_buf = NULL;
|
|
scsi_req_continue(s->current->req);
|
|
} else {
|
|
s->current->dma_buf += count;
|
|
lsi_resume_script(s);
|
|
}
|
|
}
|
|
|
|
|
|
/* Add a command to the queue. */
|
|
static void lsi_queue_command(LSIState *s)
|
|
{
|
|
lsi_request *p = s->current;
|
|
|
|
trace_lsi_queue_command(p->tag);
|
|
assert(s->current != NULL);
|
|
assert(s->current->dma_len == 0);
|
|
QTAILQ_INSERT_TAIL(&s->queue, s->current, next);
|
|
s->current = NULL;
|
|
|
|
p->pending = 0;
|
|
p->out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
|
|
}
|
|
|
|
/* Queue a byte for a MSG IN phase. */
|
|
static void lsi_add_msg_byte(LSIState *s, uint8_t data)
|
|
{
|
|
if (s->msg_len >= LSI_MAX_MSGIN_LEN) {
|
|
trace_lsi_add_msg_byte_error();
|
|
} else {
|
|
trace_lsi_add_msg_byte(data);
|
|
s->msg[s->msg_len++] = data;
|
|
}
|
|
}
|
|
|
|
/* Perform reselection to continue a command. */
|
|
static void lsi_reselect(LSIState *s, lsi_request *p)
|
|
{
|
|
int id;
|
|
|
|
assert(s->current == NULL);
|
|
QTAILQ_REMOVE(&s->queue, p, next);
|
|
s->current = p;
|
|
|
|
id = (p->tag >> 8) & 0xf;
|
|
s->ssid = id | 0x80;
|
|
/* LSI53C700 Family Compatibility, see LSI53C895A 4-73 */
|
|
if (!(s->dcntl & LSI_DCNTL_COM)) {
|
|
s->sfbr = 1 << (id & 0x7);
|
|
}
|
|
trace_lsi_reselect(id);
|
|
s->scntl1 |= LSI_SCNTL1_CON;
|
|
lsi_set_phase(s, PHASE_MI);
|
|
s->msg_action = p->out ? LSI_MSG_ACTION_DOUT : LSI_MSG_ACTION_DIN;
|
|
s->current->dma_len = p->pending;
|
|
lsi_add_msg_byte(s, 0x80);
|
|
if (s->current->tag & LSI_TAG_VALID) {
|
|
lsi_add_msg_byte(s, 0x20);
|
|
lsi_add_msg_byte(s, p->tag & 0xff);
|
|
}
|
|
|
|
if (lsi_irq_on_rsl(s)) {
|
|
lsi_script_scsi_interrupt(s, LSI_SIST0_RSL, 0);
|
|
}
|
|
}
|
|
|
|
static lsi_request *lsi_find_by_tag(LSIState *s, uint32_t tag)
|
|
{
|
|
lsi_request *p;
|
|
|
|
QTAILQ_FOREACH(p, &s->queue, next) {
|
|
if (p->tag == tag) {
|
|
return p;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void lsi_request_free(LSIState *s, lsi_request *p)
|
|
{
|
|
if (p == s->current) {
|
|
s->current = NULL;
|
|
} else {
|
|
QTAILQ_REMOVE(&s->queue, p, next);
|
|
}
|
|
g_free(p);
|
|
}
|
|
|
|
static void lsi_request_cancelled(SCSIRequest *req)
|
|
{
|
|
LSIState *s = LSI53C895A(req->bus->qbus.parent);
|
|
lsi_request *p = req->hba_private;
|
|
|
|
req->hba_private = NULL;
|
|
lsi_request_free(s, p);
|
|
scsi_req_unref(req);
|
|
}
|
|
|
|
/* Record that data is available for a queued command. Returns zero if
|
|
the device was reselected, nonzero if the IO is deferred. */
|
|
static int lsi_queue_req(LSIState *s, SCSIRequest *req, uint32_t len)
|
|
{
|
|
lsi_request *p = req->hba_private;
|
|
|
|
if (p->pending) {
|
|
trace_lsi_queue_req_error(p);
|
|
}
|
|
p->pending = len;
|
|
/* Reselect if waiting for it, or if reselection triggers an IRQ
|
|
and the bus is free.
|
|
Since no interrupt stacking is implemented in the emulation, it
|
|
is also required that there are no pending interrupts waiting
|
|
for service from the device driver. */
|
|
if (s->waiting == LSI_WAIT_RESELECT ||
|
|
(lsi_irq_on_rsl(s) && !(s->scntl1 & LSI_SCNTL1_CON) &&
|
|
!(s->istat0 & (LSI_ISTAT0_SIP | LSI_ISTAT0_DIP)))) {
|
|
/* Reselect device. */
|
|
lsi_reselect(s, p);
|
|
return 0;
|
|
} else {
|
|
trace_lsi_queue_req(p->tag);
|
|
p->pending = len;
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/* Callback to indicate that the SCSI layer has completed a command. */
|
|
static void lsi_command_complete(SCSIRequest *req, uint32_t status, size_t resid)
|
|
{
|
|
LSIState *s = LSI53C895A(req->bus->qbus.parent);
|
|
int out;
|
|
|
|
out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
|
|
trace_lsi_command_complete(status);
|
|
s->status = status;
|
|
s->command_complete = 2;
|
|
if (s->waiting && s->dbc != 0) {
|
|
/* Raise phase mismatch for short transfers. */
|
|
lsi_bad_phase(s, out, PHASE_ST);
|
|
} else {
|
|
lsi_set_phase(s, PHASE_ST);
|
|
}
|
|
|
|
if (req->hba_private == s->current) {
|
|
req->hba_private = NULL;
|
|
lsi_request_free(s, s->current);
|
|
scsi_req_unref(req);
|
|
}
|
|
lsi_resume_script(s);
|
|
}
|
|
|
|
/* Callback to indicate that the SCSI layer has completed a transfer. */
|
|
static void lsi_transfer_data(SCSIRequest *req, uint32_t len)
|
|
{
|
|
LSIState *s = LSI53C895A(req->bus->qbus.parent);
|
|
int out;
|
|
|
|
assert(req->hba_private);
|
|
if (s->waiting == LSI_WAIT_RESELECT || req->hba_private != s->current ||
|
|
(lsi_irq_on_rsl(s) && !(s->scntl1 & LSI_SCNTL1_CON))) {
|
|
if (lsi_queue_req(s, req, len)) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
|
|
|
|
/* host adapter (re)connected */
|
|
trace_lsi_transfer_data(req->tag, len);
|
|
s->current->dma_len = len;
|
|
s->command_complete = 1;
|
|
if (s->waiting) {
|
|
if (s->waiting == LSI_WAIT_RESELECT || s->dbc == 0) {
|
|
lsi_resume_script(s);
|
|
} else {
|
|
lsi_do_dma(s, out);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void lsi_do_command(LSIState *s)
|
|
{
|
|
SCSIDevice *dev;
|
|
uint8_t buf[16];
|
|
uint32_t id;
|
|
int n;
|
|
|
|
trace_lsi_do_command(s->dbc);
|
|
if (s->dbc > 16)
|
|
s->dbc = 16;
|
|
pci_dma_read(PCI_DEVICE(s), s->dnad, buf, s->dbc);
|
|
s->sfbr = buf[0];
|
|
s->command_complete = 0;
|
|
|
|
id = (s->select_tag >> 8) & 0xf;
|
|
dev = scsi_device_find(&s->bus, 0, id, s->current_lun);
|
|
if (!dev) {
|
|
lsi_bad_selection(s, id);
|
|
return;
|
|
}
|
|
|
|
assert(s->current == NULL);
|
|
s->current = g_new0(lsi_request, 1);
|
|
s->current->tag = s->select_tag;
|
|
s->current->req = scsi_req_new(dev, s->current->tag, s->current_lun, buf,
|
|
s->current);
|
|
|
|
n = scsi_req_enqueue(s->current->req);
|
|
if (n) {
|
|
if (n > 0) {
|
|
lsi_set_phase(s, PHASE_DI);
|
|
} else if (n < 0) {
|
|
lsi_set_phase(s, PHASE_DO);
|
|
}
|
|
scsi_req_continue(s->current->req);
|
|
}
|
|
if (!s->command_complete) {
|
|
if (n) {
|
|
/* Command did not complete immediately so disconnect. */
|
|
lsi_add_msg_byte(s, 2); /* SAVE DATA POINTER */
|
|
lsi_add_msg_byte(s, 4); /* DISCONNECT */
|
|
/* wait data */
|
|
lsi_set_phase(s, PHASE_MI);
|
|
s->msg_action = LSI_MSG_ACTION_DISCONNECT;
|
|
lsi_queue_command(s);
|
|
} else {
|
|
/* wait command complete */
|
|
lsi_set_phase(s, PHASE_DI);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void lsi_do_status(LSIState *s)
|
|
{
|
|
uint8_t status;
|
|
trace_lsi_do_status(s->dbc, s->status);
|
|
if (s->dbc != 1) {
|
|
trace_lsi_do_status_error();
|
|
}
|
|
s->dbc = 1;
|
|
status = s->status;
|
|
s->sfbr = status;
|
|
pci_dma_write(PCI_DEVICE(s), s->dnad, &status, 1);
