qemu/hw/m68k/mcf5206.c
Philippe Mathieu-Daudé ab728275e4 hw: Do not include "exec/address-spaces.h" if it is not necessary
Code change produced with:
    $ git grep '#include "exec/address-spaces.h"' hw include/hw | \
      cut -d: -f-1 | \
      xargs egrep -L "(get_system_|address_space_)" | \
      xargs sed -i.bak '/#include "exec\/address-spaces.h"/d'

Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Message-Id: <20180528232719.4721-12-f4bug@amsat.org>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-06-01 14:15:10 +02:00

552 lines
14 KiB
C

/*
* Motorola ColdFire MCF5206 SoC embedded peripheral emulation.
*
* Copyright (c) 2007 CodeSourcery.
*
* This code is licensed under the GPL
*/
#include "qemu/osdep.h"
#include "qemu/error-report.h"
#include "qemu-common.h"
#include "cpu.h"
#include "hw/hw.h"
#include "hw/m68k/mcf.h"
#include "qemu/timer.h"
#include "hw/ptimer.h"
#include "sysemu/sysemu.h"
/* General purpose timer module. */
typedef struct {
uint16_t tmr;
uint16_t trr;
uint16_t tcr;
uint16_t ter;
ptimer_state *timer;
qemu_irq irq;
int irq_state;
} m5206_timer_state;
#define TMR_RST 0x01
#define TMR_CLK 0x06
#define TMR_FRR 0x08
#define TMR_ORI 0x10
#define TMR_OM 0x20
#define TMR_CE 0xc0
#define TER_CAP 0x01
#define TER_REF 0x02
static void m5206_timer_update(m5206_timer_state *s)
{
if ((s->tmr & TMR_ORI) != 0 && (s->ter & TER_REF))
qemu_irq_raise(s->irq);
else
qemu_irq_lower(s->irq);
}
static void m5206_timer_reset(m5206_timer_state *s)
{
s->tmr = 0;
s->trr = 0;
}
static void m5206_timer_recalibrate(m5206_timer_state *s)
{
int prescale;
int mode;
ptimer_stop(s->timer);
if ((s->tmr & TMR_RST) == 0)
return;
prescale = (s->tmr >> 8) + 1;
mode = (s->tmr >> 1) & 3;
if (mode == 2)
prescale *= 16;
if (mode == 3 || mode == 0)
hw_error("m5206_timer: mode %d not implemented\n", mode);
if ((s->tmr & TMR_FRR) == 0)
hw_error("m5206_timer: free running mode not implemented\n");
/* Assume 66MHz system clock. */
ptimer_set_freq(s->timer, 66000000 / prescale);
ptimer_set_limit(s->timer, s->trr, 0);
ptimer_run(s->timer, 0);
}
static void m5206_timer_trigger(void *opaque)
{
m5206_timer_state *s = (m5206_timer_state *)opaque;
s->ter |= TER_REF;
m5206_timer_update(s);
}
static uint32_t m5206_timer_read(m5206_timer_state *s, uint32_t addr)
{
switch (addr) {
case 0:
return s->tmr;
case 4:
return s->trr;
case 8:
return s->tcr;
case 0xc:
return s->trr - ptimer_get_count(s->timer);
case 0x11:
return s->ter;
default:
return 0;
}
}
static void m5206_timer_write(m5206_timer_state *s, uint32_t addr, uint32_t val)
{
switch (addr) {
case 0:
if ((s->tmr & TMR_RST) != 0 && (val & TMR_RST) == 0) {
m5206_timer_reset(s);
}
s->tmr = val;
m5206_timer_recalibrate(s);
break;
case 4:
s->trr = val;
m5206_timer_recalibrate(s);
break;
case 8:
s->tcr = val;
break;
case 0xc:
ptimer_set_count(s->timer, val);
break;
case 0x11:
s->ter &= ~val;
break;
default:
break;
}
m5206_timer_update(s);
}
static m5206_timer_state *m5206_timer_init(qemu_irq irq)
{
m5206_timer_state *s;
QEMUBH *bh;
s = g_new0(m5206_timer_state, 1);
