qemu/target/s390x/vec_fpu_helper.c
David Hildenbrand a38b5a0eab s390x/tcg: Implement 32/128 bit for VECTOR FP TEST DATA CLASS IMMEDIATE
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: David Hildenbrand <david@redhat.com>
Message-Id: <20210608092337.12221-21-david@redhat.com>
Signed-off-by: Cornelia Huck <cohuck@redhat.com>
2021-06-21 08:48:21 +02:00

701 lines
23 KiB
C

/*
* QEMU TCG support -- s390x vector floating point instruction support
*
* Copyright (C) 2019 Red Hat Inc
*
* Authors:
* David Hildenbrand <david@redhat.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "qemu-common.h"
#include "cpu.h"
#include "internal.h"
#include "vec.h"
#include "tcg_s390x.h"
#include "tcg/tcg-gvec-desc.h"
#include "exec/exec-all.h"
#include "exec/helper-proto.h"
#include "fpu/softfloat.h"
#define VIC_INVALID 0x1
#define VIC_DIVBYZERO 0x2
#define VIC_OVERFLOW 0x3
#define VIC_UNDERFLOW 0x4
#define VIC_INEXACT 0x5
/* returns the VEX. If the VEX is 0, there is no trap */
static uint8_t check_ieee_exc(CPUS390XState *env, uint8_t enr, bool XxC,
uint8_t *vec_exc)
{
uint8_t vece_exc = 0, trap_exc;
unsigned qemu_exc;
/* Retrieve and clear the softfloat exceptions */
qemu_exc = env->fpu_status.float_exception_flags;
if (qemu_exc == 0) {
return 0;
}
env->fpu_status.float_exception_flags = 0;
vece_exc = s390_softfloat_exc_to_ieee(qemu_exc);
/* Add them to the vector-wide s390x exception bits */
*vec_exc |= vece_exc;
/* Check for traps and construct the VXC */
trap_exc = vece_exc & env->fpc >> 24;
if (trap_exc) {
if (trap_exc & S390_IEEE_MASK_INVALID) {
return enr << 4 | VIC_INVALID;
} else if (trap_exc & S390_IEEE_MASK_DIVBYZERO) {
return enr << 4 | VIC_DIVBYZERO;
} else if (trap_exc & S390_IEEE_MASK_OVERFLOW) {
return enr << 4 | VIC_OVERFLOW;
} else if (trap_exc & S390_IEEE_MASK_UNDERFLOW) {
return enr << 4 | VIC_UNDERFLOW;
} else if (!XxC) {
g_assert(trap_exc & S390_IEEE_MASK_INEXACT);
/* inexact has lowest priority on traps */
return enr << 4 | VIC_INEXACT;
}
}
return 0;
}
static void handle_ieee_exc(CPUS390XState *env, uint8_t vxc, uint8_t vec_exc,
uintptr_t retaddr)
{
if (vxc) {
/* on traps, the fpc flags are not updated, instruction is suppressed */
tcg_s390_vector_exception(env, vxc, retaddr);
}
if (vec_exc) {
/* indicate exceptions for all elements combined */
env->fpc |= vec_exc << 16;
}
}
static float32 s390_vec_read_float32(const S390Vector *v, uint8_t enr)
{
return make_float32(s390_vec_read_element32(v, enr));
}
static float64 s390_vec_read_float64(const S390Vector *v, uint8_t enr)
{
return make_float64(s390_vec_read_element64(v, enr));
}
static float128 s390_vec_read_float128(const S390Vector *v)
{
return make_float128(s390_vec_read_element64(v, 0),
s390_vec_read_element64(v, 1));
}
static void s390_vec_write_float32(S390Vector *v, uint8_t enr, float32 data)
{
return s390_vec_write_element32(v, enr, data);
}
static void s390_vec_write_float64(S390Vector *v, uint8_t enr, float64 data)
{
return s390_vec_write_element64(v, enr, data);
}
static void s390_vec_write_float128(S390Vector *v, float128 data)
{