|
|
lsi_set_phase(s, PHASE_MI);
|
|
s->msg_action = LSI_MSG_ACTION_DISCONNECT;
|
|
lsi_add_msg_byte(s, 0); /* COMMAND COMPLETE */
|
|
}
|
|
|
|
static void lsi_do_msgin(LSIState *s)
|
|
{
|
|
uint8_t len;
|
|
trace_lsi_do_msgin(s->dbc, s->msg_len);
|
|
s->sfbr = s->msg[0];
|
|
len = s->msg_len;
|
|
assert(len > 0 && len <= LSI_MAX_MSGIN_LEN);
|
|
if (len > s->dbc)
|
|
len = s->dbc;
|
|
pci_dma_write(PCI_DEVICE(s), s->dnad, s->msg, len);
|
|
/* Linux drivers rely on the last byte being in the SIDL. */
|
|
s->sidl = s->msg[len - 1];
|
|
s->msg_len -= len;
|
|
if (s->msg_len) {
|
|
memmove(s->msg, s->msg + len, s->msg_len);
|
|
} else {
|
|
/* ??? Check if ATN (not yet implemented) is asserted and maybe
|
|
switch to PHASE_MO. */
|
|
switch (s->msg_action) {
|
|
case LSI_MSG_ACTION_COMMAND:
|
|
lsi_set_phase(s, PHASE_CMD);
|
|
break;
|
|
case LSI_MSG_ACTION_DISCONNECT:
|
|
lsi_disconnect(s);
|
|
break;
|
|
case LSI_MSG_ACTION_DOUT:
|
|
lsi_set_phase(s, PHASE_DO);
|
|
break;
|
|
case LSI_MSG_ACTION_DIN:
|
|
lsi_set_phase(s, PHASE_DI);
|
|
break;
|
|
default:
|
|
abort();
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Read the next byte during a MSGOUT phase. */
|
|
static uint8_t lsi_get_msgbyte(LSIState *s)
|
|
{
|
|
uint8_t data;
|
|
pci_dma_read(PCI_DEVICE(s), s->dnad, &data, 1);
|
|
s->dnad++;
|
|
s->dbc--;
|
|
return data;
|
|
}
|
|
|
|
/* Skip the next n bytes during a MSGOUT phase. */
|
|
static void lsi_skip_msgbytes(LSIState *s, unsigned int n)
|
|
{
|
|
s->dnad += n;
|
|
s->dbc -= n;
|
|
}
|
|
|
|
static void lsi_do_msgout(LSIState *s)
|
|
{
|
|
uint8_t msg;
|
|
int len;
|
|
uint32_t current_tag;
|
|
lsi_request *current_req, *p, *p_next;
|
|
|
|
if (s->current) {
|
|
current_tag = s->current->tag;
|
|
current_req = s->current;
|
|
} else {
|
|
current_tag = s->select_tag;
|
|
current_req = lsi_find_by_tag(s, current_tag);
|
|
}
|
|
|
|
trace_lsi_do_msgout(s->dbc);
|
|
while (s->dbc) {
|
|
msg = lsi_get_msgbyte(s);
|
|
s->sfbr = msg;
|
|
|
|
switch (msg) {
|
|
case 0x04:
|
|
trace_lsi_do_msgout_disconnect();
|
|
lsi_disconnect(s);
|
|
break;
|
|
case 0x08:
|
|
trace_lsi_do_msgout_noop();
|
|
lsi_set_phase(s, PHASE_CMD);
|
|
break;
|
|
case 0x01:
|
|
len = lsi_get_msgbyte(s);
|
|
msg = lsi_get_msgbyte(s);
|
|
(void)len; /* avoid a warning about unused variable*/
|
|
trace_lsi_do_msgout_extended(msg, len);
|
|
switch (msg) {
|
|
case 1:
|
|
trace_lsi_do_msgout_ignored("SDTR");
|
|
lsi_skip_msgbytes(s, 2);
|
|
break;
|
|
case 3:
|
|
trace_lsi_do_msgout_ignored("WDTR");
|
|
lsi_skip_msgbytes(s, 1);
|
|
break;
|
|
case 4:
|
|
trace_lsi_do_msgout_ignored("PPR");
|
|
lsi_skip_msgbytes(s, 5);
|
|
break;
|
|
default:
|
|
goto bad;
|
|
}
|
|
break;
|
|
case 0x20: /* SIMPLE queue */
|
|
s->select_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
|
|
trace_lsi_do_msgout_simplequeue(s->select_tag & 0xff);
|
|
break;
|
|
case 0x21: /* HEAD of queue */
|
|
qemu_log_mask(LOG_UNIMP, "lsi_scsi: HEAD queue not implemented\n");
|
|
s->select_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
|
|
break;
|
|
case 0x22: /* ORDERED queue */
|
|
qemu_log_mask(LOG_UNIMP,
|
|
"lsi_scsi: ORDERED queue not implemented\n");
|
|
s->select_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
|
|
break;
|
|
case 0x0d:
|
|
/* The ABORT TAG message clears the current I/O process only. */
|
|
trace_lsi_do_msgout_abort(current_tag);
|
|
if (current_req) {
|
|
scsi_req_cancel(current_req->req);
|
|
}
|
|
lsi_disconnect(s);
|
|
break;
|
|
case 0x06:
|
|
case 0x0e:
|
|
case 0x0c:
|
|
/* The ABORT message clears all I/O processes for the selecting
|
|
initiator on the specified logical unit of the target. */
|
|
if (msg == 0x06) {
|
|
trace_lsi_do_msgout_abort(current_tag);
|
|
}
|
|
/* The CLEAR QUEUE message clears all I/O processes for all
|
|
initiators on the specified logical unit of the target. */
|
|
if (msg == 0x0e) {
|
|
trace_lsi_do_msgout_clearqueue(current_tag);
|
|
}
|
|
/* The BUS DEVICE RESET message clears all I/O processes for all
|
|
initiators on all logical units of the target. */
|
|
if (msg == 0x0c) {
|
|
trace_lsi_do_msgout_busdevicereset(current_tag);
|
|
}
|
|
|
|
/* clear the current I/O process */
|
|
if (s->current) {
|
|
scsi_req_cancel(s->current->req);
|
|
}
|
|
|
|
/* As the current implemented devices scsi_disk and scsi_generic
|
|
only support one LUN, we don't need to keep track of LUNs.
|
|
Clearing I/O processes for other initiators could be possible
|
|
for scsi_generic by sending a SG_SCSI_RESET to the /dev/sgX
|
|
device, but this is currently not implemented (and seems not
|
|
to be really necessary). So let's simply clear all queued
|
|
commands for the current device: */
|
|
QTAILQ_FOREACH_SAFE(p, &s->queue, next, p_next) {
|
|
if ((p->tag & 0x0000ff00) == (current_tag & 0x0000ff00)) {
|
|
scsi_req_cancel(p->req);
|
|
}
|
|
}
|
|
|
|
lsi_disconnect(s);
|
|
break;
|
|
default:
|
|
if ((msg & 0x80) == 0) {
|
|
goto bad;
|
|
}
|
|
s->current_lun = msg & 7;
|
|
trace_lsi_do_msgout_select(s->current_lun);
|
|
lsi_set_phase(s, PHASE_CMD);
|
|
break;
|
|
}
|
|
}
|
|
return;
|
|
bad:
|
|
qemu_log_mask(LOG_UNIMP, "Unimplemented message 0x%02x\n", msg);
|
|
lsi_set_phase(s, PHASE_MI);
|
|
lsi_add_msg_byte(s, 7); /* MESSAGE REJECT */
|
|
s->msg_action = LSI_MSG_ACTION_COMMAND;
|
|
}
|
|
|
|
#define LSI_BUF_SIZE 4096
|
|
static void lsi_memcpy(LSIState *s, uint32_t dest, uint32_t src, int count)
|
|
{
|
|
int n;
|
|
uint8_t buf[LSI_BUF_SIZE];
|
|
|
|
trace_lsi_memcpy(dest, src, count);
|
|
while (count) {
|
|
n = (count > LSI_BUF_SIZE) ? LSI_BUF_SIZE : count;
|
|
lsi_mem_read(s, src, buf, n);
|
|
lsi_mem_write(s, dest, buf, n);
|
|
src += n;
|
|
dest += n;
|
|
count -= n;
|
|
}
|
|
}
|
|
|
|
static void lsi_wait_reselect(LSIState *s)
|
|
{
|
|
lsi_request *p;
|
|
|
|
trace_lsi_wait_reselect();
|
|
|
|
if (s->current) {
|
|
return;
|
|
}
|
|
p = get_pending_req(s);
|
|
if (p) {
|
|
lsi_reselect(s, p);
|
|
}
|
|
if (s->current == NULL) {
|
|
s->waiting = LSI_WAIT_RESELECT;
|
|
}
|
|
}
|
|
|
|
static void lsi_execute_script(LSIState *s)
|
|
{
|
|
PCIDevice *pci_dev = PCI_DEVICE(s);
|
|
uint32_t insn;
|
|
uint32_t addr, addr_high;
|
|
int opcode;
|
|
int insn_processed = 0;
|
|
|
|
s->istat1 |= LSI_ISTAT1_SRUN;
|
|
again:
|
|
if (++insn_processed > LSI_MAX_INSN) {
|
|
/* Some windows drivers make the device spin waiting for a memory
|
|
location to change. If we have been executed a lot of code then
|
|
assume this is the case and force an unexpected device disconnect.