bh = qemu_bh_new(m5206_timer_trigger, s);
s->timer = ptimer_init(bh, PTIMER_POLICY_DEFAULT);
s->irq = irq;
m5206_timer_reset(s);
return s;
}
/* System Integration Module. */
typedef struct {
M68kCPU *cpu;
MemoryRegion iomem;
m5206_timer_state *timer[2];
void *uart[2];
uint8_t scr;
uint8_t icr[14];
uint16_t imr; /* 1 == interrupt is masked. */
uint16_t ipr;
uint8_t rsr;
uint8_t swivr;
uint8_t par;
/* Include the UART vector registers here. */
uint8_t uivr[2];
} m5206_mbar_state;
/* Interrupt controller. */
static int m5206_find_pending_irq(m5206_mbar_state *s)
{
int level;
int vector;
uint16_t active;
int i;
level = 0;
vector = 0;
active = s->ipr & ~s->imr;
if (!active)
return 0;
for (i = 1; i < 14; i++) {
if (active & (1 << i)) {
if ((s->icr[i] & 0x1f) > level) {
level = s->icr[i] & 0x1f;
vector = i;
}
}
}
if (level < 4)
vector = 0;
return vector;
}
static void m5206_mbar_update(m5206_mbar_state *s)
{
int irq;
int vector;
int level;
irq = m5206_find_pending_irq(s);
if (irq) {
int tmp;
tmp = s->icr[irq];
level = (tmp >> 2) & 7;
if (tmp & 0x80) {
/* Autovector. */
vector = 24 + level;
} else {
switch (irq) {
case 8: /* SWT */
vector = s->swivr;
break;
case 12: /* UART1 */
vector = s->uivr[0];
break;
case 13: /* UART2 */
vector = s->uivr[1];
break;
default:
/* Unknown vector. */
error_report("Unhandled vector for IRQ %d", irq);
vector = 0xf;
break;
}
}
} else {
level = 0;
vector = 0;
}
m68k_set_irq_level(s->cpu, level, vector);
}
static void m5206_mbar_set_irq(void *opaque, int irq, int level)
{
m5206_mbar_state *s = (m5206_mbar_state *)opaque;
if (level) {
s->ipr |= 1 << irq;
} else {
s->ipr &= ~(1 << irq);
}
m5206_mbar_update(s);
}
/* System Integration Module. */
static void m5206_mbar_reset(m5206_mbar_state *s)
{
s->scr = 0xc0;
s->icr[1] = 0x04;
s->icr[2] = 0x08;
s->icr[3] = 0x0c;
s->icr[4] = 0x10;
s->icr[5] = 0x14;
s->icr[6] = 0x18;
s->icr[7] = 0x1c;
s->icr[8] = 0x1c;
s->icr[9] = 0x80;
s->icr[10] = 0x80;
s->icr[11] = 0x80;
s->icr[12] = 0x00;
s->icr[13] = 0x00;
s->imr = 0x3ffe;
s->rsr = 0x80;
s->swivr = 0x0f;
s->par = 0;
}
static uint64_t m5206_mbar_read(m5206_mbar_state *s,
uint64_t offset, unsigned size)
{
if (offset >= 0x100 && offset < 0x120) {
return m5206_timer_read(s->timer[0], offset - 0x100);
} else if (offset >= 0x120 && offset < 0x140) {
return m5206_timer_read(s->timer[1], offset - 0x120);
} else if (offset >= 0x140 && offset < 0x160) {
return mcf_uart_read(s->uart[0], offset - 0x140, size);
} else if (offset >= 0x180 && offset < 0x1a0) {
return mcf_uart_read(s->uart[1], offset - 0x180, size);
}
switch (offset) {
case 0x03: return s->scr;
case 0x14 ... 0x20: return s->icr[offset - 0x13];
case 0x36: return s->imr;
case 0x3a: return s->ipr;
case 0x40: return s->rsr;
case 0x41: return 0;
case 0x42: return s->swivr;
case 0x50:
/* DRAM mask register. */
/* FIXME: currently hardcoded to 128Mb. */
{
uint32_t mask = ~0;
while (mask > ram_size)
mask >>= 1;
return mask & 0x0ffe0000;
}
case 0x5c: return 1; /* DRAM bank 1 empty. */
case 0xcb: return s->par;
case 0x170: return s->uivr[0];