s390_vec_write_element64(v, 0, data.high);
s390_vec_write_element64(v, 1, data.low);
}
typedef float32 (*vop32_2_fn)(float32 a, float_status *s);
static void vop32_2(S390Vector *v1, const S390Vector *v2, CPUS390XState *env,
bool s, bool XxC, uint8_t erm, vop32_2_fn fn,
uintptr_t retaddr)
{
uint8_t vxc, vec_exc = 0;
S390Vector tmp = {};
int i, old_mode;
old_mode = s390_swap_bfp_rounding_mode(env, erm);
for (i = 0; i < 4; i++) {
const float32 a = s390_vec_read_float32(v2, i);
s390_vec_write_float32(&tmp, i, fn(a, &env->fpu_status));
vxc = check_ieee_exc(env, i, XxC, &vec_exc);
if (s || vxc) {
break;
}
}
s390_restore_bfp_rounding_mode(env, old_mode);
handle_ieee_exc(env, vxc, vec_exc, retaddr);
*v1 = tmp;
}
typedef float64 (*vop64_2_fn)(float64 a, float_status *s);
static void vop64_2(S390Vector *v1, const S390Vector *v2, CPUS390XState *env,
bool s, bool XxC, uint8_t erm, vop64_2_fn fn,
uintptr_t retaddr)
{
uint8_t vxc, vec_exc = 0;
S390Vector tmp = {};
int i, old_mode;
old_mode = s390_swap_bfp_rounding_mode(env, erm);
for (i = 0; i < 2; i++) {
const float64 a = s390_vec_read_float64(v2, i);
s390_vec_write_float64(&tmp, i, fn(a, &env->fpu_status));
vxc = check_ieee_exc(env, i, XxC, &vec_exc);
if (s || vxc) {
break;
}
}
s390_restore_bfp_rounding_mode(env, old_mode);
handle_ieee_exc(env, vxc, vec_exc, retaddr);
*v1 = tmp;
}
typedef float128 (*vop128_2_fn)(float128 a, float_status *s);
static void vop128_2(S390Vector *v1, const S390Vector *v2, CPUS390XState *env,
bool s, bool XxC, uint8_t erm, vop128_2_fn fn,
uintptr_t retaddr)
{
const float128 a = s390_vec_read_float128(v2);
uint8_t vxc, vec_exc = 0;
S390Vector tmp = {};
int old_mode;
old_mode = s390_swap_bfp_rounding_mode(env, erm);
s390_vec_write_float128(&tmp, fn(a, &env->fpu_status));
vxc = check_ieee_exc(env, 0, XxC, &vec_exc);
s390_restore_bfp_rounding_mode(env, old_mode);
handle_ieee_exc(env, vxc, vec_exc, retaddr);
*v1 = tmp;
}
static float64 vcdg64(float64 a, float_status *s)
{
return int64_to_float64(a, s);
}
static float64 vcdlg64(float64 a, float_status *s)
{
return uint64_to_float64(a, s);
}
static float64 vcgd64(float64 a, float_status *s)
{
const float64 tmp = float64_to_int64(a, s);
return float64_is_any_nan(a) ? INT64_MIN : tmp;
}
static float64 vclgd64(float64 a, float_status *s)
{
const float64 tmp = float64_to_uint64(a, s);
return float64_is_any_nan(a) ? 0 : tmp;
}
#define DEF_GVEC_VOP2_FN(NAME, FN, BITS) \
void HELPER(gvec_##NAME##BITS)(void *v1, const void *v2, CPUS390XState *env, \
uint32_t desc) \
{ \
const uint8_t erm = extract32(simd_data(desc), 4, 4); \
const bool se = extract32(simd_data(desc), 3, 1); \
const bool XxC = extract32(simd_data(desc), 2, 1); \
\
vop##BITS##_2(v1, v2, env, se, XxC, erm, FN, GETPC()); \
}
#define DEF_GVEC_VOP2_64(NAME) \
DEF_GVEC_VOP2_FN(NAME, NAME##64, 64)
#define DEF_GVEC_VOP2(NAME, OP) \
DEF_GVEC_VOP2_FN(NAME, float32_##OP, 32) \
DEF_GVEC_VOP2_FN(NAME, float64_##OP, 64) \
DEF_GVEC_VOP2_FN(NAME, float128_##OP, 128)
DEF_GVEC_VOP2_64(vcdg)
DEF_GVEC_VOP2_64(vcdlg)
DEF_GVEC_VOP2_64(vcgd)
DEF_GVEC_VOP2_64(vclgd)
DEF_GVEC_VOP2(vfi, round_to_int)
