c227f0995e
In the very least, a change like this requires discussion on the list.
The naming convention is goofy and it causes a massive merge problem. Something
like this _must_ be presented on the list first so people can provide input
and cope with it.
This reverts commit 99a0949b72
.
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
3762 lines
102 KiB
C
3762 lines
102 KiB
C
#include "exec.h"
|
|
#include "host-utils.h"
|
|
#include "helper.h"
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
#include "softmmu_exec.h"
|
|
#endif /* !defined(CONFIG_USER_ONLY) */
|
|
|
|
//#define DEBUG_MMU
|
|
//#define DEBUG_MXCC
|
|
//#define DEBUG_UNALIGNED
|
|
//#define DEBUG_UNASSIGNED
|
|
//#define DEBUG_ASI
|
|
//#define DEBUG_PCALL
|
|
|
|
#ifdef DEBUG_MMU
|
|
#define DPRINTF_MMU(fmt, ...) \
|
|
do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
|
|
#else
|
|
#define DPRINTF_MMU(fmt, ...) do {} while (0)
|
|
#endif
|
|
|
|
#ifdef DEBUG_MXCC
|
|
#define DPRINTF_MXCC(fmt, ...) \
|
|
do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
|
|
#else
|
|
#define DPRINTF_MXCC(fmt, ...) do {} while (0)
|
|
#endif
|
|
|
|
#ifdef DEBUG_ASI
|
|
#define DPRINTF_ASI(fmt, ...) \
|
|
do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
|
|
#endif
|
|
|
|
#ifdef TARGET_SPARC64
|
|
#ifndef TARGET_ABI32
|
|
#define AM_CHECK(env1) ((env1)->pstate & PS_AM)
|
|
#else
|
|
#define AM_CHECK(env1) (1)
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
|
|
// Calculates TSB pointer value for fault page size 8k or 64k
|
|
static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register,
|
|
uint64_t tag_access_register,
|
|
int page_size)
|
|
{
|
|
uint64_t tsb_base = tsb_register & ~0x1fffULL;
|
|
int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
|
|
int tsb_size = tsb_register & 0xf;
|
|
|
|
// discard lower 13 bits which hold tag access context
|
|
uint64_t tag_access_va = tag_access_register & ~0x1fffULL;
|
|
|
|
// now reorder bits
|
|
uint64_t tsb_base_mask = ~0x1fffULL;
|
|
uint64_t va = tag_access_va;
|
|
|
|
// move va bits to correct position
|
|
if (page_size == 8*1024) {
|
|
va >>= 9;
|
|
} else if (page_size == 64*1024) {
|
|
va >>= 12;
|
|
}
|
|
|
|
if (tsb_size) {
|
|
tsb_base_mask <<= tsb_size;
|
|
}
|
|
|
|
// calculate tsb_base mask and adjust va if split is in use
|
|
if (tsb_split) {
|
|
if (page_size == 8*1024) {
|
|
va &= ~(1ULL << (13 + tsb_size));
|
|
} else if (page_size == 64*1024) {
|
|
va |= (1ULL << (13 + tsb_size));
|
|
}
|
|
tsb_base_mask <<= 1;
|
|
}
|
|
|
|
return ((tsb_base & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
|
|
}
|
|
|
|
// Calculates tag target register value by reordering bits
|
|
// in tag access register
|
|
static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
|
|
{
|
|
return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
|
|
}
|
|
|
|
static void replace_tlb_entry(SparcTLBEntry *tlb,
|
|
uint64_t tlb_tag, uint64_t tlb_tte,
|
|
CPUState *env1)
|
|
{
|
|
target_ulong mask, size, va, offset;
|
|
|
|
// flush page range if translation is valid
|
|
if (TTE_IS_VALID(tlb->tte)) {
|
|
|
|
mask = 0xffffffffffffe000ULL;
|
|
mask <<= 3 * ((tlb->tte >> 61) & 3);
|
|
size = ~mask + 1;
|
|
|
|
va = tlb->tag & mask;
|
|
|
|
for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
|
|
tlb_flush_page(env1, va + offset);
|
|
}
|
|
}
|
|
|
|
tlb->tag = tlb_tag;
|
|
tlb->tte = tlb_tte;
|
|
}
|
|
|
|
static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
|
|
const char* strmmu, CPUState *env1)
|
|
{
|
|
unsigned int i;
|
|
target_ulong mask;
|
|
|
|
for (i = 0; i < 64; i++) {
|
|
if (TTE_IS_VALID(tlb[i].tte)) {
|
|
|
|
mask = 0xffffffffffffe000ULL;
|
|
mask <<= 3 * ((tlb[i].tte >> 61) & 3);
|
|
|
|
if ((demap_addr & mask) == (tlb[i].tag & mask)) {
|
|
replace_tlb_entry(&tlb[i], 0, 0, env1);
|
|
#ifdef DEBUG_MMU
|
|
DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
|
|
dump_mmu(env1);
|
|
#endif
|
|
}
|
|
//return;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
|
|
uint64_t tlb_tag, uint64_t tlb_tte,
|
|
const char* strmmu, CPUState *env1)
|
|
{
|
|
unsigned int i, replace_used;
|
|
|
|
// Try replacing invalid entry
|
|
for (i = 0; i < 64; i++) {
|
|
if (!TTE_IS_VALID(tlb[i].tte)) {
|
|
replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
|
|
#ifdef DEBUG_MMU
|
|
DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
|
|
dump_mmu(env1);
|
|
#endif
|
|
return;
|
|
}
|
|
}
|
|
|
|
// All entries are valid, try replacing unlocked entry
|
|
|
|
for (replace_used = 0; replace_used < 2; ++replace_used) {
|
|
|
|
// Used entries are not replaced on first pass
|
|
|
|
for (i = 0; i < 64; i++) {
|
|
if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {
|
|
|
|
replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
|
|
#ifdef DEBUG_MMU
|
|
DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
|
|
strmmu, (replace_used?"used":"unused"), i);
|
|
dump_mmu(env1);
|
|
#endif
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Now reset used bit and search for unused entries again
|
|
|
|
for (i = 0; i < 64; i++) {
|
|
TTE_SET_UNUSED(tlb[i].tte);
|
|
}
|
|
}
|
|
|
|
#ifdef DEBUG_MMU
|
|
DPRINTF_MMU("%s lru replacement failed: no entries available\n", strmmu);
|
|
#endif
|
|
// error state?
|
|
}
|
|
|
|
#endif
|
|
|
|
static inline void address_mask(CPUState *env1, target_ulong *addr)
|
|
{
|
|
#ifdef TARGET_SPARC64
|
|
if (AM_CHECK(env1))
|
|
*addr &= 0xffffffffULL;
|
|
#endif
|
|
}
|
|
|
|
static void raise_exception(int tt)
|
|
{
|
|
env->exception_index = tt;
|
|
cpu_loop_exit();
|
|
}
|
|
|
|
void HELPER(raise_exception)(int tt)
|
|
{
|
|
raise_exception(tt);
|
|
}
|
|
|
|
static inline void set_cwp(int new_cwp)
|
|
{
|
|
cpu_set_cwp(env, new_cwp);
|
|
}
|
|
|
|
void helper_check_align(target_ulong addr, uint32_t align)
|
|
{
|
|
if (addr & align) {
|
|
#ifdef DEBUG_UNALIGNED
|
|
printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
|
|
"\n", addr, env->pc);
|
|
#endif
|
|
raise_exception(TT_UNALIGNED);
|
|
}
|
|
}
|
|
|
|
#define F_HELPER(name, p) void helper_f##name##p(void)
|
|
|
|
#define F_BINOP(name) \
|
|
float32 helper_f ## name ## s (float32 src1, float32 src2) \
|
|
{ \
|
|
return float32_ ## name (src1, src2, &env->fp_status); \
|
|
} \
|
|
F_HELPER(name, d) \
|
|
{ \
|
|
DT0 = float64_ ## name (DT0, DT1, &env->fp_status); \
|
|
} \
|
|
F_HELPER(name, q) \
|
|
{ \
|
|
QT0 = float128_ ## name (QT0, QT1, &env->fp_status); \
|
|
}
|
|
|
|
F_BINOP(add);
|
|
F_BINOP(sub);
|
|
F_BINOP(mul);
|
|
F_BINOP(div);
|
|
#undef F_BINOP
|
|
|
|
void helper_fsmuld(float32 src1, float32 src2)
|
|
{
|
|
DT0 = float64_mul(float32_to_float64(src1, &env->fp_status),
|
|
float32_to_float64(src2, &env->fp_status),
|
|
&env->fp_status);
|
|
}
|
|
|
|
void helper_fdmulq(void)
|
|
{
|
|
QT0 = float128_mul(float64_to_float128(DT0, &env->fp_status),
|
|
float64_to_float128(DT1, &env->fp_status),
|
|
&env->fp_status);
|
|
}
|
|
|
|
float32 helper_fnegs(float32 src)
|
|
{
|
|
return float32_chs(src);
|
|
}
|
|
|
|
#ifdef TARGET_SPARC64
|
|
F_HELPER(neg, d)
|
|
{
|
|
DT0 = float64_chs(DT1);
|
|
}
|
|
|
|
F_HELPER(neg, q)
|
|
{
|
|
QT0 = float128_chs(QT1);
|
|
}
|
|
#endif
|
|
|
|
/* Integer to float conversion. */
|
|
float32 helper_fitos(int32_t src)
|
|
{
|
|
return int32_to_float32(src, &env->fp_status);
|
|
}
|
|
|
|
void helper_fitod(int32_t src)
|
|
{
|
|
DT0 = int32_to_float64(src, &env->fp_status);
|
|
}
|
|
|
|
void helper_fitoq(int32_t src)
|
|
{
|
|
QT0 = int32_to_float128(src, &env->fp_status);
|
|
}
|
|
|
|
#ifdef TARGET_SPARC64