|
|
This is apparently sufficient to beat the drivers into submission.
|
|
*/
|
|
if (!(s->sien0 & LSI_SIST0_UDC)) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"lsi_scsi: inf. loop with UDC masked");
|
|
}
|
|
lsi_script_scsi_interrupt(s, LSI_SIST0_UDC, 0);
|
|
lsi_disconnect(s);
|
|
trace_lsi_execute_script_stop();
|
|
return;
|
|
}
|
|
insn = read_dword(s, s->dsp);
|
|
if (!insn) {
|
|
/* If we receive an empty opcode increment the DSP by 4 bytes
|
|
instead of 8 and execute the next opcode at that location */
|
|
s->dsp += 4;
|
|
goto again;
|
|
}
|
|
addr = read_dword(s, s->dsp + 4);
|
|
addr_high = 0;
|
|
trace_lsi_execute_script(s->dsp, insn, addr);
|
|
s->dsps = addr;
|
|
s->dcmd = insn >> 24;
|
|
s->dsp += 8;
|
|
switch (insn >> 30) {
|
|
case 0: /* Block move. */
|
|
if (s->sist1 & LSI_SIST1_STO) {
|
|
trace_lsi_execute_script_blockmove_delayed();
|
|
lsi_stop_script(s);
|
|
break;
|
|
}
|
|
s->dbc = insn & 0xffffff;
|
|
s->rbc = s->dbc;
|
|
/* ??? Set ESA. */
|
|
s->ia = s->dsp - 8;
|
|
if (insn & (1 << 29)) {
|
|
/* Indirect addressing. */
|
|
addr = read_dword(s, addr);
|
|
} else if (insn & (1 << 28)) {
|
|
uint32_t buf[2];
|
|
int32_t offset;
|
|
/* Table indirect addressing. */
|
|
|
|
/* 32-bit Table indirect */
|
|
offset = sextract32(addr, 0, 24);
|
|
pci_dma_read(pci_dev, s->dsa + offset, buf, 8);
|
|
/* byte count is stored in bits 0:23 only */
|
|
s->dbc = cpu_to_le32(buf[0]) & 0xffffff;
|
|
s->rbc = s->dbc;
|
|
addr = cpu_to_le32(buf[1]);
|
|
|
|
/* 40-bit DMA, upper addr bits [39:32] stored in first DWORD of
|
|
* table, bits [31:24] */
|
|
if (lsi_dma_40bit(s))
|
|
addr_high = cpu_to_le32(buf[0]) >> 24;
|
|
else if (lsi_dma_ti64bit(s)) {
|
|
int selector = (cpu_to_le32(buf[0]) >> 24) & 0x1f;
|
|
switch (selector) {
|
|
case 0 ... 0x0f:
|
|
/* offset index into scratch registers since
|
|
* TI64 mode can use registers C to R */
|
|
addr_high = s->scratch[2 + selector];
|
|
break;
|
|
case 0x10:
|
|
addr_high = s->mmrs;
|
|
break;
|
|
case 0x11:
|
|
addr_high = s->mmws;
|
|
break;
|
|
case 0x12:
|
|
addr_high = s->sfs;
|
|
break;
|
|
case 0x13:
|
|
addr_high = s->drs;
|
|
break;
|
|
case 0x14:
|
|
addr_high = s->sbms;
|
|
break;
|
|
case 0x15:
|
|
addr_high = s->dbms;
|
|
break;
|
|
default:
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"lsi_scsi: Illegal selector specified (0x%x > 0x15) "
|
|
"for 64-bit DMA block move", selector);
|
|
break;
|
|
}
|
|
}
|
|
} else if (lsi_dma_64bit(s)) {
|
|
/* fetch a 3rd dword if 64-bit direct move is enabled and
|
|
only if we're not doing table indirect or indirect addressing */
|
|
s->dbms = read_dword(s, s->dsp);
|
|
s->dsp += 4;
|
|
s->ia = s->dsp - 12;
|
|
}
|
|
if ((s->sstat1 & PHASE_MASK) != ((insn >> 24) & 7)) {
|
|
trace_lsi_execute_script_blockmove_badphase(
|
|
scsi_phase_name(s->sstat1),
|
|
scsi_phase_name(insn >> 24));
|
|
lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
|
|
break;
|
|
}
|
|
s->dnad = addr;
|
|
s->dnad64 = addr_high;
|
|
switch (s->sstat1 & 0x7) {
|
|
case PHASE_DO:
|
|
s->waiting = LSI_DMA_SCRIPTS;
|
|
lsi_do_dma(s, 1);
|
|
if (s->waiting)
|
|
s->waiting = LSI_DMA_IN_PROGRESS;
|
|
break;
|
|
case PHASE_DI:
|
|
s->waiting = LSI_DMA_SCRIPTS;
|
|
lsi_do_dma(s, 0);
|
|
if (s->waiting)
|
|
s->waiting = LSI_DMA_IN_PROGRESS;
|
|
break;
|
|
case PHASE_CMD:
|
|
lsi_do_command(s);
|
|
break;
|
|
case PHASE_ST:
|
|
lsi_do_status(s);
|
|
break;
|
|
case PHASE_MO:
|
|
lsi_do_msgout(s);
|
|
break;
|
|
case PHASE_MI:
|
|
lsi_do_msgin(s);
|
|
break;
|
|
default:
|
|
qemu_log_mask(LOG_UNIMP, "lsi_scsi: Unimplemented phase %s\n",
|
|
scsi_phase_name(s->sstat1));
|
|
}
|
|
s->dfifo = s->dbc & 0xff;
|
|
s->ctest5 = (s->ctest5 & 0xfc) | ((s->dbc >> 8) & 3);
|
|
s->sbc = s->dbc;
|
|
s->rbc -= s->dbc;
|
|
s->ua = addr + s->dbc;
|
|
break;
|
|
|
|
case 1: /* IO or Read/Write instruction. */
|
|
opcode = (insn >> 27) & 7;
|
|
if (opcode < 5) {
|
|
uint32_t id;
|
|
|
|
if (insn & (1 << 25)) {
|
|
id = read_dword(s, s->dsa + sextract32(insn, 0, 24));
|
|
} else {
|
|
id = insn;
|
|
}
|
|
id = (id >> 16) & 0xf;
|
|
if (insn & (1 << 26)) {
|
|
addr = s->dsp + sextract32(addr, 0, 24);
|
|
}
|
|
s->dnad = addr;
|
|
switch (opcode) {
|
|
case 0: /* Select */
|
|
s->sdid = id;
|
|
if (s->scntl1 & LSI_SCNTL1_CON) {
|
|
trace_lsi_execute_script_io_alreadyreselected();
|
|
s->dsp = s->dnad;
|
|
break;
|
|
}
|
|
s->sstat0 |= LSI_SSTAT0_WOA;
|
|
s->scntl1 &= ~LSI_SCNTL1_IARB;
|
|
if (!scsi_device_find(&s->bus, 0, id, 0)) {
|
|
lsi_bad_selection(s, id);
|
|
break;
|
|
}
|
|
trace_lsi_execute_script_io_selected(id,
|
|
insn & (1 << 3) ? " ATN" : "");
|
|
/* ??? Linux drivers compain when this is set. Maybe
|
|
it only applies in low-level mode (unimplemented).