DEF_GVEC_VOP2(vfsq, sqrt)
typedef float32 (*vop32_3_fn)(float32 a, float32 b, float_status *s);
static void vop32_3(S390Vector *v1, const S390Vector *v2, const S390Vector *v3,
CPUS390XState *env, bool s, vop32_3_fn fn,
uintptr_t retaddr)
{
uint8_t vxc, vec_exc = 0;
S390Vector tmp = {};
int i;
for (i = 0; i < 4; i++) {
const float32 a = s390_vec_read_float32(v2, i);
const float32 b = s390_vec_read_float32(v3, i);
s390_vec_write_float32(&tmp, i, fn(a, b, &env->fpu_status));
vxc = check_ieee_exc(env, i, false, &vec_exc);
if (s || vxc) {
break;
}
}
handle_ieee_exc(env, vxc, vec_exc, retaddr);
*v1 = tmp;
}
typedef float64 (*vop64_3_fn)(float64 a, float64 b, float_status *s);
static void vop64_3(S390Vector *v1, const S390Vector *v2, const S390Vector *v3,
CPUS390XState *env, bool s, vop64_3_fn fn,
uintptr_t retaddr)
{
uint8_t vxc, vec_exc = 0;
S390Vector tmp = {};
int i;
for (i = 0; i < 2; i++) {
const float64 a = s390_vec_read_float64(v2, i);
const float64 b = s390_vec_read_float64(v3, i);
s390_vec_write_float64(&tmp, i, fn(a, b, &env->fpu_status));
vxc = check_ieee_exc(env, i, false, &vec_exc);
if (s || vxc) {
break;
}
}
handle_ieee_exc(env, vxc, vec_exc, retaddr);
*v1 = tmp;
}
typedef float128 (*vop128_3_fn)(float128 a, float128 b, float_status *s);
static void vop128_3(S390Vector *v1, const S390Vector *v2, const S390Vector *v3,
CPUS390XState *env, bool s, vop128_3_fn fn,
uintptr_t retaddr)
{
const float128 a = s390_vec_read_float128(v2);
const float128 b = s390_vec_read_float128(v3);
uint8_t vxc, vec_exc = 0;
S390Vector tmp = {};
s390_vec_write_float128(&tmp, fn(a, b, &env->fpu_status));
vxc = check_ieee_exc(env, 0, false, &vec_exc);
handle_ieee_exc(env, vxc, vec_exc, retaddr);
*v1 = tmp;
}
#define DEF_GVEC_VOP3_B(NAME, OP, BITS) \
void HELPER(gvec_##NAME##BITS)(void *v1, const void *v2, const void *v3, \
CPUS390XState *env, uint32_t desc) \
{ \
const bool se = extract32(simd_data(desc), 3, 1); \
\
vop##BITS##_3(v1, v2, v3, env, se, float##BITS##_##OP, GETPC()); \
}
#define DEF_GVEC_VOP3(NAME, OP) \
DEF_GVEC_VOP3_B(NAME, OP, 32) \
DEF_GVEC_VOP3_B(NAME, OP, 64) \
DEF_GVEC_VOP3_B(NAME, OP, 128)
DEF_GVEC_VOP3(vfa, add)
DEF_GVEC_VOP3(vfs, sub)
DEF_GVEC_VOP3(vfd, div)
DEF_GVEC_VOP3(vfm, mul)
static int wfc32(const S390Vector *v1, const S390Vector *v2,
CPUS390XState *env, bool signal, uintptr_t retaddr)
{
/* only the zero-indexed elements are compared */
const float32 a = s390_vec_read_float32(v1, 0);
const float32 b = s390_vec_read_float32(v2, 0);
uint8_t vxc, vec_exc = 0;
int cmp;
if (signal) {
cmp = float32_compare(a, b, &env->fpu_status);
} else {
cmp = float32_compare_quiet(a, b, &env->fpu_status);
}
vxc = check_ieee_exc(env, 0, false, &vec_exc);
handle_ieee_exc(env, vxc, vec_exc, retaddr);
return float_comp_to_cc(env, cmp);
}
static int wfc64(const S390Vector *v1, const S390Vector *v2,
CPUS390XState *env, bool signal, uintptr_t retaddr)
{
/* only the zero-indexed elements are compared */
const float64 a = s390_vec_read_float64(v1, 0);
const float64 b = s390_vec_read_float64(v2, 0);
uint8_t vxc, vec_exc = 0;
int cmp;
if (signal) {