case 0x1b0: return s->uivr[1];
}
hw_error("Bad MBAR read offset 0x%x", (int)offset);
return 0;
}
static void m5206_mbar_write(m5206_mbar_state *s, uint32_t offset,
uint64_t value, unsigned size)
{
if (offset >= 0x100 && offset < 0x120) {
m5206_timer_write(s->timer[0], offset - 0x100, value);
return;
} else if (offset >= 0x120 && offset < 0x140) {
m5206_timer_write(s->timer[1], offset - 0x120, value);
return;
} else if (offset >= 0x140 && offset < 0x160) {
mcf_uart_write(s->uart[0], offset - 0x140, value, size);
return;
} else if (offset >= 0x180 && offset < 0x1a0) {
mcf_uart_write(s->uart[1], offset - 0x180, value, size);
return;
}
switch (offset) {
case 0x03:
s->scr = value;
break;
case 0x14 ... 0x20:
s->icr[offset - 0x13] = value;
m5206_mbar_update(s);
break;
case 0x36:
s->imr = value;
m5206_mbar_update(s);
break;
case 0x40:
s->rsr &= ~value;
break;
case 0x41:
/* TODO: implement watchdog. */
break;
case 0x42:
s->swivr = value;
break;
case 0xcb:
s->par = value;
break;
case 0x170:
s->uivr[0] = value;
break;
case 0x178: case 0x17c: case 0x1c8: case 0x1bc:
/* Not implemented: UART Output port bits. */
break;
case 0x1b0:
s->uivr[1] = value;
break;
default:
hw_error("Bad MBAR write offset 0x%x", (int)offset);
break;
}
}
/* Internal peripherals use a variety of register widths.
This lookup table allows a single routine to handle all of them. */
static const uint8_t m5206_mbar_width[] =
{
/* 000-040 */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2,
/* 040-080 */ 1, 2, 2, 2, 4, 1, 2, 4, 1, 2, 4, 2, 2, 4, 2, 2,
/* 080-0c0 */ 4, 2, 2, 4, 2, 2, 4, 2, 2, 4, 2, 2, 4, 2, 2, 4,
/* 0c0-100 */ 2, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
/* 100-140 */ 2, 2, 2, 2, 1, 0, 0, 0, 2, 2, 2, 2, 1, 0, 0, 0,
/* 140-180 */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
/* 180-1c0 */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
/* 1c0-200 */ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
};
static uint32_t m5206_mbar_readw(void *opaque, hwaddr offset);
static uint32_t m5206_mbar_readl(void *opaque, hwaddr offset);
static uint32_t m5206_mbar_readb(void *opaque, hwaddr offset)
{
m5206_mbar_state *s = (m5206_mbar_state *)opaque;
offset &= 0x3ff;
if (offset >= 0x200) {
hw_error("Bad MBAR read offset 0x%x", (int)offset);
}
if (m5206_mbar_width[offset >> 2] > 1) {
uint16_t val;
val = m5206_mbar_readw(opaque, offset & ~1);
if ((offset & 1) == 0) {
val >>= 8;
}
return val & 0xff;
}
return m5206_mbar_read(s, offset, 1);
}
static uint32_t m5206_mbar_readw(void *opaque, hwaddr offset)
{
m5206_mbar_state *s = (m5206_mbar_state *)opaque;
int width;
offset &= 0x3ff;
if (offset >= 0x200) {
hw_error("Bad MBAR read offset 0x%x", (int)offset);
}
width = m5206_mbar_width[offset >> 2];
if (width > 2) {
uint32_t val;
val = m5206_mbar_readl(opaque, offset & ~3);
if ((offset & 3) == 0)
val >>= 16;
return val & 0xffff;
} else if (width < 2) {
uint16_t val;
val = m5206_mbar_readb(opaque, offset) << 8;
val |= m5206_mbar_readb(opaque, offset + 1);
return val;
}
return m5206_mbar_read(s, offset, 2);
}