|
|
lsi_script_scsi_interrupt(s, LSI_SIST0_CMP, 0); */
|
|
s->select_tag = id << 8;
|
|
s->scntl1 |= LSI_SCNTL1_CON;
|
|
if (insn & (1 << 3)) {
|
|
s->socl |= LSI_SOCL_ATN;
|
|
s->sbcl |= LSI_SBCL_ATN;
|
|
}
|
|
s->sbcl |= LSI_SBCL_BSY;
|
|
lsi_set_phase(s, PHASE_MO);
|
|
s->waiting = LSI_NOWAIT;
|
|
break;
|
|
case 1: /* Disconnect */
|
|
trace_lsi_execute_script_io_disconnect();
|
|
s->scntl1 &= ~LSI_SCNTL1_CON;
|
|
/* FIXME: this is not entirely correct; the target need not ask
|
|
* for reselection until it has to send data, while here we force a
|
|
* reselection as soon as the bus is free. The correct flow would
|
|
* reselect before lsi_transfer_data and disconnect as soon as
|
|
* DMA ends.
|
|
*/
|
|
if (!s->current) {
|
|
lsi_request *p = get_pending_req(s);
|
|
if (p) {
|
|
lsi_reselect(s, p);
|
|
}
|
|
}
|
|
break;
|
|
case 2: /* Wait Reselect */
|
|
if (s->istat0 & LSI_ISTAT0_SIGP) {
|
|
s->dsp = s->dnad;
|
|
} else if (!lsi_irq_on_rsl(s)) {
|
|
lsi_wait_reselect(s);
|
|
}
|
|
break;
|
|
case 3: /* Set */
|
|
trace_lsi_execute_script_io_set(
|
|
insn & (1 << 3) ? " ATN" : "",
|
|
insn & (1 << 6) ? " ACK" : "",
|
|
insn & (1 << 9) ? " TM" : "",
|
|
insn & (1 << 10) ? " CC" : "");
|
|
if (insn & (1 << 3)) {
|
|
s->socl |= LSI_SOCL_ATN;
|
|
s->sbcl |= LSI_SBCL_ATN;
|
|
lsi_set_phase(s, PHASE_MO);
|
|
}
|
|
|
|
if (insn & (1 << 6)) {
|
|
s->sbcl |= LSI_SBCL_ACK;
|
|
}
|
|
|
|
if (insn & (1 << 9)) {
|
|
qemu_log_mask(LOG_UNIMP,
|
|
"lsi_scsi: Target mode not implemented\n");
|
|
}
|
|
if (insn & (1 << 10))
|
|
s->carry = 1;
|
|
break;
|
|
case 4: /* Clear */
|
|
trace_lsi_execute_script_io_clear(
|
|
insn & (1 << 3) ? " ATN" : "",
|
|
insn & (1 << 6) ? " ACK" : "",
|
|
insn & (1 << 9) ? " TM" : "",
|
|
insn & (1 << 10) ? " CC" : "");
|
|
if (insn & (1 << 3)) {
|
|
s->socl &= ~LSI_SOCL_ATN;
|
|
s->sbcl &= ~LSI_SBCL_ATN;
|
|
}
|
|
|
|
if (insn & (1 << 6)) {
|
|
s->sbcl &= ~LSI_SBCL_ACK;
|
|
}
|
|
|
|
if (insn & (1 << 10))
|
|
s->carry = 0;
|
|
break;
|
|
}
|
|
} else {
|
|
uint8_t op0;
|
|
uint8_t op1;
|
|
uint8_t data8;
|
|
int reg;
|
|
int operator;
|
|
|
|
static const char *opcode_names[3] =
|
|
{"Write", "Read", "Read-Modify-Write"};
|
|
static const char *operator_names[8] =
|
|
{"MOV", "SHL", "OR", "XOR", "AND", "SHR", "ADD", "ADC"};
|
|
|
|
reg = ((insn >> 16) & 0x7f) | (insn & 0x80);
|
|
data8 = (insn >> 8) & 0xff;
|
|
opcode = (insn >> 27) & 7;
|
|
operator = (insn >> 24) & 7;
|
|
trace_lsi_execute_script_io_opcode(
|
|
opcode_names[opcode - 5], reg,
|
|
operator_names[operator], data8, s->sfbr,
|
|
(insn & (1 << 23)) ? " SFBR" : "");
|
|
op0 = op1 = 0;
|
|
switch (opcode) {
|
|
case 5: /* From SFBR */
|
|
op0 = s->sfbr;
|
|
op1 = data8;
|
|
break;
|
|
case 6: /* To SFBR */
|
|
if (operator)
|
|
op0 = lsi_reg_readb(s, reg);
|
|
op1 = data8;
|
|
break;
|
|
case 7: /* Read-modify-write */
|
|
if (operator)
|
|
op0 = lsi_reg_readb(s, reg);
|
|
if (insn & (1 << 23)) {
|
|
op1 = s->sfbr;
|
|
} else {
|
|
op1 = data8;
|
|
}
|
|
break;
|
|
}
|
|
|
|
switch (operator) {
|
|
case 0: /* move */
|
|
op0 = op1;
|
|
break;
|
|
case 1: /* Shift left */
|
|
op1 = op0 >> 7;
|
|
op0 = (op0 << 1) | s->carry;
|
|
s->carry = op1;
|
|
break;
|
|
case 2: /* OR */
|
|
op0 |= op1;
|
|
break;
|
|
case 3: /* XOR */
|
|
op0 ^= op1;
|
|
break;
|
|
case 4: /* AND */
|
|
op0 &= op1;
|
|
break;
|
|
case 5: /* SHR */
|
|
op1 = op0 & 1;
|
|
op0 = (op0 >> 1) | (s->carry << 7);
|
|
s->carry = op1;
|
|
break;
|
|
case 6: /* ADD */
|
|
op0 += op1;
|
|
s->carry = op0 < op1;
|
|
break;
|
|
case 7: /* ADC */
|
|
op0 += op1 + s->carry;
|
|
if (s->carry)
|
|
s->carry = op0 <= op1;
|
|
else
|
|
s->carry = op0 < op1;
|
|
break;
|
|
}
|
|
|
|
switch (opcode) {
|
|
case 5: /* From SFBR */
|
|
case 7: /* Read-modify-write */
|
|
lsi_reg_writeb(s, reg, op0);
|
|
break;
|
|
case 6: /* To SFBR */
|
|
s->sfbr = op0;
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 2: /* Transfer Control. */
|
|
{
|
|
int cond;
|
|
int jmp;
|
|
|
|
if ((insn & 0x002e0000) == 0) {
|
|
trace_lsi_execute_script_tc_nop();
|
|
break;
|
|
}
|
|
if (s->sist1 & LSI_SIST1_STO) {
|
|
trace_lsi_execute_script_tc_delayedselect_timeout();
|
|
lsi_stop_script(s);
|
|
break;
|
|
}
|
|
cond = jmp = (insn & (1 << 19)) != 0;
|
|
if (cond == jmp && (insn & (1 << 21))) {
|
|
trace_lsi_execute_script_tc_compc(s->carry == jmp);
|
|
cond = s->carry != 0;
|
|
}
|
|
if (cond == jmp && (insn & (1 << 17))) {
|
|
trace_lsi_execute_script_tc_compp(scsi_phase_name(s->sstat1),
|
|
jmp ? '=' : '!', scsi_phase_name(insn >> 24));
|
|
cond = (s->sstat1 & PHASE_MASK) == ((insn >> 24) & 7);
|
|
}
|
|
if (cond == jmp && (insn & (1 << 18))) {
|
|
uint8_t mask;
|
|
|
|
mask = (~insn >> 8) & 0xff;
|
|
trace_lsi_execute_script_tc_compd(
|
|
s->sfbr, mask, jmp ? '=' : '!', insn & mask);
|
|
cond = (s->sfbr & mask) == (insn & mask);
|
|
}
|
|
if (cond == jmp) {
|
|
if (insn & (1 << 23)) {
|
|
/* Relative address. */
|
|
addr = s->dsp + sextract32(addr, 0, 24);
|
|
}
|
|
switch ((insn >> 27) & 7) {
|
|
case 0: /* Jump */
|
|
trace_lsi_execute_script_tc_jump(addr);
|
|
s->adder = addr;
|
|
s->dsp = addr;
|
|
break;
|
|
case 1: /* Call */
|
|
trace_lsi_execute_script_tc_call(addr);
|
|
s->temp = s->dsp;
|
|
s->dsp = addr;
|
|
break;
|
|
case 2: /* Return */
|
|
trace_lsi_execute_script_tc_return(s->temp);
|
|
s->dsp = s->temp;
|
|
break;
|
|
case 3: /* Interrupt */
|
|
trace_lsi_execute_script_tc_interrupt(s->dsps);
|
|
if ((insn & (1 << 20)) != 0) {
|
|
s->istat0 |= LSI_ISTAT0_INTF;
|
|
lsi_update_irq(s);
|
|
} else {
|
|