cmp = float64_compare(a, b, &env->fpu_status);
} else {
cmp = float64_compare_quiet(a, b, &env->fpu_status);
}
vxc = check_ieee_exc(env, 0, false, &vec_exc);
handle_ieee_exc(env, vxc, vec_exc, retaddr);
return float_comp_to_cc(env, cmp);
}
static int wfc128(const S390Vector *v1, const S390Vector *v2,
CPUS390XState *env, bool signal, uintptr_t retaddr)
{
/* only the zero-indexed elements are compared */
const float128 a = s390_vec_read_float128(v1);
const float128 b = s390_vec_read_float128(v2);
uint8_t vxc, vec_exc = 0;
int cmp;
if (signal) {
cmp = float128_compare(a, b, &env->fpu_status);
} else {
cmp = float128_compare_quiet(a, b, &env->fpu_status);
}
vxc = check_ieee_exc(env, 0, false, &vec_exc);
handle_ieee_exc(env, vxc, vec_exc, retaddr);
return float_comp_to_cc(env, cmp);
}
#define DEF_GVEC_WFC_B(NAME, SIGNAL, BITS) \
void HELPER(gvec_##NAME##BITS)(const void *v1, const void *v2, \
CPUS390XState *env, uint32_t desc) \
{ \
env->cc_op = wfc##BITS(v1, v2, env, SIGNAL, GETPC()); \
}
#define DEF_GVEC_WFC(NAME, SIGNAL) \
DEF_GVEC_WFC_B(NAME, SIGNAL, 32) \
DEF_GVEC_WFC_B(NAME, SIGNAL, 64) \
DEF_GVEC_WFC_B(NAME, SIGNAL, 128)
DEF_GVEC_WFC(wfc, false)
DEF_GVEC_WFC(wfk, true)
typedef bool (*vfc32_fn)(float32 a, float32 b, float_status *status);
static int vfc32(S390Vector *v1, const S390Vector *v2, const S390Vector *v3,
CPUS390XState *env, bool s, vfc32_fn fn, uintptr_t retaddr)
{
uint8_t vxc, vec_exc = 0;
S390Vector tmp = {};
int match = 0;
int i;
for (i = 0; i < 4; i++) {
const float32 a = s390_vec_read_float32(v2, i);
const float32 b = s390_vec_read_float32(v3, i);
/* swap the order of the parameters, so we can use existing functions */
if (fn(b, a, &env->fpu_status)) {
match++;
s390_vec_write_element32(&tmp, i, -1u);
}
vxc = check_ieee_exc(env, i, false, &vec_exc);
if (s || vxc) {
break;
}
}
handle_ieee_exc(env, vxc, vec_exc, retaddr);
*v1 = tmp;
if (match) {
return s || match == 4 ? 0 : 1;
}
return 3;
}
typedef bool (*vfc64_fn)(float64 a, float64 b, float_status *status);
static int vfc64(S390Vector *v1, const S390Vector *v2, const S390Vector *v3,
CPUS390XState *env, bool s, vfc64_fn fn, uintptr_t retaddr)
{
uint8_t vxc, vec_exc = 0;
S390Vector tmp = {};
int match = 0;
int i;
for (i = 0; i < 2; i++) {
const float64 a = s390_vec_read_float64(v2, i);
const float64 b = s390_vec_read_float64(v3, i);
/* swap the order of the parameters, so we can use existing functions */
if (fn(b, a, &env->fpu_status)) {
match++;
s390_vec_write_element64(&tmp, i, -1ull);
}
vxc = check_ieee_exc(env, i, false, &vec_exc);
if (s || vxc) {
break;
}
}
handle_ieee_exc(env, vxc, vec_exc, retaddr);
*v1 = tmp;
if (match) {
return s || match == 2 ? 0 : 1;
}
return 3;
}
typedef bool (*vfc128_fn)(float128 a, float128 b, float_status *status);
static int vfc128(S390Vector *v1, const S390Vector *v2, const S390Vector *v3,
CPUS390XState *env, bool s, vfc128_fn fn, uintptr_t retaddr)
{
const float128 a = s390_vec_read_float128(v2);
const float128 b = s390_vec_read_float128(v3);
uint8_t vxc, vec_exc = 0;
S390Vector tmp = {};
bool match = false;