|
|
float32 helper_fxtos(void)
|
|
{
|
|
return int64_to_float32(*((int64_t *)&DT1), &env->fp_status);
|
|
}
|
|
|
|
F_HELPER(xto, d)
|
|
{
|
|
DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status);
|
|
}
|
|
|
|
F_HELPER(xto, q)
|
|
{
|
|
QT0 = int64_to_float128(*((int64_t *)&DT1), &env->fp_status);
|
|
}
|
|
#endif
|
|
#undef F_HELPER
|
|
|
|
/* floating point conversion */
|
|
float32 helper_fdtos(void)
|
|
{
|
|
return float64_to_float32(DT1, &env->fp_status);
|
|
}
|
|
|
|
void helper_fstod(float32 src)
|
|
{
|
|
DT0 = float32_to_float64(src, &env->fp_status);
|
|
}
|
|
|
|
float32 helper_fqtos(void)
|
|
{
|
|
return float128_to_float32(QT1, &env->fp_status);
|
|
}
|
|
|
|
void helper_fstoq(float32 src)
|
|
{
|
|
QT0 = float32_to_float128(src, &env->fp_status);
|
|
}
|
|
|
|
void helper_fqtod(void)
|
|
{
|
|
DT0 = float128_to_float64(QT1, &env->fp_status);
|
|
}
|
|
|
|
void helper_fdtoq(void)
|
|
{
|
|
QT0 = float64_to_float128(DT1, &env->fp_status);
|
|
}
|
|
|
|
/* Float to integer conversion. */
|
|
int32_t helper_fstoi(float32 src)
|
|
{
|
|
return float32_to_int32_round_to_zero(src, &env->fp_status);
|
|
}
|
|
|
|
int32_t helper_fdtoi(void)
|
|
{
|
|
return float64_to_int32_round_to_zero(DT1, &env->fp_status);
|
|
}
|
|
|
|
int32_t helper_fqtoi(void)
|
|
{
|
|
return float128_to_int32_round_to_zero(QT1, &env->fp_status);
|
|
}
|
|
|
|
#ifdef TARGET_SPARC64
|
|
void helper_fstox(float32 src)
|
|
{
|
|
*((int64_t *)&DT0) = float32_to_int64_round_to_zero(src, &env->fp_status);
|
|
}
|
|
|
|
void helper_fdtox(void)
|
|
{
|
|
*((int64_t *)&DT0) = float64_to_int64_round_to_zero(DT1, &env->fp_status);
|
|
}
|
|
|
|
void helper_fqtox(void)
|
|
{
|
|
*((int64_t *)&DT0) = float128_to_int64_round_to_zero(QT1, &env->fp_status);
|
|
}
|
|
|
|
void helper_faligndata(void)
|
|
{
|
|
uint64_t tmp;
|
|
|
|
tmp = (*((uint64_t *)&DT0)) << ((env->gsr & 7) * 8);
|
|
/* on many architectures a shift of 64 does nothing */
|
|
if ((env->gsr & 7) != 0) {
|
|
tmp |= (*((uint64_t *)&DT1)) >> (64 - (env->gsr & 7) * 8);
|
|
}
|
|
*((uint64_t *)&DT0) = tmp;
|
|
}
|
|
|
|
#ifdef HOST_WORDS_BIGENDIAN
|
|
#define VIS_B64(n) b[7 - (n)]
|
|
#define VIS_W64(n) w[3 - (n)]
|
|
#define VIS_SW64(n) sw[3 - (n)]
|
|
#define VIS_L64(n) l[1 - (n)]
|
|
#define VIS_B32(n) b[3 - (n)]
|
|
#define VIS_W32(n) w[1 - (n)]
|
|
#else
|
|
#define VIS_B64(n) b[n]
|
|
#define VIS_W64(n) w[n]
|
|
#define VIS_SW64(n) sw[n]
|
|
#define VIS_L64(n) l[n]
|
|
#define VIS_B32(n) b[n]
|
|
#define VIS_W32(n) w[n]
|
|
#endif
|
|
|
|
typedef union {
|
|
uint8_t b[8];
|
|
uint16_t w[4];
|
|
int16_t sw[4];
|
|
uint32_t l[2];
|
|
float64 d;
|
|
} vis64;
|
|
|
|
typedef union {
|
|
uint8_t b[4];
|
|
uint16_t w[2];
|
|
uint32_t l;
|
|
float32 f;
|
|
} vis32;
|
|
|
|
void helper_fpmerge(void)
|
|
{
|
|
vis64 s, d;
|
|
|
|
s.d = DT0;
|
|
d.d = DT1;
|
|
|
|
// Reverse calculation order to handle overlap
|
|
d.VIS_B64(7) = s.VIS_B64(3);
|
|
d.VIS_B64(6) = d.VIS_B64(3);
|
|
d.VIS_B64(5) = s.VIS_B64(2);
|
|
d.VIS_B64(4) = d.VIS_B64(2);
|
|
d.VIS_B64(3) = s.VIS_B64(1);
|
|
d.VIS_B64(2) = d.VIS_B64(1);
|
|
d.VIS_B64(1) = s.VIS_B64(0);
|
|
//d.VIS_B64(0) = d.VIS_B64(0);
|
|
|
|
DT0 = d.d;
|
|
}
|
|
|
|
void helper_fmul8x16(void)
|
|
{
|
|
vis64 s, d;
|
|
uint32_t tmp;
|
|
|
|
s.d = DT0;
|
|
d.d = DT1;
|
|
|
|
#define PMUL(r) \
|
|
tmp = (int32_t)d.VIS_SW64(r) * (int32_t)s.VIS_B64(r); \
|
|
if ((tmp & 0xff) > 0x7f) \
|
|
tmp += 0x100; \
|
|
d.VIS_W64(r) = tmp >> 8;
|
|
|
|
PMUL(0);
|
|
PMUL(1);
|
|
PMUL(2);
|
|
PMUL(3);
|
|
#undef PMUL
|
|
|
|
DT0 = d.d;
|
|
}
|
|
|
|
void helper_fmul8x16al(void)
|
|
{
|
|
vis64 s, d;
|
|
uint32_t tmp;
|
|
|
|
s.d = DT0;
|
|
d.d = DT1;
|
|
|
|
#define PMUL(r) \
|
|
tmp = (int32_t)d.VIS_SW64(1) * (int32_t)s.VIS_B64(r); \
|
|
if ((tmp & 0xff) > 0x7f) \
|
|
tmp += 0x100; \
|
|
d.VIS_W64(r) = tmp >> 8;
|
|
|
|
PMUL(0);
|
|
PMUL(1);
|
|
PMUL(2);
|
|
PMUL(3);
|
|
#undef PMUL
|
|
|
|
DT0 = d.d;
|
|
}
|
|
|
|
void helper_fmul8x16au(void)
|
|
{
|
|
vis64 s, d;
|
|
uint32_t tmp;
|
|
|
|
s.d = DT0;
|
|
d.d = DT1;
|
|
|
|
#define PMUL(r) \
|
|
tmp = (int32_t)d.VIS_SW64(0) * (int32_t)s.VIS_B64(r); \
|
|
if ((tmp & 0xff) > 0x7f) \
|
|
tmp += 0x100; \
|
|
d.VIS_W64(r) = tmp >> 8;
|
|
|
|
PMUL(0);
|
|
PMUL(1);
|
|
PMUL(2);
|
|
PMUL(3);
|
|
#undef PMUL
|
|
|
|
DT0 = d.d;
|
|
}
|
|
|
|
void helper_fmul8sux16(void)
|
|
{
|
|
vis64 s, d;
|
|
uint32_t tmp;
|
|
|
|
s.d = DT0;
|
|
d.d = DT1;
|
|
|
|
#define PMUL(r) \
|
|
tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
|
|
if ((tmp & 0xff) > 0x7f) \
|
|
tmp += 0x100; \
|
|
d.VIS_W64(r) = tmp >> 8;
|
|
|
|
PMUL(0);
|
|
PMUL(1);
|
|
PMUL(2);
|
|
PMUL(3);
|
|
#undef PMUL
|
|
|
|
DT0 = d.d;
|
|
}
|
|
|
|
void helper_fmul8ulx16(void)
|
|
{
|
|
vis64 s, d;
|
|
uint32_t tmp;
|
|
|
|
s.d = DT0;
|
|
d.d = DT1;
|
|
|
|
#define PMUL(r) \
|
|
tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
|
|
if ((tmp & 0xff) > 0x7f) \
|
|
tmp += 0x100; \
|
|
d.VIS_W64(r) = tmp >> 8;
|
|
|
|
PMUL(0);
|
|
PMUL(1);
|
|
PMUL(2);
|
|
PMUL(3);
|
|
#undef PMUL
|
|
|
|
DT0 = d.d;
|
|
}
|
|
|
|
void helper_fmuld8sux16(void)
|
|
{
|
|
vis64 s, d;
|
|
uint32_t tmp;
|
|
|
|
s.d = DT0;
|
|
d.d = DT1;
|
|
|
|
#define PMUL(r) \
|
|
tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
|
|
if ((tmp & 0xff) > 0x7f) \
|
|
tmp += 0x100; \
|
|
d.VIS_L64(r) = tmp;
|
|
|
|
// Reverse calculation order to handle overlap
|
|
PMUL(1);
|
|
PMUL(0);
|
|
#undef PMUL
|
|
|
|
DT0 = d.d;
|
|
}
|
|
|
|
void helper_fmuld8ulx16(void)
|
|
{
|
|
vis64 s, d;
|
|
uint32_t tmp;
|
|
|
|
s.d = DT0;
|
|
d.d = DT1;
|
|
|
|
#define PMUL(r) \
|
|
tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
|
|
if ((tmp & 0xff) > 0x7f) \
|
|
tmp += 0x100; \
|
|
d.VIS_L64(r) = tmp;
|
|
|
|
// Reverse calculation order to handle overlap
|
|
PMUL(1);
|
|
PMUL(0);
|
|
#undef PMUL
|
|
|
|
DT0 = d.d;
|
|
}
|
|
|
|
void helper_fexpand(void)
|
|
{
|
|
vis32 s;
|
|
vis64 d;
|
|
|
|
s.l = (uint32_t)(*(uint64_t *)&DT0 & 0xffffffff);
|
|
d.d = DT1;
|
|
d.VIS_W64(0) = s.VIS_B32(0) << 4;
|
|
d.VIS_W64(1) = s.VIS_B32(1) << 4;
|
|
d.VIS_W64(2) = s.VIS_B32(2) << 4;
|
|
d.VIS_W64(3) = s.VIS_B32(3) << 4;
|
|
|
|
DT0 = d.d;
|
|
}
|
|
|
|
#define VIS_HELPER(name, F) \
|
|
void name##16(void) \
|
|
{ \
|
|
vis64 s, d; \
|
|
\
|
|
s.d = DT0; \
|
|
d.d = DT1; \
|
|
\
|
|
d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0)); \
|
|
d.VIS_W64(1) = F(d.VIS_W64(1), s.VIS_W64(1)); \
|
|
d.VIS_W64(2) = F(d.VIS_W64(2), s.VIS_W64(2)); \
|
|
d.VIS_W64(3) = F(d.VIS_W64(3), s.VIS_W64(3)); \
|
|
\
|
|
DT0 = d.d; \
|
|
} \
|
|
\
|
|
uint32_t name##16s(uint32_t src1, uint32_t src2) \
|
|
{ \
|
|
vis32 s, d; \
|
|
\
|
|
s.l = src1; \
|
|
d.l = src2; \
|
|
\
|
|
d.VIS_W32(0) = F(d.VIS_W32(0), s.VIS_W32(0)); \
|
|
d.VIS_W32(1) = F(d.VIS_W32(1), s.VIS_W32(1)); \
|
|
\
|
|
return d.l; \
|
|
} \
|
|
\
|
|
void name##32(void) \
|
|
{ \
|
|
vis64 s, d; \
|
|
\
|
|
s.d = DT0; \
|
|
d.d = DT1; \
|
|
\
|
|
d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0)); \
|
|
d.VIS_L64(1) = F(d.VIS_L64(1), s.VIS_L64(1)); \
|
|
\
|
|
DT0 = d.d; \
|
|
} \
|
|
\
|
|
uint32_t name##32s(uint32_t src1, uint32_t src2) \
|
|
{ \
|
|
vis32 s, d; \
|
|
\
|
|
s.l = src1; \
|
|
d.l = src2; \
|
|
\
|
|
d.l = F(d.l, s.l); \
|
|
\
|
|
return d.l; \
|
|
}
|
|
|
|
#define FADD(a, b) ((a) + (b))
|
|
#define FSUB(a, b) ((a) - (b))
|
|
VIS_HELPER(helper_fpadd, FADD)
|
|
VIS_HELPER(helper_fpsub, FSUB)
|
|
|
|
#define VIS_CMPHELPER(name, F) \
|
|
void name##16(void) \
|
|
{ \
|
|
vis64 s, d; \
|
|
\
|
|
s.d = DT0; \
|
|
d.d = DT1; \