lsi_script_dma_interrupt(s, LSI_DSTAT_SIR);
|
|
}
|
|
break;
|
|
default:
|
|
trace_lsi_execute_script_tc_illegal();
|
|
lsi_script_dma_interrupt(s, LSI_DSTAT_IID);
|
|
break;
|
|
}
|
|
} else {
|
|
trace_lsi_execute_script_tc_cc_failed();
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 3:
|
|
if ((insn & (1 << 29)) == 0) {
|
|
/* Memory move. */
|
|
uint32_t dest;
|
|
/* ??? The docs imply the destination address is loaded into
|
|
the TEMP register. However the Linux drivers rely on
|
|
the value being presrved. */
|
|
dest = read_dword(s, s->dsp);
|
|
s->dsp += 4;
|
|
lsi_memcpy(s, dest, addr, insn & 0xffffff);
|
|
} else {
|
|
uint8_t data[7];
|
|
int reg;
|
|
int n;
|
|
int i;
|
|
|
|
if (insn & (1 << 28)) {
|
|
addr = s->dsa + sextract32(addr, 0, 24);
|
|
}
|
|
n = (insn & 7);
|
|
reg = (insn >> 16) & 0xff;
|
|
if (insn & (1 << 24)) {
|
|
pci_dma_read(pci_dev, addr, data, n);
|
|
trace_lsi_execute_script_mm_load(reg, n, addr, *(int *)data);
|
|
for (i = 0; i < n; i++) {
|
|
lsi_reg_writeb(s, reg + i, data[i]);
|
|
}
|
|
} else {
|
|
trace_lsi_execute_script_mm_store(reg, n, addr);
|
|
for (i = 0; i < n; i++) {
|
|
data[i] = lsi_reg_readb(s, reg + i);
|
|
}
|
|
pci_dma_write(pci_dev, addr, data, n);
|
|
}
|
|
}
|
|
}
|
|
if (s->istat1 & LSI_ISTAT1_SRUN && s->waiting == LSI_NOWAIT) {
|
|
if (s->dcntl & LSI_DCNTL_SSM) {
|
|
lsi_script_dma_interrupt(s, LSI_DSTAT_SSI);
|
|
} else {
|
|
goto again;
|
|
}
|
|
}
|
|
trace_lsi_execute_script_stop();
|
|
}
|
|
|
|
static uint8_t lsi_reg_readb(LSIState *s, int offset)
|
|
{
|
|
uint8_t ret;
|
|
|
|
#define CASE_GET_REG24(name, addr) \
|
|
case addr: ret = s->name & 0xff; break; \
|
|
case addr + 1: ret = (s->name >> 8) & 0xff; break; \
|
|
case addr + 2: ret = (s->name >> 16) & 0xff; break;
|
|
|
|
#define CASE_GET_REG32(name, addr) \
|
|
case addr: ret = s->name & 0xff; break; \
|
|
case addr + 1: ret = (s->name >> 8) & 0xff; break; \
|
|
case addr + 2: ret = (s->name >> 16) & 0xff; break; \
|
|
case addr + 3: ret = (s->name >> 24) & 0xff; break;
|
|
|
|
switch (offset) {
|
|
case 0x00: /* SCNTL0 */
|
|
ret = s->scntl0;
|
|
break;
|
|
case 0x01: /* SCNTL1 */
|
|
ret = s->scntl1;
|
|
break;
|
|
case 0x02: /* SCNTL2 */
|
|
ret = s->scntl2;
|
|
break;
|
|
case 0x03: /* SCNTL3 */
|
|
ret = s->scntl3;
|
|
break;
|
|
case 0x04: /* SCID */
|
|
ret = s->scid;
|
|
break;
|
|
case 0x05: /* SXFER */
|
|
ret = s->sxfer;
|
|
break;
|
|
case 0x06: /* SDID */
|
|
ret = s->sdid;
|
|
break;
|
|
case 0x07: /* GPREG0 */
|
|
ret = 0x7f;
|
|
break;
|
|
case 0x08: /* Revision ID */
|
|
ret = 0x00;
|
|
break;
|
|
case 0x09: /* SOCL */
|
|
ret = s->socl;
|
|
break;
|
|
case 0xa: /* SSID */
|
|
ret = s->ssid;
|
|
break;
|
|
case 0xb: /* SBCL */
|
|
ret = s->sbcl;
|
|
break;
|
|
case 0xc: /* DSTAT */
|
|
ret = s->dstat | LSI_DSTAT_DFE;
|
|
if ((s->istat0 & LSI_ISTAT0_INTF) == 0)
|
|
s->dstat = 0;
|
|
lsi_update_irq(s);
|
|
break;
|
|
case 0x0d: /* SSTAT0 */
|
|
ret = s->sstat0;
|
|
break;
|
|
case 0x0e: /* SSTAT1 */
|
|
ret = s->sstat1;
|
|
break;
|
|
case 0x0f: /* SSTAT2 */
|
|
ret = s->scntl1 & LSI_SCNTL1_CON ? 0 : 2;
|
|
break;
|
|
CASE_GET_REG32(dsa, 0x10)
|
|
case 0x14: /* ISTAT0 */
|
|
ret = s->istat0;
|
|
break;
|
|
case 0x15: /* ISTAT1 */
|
|
ret = s->istat1;
|
|
break;
|
|
case 0x16: /* MBOX0 */
|
|
ret = s->mbox0;
|
|
break;
|
|
case 0x17: /* MBOX1 */
|
|
ret = s->mbox1;
|
|
break;
|
|
case 0x18: /* CTEST0 */
|
|
ret = 0xff;
|
|
break;
|
|
case 0x19: /* CTEST1 */
|
|
ret = 0;
|
|
break;
|
|
case 0x1a: /* CTEST2 */
|
|
ret = s->ctest2 | LSI_CTEST2_DACK | LSI_CTEST2_CM;
|
|
if (s->istat0 & LSI_ISTAT0_SIGP) {
|
|
s->istat0 &= ~LSI_ISTAT0_SIGP;
|
|
ret |= LSI_CTEST2_SIGP;
|
|
}
|
|
break;
|
|
case 0x1b: /* CTEST3 */
|
|
ret = s->ctest3;
|
|
break;
|
|
CASE_GET_REG32(temp, 0x1c)
|
|
case 0x20: /* DFIFO */
|
|
ret = s->dfifo;
|
|
break;
|
|
case 0x21: /* CTEST4 */
|
|
ret = s->ctest4;
|
|
break;
|
|
case 0x22: /* CTEST5 */
|
|
ret = s->ctest5;
|
|
break;
|
|
case 0x23: /* CTEST6 */
|
|
ret = 0;
|
|
break;
|
|
CASE_GET_REG24(dbc, 0x24)
|
|
case 0x27: /* DCMD */
|
|
ret = s->dcmd;
|
|
break;
|
|
CASE_GET_REG32(dnad, 0x28)
|
|
CASE_GET_REG32(dsp, 0x2c)
|
|
CASE_GET_REG32(dsps, 0x30)
|
|
CASE_GET_REG32(scratch[0], 0x34)
|
|
case 0x38: /* DMODE */
|
|
ret = s->dmode;
|
|
break;
|
|
case 0x39: /* DIEN */
|
|
ret = s->dien;
|
|
break;
|
|
case 0x3a: /* SBR */
|
|
ret = s->sbr;
|
|
break;
|
|
case 0x3b: /* DCNTL */
|
|
ret = s->dcntl;
|
|
break;
|
|
/* ADDER Output (Debug of relative jump address) */
|
|
CASE_GET_REG32(adder, 0x3c)
|
|
case 0x40: /* SIEN0 */
|
|
ret = s->sien0;
|
|
break;
|
|
case 0x41: /* SIEN1 */
|
|
ret = s->sien1;
|
|
break;
|
|
case 0x42: /* SIST0 */
|
|
ret = s->sist0;
|
|
s->sist0 = 0;
|
|
lsi_update_irq(s);
|
|
break;
|
|
case 0x43: /* SIST1 */
|
|
ret = s->sist1;
|
|
s->sist1 = 0;
|
|
lsi_update_irq(s);
|
|
break;
|
|
case 0x46: /* MACNTL */
|
|
ret = 0x0f;
|
|
break;
|
|
case 0x47: /* GPCNTL0 */
|
|
ret = 0x0f;
|
|
break;
|
|
case 0x48: /* STIME0 */
|
|
ret = s->stime0;
|
|
break;
|
|
case 0x4a: /* RESPID0 */
|
|
ret = s->respid0;
|
|
break;
|
|
case 0x4b: /* RESPID1 */
|
|
ret = s->respid1;
|
|
break;
|
|
case 0x4d: /* STEST1 */
|
|
ret = s->stest1;
|
|
break;
|
|
case 0x4e: /* STEST2 */
|
|
ret = s->stest2;
|
|
break;
|
|
case 0x4f: /* STEST3 */
|
|
ret = s->stest3;
|
|
break;
|
|
case 0x50: /* SIDL */
|
|
/* This is needed by the linux drivers. We currently only update it
|
|
during the MSG IN phase. */
|
|
ret = s->sidl;
|
|
break;
|
|
case 0x52: /* STEST4 */
|
|
ret = 0xe0;
|