/* swap the order of the parameters, so we can use existing functions */
if (fn(b, a, &env->fpu_status)) {
match = true;
s390_vec_write_element64(&tmp, 0, -1ull);
s390_vec_write_element64(&tmp, 1, -1ull);
}
vxc = check_ieee_exc(env, 0, false, &vec_exc);
handle_ieee_exc(env, vxc, vec_exc, retaddr);
*v1 = tmp;
return match ? 0 : 3;
}
#define DEF_GVEC_VFC_B(NAME, OP, BITS) \
void HELPER(gvec_##NAME##BITS)(void *v1, const void *v2, const void *v3, \
CPUS390XState *env, uint32_t desc) \
{ \
const bool se = extract32(simd_data(desc), 3, 1); \
const bool sq = extract32(simd_data(desc), 2, 1); \
vfc##BITS##_fn fn = sq ? float##BITS##_##OP : float##BITS##_##OP##_quiet; \
\
vfc##BITS(v1, v2, v3, env, se, fn, GETPC()); \
} \
\
void HELPER(gvec_##NAME##BITS##_cc)(void *v1, const void *v2, const void *v3, \
CPUS390XState *env, uint32_t desc) \
{ \
const bool se = extract32(simd_data(desc), 3, 1); \
const bool sq = extract32(simd_data(desc), 2, 1); \
vfc##BITS##_fn fn = sq ? float##BITS##_##OP : float##BITS##_##OP##_quiet; \
\
env->cc_op = vfc##BITS(v1, v2, v3, env, se, fn, GETPC()); \
}
#define DEF_GVEC_VFC(NAME, OP) \
DEF_GVEC_VFC_B(NAME, OP, 32) \
DEF_GVEC_VFC_B(NAME, OP, 64) \
DEF_GVEC_VFC_B(NAME, OP, 128) \
DEF_GVEC_VFC(vfce, eq)
DEF_GVEC_VFC(vfch, lt)
DEF_GVEC_VFC(vfche, le)
void HELPER(gvec_vfll32)(void *v1, const void *v2, CPUS390XState *env,
uint32_t desc)
{
const bool s = extract32(simd_data(desc), 3, 1);
uint8_t vxc, vec_exc = 0;
S390Vector tmp = {};
int i;
for (i = 0; i < 2; i++) {
/* load from even element */
const float32 a = s390_vec_read_element32(v2, i * 2);
const uint64_t ret = float32_to_float64(a, &env->fpu_status);
s390_vec_write_element64(&tmp, i, ret);
/* indicate the source element */
vxc = check_ieee_exc(env, i * 2, false, &vec_exc);
if (s || vxc) {
break;
}
}
handle_ieee_exc(env, vxc, vec_exc, GETPC());
*(S390Vector *)v1 = tmp;
}
void HELPER(gvec_vfll64)(void *v1, const void *v2, CPUS390XState *env,
uint32_t desc)
{
/* load from even element */
const float128 ret = float64_to_float128(s390_vec_read_float64(v2, 0),
&env->fpu_status);
uint8_t vxc, vec_exc = 0;
vxc = check_ieee_exc(env, 0, false, &vec_exc);
handle_ieee_exc(env, vxc, vec_exc, GETPC());
s390_vec_write_float128(v1, ret);
}
void HELPER(gvec_vflr64)(void *v1, const void *v2, CPUS390XState *env,
uint32_t desc)
{
const uint8_t erm = extract32(simd_data(desc), 4, 4);
const bool s = extract32(simd_data(desc), 3, 1);
const bool XxC = extract32(simd_data(desc), 2, 1);
uint8_t vxc, vec_exc = 0;
S390Vector tmp = {};
int i, old_mode;
old_mode = s390_swap_bfp_rounding_mode(env, erm);
for (i = 0; i < 2; i++) {
float64 a = s390_vec_read_element64(v2, i);
uint32_t ret = float64_to_float32(a, &env->fpu_status);
/* place at even element */
s390_vec_write_element32(&tmp, i * 2, ret);
/* indicate the source element */
vxc = check_ieee_exc(env, i, XxC, &vec_exc);
if (s || vxc) {
break;
}
}
s390_restore_bfp_rounding_mode(env, old_mode);
handle_ieee_exc(env, vxc, vec_exc, GETPC());
*(S390Vector *)v1 = tmp;
}
void HELPER(gvec_vflr128)(void *v1, const void *v2, CPUS390XState *env,