|
|
\
|
|
d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0))? 1: 0; \
|
|
d.VIS_W64(0) |= F(d.VIS_W64(1), s.VIS_W64(1))? 2: 0; \
|
|
d.VIS_W64(0) |= F(d.VIS_W64(2), s.VIS_W64(2))? 4: 0; \
|
|
d.VIS_W64(0) |= F(d.VIS_W64(3), s.VIS_W64(3))? 8: 0; \
|
|
\
|
|
DT0 = d.d; \
|
|
} \
|
|
\
|
|
void name##32(void) \
|
|
{ \
|
|
vis64 s, d; \
|
|
\
|
|
s.d = DT0; \
|
|
d.d = DT1; \
|
|
\
|
|
d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0))? 1: 0; \
|
|
d.VIS_L64(0) |= F(d.VIS_L64(1), s.VIS_L64(1))? 2: 0; \
|
|
\
|
|
DT0 = d.d; \
|
|
}
|
|
|
|
#define FCMPGT(a, b) ((a) > (b))
|
|
#define FCMPEQ(a, b) ((a) == (b))
|
|
#define FCMPLE(a, b) ((a) <= (b))
|
|
#define FCMPNE(a, b) ((a) != (b))
|
|
|
|
VIS_CMPHELPER(helper_fcmpgt, FCMPGT)
|
|
VIS_CMPHELPER(helper_fcmpeq, FCMPEQ)
|
|
VIS_CMPHELPER(helper_fcmple, FCMPLE)
|
|
VIS_CMPHELPER(helper_fcmpne, FCMPNE)
|
|
#endif
|
|
|
|
void helper_check_ieee_exceptions(void)
|
|
{
|
|
target_ulong status;
|
|
|
|
status = get_float_exception_flags(&env->fp_status);
|
|
if (status) {
|
|
/* Copy IEEE 754 flags into FSR */
|
|
if (status & float_flag_invalid)
|
|
env->fsr |= FSR_NVC;
|
|
if (status & float_flag_overflow)
|
|
env->fsr |= FSR_OFC;
|
|
if (status & float_flag_underflow)
|
|
env->fsr |= FSR_UFC;
|
|
if (status & float_flag_divbyzero)
|
|
env->fsr |= FSR_DZC;
|
|
if (status & float_flag_inexact)
|
|
env->fsr |= FSR_NXC;
|
|
|
|
if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23)) {
|
|
/* Unmasked exception, generate a trap */
|
|
env->fsr |= FSR_FTT_IEEE_EXCP;
|
|
raise_exception(TT_FP_EXCP);
|
|
} else {
|
|
/* Accumulate exceptions */
|
|
env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
|
|
}
|
|
}
|
|
}
|
|
|
|
void helper_clear_float_exceptions(void)
|
|
{
|
|
set_float_exception_flags(0, &env->fp_status);
|
|
}
|
|
|
|
float32 helper_fabss(float32 src)
|
|
{
|
|
return float32_abs(src);
|
|
}
|
|
|
|
#ifdef TARGET_SPARC64
|
|
void helper_fabsd(void)
|
|
{
|
|
DT0 = float64_abs(DT1);
|
|
}
|
|
|
|
void helper_fabsq(void)
|
|
{
|
|
QT0 = float128_abs(QT1);
|
|
}
|
|
#endif
|
|
|
|
float32 helper_fsqrts(float32 src)
|
|
{
|
|
return float32_sqrt(src, &env->fp_status);
|
|
}
|
|
|
|
void helper_fsqrtd(void)
|
|
{
|
|
DT0 = float64_sqrt(DT1, &env->fp_status);
|
|
}
|
|
|
|
void helper_fsqrtq(void)
|
|
{
|
|
QT0 = float128_sqrt(QT1, &env->fp_status);
|
|
}
|
|
|
|
#define GEN_FCMP(name, size, reg1, reg2, FS, TRAP) \
|
|
void glue(helper_, name) (void) \
|
|
{ \
|
|
target_ulong new_fsr; \
|
|
\
|
|
env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
|
|
switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) { \
|
|
case float_relation_unordered: \
|
|
new_fsr = (FSR_FCC1 | FSR_FCC0) << FS; \
|
|
if ((env->fsr & FSR_NVM) || TRAP) { \
|
|
env->fsr |= new_fsr; \
|
|
env->fsr |= FSR_NVC; \
|
|
env->fsr |= FSR_FTT_IEEE_EXCP; \
|
|
raise_exception(TT_FP_EXCP); \
|
|
} else { \
|
|
env->fsr |= FSR_NVA; \
|
|
} \
|
|
break; \
|
|
case float_relation_less: \
|
|
new_fsr = FSR_FCC0 << FS; \
|
|
break; \
|
|
case float_relation_greater: \
|
|
new_fsr = FSR_FCC1 << FS; \
|
|
break; \
|
|
default: \
|
|
new_fsr = 0; \
|
|
break; \
|
|
} \
|
|
env->fsr |= new_fsr; \
|
|
}
|
|
#define GEN_FCMPS(name, size, FS, TRAP) \
|
|
void glue(helper_, name)(float32 src1, float32 src2) \
|
|
{ \
|
|
target_ulong new_fsr; \
|
|
\
|
|
env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
|
|
switch (glue(size, _compare) (src1, src2, &env->fp_status)) { \
|
|
case float_relation_unordered: \
|
|
new_fsr = (FSR_FCC1 | FSR_FCC0) << FS; \
|
|
if ((env->fsr & FSR_NVM) || TRAP) { \
|
|
env->fsr |= new_fsr; \
|
|
env->fsr |= FSR_NVC; \
|
|
env->fsr |= FSR_FTT_IEEE_EXCP; \
|
|
raise_exception(TT_FP_EXCP); \
|
|
} else { \
|
|
env->fsr |= FSR_NVA; \
|
|
} \
|
|
break; \
|
|
case float_relation_less: \
|
|
new_fsr = FSR_FCC0 << FS; \
|
|
break; \
|
|
case float_relation_greater: \
|
|
new_fsr = FSR_FCC1 << FS; \
|
|
break; \
|
|
default: \
|
|
new_fsr = 0; \
|
|
break; \
|
|
} \
|
|
env->fsr |= new_fsr; \
|
|
}
|
|
|
|
GEN_FCMPS(fcmps, float32, 0, 0);
|
|
GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);
|
|
|
|
GEN_FCMPS(fcmpes, float32, 0, 1);
|
|
GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);
|
|
|
|
GEN_FCMP(fcmpq, float128, QT0, QT1, 0, 0);
|
|
GEN_FCMP(fcmpeq, float128, QT0, QT1, 0, 1);
|
|
|
|
static uint32_t compute_all_flags(void)
|
|
{
|
|
return env->psr & PSR_ICC;
|
|
}
|
|
|
|
static uint32_t compute_C_flags(void)
|
|
{
|
|
return env->psr & PSR_CARRY;
|
|
}
|
|
|
|
static inline uint32_t get_NZ_icc(target_ulong dst)
|
|
{
|
|
uint32_t ret = 0;
|
|
|
|
if (!(dst & 0xffffffffULL))
|
|
ret |= PSR_ZERO;
|
|
if ((int32_t) (dst & 0xffffffffULL) < 0)
|
|
ret |= PSR_NEG;
|
|
return ret;
|
|
}
|
|
|
|
#ifdef TARGET_SPARC64
|
|
static uint32_t compute_all_flags_xcc(void)
|
|
{
|
|
return env->xcc & PSR_ICC;
|
|
}
|
|
|
|
static uint32_t compute_C_flags_xcc(void)
|
|
{
|
|
return env->xcc & PSR_CARRY;
|
|
}
|
|
|
|
static inline uint32_t get_NZ_xcc(target_ulong dst)
|
|
{
|
|
uint32_t ret = 0;
|
|
|
|
if (!dst)
|
|
ret |= PSR_ZERO;
|
|
if ((int64_t)dst < 0)
|
|
ret |= PSR_NEG;
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
static inline uint32_t get_V_div_icc(target_ulong src2)
|
|
{
|
|
uint32_t ret = 0;
|
|
|
|
if (src2 != 0)
|
|
ret |= PSR_OVF;
|
|
return ret;
|
|
}
|
|
|
|
static uint32_t compute_all_div(void)
|
|
{
|
|
uint32_t ret;
|
|
|
|
ret = get_NZ_icc(CC_DST);
|
|
ret |= get_V_div_icc(CC_SRC2);
|
|
return ret;
|
|
}
|
|
|
|
static uint32_t compute_C_div(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline uint32_t get_C_add_icc(target_ulong dst, target_ulong src1)
|
|
{
|
|
uint32_t ret = 0;
|
|
|
|
if ((dst & 0xffffffffULL) < (src1 & 0xffffffffULL))
|
|
ret |= PSR_CARRY;
|
|
return ret;
|
|
}
|
|
|
|
static inline uint32_t get_V_add_icc(target_ulong dst, target_ulong src1,
|
|
target_ulong src2)
|
|
{
|
|
uint32_t ret = 0;
|
|
|
|
if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1ULL << 31))
|
|
ret |= PSR_OVF;
|
|
return ret;
|
|
}
|
|
|
|
static uint32_t compute_all_add(void)
|
|
{
|
|
uint32_t ret;
|
|
|
|
ret = get_NZ_icc(CC_DST);
|
|
ret |= get_C_add_icc(CC_DST, CC_SRC);
|
|
ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
|
|
return ret;
|
|
}
|
|
|
|
static uint32_t compute_C_add(void)
|
|
{
|
|
return get_C_add_icc(CC_DST, CC_SRC);
|
|
}
|
|
|
|
#ifdef TARGET_SPARC64
|
|
static inline uint32_t get_C_add_xcc(target_ulong dst, target_ulong src1)
|
|
{
|
|
uint32_t ret = 0;
|
|
|
|
if (dst < src1)
|
|
ret |= PSR_CARRY;
|
|
return ret;
|
|
}
|
|
|
|
static inline uint32_t get_V_add_xcc(target_ulong dst, target_ulong src1,
|
|
target_ulong src2)
|
|
{
|
|
uint32_t ret = 0;
|
|
|
|
if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1ULL << 63))
|
|
ret |= PSR_OVF;
|
|
return ret;
|
|
}
|
|
|
|
static uint32_t compute_all_add_xcc(void)
|
|
{
|
|
uint32_t ret;
|
|
|
|
ret = get_NZ_xcc(CC_DST);
|
|
ret |= get_C_add_xcc(CC_DST, CC_SRC);
|
|
ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2);
|
|
return ret;
|
|
}
|
|
|
|
static uint32_t compute_C_add_xcc(void)
|
|
{
|
|
return get_C_add_xcc(CC_DST, CC_SRC);
|
|
}
|
|
#endif
|
|
|
|
static uint32_t compute_all_addx(void)
|
|
{
|
|
uint32_t ret;
|
|
|
|
ret = get_NZ_icc(CC_DST);
|
|
ret |= get_C_add_icc(CC_DST - CC_SRC2, CC_SRC);
|
|
ret |= get_C_add_icc(CC_DST, CC_SRC);
|
|
ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
|
|
return ret;
|
|
}
|
|
|
|
static uint32_t compute_C_addx(void)
|
|
{
|
|
uint32_t ret;
|
|
|
|