static uint32_t m5206_mbar_readl(void *opaque, hwaddr offset)
{
m5206_mbar_state *s = (m5206_mbar_state *)opaque;
int width;
offset &= 0x3ff;
if (offset >= 0x200) {
hw_error("Bad MBAR read offset 0x%x", (int)offset);
}
width = m5206_mbar_width[offset >> 2];
if (width < 4) {
uint32_t val;
val = m5206_mbar_readw(opaque, offset) << 16;
val |= m5206_mbar_readw(opaque, offset + 2);
return val;
}
return m5206_mbar_read(s, offset, 4);
}
static void m5206_mbar_writew(void *opaque, hwaddr offset,
uint32_t value);
static void m5206_mbar_writel(void *opaque, hwaddr offset,
uint32_t value);
static void m5206_mbar_writeb(void *opaque, hwaddr offset,
uint32_t value)
{
m5206_mbar_state *s = (m5206_mbar_state *)opaque;
int width;
offset &= 0x3ff;
if (offset >= 0x200) {
hw_error("Bad MBAR write offset 0x%x", (int)offset);
}
width = m5206_mbar_width[offset >> 2];
if (width > 1) {
uint32_t tmp;
tmp = m5206_mbar_readw(opaque, offset & ~1);
if (offset & 1) {
tmp = (tmp & 0xff00) | value;
} else {
tmp = (tmp & 0x00ff) | (value << 8);
}
m5206_mbar_writew(opaque, offset & ~1, tmp);
return;
}
m5206_mbar_write(s, offset, value, 1);
}
static void m5206_mbar_writew(void *opaque, hwaddr offset,
uint32_t value)
{
m5206_mbar_state *s = (m5206_mbar_state *)opaque;
int width;
offset &= 0x3ff;
if (offset >= 0x200) {
hw_error("Bad MBAR write offset 0x%x", (int)offset);
}
width = m5206_mbar_width[offset >> 2];
if (width > 2) {
uint32_t tmp;
tmp = m5206_mbar_readl(opaque, offset & ~3);
if (offset & 3) {
tmp = (tmp & 0xffff0000) | value;
} else {
tmp = (tmp & 0x0000ffff) | (value << 16);
}
m5206_mbar_writel(opaque, offset & ~3, tmp);
return;
} else if (width < 2) {
m5206_mbar_writeb(opaque, offset, value >> 8);
m5206_mbar_writeb(opaque, offset + 1, value & 0xff);
return;
}
m5206_mbar_write(s, offset, value, 2);
}
static void m5206_mbar_writel(void *opaque, hwaddr offset,
uint32_t value)
{
m5206_mbar_state *s = (m5206_mbar_state *)opaque;
int width;
offset &= 0x3ff;
if (offset >= 0x200) {
hw_error("Bad MBAR write offset 0x%x", (int)offset);
}
width = m5206_mbar_width[offset >> 2];
if (width < 4) {
m5206_mbar_writew(opaque, offset, value >> 16);
m5206_mbar_writew(opaque, offset + 2, value & 0xffff);
return;
}
m5206_mbar_write(s, offset, value, 4);
}
static const MemoryRegionOps m5206_mbar_ops = {
.old_mmio = {
.read = {
m5206_mbar_readb,
m5206_mbar_readw,
m5206_mbar_readl,
},
.write = {
m5206_mbar_writeb,
m5206_mbar_writew,
m5206_mbar_writel,
},
},
.endianness = DEVICE_NATIVE_ENDIAN,
};
qemu_irq *mcf5206_init(MemoryRegion *sysmem, uint32_t base, M68kCPU *cpu)
{
m5206_mbar_state *s;
qemu_irq *pic;
s = g_new0(m5206_mbar_state, 1);
memory_region_init_io(&s->iomem, NULL, &m5206_mbar_ops, s,
"mbar", 0x00001000);
memory_region_add_subregion(sysmem, base, &s->iomem);
pic = qemu_allocate_irqs(m5206_mbar_set_irq, s, 14);
s->timer[0] = m5206_timer_init(pic[9]);
s->timer[1] = m5206_timer_init(pic[10]);
s->uart[0] = mcf_uart_init(pic[12], serial_hd(0));
s->uart[1] = mcf_uart_init(pic[13], serial_hd(1));
s->cpu = cpu;
m5206_mbar_reset(s);
return pic;
}