|
break;
|
|
case 0x56: /* CCNTL0 */
|
|
ret = s->ccntl0;
|
|
break;
|
|
case 0x57: /* CCNTL1 */
|
|
ret = s->ccntl1;
|
|
break;
|
|
case 0x58: /* SBDL */
|
|
/* Some drivers peek at the data bus during the MSG IN phase. */
|
|
if ((s->sstat1 & PHASE_MASK) == PHASE_MI) {
|
|
assert(s->msg_len > 0);
|
|
return s->msg[0];
|
|
}
|
|
ret = 0;
|
|
break;
|
|
case 0x59: /* SBDL high */
|
|
ret = 0;
|
|
break;
|
|
CASE_GET_REG32(mmrs, 0xa0)
|
|
CASE_GET_REG32(mmws, 0xa4)
|
|
CASE_GET_REG32(sfs, 0xa8)
|
|
CASE_GET_REG32(drs, 0xac)
|
|
CASE_GET_REG32(sbms, 0xb0)
|
|
CASE_GET_REG32(dbms, 0xb4)
|
|
CASE_GET_REG32(dnad64, 0xb8)
|
|
CASE_GET_REG32(pmjad1, 0xc0)
|
|
CASE_GET_REG32(pmjad2, 0xc4)
|
|
CASE_GET_REG32(rbc, 0xc8)
|
|
CASE_GET_REG32(ua, 0xcc)
|
|
CASE_GET_REG32(ia, 0xd4)
|
|
CASE_GET_REG32(sbc, 0xd8)
|
|
CASE_GET_REG32(csbc, 0xdc)
|
|
case 0x5c ... 0x9f:
|
|
{
|
|
int n;
|
|
int shift;
|
|
n = (offset - 0x58) >> 2;
|
|
shift = (offset & 3) * 8;
|
|
ret = (s->scratch[n] >> shift) & 0xff;
|
|
break;
|
|
}
|
|
default:
|
|
{
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"lsi_scsi: invalid read from reg %s %x\n",
|
|
offset < ARRAY_SIZE(names) ? names[offset] : "???",
|
|
offset);
|
|
ret = 0xff;
|
|
break;
|
|
}
|
|
}
|
|
#undef CASE_GET_REG24
|
|
#undef CASE_GET_REG32
|
|
|
|
trace_lsi_reg_read(offset < ARRAY_SIZE(names) ? names[offset] : "???",
|
|
offset, ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val)
|
|
{
|
|
#define CASE_SET_REG24(name, addr) \
|
|
case addr : s->name &= 0xffffff00; s->name |= val; break; \
|
|
case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8; break; \
|
|
case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break;
|
|
|
|
#define CASE_SET_REG32(name, addr) \
|
|
case addr : s->name &= 0xffffff00; s->name |= val; break; \
|
|
case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8; break; \
|
|
case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break; \
|
|
case addr + 3: s->name &= 0x00ffffff; s->name |= val << 24; break;
|
|
|
|
trace_lsi_reg_write(offset < ARRAY_SIZE(names) ? names[offset] : "???",
|
|
offset, val);
|
|
|
|
switch (offset) {
|
|
case 0x00: /* SCNTL0 */
|
|
s->scntl0 = val;
|
|
if (val & LSI_SCNTL0_START) {
|
|
qemu_log_mask(LOG_UNIMP,
|
|
"lsi_scsi: Start sequence not implemented\n");
|
|
}
|
|
break;
|
|
case 0x01: /* SCNTL1 */
|
|
s->scntl1 = val & ~LSI_SCNTL1_SST;
|
|
if (val & LSI_SCNTL1_IARB) {
|
|
qemu_log_mask(LOG_UNIMP,
|
|
"lsi_scsi: Immediate Arbritration not implemented\n");
|
|
}
|
|
if (val & LSI_SCNTL1_RST) {
|
|
if (!(s->sstat0 & LSI_SSTAT0_RST)) {
|
|
qbus_reset_all(BUS(&s->bus));
|
|
s->sstat0 |= LSI_SSTAT0_RST;
|
|
lsi_script_scsi_interrupt(s, LSI_SIST0_RST, 0);
|
|
}
|
|
} else {
|
|
s->sstat0 &= ~LSI_SSTAT0_RST;
|
|
}
|
|
break;
|
|
case 0x02: /* SCNTL2 */
|
|
val &= ~(LSI_SCNTL2_WSR | LSI_SCNTL2_WSS);
|
|
s->scntl2 = val;
|
|
break;
|
|
case 0x03: /* SCNTL3 */
|
|
s->scntl3 = val;
|
|
break;
|
|
case 0x04: /* SCID */
|
|
s->scid = val;
|
|
break;
|
|
case 0x05: /* SXFER */
|
|
s->sxfer = val;
|
|
break;
|
|
case 0x06: /* SDID */
|
|
if ((s->ssid & 0x80) && (val & 0xf) != (s->ssid & 0xf)) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"lsi_scsi: Destination ID does not match SSID\n");
|
|
}
|
|
s->sdid = val & 0xf;
|
|
break;
|
|
case 0x07: /* GPREG0 */
|
|
break;
|
|
case 0x08: /* SFBR */
|
|
/* The CPU is not allowed to write to this register. However the
|
|
SCRIPTS register move instructions are. */
|
|
s->sfbr = val;
|
|
break;
|
|
case 0x0a: case 0x0b:
|
|
/* Openserver writes to these readonly registers on startup */
|
|
return;
|
|
case 0x0c: case 0x0d: case 0x0e: case 0x0f:
|
|
/* Linux writes to these readonly registers on startup. */
|
|
return;
|
|
CASE_SET_REG32(dsa, 0x10)
|
|
case 0x14: /* ISTAT0 */
|
|
s->istat0 = (s->istat0 & 0x0f) | (val & 0xf0);
|
|
if (val & LSI_ISTAT0_ABRT) {
|
|
lsi_script_dma_interrupt(s, LSI_DSTAT_ABRT);
|
|
}
|
|
if (val & LSI_ISTAT0_INTF) {
|
|
s->istat0 &= ~LSI_ISTAT0_INTF;
|
|
lsi_update_irq(s);
|
|
}
|
|
if (s->waiting == LSI_WAIT_RESELECT && val & LSI_ISTAT0_SIGP) {
|
|
trace_lsi_awoken();
|
|
s->waiting = LSI_NOWAIT;
|
|
s->dsp = s->dnad;
|
|
lsi_execute_script(s);
|
|
}
|
|
if (val & LSI_ISTAT0_SRST) {
|
|
qdev_reset_all(DEVICE(s));
|
|
}
|
|
break;
|
|
case 0x16: /* MBOX0 */
|
|
s->mbox0 = val;
|
|
break;
|
|
case 0x17: /* MBOX1 */
|
|
s->mbox1 = val;
|
|
break;
|
|
case 0x18: /* CTEST0 */
|
|
/* nothing to do */
|
|
break;
|
|
case 0x1a: /* CTEST2 */
|
|
s->ctest2 = val & LSI_CTEST2_PCICIE;
|
|
break;
|
|
case 0x1b: /* CTEST3 */
|
|
s->ctest3 = val & 0x0f;
|
|
break;
|
|
CASE_SET_REG32(temp, 0x1c)
|
|
case 0x21: /* CTEST4 */
|
|
if (val & 7) {
|
|
qemu_log_mask(LOG_UNIMP,
|
|
"lsi_scsi: Unimplemented CTEST4-FBL 0x%x\n", val);
|
|
}
|
|
s->ctest4 = val;
|
|
break;
|
|
case 0x22: /* CTEST5 */
|
|
if (val & (LSI_CTEST5_ADCK | LSI_CTEST5_BBCK)) {
|
|
qemu_log_mask(LOG_UNIMP,
|
|
"lsi_scsi: CTEST5 DMA increment not implemented\n");
|
|
}
|
|
s->ctest5 = val;
|
|
break;
|
|
CASE_SET_REG24(dbc, 0x24)
|
|
CASE_SET_REG32(dnad, 0x28)
|
|
case 0x2c: /* DSP[0:7] */
|
|
s->dsp &= 0xffffff00;
|
|
s->dsp |= val;
|
|
break;
|
|
case 0x2d: /* DSP[8:15] */
|
|
s->dsp &= 0xffff00ff;
|
|
s->dsp |= val << 8;
|
|
break;
|
|
case 0x2e: /* DSP[16:23] */
|
|
s->dsp &= 0xff00ffff;
|
|
s->dsp |= val << 16;
|
|
break;
|
|
case 0x2f: /* DSP[24:31] */
|
|
s->dsp &= 0x00ffffff;
|
|
s->dsp |= val << 24;
|
|
/*
|
|
* FIXME: if s->waiting != LSI_NOWAIT, this will only execute one
|
|
* instruction. Is this correct?