ret = get_C_add_icc(CC_DST - CC_SRC2, CC_SRC);
|
|
ret |= get_C_add_icc(CC_DST, CC_SRC);
|
|
return ret;
|
|
}
|
|
|
|
#ifdef TARGET_SPARC64
|
|
static uint32_t compute_all_addx_xcc(void)
|
|
{
|
|
uint32_t ret;
|
|
|
|
ret = get_NZ_xcc(CC_DST);
|
|
ret |= get_C_add_xcc(CC_DST - CC_SRC2, CC_SRC);
|
|
ret |= get_C_add_xcc(CC_DST, CC_SRC);
|
|
ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2);
|
|
return ret;
|
|
}
|
|
|
|
static uint32_t compute_C_addx_xcc(void)
|
|
{
|
|
uint32_t ret;
|
|
|
|
ret = get_C_add_xcc(CC_DST - CC_SRC2, CC_SRC);
|
|
ret |= get_C_add_xcc(CC_DST, CC_SRC);
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
static inline uint32_t get_V_tag_icc(target_ulong src1, target_ulong src2)
|
|
{
|
|
uint32_t ret = 0;
|
|
|
|
if ((src1 | src2) & 0x3)
|
|
ret |= PSR_OVF;
|
|
return ret;
|
|
}
|
|
|
|
static uint32_t compute_all_tadd(void)
|
|
{
|
|
uint32_t ret;
|
|
|
|
ret = get_NZ_icc(CC_DST);
|
|
ret |= get_C_add_icc(CC_DST, CC_SRC);
|
|
ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
|
|
ret |= get_V_tag_icc(CC_SRC, CC_SRC2);
|
|
return ret;
|
|
}
|
|
|
|
static uint32_t compute_C_tadd(void)
|
|
{
|
|
return get_C_add_icc(CC_DST, CC_SRC);
|
|
}
|
|
|
|
static uint32_t compute_all_taddtv(void)
|
|
{
|
|
uint32_t ret;
|
|
|
|
ret = get_NZ_icc(CC_DST);
|
|
ret |= get_C_add_icc(CC_DST, CC_SRC);
|
|
return ret;
|
|
}
|
|
|
|
static uint32_t compute_C_taddtv(void)
|
|
{
|
|
return get_C_add_icc(CC_DST, CC_SRC);
|
|
}
|
|
|
|
static inline uint32_t get_C_sub_icc(target_ulong src1, target_ulong src2)
|
|
{
|
|
uint32_t ret = 0;
|
|
|
|
if ((src1 & 0xffffffffULL) < (src2 & 0xffffffffULL))
|
|
ret |= PSR_CARRY;
|
|
return ret;
|
|
}
|
|
|
|
static inline uint32_t get_V_sub_icc(target_ulong dst, target_ulong src1,
|
|
target_ulong src2)
|
|
{
|
|
uint32_t ret = 0;
|
|
|
|
if (((src1 ^ src2) & (src1 ^ dst)) & (1ULL << 31))
|
|
ret |= PSR_OVF;
|
|
return ret;
|
|
}
|
|
|
|
static uint32_t compute_all_sub(void)
|
|
{
|
|
uint32_t ret;
|
|
|
|
ret = get_NZ_icc(CC_DST);
|
|
ret |= get_C_sub_icc(CC_SRC, CC_SRC2);
|
|
ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
|
|
return ret;
|
|
}
|
|
|
|
static uint32_t compute_C_sub(void)
|
|
{
|
|
return get_C_sub_icc(CC_SRC, CC_SRC2);
|
|
}
|
|
|
|
#ifdef TARGET_SPARC64
|
|
static inline uint32_t get_C_sub_xcc(target_ulong src1, target_ulong src2)
|
|
{
|
|
uint32_t ret = 0;
|
|
|
|
if (src1 < src2)
|
|
ret |= PSR_CARRY;
|
|
return ret;
|
|
}
|
|
|
|
static inline uint32_t get_V_sub_xcc(target_ulong dst, target_ulong src1,
|
|
target_ulong src2)
|
|
{
|
|
uint32_t ret = 0;
|
|
|
|
if (((src1 ^ src2) & (src1 ^ dst)) & (1ULL << 63))
|
|
ret |= PSR_OVF;
|
|
return ret;
|
|
}
|
|
|
|
static uint32_t compute_all_sub_xcc(void)
|
|
{
|
|
uint32_t ret;
|
|
|
|
ret = get_NZ_xcc(CC_DST);
|
|
ret |= get_C_sub_xcc(CC_SRC, CC_SRC2);
|
|
ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2);
|
|
return ret;
|
|
}
|
|
|
|
static uint32_t compute_C_sub_xcc(void)
|
|
{
|
|
return get_C_sub_xcc(CC_SRC, CC_SRC2);
|
|
}
|
|
#endif
|
|
|
|
static uint32_t compute_all_subx(void)
|
|
{
|
|
uint32_t ret;
|
|
|
|
ret = get_NZ_icc(CC_DST);
|
|
ret |= get_C_sub_icc(CC_DST - CC_SRC2, CC_SRC);
|
|
ret |= get_C_sub_icc(CC_DST, CC_SRC2);
|
|
ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
|
|
return ret;
|
|
}
|
|
|
|
static uint32_t compute_C_subx(void)
|
|
{
|
|
uint32_t ret;
|
|
|
|
ret = get_C_sub_icc(CC_DST - CC_SRC2, CC_SRC);
|
|
ret |= get_C_sub_icc(CC_DST, CC_SRC2);
|
|
return ret;
|
|
}
|
|
|
|
#ifdef TARGET_SPARC64
|
|
static uint32_t compute_all_subx_xcc(void)
|
|
{
|
|
uint32_t ret;
|
|
|
|
ret = get_NZ_xcc(CC_DST);
|
|
ret |= get_C_sub_xcc(CC_DST - CC_SRC2, CC_SRC);
|
|
ret |= get_C_sub_xcc(CC_DST, CC_SRC2);
|
|
ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2);
|
|
return ret;
|
|
}
|
|
|
|
static uint32_t compute_C_subx_xcc(void)
|
|
{
|
|
uint32_t ret;
|
|
|
|
ret = get_C_sub_xcc(CC_DST - CC_SRC2, CC_SRC);
|
|
ret |= get_C_sub_xcc(CC_DST, CC_SRC2);
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
static uint32_t compute_all_tsub(void)
|
|
{
|
|
uint32_t ret;
|
|
|
|
ret = get_NZ_icc(CC_DST);
|
|
ret |= get_C_sub_icc(CC_DST, CC_SRC);
|
|
ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
|
|
ret |= get_V_tag_icc(CC_SRC, CC_SRC2);
|
|
return ret;
|
|
}
|
|
|
|
static uint32_t compute_C_tsub(void)
|
|
{
|
|
return get_C_sub_icc(CC_DST, CC_SRC);
|
|
}
|
|
|
|
static uint32_t compute_all_tsubtv(void)
|
|
{
|
|
uint32_t ret;
|
|
|
|
ret = get_NZ_icc(CC_DST);
|
|
ret |= get_C_sub_icc(CC_DST, CC_SRC);
|
|
return ret;
|
|
}
|
|
|
|
static uint32_t compute_C_tsubtv(void)
|
|
{
|
|
return get_C_sub_icc(CC_DST, CC_SRC);
|
|
}
|
|
|
|
static uint32_t compute_all_logic(void)
|
|
{
|
|
return get_NZ_icc(CC_DST);
|
|
}
|
|
|
|
static uint32_t compute_C_logic(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
#ifdef TARGET_SPARC64
|
|
static uint32_t compute_all_logic_xcc(void)
|
|
{
|
|
return get_NZ_xcc(CC_DST);
|
|
}
|
|
#endif
|
|
|
|
typedef struct CCTable {
|
|
uint32_t (*compute_all)(void); /* return all the flags */
|
|
uint32_t (*compute_c)(void); /* return the C flag */
|
|
} CCTable;
|
|
|
|
static const CCTable icc_table[CC_OP_NB] = {
|
|
/* CC_OP_DYNAMIC should never happen */
|
|
[CC_OP_FLAGS] = { compute_all_flags, compute_C_flags },
|
|
[CC_OP_DIV] = { compute_all_div, compute_C_div },
|
|
[CC_OP_ADD] = { compute_all_add, compute_C_add },
|
|
[CC_OP_ADDX] = { compute_all_addx, compute_C_addx },
|
|
[CC_OP_TADD] = { compute_all_tadd, compute_C_tadd },
|
|
[CC_OP_TADDTV] = { compute_all_taddtv, compute_C_taddtv },
|
|
[CC_OP_SUB] = { compute_all_sub, compute_C_sub },
|
|
[CC_OP_SUBX] = { compute_all_subx, compute_C_subx },
|
|
[CC_OP_TSUB] = { compute_all_tsub, compute_C_tsub },
|
|
[CC_OP_TSUBTV] = { compute_all_tsubtv, compute_C_tsubtv },
|
|
[CC_OP_LOGIC] = { compute_all_logic, compute_C_logic },
|
|
};
|
|
|
|
#ifdef TARGET_SPARC64
|
|
static const CCTable xcc_table[CC_OP_NB] = {
|
|
/* CC_OP_DYNAMIC should never happen */
|
|
[CC_OP_FLAGS] = { compute_all_flags_xcc, compute_C_flags_xcc },
|
|
[CC_OP_DIV] = { compute_all_logic_xcc, compute_C_logic },
|
|
[CC_OP_ADD] = { compute_all_add_xcc, compute_C_add_xcc },
|
|
[CC_OP_ADDX] = { compute_all_addx_xcc, compute_C_addx_xcc },
|
|
[CC_OP_TADD] = { compute_all_add_xcc, compute_C_add_xcc },
|
|
[CC_OP_TADDTV] = { compute_all_add_xcc, compute_C_add_xcc },
|
|
[CC_OP_SUB] = { compute_all_sub_xcc, compute_C_sub_xcc },
|
|
[CC_OP_SUBX] = { compute_all_subx_xcc, compute_C_subx_xcc },
|
|
[CC_OP_TSUB] = { compute_all_sub_xcc, compute_C_sub_xcc },
|
|
[CC_OP_TSUBTV] = { compute_all_sub_xcc, compute_C_sub_xcc },
|
|
[CC_OP_LOGIC] = { compute_all_logic_xcc, compute_C_logic },
|
|
};
|
|
#endif
|
|
|
|
void helper_compute_psr(void)
|
|
{
|
|
uint32_t new_psr;
|
|
|
|
new_psr = icc_table[CC_OP].compute_all();
|
|
env->psr = new_psr;
|
|
#ifdef TARGET_SPARC64
|
|
new_psr = xcc_table[CC_OP].compute_all();
|
|
env->xcc = new_psr;
|
|
#endif
|
|
CC_OP = CC_OP_FLAGS;
|
|
}
|
|
|
|
uint32_t helper_compute_C_icc(void)
|
|
{
|
|
uint32_t ret;
|
|
|
|
ret = icc_table[CC_OP].compute_c() >> PSR_CARRY_SHIFT;
|
|
return ret;
|
|
}
|
|
|
|
#ifdef TARGET_SPARC64
|
|
GEN_FCMPS(fcmps_fcc1, float32, 22, 0);
|
|
GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);
|
|
GEN_FCMP(fcmpq_fcc1, float128, QT0, QT1, 22, 0);
|
|
|
|
GEN_FCMPS(fcmps_fcc2, float32, 24, 0);
|
|
GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);
|
|
GEN_FCMP(fcmpq_fcc2, float128, QT0, QT1, 24, 0);
|
|
|
|
GEN_FCMPS(fcmps_fcc3, float32, 26, 0);