uint32_t desc)
{
const uint8_t erm = extract32(simd_data(desc), 4, 4);
const bool XxC = extract32(simd_data(desc), 2, 1);
uint8_t vxc, vec_exc = 0;
int old_mode;
float64 ret;
old_mode = s390_swap_bfp_rounding_mode(env, erm);
ret = float128_to_float64(s390_vec_read_float128(v2), &env->fpu_status);
vxc = check_ieee_exc(env, 0, XxC, &vec_exc);
s390_restore_bfp_rounding_mode(env, old_mode);
handle_ieee_exc(env, vxc, vec_exc, GETPC());
/* place at even element, odd element is unpredictable */
s390_vec_write_float64(v1, 0, ret);
}
static void vfma64(S390Vector *v1, const S390Vector *v2, const S390Vector *v3,
const S390Vector *v4, CPUS390XState *env, bool s, int flags,
uintptr_t retaddr)
{
uint8_t vxc, vec_exc = 0;
S390Vector tmp = {};
int i;
for (i = 0; i < 2; i++) {
const float64 a = s390_vec_read_float64(v2, i);
const float64 b = s390_vec_read_float64(v3, i);
const float64 c = s390_vec_read_float64(v4, i);
const float64 ret = float64_muladd(a, b, c, flags, &env->fpu_status);
s390_vec_write_float64(&tmp, i, ret);
vxc = check_ieee_exc(env, i, false, &vec_exc);
if (s || vxc) {
break;
}
}
handle_ieee_exc(env, vxc, vec_exc, retaddr);
*v1 = tmp;
}
#define DEF_GVEC_VFMA_B(NAME, FLAGS, BITS) \
void HELPER(gvec_##NAME##BITS)(void *v1, const void *v2, const void *v3, \
const void *v4, CPUS390XState *env, \
uint32_t desc) \
{ \
const bool se = extract32(simd_data(desc), 3, 1); \
\
vfma##BITS(v1, v2, v3, v4, env, se, FLAGS, GETPC()); \
}
#define DEF_GVEC_VFMA(NAME, FLAGS) \
DEF_GVEC_VFMA_B(NAME, FLAGS, 64)
DEF_GVEC_VFMA(vfma, 0)
DEF_GVEC_VFMA(vfms, float_muladd_negate_c)
void HELPER(gvec_vftci32)(void *v1, const void *v2, CPUS390XState *env,
uint32_t desc)
{
uint16_t i3 = extract32(simd_data(desc), 4, 12);
bool s = extract32(simd_data(desc), 3, 1);
int i, match = 0;
for (i = 0; i < 4; i++) {
float32 a = s390_vec_read_float32(v2, i);
if (float32_dcmask(env, a) & i3) {
match++;
s390_vec_write_element32(v1, i, -1u);
} else {
s390_vec_write_element32(v1, i, 0);
}
if (s) {
break;
}
}
if (match == 4 || (s && match)) {
env->cc_op = 0;
} else if (match) {
env->cc_op = 1;
} else {
env->cc_op = 3;
}
}
void HELPER(gvec_vftci64)(void *v1, const void *v2, CPUS390XState *env,
uint32_t desc)
{
const uint16_t i3 = extract32(simd_data(desc), 4, 12);
const bool s = extract32(simd_data(desc), 3, 1);
int i, match = 0;
for (i = 0; i < 2; i++) {
const float64 a = s390_vec_read_float64(v2, i);
if (float64_dcmask(env, a) & i3) {
match++;
s390_vec_write_element64(v1, i, -1ull);
} else {
s390_vec_write_element64(v1, i, 0);
}
if (s) {
break;
}
}
if (match == 2 || (s && match)) {
env->cc_op = 0;
} else if (match) {
env->cc_op = 1;
} else {
env->cc_op = 3;
}
}
void HELPER(gvec_vftci128)(void *v1, const void *v2, CPUS390XState *env,
uint32_t desc)
{
const float128 a = s390_vec_read_float128(v2);
uint16_t i3 = extract32(simd_data(desc), 4, 12);
if (float128_dcmask(env, a) & i3) {
env->cc_op = 0;
s390_vec_write_element64(v1, 0, -1ull);
s390_vec_write_element64(v1, 1, -1ull);
} else {
env->cc_op = 3;
s390_vec_write_element64(v1, 0, 0);
s390_vec_write_element64(v1, 1, 0);
}
}