|
|
*/
|
|
if ((s->dmode & LSI_DMODE_MAN) == 0
|
|
&& (s->istat1 & LSI_ISTAT1_SRUN) == 0)
|
|
lsi_execute_script(s);
|
|
break;
|
|
CASE_SET_REG32(dsps, 0x30)
|
|
CASE_SET_REG32(scratch[0], 0x34)
|
|
case 0x38: /* DMODE */
|
|
s->dmode = val;
|
|
break;
|
|
case 0x39: /* DIEN */
|
|
s->dien = val;
|
|
lsi_update_irq(s);
|
|
break;
|
|
case 0x3a: /* SBR */
|
|
s->sbr = val;
|
|
break;
|
|
case 0x3b: /* DCNTL */
|
|
s->dcntl = val & ~(LSI_DCNTL_PFF | LSI_DCNTL_STD);
|
|
/*
|
|
* FIXME: if s->waiting != LSI_NOWAIT, this will only execute one
|
|
* instruction. Is this correct?
|
|
*/
|
|
if ((val & LSI_DCNTL_STD) && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
|
|
lsi_execute_script(s);
|
|
break;
|
|
case 0x40: /* SIEN0 */
|
|
s->sien0 = val;
|
|
lsi_update_irq(s);
|
|
break;
|
|
case 0x41: /* SIEN1 */
|
|
s->sien1 = val;
|
|
lsi_update_irq(s);
|
|
break;
|
|
case 0x47: /* GPCNTL0 */
|
|
break;
|
|
case 0x48: /* STIME0 */
|
|
s->stime0 = val;
|
|
break;
|
|
case 0x49: /* STIME1 */
|
|
if (val & 0xf) {
|
|
qemu_log_mask(LOG_UNIMP,
|
|
"lsi_scsi: General purpose timer not implemented\n");
|
|
/* ??? Raising the interrupt immediately seems to be sufficient
|
|
to keep the FreeBSD driver happy. */
|
|
lsi_script_scsi_interrupt(s, 0, LSI_SIST1_GEN);
|
|
}
|
|
break;
|
|
case 0x4a: /* RESPID0 */
|
|
s->respid0 = val;
|
|
break;
|
|
case 0x4b: /* RESPID1 */
|
|
s->respid1 = val;
|
|
break;
|
|
case 0x4d: /* STEST1 */
|
|
s->stest1 = val;
|
|
break;
|
|
case 0x4e: /* STEST2 */
|
|
if (val & 1) {
|
|
qemu_log_mask(LOG_UNIMP,
|
|
"lsi_scsi: Low level mode not implemented\n");
|
|
}
|
|
s->stest2 = val;
|
|
break;
|
|
case 0x4f: /* STEST3 */
|
|
if (val & 0x41) {
|
|
qemu_log_mask(LOG_UNIMP,
|
|
"lsi_scsi: SCSI FIFO test mode not implemented\n");
|
|
}
|
|
s->stest3 = val;
|
|
break;
|
|
case 0x56: /* CCNTL0 */
|
|
s->ccntl0 = val;
|
|
break;
|
|
case 0x57: /* CCNTL1 */
|
|
s->ccntl1 = val;
|
|
break;
|
|
CASE_SET_REG32(mmrs, 0xa0)
|
|
CASE_SET_REG32(mmws, 0xa4)
|
|
CASE_SET_REG32(sfs, 0xa8)
|
|
CASE_SET_REG32(drs, 0xac)
|
|
CASE_SET_REG32(sbms, 0xb0)
|
|
CASE_SET_REG32(dbms, 0xb4)
|
|
CASE_SET_REG32(dnad64, 0xb8)
|
|
CASE_SET_REG32(pmjad1, 0xc0)
|
|
CASE_SET_REG32(pmjad2, 0xc4)
|
|
CASE_SET_REG32(rbc, 0xc8)
|
|
CASE_SET_REG32(ua, 0xcc)
|
|
CASE_SET_REG32(ia, 0xd4)
|
|
CASE_SET_REG32(sbc, 0xd8)
|
|
CASE_SET_REG32(csbc, 0xdc)
|
|
default:
|
|
if (offset >= 0x5c && offset < 0xa0) {
|
|
int n;
|
|
int shift;
|
|
n = (offset - 0x58) >> 2;
|
|
shift = (offset & 3) * 8;
|
|
s->scratch[n] = deposit32(s->scratch[n], shift, 8, val);
|
|
} else {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"lsi_scsi: invalid write to reg %s %x (0x%02x)\n",
|
|
offset < ARRAY_SIZE(names) ? names[offset] : "???",
|
|
offset, val);
|
|
}
|
|
}
|
|
#undef CASE_SET_REG24
|
|
#undef CASE_SET_REG32
|
|
}
|
|
|
|
static void lsi_mmio_write(void *opaque, hwaddr addr,
|
|
uint64_t val, unsigned size)
|
|
{
|
|
LSIState *s = opaque;
|
|
|
|
lsi_reg_writeb(s, addr & 0xff, val);
|
|
}
|
|
|
|
static uint64_t lsi_mmio_read(void *opaque, hwaddr addr,
|
|
unsigned size)
|
|
{
|
|
LSIState *s = opaque;
|
|
return lsi_reg_readb(s, addr & 0xff);
|
|
}
|
|
|
|
static const MemoryRegionOps lsi_mmio_ops = {
|
|
.read = lsi_mmio_read,
|
|
.write = lsi_mmio_write,
|
|
.endianness = DEVICE_LITTLE_ENDIAN,
|
|
.impl = {
|
|
.min_access_size = 1,
|
|
.max_access_size = 1,
|
|
},
|
|
};
|
|
|
|
static void lsi_ram_write(void *opaque, hwaddr addr,
|
|
uint64_t val, unsigned size)
|
|
{
|
|
LSIState *s = opaque;
|
|
stn_le_p(s->script_ram + addr, size, val);
|
|
}
|
|
|
|
static uint64_t lsi_ram_read(void *opaque, hwaddr addr,
|
|
unsigned size)
|
|
{
|
|
LSIState *s = opaque;
|
|
return ldn_le_p(s->script_ram + addr, size);
|
|
}
|
|
|
|
static const MemoryRegionOps lsi_ram_ops = {
|
|
.read = lsi_ram_read,
|
|
.write = lsi_ram_write,
|
|
.endianness = DEVICE_LITTLE_ENDIAN,
|
|
};
|
|
|
|
static uint64_t lsi_io_read(void *opaque, hwaddr addr,
|
|
unsigned size)
|
|
{
|
|
LSIState *s = opaque;
|
|
return lsi_reg_readb(s, addr & 0xff);
|
|
}
|
|
|
|
static void lsi_io_write(void *opaque, hwaddr addr,
|
|
uint64_t val, unsigned size)
|
|
{
|
|
LSIState *s = opaque;
|
|
lsi_reg_writeb(s, addr & 0xff, val);
|
|
}
|
|
|
|
static const MemoryRegionOps lsi_io_ops = {
|
|
.read = lsi_io_read,
|
|
.write = lsi_io_write,
|
|
.endianness = DEVICE_LITTLE_ENDIAN,
|
|
.impl = {
|
|
.min_access_size = 1,
|
|
.max_access_size = 1,
|
|
},
|
|
};
|
|
|
|
static void lsi_scsi_reset(DeviceState *dev)
|
|
{
|
|
LSIState *s = LSI53C895A(dev);
|
|
|
|
lsi_soft_reset(s);
|
|
}
|
|
|
|
static int lsi_pre_save(void *opaque)
|
|
{
|
|
LSIState *s = opaque;
|
|
|
|
if (s->current) {
|
|
assert(s->current->dma_buf == NULL);
|
|
assert(s->current->dma_len == 0);
|
|
}
|
|
assert(QTAILQ_EMPTY(&s->queue));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int lsi_post_load(void *opaque, int version_id)
|
|
{
|
|
LSIState *s = opaque;
|
|
|
|
if (s->msg_len < 0 || s->msg_len > LSI_MAX_MSGIN_LEN) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const VMStateDescription vmstate_lsi_scsi = {
|
|
.name = "lsiscsi",
|
|
.version_id = 1,
|
|
.minimum_version_id = 0,
|
|
.pre_save = lsi_pre_save,
|
|
.post_load = lsi_post_load,
|
|
.fields = (VMStateField[]) {
|
|
VMSTATE_PCI_DEVICE(parent_obj, LSIState),
|
|
|
|
VMSTATE_INT32(carry, LSIState),
|
|
VMSTATE_INT32(status, LSIState),
|
|
VMSTATE_INT32(msg_action, LSIState),
|
|
VMSTATE_INT32(msg_len, LSIState),
|
|
VMSTATE_BUFFER(msg, LSIState),