|
|
GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);
|
|
GEN_FCMP(fcmpq_fcc3, float128, QT0, QT1, 26, 0);
|
|
|
|
GEN_FCMPS(fcmpes_fcc1, float32, 22, 1);
|
|
GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);
|
|
GEN_FCMP(fcmpeq_fcc1, float128, QT0, QT1, 22, 1);
|
|
|
|
GEN_FCMPS(fcmpes_fcc2, float32, 24, 1);
|
|
GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);
|
|
GEN_FCMP(fcmpeq_fcc2, float128, QT0, QT1, 24, 1);
|
|
|
|
GEN_FCMPS(fcmpes_fcc3, float32, 26, 1);
|
|
GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
|
|
GEN_FCMP(fcmpeq_fcc3, float128, QT0, QT1, 26, 1);
|
|
#endif
|
|
#undef GEN_FCMPS
|
|
|
|
#if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
|
|
defined(DEBUG_MXCC)
|
|
static void dump_mxcc(CPUState *env)
|
|
{
|
|
printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
|
|
"\n",
|
|
env->mxccdata[0], env->mxccdata[1],
|
|
env->mxccdata[2], env->mxccdata[3]);
|
|
printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
|
|
"\n"
|
|
" %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
|
|
"\n",
|
|
env->mxccregs[0], env->mxccregs[1],
|
|
env->mxccregs[2], env->mxccregs[3],
|
|
env->mxccregs[4], env->mxccregs[5],
|
|
env->mxccregs[6], env->mxccregs[7]);
|
|
}
|
|
#endif
|
|
|
|
#if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
|
|
&& defined(DEBUG_ASI)
|
|
static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
|
|
uint64_t r1)
|
|
{
|
|
switch (size)
|
|
{
|
|
case 1:
|
|
DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
|
|
addr, asi, r1 & 0xff);
|
|
break;
|
|
case 2:
|
|
DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
|
|
addr, asi, r1 & 0xffff);
|
|
break;
|
|
case 4:
|
|
DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
|
|
addr, asi, r1 & 0xffffffff);
|
|
break;
|
|
case 8:
|
|
DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
|
|
addr, asi, r1);
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifndef TARGET_SPARC64
|
|
#ifndef CONFIG_USER_ONLY
|
|
uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
|
|
{
|
|
uint64_t ret = 0;
|
|
#if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
|
|
uint32_t last_addr = addr;
|
|
#endif
|
|
|
|
helper_check_align(addr, size - 1);
|
|
switch (asi) {
|
|
case 2: /* SuperSparc MXCC registers */
|
|
switch (addr) {
|
|
case 0x01c00a00: /* MXCC control register */
|
|
if (size == 8)
|
|
ret = env->mxccregs[3];
|
|
else
|
|
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
|
|
size);
|
|
break;
|
|
case 0x01c00a04: /* MXCC control register */
|
|
if (size == 4)
|
|
ret = env->mxccregs[3];
|
|
else
|
|
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
|
|
size);
|
|
break;
|
|
case 0x01c00c00: /* Module reset register */
|
|
if (size == 8) {
|
|
ret = env->mxccregs[5];
|
|
// should we do something here?
|
|
} else
|
|
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
|
|
size);
|
|
break;
|
|
case 0x01c00f00: /* MBus port address register */
|
|
if (size == 8)
|
|
ret = env->mxccregs[7];
|
|
else
|
|
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
|
|
size);
|
|
break;
|
|
default:
|
|
DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
|
|
size);
|
|
break;
|
|
}
|
|
DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
|
|
"addr = %08x -> ret = %" PRIx64 ","
|
|
"addr = %08x\n", asi, size, sign, last_addr, ret, addr);
|
|
#ifdef DEBUG_MXCC
|
|
dump_mxcc(env);
|
|
#endif
|
|
break;
|
|
case 3: /* MMU probe */
|
|
{
|
|
int mmulev;
|
|
|
|
mmulev = (addr >> 8) & 15;
|
|
if (mmulev > 4)
|
|
ret = 0;
|
|
else
|
|
ret = mmu_probe(env, addr, mmulev);
|
|
DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
|
|
addr, mmulev, ret);
|
|
}
|
|
break;
|
|
case 4: /* read MMU regs */
|
|
{
|
|
int reg = (addr >> 8) & 0x1f;
|
|
|
|
ret = env->mmuregs[reg];
|
|
if (reg == 3) /* Fault status cleared on read */
|
|
env->mmuregs[3] = 0;
|
|
else if (reg == 0x13) /* Fault status read */
|
|
ret = env->mmuregs[3];
|
|
else if (reg == 0x14) /* Fault address read */
|
|
ret = env->mmuregs[4];
|
|
DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
|
|
}
|
|
break;
|
|
case 5: // Turbosparc ITLB Diagnostic
|
|
case 6: // Turbosparc DTLB Diagnostic
|
|
case 7: // Turbosparc IOTLB Diagnostic
|
|
break;
|
|
case 9: /* Supervisor code access */
|
|
switch(size) {
|
|
case 1:
|
|
ret = ldub_code(addr);
|
|
break;
|
|
case 2:
|
|
ret = lduw_code(addr);
|
|
break;
|
|
default:
|
|
case 4:
|
|
ret = ldl_code(addr);
|
|
break;
|
|
case 8:
|
|
ret = ldq_code(addr);
|
|
break;
|
|
}
|
|
break;
|
|
case 0xa: /* User data access */
|
|
switch(size) {
|
|
case 1:
|
|
ret = ldub_user(addr);
|
|
break;
|
|
case 2:
|
|
ret = lduw_user(addr);
|
|
break;
|
|
default:
|
|
case 4:
|
|
ret = ldl_user(addr);
|
|
break;
|
|
case 8:
|
|
ret = ldq_user(addr);
|
|
break;
|
|
}
|
|
break;
|
|
case 0xb: /* Supervisor data access */
|
|
switch(size) {
|
|
case 1:
|
|
ret = ldub_kernel(addr);
|
|
break;
|
|
case 2:
|
|
ret = lduw_kernel(addr);
|
|
break;
|
|
default:
|
|
case 4:
|
|
ret = ldl_kernel(addr);
|
|
break;
|
|
case 8:
|
|
ret = ldq_kernel(addr);
|
|
break;
|
|
}
|
|
break;
|
|
case 0xc: /* I-cache tag */
|
|
case 0xd: /* I-cache data */
|
|
case 0xe: /* D-cache tag */
|
|
case 0xf: /* D-cache data */
|
|
break;
|
|
case 0x20: /* MMU passthrough */
|
|
switch(size) {
|
|
case 1:
|
|
ret = ldub_phys(addr);
|
|
break;
|
|
case 2:
|
|
ret = lduw_phys(addr);
|
|
break;
|
|
default:
|
|
case 4:
|
|
ret = ldl_phys(addr);
|
|
break;
|
|
case 8:
|
|
ret = ldq_phys(addr);
|
|
break;
|
|
}
|
|
break;
|
|
case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
|
|
switch(size) {
|
|
case 1:
|
|
ret = ldub_phys((target_phys_addr_t)addr
|
|
| ((target_phys_addr_t)(asi & 0xf) << 32));
|
|
break;
|
|
case 2:
|
|
ret = lduw_phys((target_phys_addr_t)addr
|
|
| ((target_phys_addr_t)(asi & 0xf) << 32));
|
|
break;
|
|
default:
|
|
case 4:
|
|
ret = ldl_phys((target_phys_addr_t)addr
|
|
| ((target_phys_addr_t)(asi & 0xf) << 32));
|
|
break;
|
|
case 8:
|
|
ret = ldq_phys((target_phys_addr_t)addr
|
|
| ((target_phys_addr_t)(asi & 0xf) << 32));
|
|
break;
|
|
}
|
|
break;
|
|
case 0x30: // Turbosparc secondary cache diagnostic
|
|
case 0x31: // Turbosparc RAM snoop
|
|
case 0x32: // Turbosparc page table descriptor diagnostic
|
|
case 0x39: /* data cache diagnostic register */
|
|
ret = 0;
|
|
break;
|
|
case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
|
|
{
|
|
int reg = (addr >> 8) & 3;
|
|
|
|
switch(reg) {
|
|
case 0: /* Breakpoint Value (Addr) */
|
|
ret = env->mmubpregs[reg];
|
|
break;
|
|
case 1: /* Breakpoint Mask */
|
|
ret = env->mmubpregs[reg];
|
|
break;
|
|
case 2: /* Breakpoint Control */
|
|
ret = env->mmubpregs[reg];
|
|
break;
|
|
case 3: /* Breakpoint Status */
|
|
ret = env->mmubpregs[reg];
|
|
env->mmubpregs[reg] = 0ULL;
|
|
break;
|
|
}
|
|
DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
|
|
ret);
|
|
}
|
|
break;
|
|
case 8: /* User code access, XXX */
|
|
default:
|
|
do_unassigned_access(addr, 0, 0, asi, size);
|
|
ret = 0;
|
|
break;
|
|
}
|
|
if (sign) {
|
|
switch(size) {
|
|
case 1:
|
|
ret = (int8_t) ret;
|
|
break;
|
|
case 2:
|
|
ret = (int16_t) ret;
|
|
break;
|
|
case 4:
|
|
ret = (int32_t) ret;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
#ifdef DEBUG_ASI
|
|
dump_asi("read ", last_addr, asi, size, ret);
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
|
|
{
|
|
helper_check_align(addr, size - 1);
|
|
switch(asi) {
|
|
case 2: /* SuperSparc MXCC registers */
|
|
switch (addr) {
|
|
case 0x01c00000: /* MXCC stream data register 0 */
|
|
if (size == 8)
|
|
env->mxccdata[0] = val;
|
|
else
|
|
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
|
|
size);
|
|
break;
|
|
case 0x01c00008: /* MXCC stream data register 1 */
|
|
if (size == 8)
|
|
env->mxccdata[1] = val;
|
|
else
|
|
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
|
|
size);
|
|
break;
|
|
case 0x01c00010: /* MXCC stream data register 2 */
|
|
if (size == 8)
|
|
env->mxccdata[2] = val;
|
|
else
|
|
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
|
|
size);
|
|
break;
|
|
case 0x01c00018: /* MXCC stream data register 3 */
|
|
if (size == 8)
|
|
env->mxccdata[3] = val;
|
|
else
|
|
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
|
|
size);
|
|
break;
|
|
case 0x01c00100: /* MXCC stream source */
|
|
if (size == 8)
|
|
env->mxccregs[0] = val;
|
|
else
|
|
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
|
|
size);
|
|
env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
|
|
0);
|
|
env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
|
|
8);
|
|
env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
|
|
16);
|
|
env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
|
|
24);
|
|
break;
|
|
case 0x01c00200: /* MXCC stream destination */
|
|
if (size == 8)
|
|
env->mxccregs[1] = val;
|
|
else
|
|
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
|
|
size);
|
|
stq_phys((env->mxccregs[1] & 0xffffffffULL) + 0,
|
|
env->mxccdata[0]);
|
|
stq_phys((env->mxccregs[1] & 0xffffffffULL) + 8,
|
|
env->mxccdata[1]);
|
|
stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16,
|
|
env->mxccdata[2]);
|
|
stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24,
|
|
env->mxccdata[3]);
|
|
break;
|
|
case 0x01c00a00: /* MXCC control register */
|
|
if (size == 8)
|
|
env->mxccregs[3] = val;
|
|
else
|
|
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
|
|
size);
|
|
break;
|
|
case 0x01c00a04: /* MXCC control register */
|
|
if (size == 4)
|
|
env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
|
|
| val;
|
|
else
|
|
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
|
|
size);
|
|
break;
|
|
case 0x01c00e00: /* MXCC error register */
|
|
// writing a 1 bit clears the error
|
|
if (size == 8)
|
|
env->mxccregs[6] &= ~val;
|
|
else
|
|
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
|
|
size);
|
|
break;
|
|
case 0x01c00f00: /* MBus port address register */
|
|
if (size == 8)
|
|
env->mxccregs[7] = val;
|
|
else
|
|
DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
|
|
size);
|
|
break;
|
|
default:
|
|
DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
|
|
size);
|
|
break;
|
|
}
|
|
DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
|
|
asi, size, addr, val);
|
|
#ifdef DEBUG_MXCC
|
|
dump_mxcc(env);
|
|
#endif
|
|
break;
|
|
case 3: /* MMU flush */
|
|
{
|
|
int mmulev;
|
|
|
|
mmulev = (addr >> 8) & 15;
|
|
DPRINTF_MMU("mmu flush level %d\n", mmulev);
|
|
switch (mmulev) {
|
|
case 0: // flush page
|
|
tlb_flush_page(env, addr & 0xfffff000);
|
|
break;
|
|
case 1: // flush segment (256k)
|
|
case 2: // flush region (16M)
|
|
case 3: // flush context (4G)
|
|
case 4: // flush entire
|
|
tlb_flush(env, 1);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
#ifdef DEBUG_MMU
|
|
dump_mmu(env);
|
|
#endif
|
|
}
|
|
break;
|
|
case 4: /* write MMU regs */
|
|
{
|
|
int reg = (addr >> 8) & 0x1f;
|
|
uint32_t oldreg;
|
|
|
|
oldreg = env->mmuregs[reg];
|
|
switch(reg) {
|
|
case 0: // Control Register
|
|
env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
|
|
(val & 0x00ffffff);
|
|
// Mappings generated during no-fault mode or MMU
|
|
// disabled mode are invalid in normal mode
|
|
if ((oldreg & (MMU_E | MMU_NF | env->def->mmu_bm)) !=
|
|
(env->mmuregs[reg] & (MMU_E | MMU_NF | env->def->mmu_bm)))
|
|
tlb_flush(env, 1);
|
|
break;
|
|
case 1: // Context Table Pointer Register
|
|
env->mmuregs[reg] = val & env->def->mmu_ctpr_mask;
|
|
break;
|
|
case 2: // Context Register
|
|
env->mmuregs[reg] = val & env->def->mmu_cxr_mask;
|
|
if (oldreg != env->mmuregs[reg]) {
|
|
/* we flush when the MMU context changes because
|
|
QEMU has no MMU context support */
|
|
tlb_flush(env, 1);
|
|
}
|
|
break;
|
|
case 3: // Synchronous Fault Status Register with Clear
|
|
case 4: // Synchronous Fault Address Register
|
|
break;
|
|
case 0x10: // TLB Replacement Control Register
|
|
env->mmuregs[reg] = val & env->def->mmu_trcr_mask;
|
|
break;
|
|
case 0x13: // Synchronous Fault Status Register with Read and Clear
|
|
env->mmuregs[3] = val & env->def->mmu_sfsr_mask;
|
|
break;
|
|
case 0x14: // Synchronous Fault Address Register
|
|
env->mmuregs[4] = val;
|
|
break;
|
|
default:
|
|
env->mmuregs[reg] = val;
|
|
break;
|
|
}
|
|
if (oldreg != env->mmuregs[reg]) {
|
|
DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
|
|
reg, oldreg, env->mmuregs[reg]);
|
|
}
|
|
#ifdef DEBUG_MMU
|
|
dump_mmu(env);
|
|
#endif
|
|
}
|
|
break;
|
|
case 5: // Turbosparc ITLB Diagnostic
|
|
case 6: // Turbosparc DTLB Diagnostic
|
|
case 7: // Turbosparc IOTLB Diagnostic
|
|
break;
|
|
case 0xa: /* User data access */
|
|
switch(size) {
|
|
case 1:
|
|
stb_user(addr, val);
|
|
break;
|
|
case 2:
|
|
stw_user(addr, val);
|
|
break;
|
|
default:
|
|
case 4:
|
|
stl_user(addr, val);
|
|
break;
|
|
case 8:
|
|
stq_user(addr, val);
|
|
break;
|
|
}
|
|
break;
|
|
case 0xb: /* Supervisor data access */
|
|
switch(size) {
|
|
case 1:
|
|
stb_kernel(addr, val);
|
|
break;
|
|
case 2:
|
|
stw_kernel(addr, val);
|
|
break;
|
|
default:
|
|
case 4:
|
|
stl_kernel(addr, val);
|
|
break;
|
|
case 8:
|
|
stq_kernel(addr, val);
|
|
break;
|
|
}
|
|
break;
|
|
case 0xc: /* I-cache tag */
|
|
case 0xd: /* I-cache data */
|
|
case 0xe: /* D-cache tag */
|
|
case 0xf: /* D-cache data */
|
|
case 0x10: /* I/D-cache flush page */
|
|
case 0x11: /* I/D-cache flush segment */
|
|
case 0x12: /* I/D-cache flush region */
|
|
case 0x13: /* I/D-cache flush context */
|
|
case 0x14: /* I/D-cache flush user */
|
|
break;
|
|
case 0x17: /* Block copy, sta access */
|
|
{
|
|
// val = src
|
|
// addr = dst
|
|
// copy 32 bytes
|
|
unsigned int i;
|
|
uint32_t src = val & ~3, dst = addr & ~3, temp;
|
|
|
|
for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
|
|
temp = ldl_kernel(src);
|
|
stl_kernel(dst, temp);
|
|
}
|
|
}
|
|
break;
|
|
case 0x1f: /* Block fill, stda access */
|
|
{
|
|
// addr = dst
|
|
// fill 32 bytes with val
|
|
unsigned int i;
|
|
uint32_t dst = addr & 7;
|
|
|
|
for (i = 0; i < 32; i += 8, dst += 8)
|
|
stq_kernel(dst, val);
|
|
}
|
|
break;
|
|
case 0x20: /* MMU passthrough */
|
|
{
|
|
switch(size) {
|
|
case 1:
|
|
stb_phys(addr, val);
|
|
break;
|
|
case 2:
|
|
stw_phys(addr, val);
|
|
break;
|
|
case 4:
|
|
default:
|
|
stl_phys(addr, val);
|
|
break;
|
|
case 8:
|
|
stq_phys(addr, val);
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
|
|
{
|
|
switch(size) {
|
|
case 1:
|
|
stb_phys((target_phys_addr_t)addr
|
|
| ((target_phys_addr_t)(asi & 0xf) << 32), val);
|
|
break;
|
|
case 2:
|
|
stw_phys((target_phys_addr_t)addr
|
|
| ((target_phys_addr_t)(asi & 0xf) << 32), val);
|
|
break;
|
|
case 4:
|
|
default:
|
|
stl_phys((target_phys_addr_t)addr
|
|
| ((target_phys_addr_t)(asi & 0xf) << 32), val);
|
|
break;
|
|
case 8:
|
|
stq_phys((target_phys_addr_t)addr
|
|
| ((target_phys_addr_t)(asi & 0xf) << 32), val);
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
case 0x30: // store buffer tags or Turbosparc secondary cache diagnostic
|
|
case 0x31: // store buffer data, Ross RT620 I-cache flush or
|
|