|
|
VMSTATE_INT32(waiting, LSIState),
|
|
|
|
VMSTATE_UINT32(dsa, LSIState),
|
|
VMSTATE_UINT32(temp, LSIState),
|
|
VMSTATE_UINT32(dnad, LSIState),
|
|
VMSTATE_UINT32(dbc, LSIState),
|
|
VMSTATE_UINT8(istat0, LSIState),
|
|
VMSTATE_UINT8(istat1, LSIState),
|
|
VMSTATE_UINT8(dcmd, LSIState),
|
|
VMSTATE_UINT8(dstat, LSIState),
|
|
VMSTATE_UINT8(dien, LSIState),
|
|
VMSTATE_UINT8(sist0, LSIState),
|
|
VMSTATE_UINT8(sist1, LSIState),
|
|
VMSTATE_UINT8(sien0, LSIState),
|
|
VMSTATE_UINT8(sien1, LSIState),
|
|
VMSTATE_UINT8(mbox0, LSIState),
|
|
VMSTATE_UINT8(mbox1, LSIState),
|
|
VMSTATE_UINT8(dfifo, LSIState),
|
|
VMSTATE_UINT8(ctest2, LSIState),
|
|
VMSTATE_UINT8(ctest3, LSIState),
|
|
VMSTATE_UINT8(ctest4, LSIState),
|
|
VMSTATE_UINT8(ctest5, LSIState),
|
|
VMSTATE_UINT8(ccntl0, LSIState),
|
|
VMSTATE_UINT8(ccntl1, LSIState),
|
|
VMSTATE_UINT32(dsp, LSIState),
|
|
VMSTATE_UINT32(dsps, LSIState),
|
|
VMSTATE_UINT8(dmode, LSIState),
|
|
VMSTATE_UINT8(dcntl, LSIState),
|
|
VMSTATE_UINT8(scntl0, LSIState),
|
|
VMSTATE_UINT8(scntl1, LSIState),
|
|
VMSTATE_UINT8(scntl2, LSIState),
|
|
VMSTATE_UINT8(scntl3, LSIState),
|
|
VMSTATE_UINT8(sstat0, LSIState),
|
|
VMSTATE_UINT8(sstat1, LSIState),
|
|
VMSTATE_UINT8(scid, LSIState),
|
|
VMSTATE_UINT8(sxfer, LSIState),
|
|
VMSTATE_UINT8(socl, LSIState),
|
|
VMSTATE_UINT8(sdid, LSIState),
|
|
VMSTATE_UINT8(ssid, LSIState),
|
|
VMSTATE_UINT8(sfbr, LSIState),
|
|
VMSTATE_UINT8(stest1, LSIState),
|
|
VMSTATE_UINT8(stest2, LSIState),
|
|
VMSTATE_UINT8(stest3, LSIState),
|
|
VMSTATE_UINT8(sidl, LSIState),
|
|
VMSTATE_UINT8(stime0, LSIState),
|
|
VMSTATE_UINT8(respid0, LSIState),
|
|
VMSTATE_UINT8(respid1, LSIState),
|
|
VMSTATE_UINT8_V(sbcl, LSIState, 1),
|
|
VMSTATE_UINT32(mmrs, LSIState),
|
|
VMSTATE_UINT32(mmws, LSIState),
|
|
VMSTATE_UINT32(sfs, LSIState),
|
|
VMSTATE_UINT32(drs, LSIState),
|
|
VMSTATE_UINT32(sbms, LSIState),
|
|
VMSTATE_UINT32(dbms, LSIState),
|
|
VMSTATE_UINT32(dnad64, LSIState),
|
|
VMSTATE_UINT32(pmjad1, LSIState),
|
|
VMSTATE_UINT32(pmjad2, LSIState),
|
|
VMSTATE_UINT32(rbc, LSIState),
|
|
VMSTATE_UINT32(ua, LSIState),
|
|
VMSTATE_UINT32(ia, LSIState),
|
|
VMSTATE_UINT32(sbc, LSIState),
|
|
VMSTATE_UINT32(csbc, LSIState),
|
|
VMSTATE_BUFFER_UNSAFE(scratch, LSIState, 0, 18 * sizeof(uint32_t)),
|
|
VMSTATE_UINT8(sbr, LSIState),
|
|
|
|
VMSTATE_BUFFER_UNSAFE(script_ram, LSIState, 0, 8192),
|
|
VMSTATE_END_OF_LIST()
|
|
}
|
|
};
|
|
|
|
static const struct SCSIBusInfo lsi_scsi_info = {
|
|
.tcq = true,
|
|
.max_target = LSI_MAX_DEVS,
|
|
.max_lun = 0, /* LUN support is buggy */
|
|
|
|
.transfer_data = lsi_transfer_data,
|
|
.complete = lsi_command_complete,
|
|
.cancel = lsi_request_cancelled
|
|
};
|
|
|
|
static void lsi_scsi_realize(PCIDevice *dev, Error **errp)
|
|
{
|
|
LSIState *s = LSI53C895A(dev);
|
|
DeviceState *d = DEVICE(dev);
|
|
uint8_t *pci_conf;
|
|
|
|
pci_conf = dev->config;
|
|
|
|
/* PCI latency timer = 255 */
|
|
pci_conf[PCI_LATENCY_TIMER] = 0xff;
|
|
/* Interrupt pin A */
|
|
pci_conf[PCI_INTERRUPT_PIN] = 0x01;
|
|
|
|
memory_region_init_io(&s->mmio_io, OBJECT(s), &lsi_mmio_ops, s,
|
|
"lsi-mmio", 0x400);
|
|
memory_region_init_io(&s->ram_io, OBJECT(s), &lsi_ram_ops, s,
|
|
"lsi-ram", 0x2000);
|
|
memory_region_init_io(&s->io_io, OBJECT(s), &lsi_io_ops, s,
|
|
"lsi-io", 256);
|
|
|
|
address_space_init(&s->pci_io_as, pci_address_space_io(dev), "lsi-pci-io");
|
|
qdev_init_gpio_out(d, &s->ext_irq, 1);
|
|
|
|
pci_register_bar(dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &s->io_io);
|
|
pci_register_bar(dev, 1, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->mmio_io);
|
|
pci_register_bar(dev, 2, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->ram_io);
|
|
QTAILQ_INIT(&s->queue);
|
|
|
|
scsi_bus_new(&s->bus, sizeof(s->bus), d, &lsi_scsi_info, NULL);
|
|
}
|
|
|
|
static void lsi_scsi_unrealize(DeviceState *dev)
|
|
{
|
|
LSIState *s = LSI53C895A(dev);
|
|
|
|
address_space_destroy(&s->pci_io_as);
|
|
}
|
|
|
|
static void lsi_class_init(ObjectClass *klass, void *data)
|
|
{
|
|
DeviceClass *dc = DEVICE_CLASS(klass);
|
|
PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
|
|
|
|
k->realize = lsi_scsi_realize;
|
|
k->vendor_id = PCI_VENDOR_ID_LSI_LOGIC;
|
|
k->device_id = PCI_DEVICE_ID_LSI_53C895A;
|
|
k->class_id = PCI_CLASS_STORAGE_SCSI;
|
|
k->subsystem_id = 0x1000;
|
|
dc->unrealize = lsi_scsi_unrealize;
|
|
dc->reset = lsi_scsi_reset;
|
|
dc->vmsd = &vmstate_lsi_scsi;
|
|
set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
|
|
}
|
|
|
|
static const TypeInfo lsi_info = {
|
|
.name = TYPE_LSI53C895A,
|
|
.parent = TYPE_PCI_DEVICE,
|
|
.instance_size = sizeof(LSIState),
|
|
.class_init = lsi_class_init,
|
|
.interfaces = (InterfaceInfo[]) {
|
|
{ INTERFACE_CONVENTIONAL_PCI_DEVICE },
|
|
{ },
|
|
},
|
|
};
|
|
|
|
static void lsi53c810_class_init(ObjectClass *klass, void *data)
|
|
{
|
|
PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
|
|
|
|
k->device_id = PCI_DEVICE_ID_LSI_53C810;
|
|
}
|
|
|
|
static TypeInfo lsi53c810_info = {
|
|
.name = TYPE_LSI53C810,
|
|
.parent = TYPE_LSI53C895A,
|
|
.class_init = lsi53c810_class_init,
|
|
};
|
|
|
|
static void lsi53c895a_register_types(void)
|
|
{
|
|
type_register_static(&lsi_info);
|
|
type_register_static(&lsi53c810_info);
|
|
}
|
|
|
|
type_init(lsi53c895a_register_types)
|
|
|
|
void lsi53c8xx_handle_legacy_cmdline(DeviceState *lsi_dev)
|
|
{
|
|
LSIState *s = LSI53C895A(lsi_dev);
|
|
|
|
scsi_bus_legacy_handle_cmdline(&s->bus);
|
|
}
|