// Turbosparc snoop RAM
|
|
case 0x32: // store buffer control or Turbosparc page table
|
|
// descriptor diagnostic
|
|
case 0x36: /* I-cache flash clear */
|
|
case 0x37: /* D-cache flash clear */
|
|
case 0x4c: /* breakpoint action */
|
|
break;
|
|
case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
|
|
{
|
|
int reg = (addr >> 8) & 3;
|
|
|
|
switch(reg) {
|
|
case 0: /* Breakpoint Value (Addr) */
|
|
env->mmubpregs[reg] = (val & 0xfffffffffULL);
|
|
break;
|
|
case 1: /* Breakpoint Mask */
|
|
env->mmubpregs[reg] = (val & 0xfffffffffULL);
|
|
break;
|
|
case 2: /* Breakpoint Control */
|
|
env->mmubpregs[reg] = (val & 0x7fULL);
|
|
break;
|
|
case 3: /* Breakpoint Status */
|
|
env->mmubpregs[reg] = (val & 0xfULL);
|
|
break;
|
|
}
|
|
DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
|
|
env->mmuregs[reg]);
|
|
}
|
|
break;
|
|
case 8: /* User code access, XXX */
|
|
case 9: /* Supervisor code access, XXX */
|
|
default:
|
|
do_unassigned_access(addr, 1, 0, asi, size);
|
|
break;
|
|
}
|
|
#ifdef DEBUG_ASI
|
|
dump_asi("write", addr, asi, size, val);
|
|
#endif
|
|
}
|
|
|
|
#endif /* CONFIG_USER_ONLY */
|
|
#else /* TARGET_SPARC64 */
|
|
|
|
#ifdef CONFIG_USER_ONLY
|
|
uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
|
|
{
|
|
uint64_t ret = 0;
|
|
#if defined(DEBUG_ASI)
|
|
target_ulong last_addr = addr;
|
|
#endif
|
|
|
|
if (asi < 0x80)
|
|
raise_exception(TT_PRIV_ACT);
|
|
|
|
helper_check_align(addr, size - 1);
|
|
address_mask(env, &addr);
|
|
|
|
switch (asi) {
|
|
case 0x82: // Primary no-fault
|
|
case 0x8a: // Primary no-fault LE
|
|
if (page_check_range(addr, size, PAGE_READ) == -1) {
|
|
#ifdef DEBUG_ASI
|
|
dump_asi("read ", last_addr, asi, size, ret);
|
|
#endif
|
|
return 0;
|
|
}
|
|
// Fall through
|
|
case 0x80: // Primary
|
|
case 0x88: // Primary LE
|
|
{
|
|
switch(size) {
|
|
case 1:
|
|
ret = ldub_raw(addr);
|
|
break;
|
|
case 2:
|
|
ret = lduw_raw(addr);
|
|
break;
|
|
case 4:
|
|
ret = ldl_raw(addr);
|
|
break;
|
|
default:
|
|
case 8:
|
|
ret = ldq_raw(addr);
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
case 0x83: // Secondary no-fault
|
|
case 0x8b: // Secondary no-fault LE
|
|
if (page_check_range(addr, size, PAGE_READ) == -1) {
|
|
#ifdef DEBUG_ASI
|
|
dump_asi("read ", last_addr, asi, size, ret);
|
|
#endif
|
|
return 0;
|
|
}
|
|
// Fall through
|
|
case 0x81: // Secondary
|
|
case 0x89: // Secondary LE
|
|
// XXX
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* Convert from little endian */
|
|
switch (asi) {
|
|
case 0x88: // Primary LE
|
|
case 0x89: // Secondary LE
|
|
case 0x8a: // Primary no-fault LE
|
|
case 0x8b: // Secondary no-fault LE
|
|
switch(size) {
|
|
case 2:
|
|
ret = bswap16(ret);
|
|
break;
|
|
case 4:
|
|
ret = bswap32(ret);
|
|
break;
|
|
case 8:
|
|
ret = bswap64(ret);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* Convert to signed number */
|
|
if (sign) {
|
|
switch(size) {
|
|
case 1:
|
|
ret = (int8_t) ret;
|
|
break;
|
|
case 2:
|
|
ret = (int16_t) ret;
|
|
break;
|
|
case 4:
|
|
ret = (int32_t) ret;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
#ifdef DEBUG_ASI
|
|
dump_asi("read ", last_addr, asi, size, ret);
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
|
|
{
|
|
#ifdef DEBUG_ASI
|
|
dump_asi("write", addr, asi, size, val);
|
|
#endif
|
|
if (asi < 0x80)
|
|
raise_exception(TT_PRIV_ACT);
|
|
|
|
helper_check_align(addr, size - 1);
|
|
address_mask(env, &addr);
|
|
|
|
/* Convert to little endian */
|
|
switch (asi) {
|
|
case 0x88: // Primary LE
|
|
case 0x89: // Secondary LE
|
|
switch(size) {
|
|
case 2:
|
|
val = bswap16(val);
|
|
break;
|
|
case 4:
|
|
val = bswap32(val);
|
|
break;
|
|
case 8:
|
|
val = bswap64(val);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
|
|
switch(asi) {
|
|
case 0x80: // Primary
|
|
case 0x88: // Primary LE
|
|
{
|
|
switch(size) {
|
|
case 1:
|
|
stb_raw(addr, val);
|
|
break;
|
|
case 2:
|
|
stw_raw(addr, val);
|
|
break;
|
|
case 4:
|
|
stl_raw(addr, val);
|
|
break;
|
|
case 8:
|
|
default:
|
|
stq_raw(addr, val);
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
case 0x81: // Secondary
|
|
case 0x89: // Secondary LE
|
|
// XXX
|
|
return;
|
|
|
|
case 0x82: // Primary no-fault, RO
|
|
case 0x83: // Secondary no-fault, RO
|
|
case 0x8a: // Primary no-fault LE, RO
|
|
case 0x8b: // Secondary no-fault LE, RO
|
|
default:
|
|
do_unassigned_access(addr, 1, 0, 1, size);
|
|
return;
|
|
}
|
|
}
|
|
|
|
#else /* CONFIG_USER_ONLY */
|
|
|
|
uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
|
|
{
|
|
uint64_t ret = 0;
|
|
#if defined(DEBUG_ASI)
|
|
target_ulong last_addr = addr;
|
|
#endif
|
|
|
|
asi &= 0xff;
|
|
|
|
if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
|
|
|| ((env->def->features & CPU_FEATURE_HYPV)
|
|
&& asi >= 0x30 && asi < 0x80
|
|
&& !(env->hpstate & HS_PRIV)))
|
|
raise_exception(TT_PRIV_ACT);
|
|
|
|
helper_check_align(addr, size - 1);
|
|
switch (asi) {
|
|
case 0x82: // Primary no-fault
|
|
case 0x8a: // Primary no-fault LE
|
|
if (cpu_get_phys_page_debug(env, addr) == -1ULL) {
|
|
#ifdef DEBUG_ASI
|
|
dump_asi("read ", last_addr, asi, size, ret);
|
|
#endif
|
|
return 0;
|
|
}
|
|
// Fall through
|
|
case 0x10: // As if user primary
|
|
case 0x18: // As if user primary LE
|
|
case 0x80: // Primary
|
|
case 0x88: // Primary LE
|
|
case 0xe2: // UA2007 Primary block init
|
|
case 0xe3: // UA2007 Secondary block init
|
|
if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
|
|
if ((env->def->features & CPU_FEATURE_HYPV)
|
|
&& env->hpstate & HS_PRIV) {
|
|
switch(size) {
|
|
case 1:
|
|
ret = ldub_hypv(addr);
|
|
break;
|
|
case 2:
|
|
ret = lduw_hypv(addr);
|
|
break;
|
|
case 4:
|
|
ret = ldl_hypv(addr);
|
|
break;
|
|
default:
|
|
case 8:
|
|
ret = ldq_hypv(addr);
|
|
break;
|
|
}
|
|
} else {
|
|
switch(size) {
|
|
case 1:
|
|
ret = ldub_kernel(addr);
|
|
break;
|
|
case 2:
|
|
ret = lduw_kernel(addr);
|
|
break;
|
|
case 4:
|
|
ret = ldl_kernel(addr);
|
|
break;
|
|
default:
|
|
case 8:
|
|
ret = ldq_kernel(addr);
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
switch(size) {
|
|
case 1:
|
|
ret = ldub_user(addr);
|
|
break;
|
|
case 2:
|
|
ret = lduw_user(addr);
|
|
break;
|
|
case 4:
|
|
ret = ldl_user(addr);
|
|
break;
|
|
default:
|
|
case 8:
|
|
ret = ldq_user(addr);
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
case 0x14: // Bypass
|
|
case 0x15: // Bypass, non-cacheable
|
|
case 0x1c: // Bypass LE
|
|
case 0x1d: // Bypass, non-cacheable LE
|
|
{
|
|
switch(size) {
|
|
case 1:
|
|
ret = ldub_phys(addr);
|
|
break;
|
|
case 2:
|
|
ret = lduw_phys(addr);
|
|
break;
|
|
case 4:
|
|
ret = ldl_phys(addr);
|
|
break;
|
|
default:
|
|
case 8:
|
|
ret = ldq_phys(addr);
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
case 0x24: // Nucleus quad LDD 128 bit atomic
|
|
case 0x2c: // Nucleus quad LDD 128 bit atomic LE
|
|
// Only ldda allowed
|
|
raise_exception(TT_ILL_INSN);
|
|
return 0;
|
|
case 0x83: // Secondary no-fault
|
|
case 0x8b: // Secondary no-fault LE
|
|
if (cpu_get_phys_page_debug(env, addr) == -1ULL) {
|
|
#ifdef DEBUG_ASI
|
|
dump_asi("read ", last_addr, asi, size, ret);
|
|
#endif
|
|
return 0;
|
|
}
|
|
// Fall through
|
|
case 0x04: // Nucleus
|
|
case 0x0c: // Nucleus Little Endian (LE)
|
|
case 0x11: // As if user secondary
|
|
case 0x19: // As if user secondary LE
|
|
case 0x4a: // UPA config
|
|
case 0x81: // Secondary
|
|
case 0x89: // Secondary LE
|
|
// XXX
|
|
break;
|
|
case 0x45: // LSU
|
|
ret = env->lsu;
|
|
break;
|
|
case 0x50: // I-MMU regs
|
|
{
|
|
int reg = (addr >> 3) & 0xf;
|
|
|
|
if (reg == 0) {
|
|
// I-TSB Tag Target register
|
|
ret = ultrasparc_tag_target(env->immu.tag_access);
|
|
} else {
|
|
ret = env->immuregs[reg];
|
|
}
|
|
|
|
break;
|
|
}
|
|
case 0x51: // I-MMU 8k TSB pointer
|
|
{
|
|
// env->immuregs[5] holds I-MMU TSB register value
|
|
// env->immuregs[6] holds I-MMU Tag Access register value
|
|
ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
|
|
8*1024);
|
|
break;
|
|
}
|
|
case 0x52: // I-MMU 64k TSB pointer
|
|
{
|
|
// env->immuregs[5] holds I-MMU TSB register value
|
|
// env->immuregs[6] holds I-MMU Tag Access register value
|
|
ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
|
|
64*1024);
|
|
break;
|
|
}
|
|
case 0x55: // I-MMU data access
|
|
{
|
|
int reg = (addr >> 3) & 0x3f;
|
|
|
|
ret = env->itlb[reg].tte;
|
|
break;
|
|
}
|
|
case 0x56: // I-MMU tag read
|
|
{
|
|
int reg = (addr >> 3) & 0x3f;
|
|
|
|
ret = env->itlb[reg].tag;
|
|
break;
|
|
}
|
|
case 0x58: // D-MMU regs
|
|
{
|
|
int reg = (addr >> 3) & 0xf;
|
|
|
|
if (reg == 0) {
|
|
// D-TSB Tag Target register
|
|
ret = ultrasparc_tag_target(env->dmmu.tag_access);
|
|
} else {
|
|
ret = env->dmmuregs[reg];
|
|
}
|
|
break;
|
|
}
|
|
case 0x59: // D-MMU 8k TSB pointer
|
|
{
|
|
// env->dmmuregs[5] holds D-MMU TSB register value
|
|
// env->dmmuregs[6] holds D-MMU Tag Access register value
|
|
ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
|
|
8*1024);
|
|
break;
|
|
}
|
|
case 0x5a: // D-MMU 64k TSB pointer
|
|
{
|
|
// env->dmmuregs[5] holds D-MMU TSB register value
|
|
// env->dmmuregs[6] holds D-MMU Tag Access register value
|
|
ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
|
|
64*1024);
|
|
break;
|
|
}
|
|
case 0x5d: // D-MMU data access
|
|
{
|
|
int reg = (addr >> 3) & 0x3f;
|
|
|
|
ret = env->dtlb[reg].tte;
|
|
break;
|
|
}
|
|
case 0x5e: // D-MMU tag read
|
|
{
|
|
int reg = (addr >> 3) & 0x3f;
|
|
|
|
ret = env->dtlb[reg].tag;
|
|
break;
|
|
}
|
|
case 0x46: // D-cache data
|
|
case 0x47: // D-cache tag access
|
|
case 0x4b: // E-cache error enable
|
|
case 0x4c: // E-cache asynchronous fault status
|
|
case 0x4d: // E-cache asynchronous fault address
|
|
case 0x4e: // E-cache tag data
|
|
case 0x66: // I-cache instruction access
|
|
case 0x67: // I-cache tag access
|
|
case 0x6e: // I-cache predecode
|
|
case 0x6f: // I-cache LRU etc.
|
|
case 0x76: // E-cache tag
|
|
case 0x7e: // E-cache tag
|
|
break;
|
|
case 0x5b: // D-MMU data pointer
|
|
case 0x48: // Interrupt dispatch, RO
|
|
case 0x49: // Interrupt data receive
|
|
case 0x7f: // Incoming interrupt vector, RO
|
|
// XXX
|
|
break;
|
|
case 0x54: // I-MMU data in, WO
|
|
case 0x57: // I-MMU demap, WO
|
|
case 0x5c: // D-MMU data in, WO
|
|
case 0x5f: // D-MMU demap, WO
|
|
case 0x77: // Interrupt vector, WO
|
|
default:
|
|
do_unassigned_access(addr, 0, 0, 1, size);
|
|
ret = 0;
|
|
break;
|
|
}
|
|
|
|
/* Convert from little endian */
|
|
switch (asi) {
|
|
case 0x0c: // Nucleus Little Endian (LE)
|
|
case 0x18: // As if user primary LE
|
|
case 0x19: // As if user secondary LE
|
|
case 0x1c: // Bypass LE
|
|
case 0x1d: // Bypass, non-cacheable LE
|
|
case 0x88: // Primary LE
|
|
case 0x89: // Secondary LE
|
|
case 0x8a: // Primary no-fault LE
|
|
case 0x8b: // Secondary no-fault LE
|
|
switch(size) {
|
|
case 2:
|
|
ret = bswap16(ret);
|
|
break;
|
|
case 4:
|
|
ret = bswap32(ret);
|
|
break;
|
|
case 8:
|
|
ret = bswap64(ret);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* Convert to signed number */
|
|
if (sign) {
|
|
switch(size) {
|
|
case 1:
|
|
ret = (int8_t) ret;
|
|
break;
|
|
case 2:
|
|
ret = (int16_t) ret;
|
|
break;
|
|
case 4:
|
|
ret = (int32_t) ret;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
#ifdef DEBUG_ASI
|
|
dump_asi("read ", last_addr, asi, size, ret);
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
|
|
{
|
|
#ifdef DEBUG_ASI
|
|
dump_asi("write", addr, asi, size, val);
|
|
#endif
|
|
|
|
asi &= 0xff;
|
|
|
|
if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
|
|
|| ((env->def->features & CPU_FEATURE_HYPV)
|
|
&& asi >= 0x30 && asi < 0x80
|
|
&& !(env->hpstate & HS_PRIV)))
|
|
raise_exception(TT_PRIV_ACT);
|
|
|
|
helper_check_align(addr, size - 1);
|
|
/* Convert to little endian */
|
|
switch (asi) {
|
|
case 0x0c: // Nucleus Little Endian (LE)
|
|
case 0x18: // As if user primary LE
|
|
case 0x19: // As if user secondary LE
|
|
case 0x1c: // Bypass LE
|
|
case 0x1d: // Bypass, non-cacheable LE
|
|
case 0x88: // Primary LE
|
|
case 0x89: // Secondary LE
|
|
switch(size) {
|
|
case 2:
|
|
val = bswap16(val);
|
|
break;
|
|
case 4:
|
|
val = bswap32(val);
|
|
break;
|
|
case 8:
|
|
val = bswap64(val);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
|
|
switch(asi) {
|
|
case 0x10: // As if user primary
|
|
case 0x18: // As if user primary LE
|
|
case 0x80: // Primary
|
|
case 0x88: // Primary LE
|
|
case 0xe2: // UA2007 Primary block init
|
|
case 0xe3: // UA2007 Secondary block init
|
|
if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
|
|
if ((env->def->features & CPU_FEATURE_HYPV)
|
|
&& env->hpstate & HS_PRIV) {
|
|
switch(size) {
|
|
case 1:
|
|
stb_hypv(addr, val);
|
|
break;
|
|
case 2:
|
|
stw_hypv(addr, val);
|
|
break;
|
|
case 4:
|
|
stl_hypv(addr, val);
|
|
break;
|
|
case 8:
|
|
default:
|
|
stq_hypv(addr, val);
|
|
break;
|
|
}
|
|
} else {
|
|
switch(size) {
|
|
case 1:
|
|
stb_kernel(addr, val);
|
|
break;
|
|
case 2:
|
|
stw_kernel(addr, val);
|
|
break;
|
|
case 4:
|
|
stl_kernel(addr, val);
|
|
break;
|
|
case 8:
|
|
default:
|
|
stq_kernel(addr, val);
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
switch(size) {
|
|
case 1:
|
|
stb_user(addr, val);
|
|
break;
|
|
case 2:
|
|
stw_user(addr, val);
|
|
break;
|
|
case 4:
|
|
stl_user(addr, val);
|
|
break;
|
|
case 8:
|
|
default:
|
|
stq_user(addr, val);
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
case 0x14: // Bypass
|
|
case 0x15: // Bypass, non-cacheable
|
|
case 0x1c: // Bypass LE
|
|
case 0x1d: // Bypass, non-cacheable LE
|
|
{
|
|
switch(size) {
|
|
case 1:
|
|
stb_phys(addr, val);
|
|
break;
|
|
case 2:
|
|
stw_phys(addr, val);
|
|
break;
|
|
case 4:
|
|
stl_phys(addr, val);
|
|
break;
|
|
case 8:
|
|
default:
|
|
stq_phys(addr, val);
|
|
break;
|
|
}
|
|
}
|
|
return;
|
|
case 0x24: // Nucleus quad LDD 128 bit atomic
|
|
case 0x2c: // Nucleus quad LDD 128 bit atomic LE
|
|
// Only ldda allowed
|
|
raise_exception(TT_ILL_INSN);
|
|
return;
|
|
case 0x04: // Nucleus
|
|
case 0x0c: // Nucleus Little Endian (LE)
|
|
case 0x11: // As if user secondary
|
|
case 0x19: // As if user secondary LE
|
|
case 0x4a: // UPA config
|
|
case 0x81: // Secondary
|
|
case 0x89: // Secondary LE
|
|
// XXX
|
|
return;
|
|
case 0x45: // LSU
|
|
{
|
|
uint64_t oldreg;
|
|
|
|
oldreg = env->lsu;
|
|
env->lsu = val & (DMMU_E | IMMU_E);
|
|
// Mappings generated during D/I MMU disabled mode are
|
|
// invalid in normal mode
|
|
if (oldreg != env->lsu) {
|
|
DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n",
|
|
oldreg, env->lsu);
|
|
#ifdef DEBUG_MMU
|
|
dump_mmu(env);
|
|
#endif
|
|
tlb_flush(env, 1);
|
|
}
|
|
return;
|
|
}
|
|
case 0x50: // I-MMU regs
|
|
{
|
|
int reg = (addr >> 3) & 0xf;
|
|
uint64_t oldreg;
|
|
|
|
oldreg = env->immuregs[reg];
|
|
switch(reg) {
|
|
case 0: // RO
|
|
return;
|
|
case 1: // Not in I-MMU
|
|
case 2:
|
|
return;
|
|
case 3: // SFSR
|
|
if ((val & 1) == 0)
|
|
val = 0; // Clear SFSR
|
|
env->immu.sfsr = val;
|
|
break;
|
|
case 4: // RO
|
|
return;
|
|
case 5: // TSB access
|
|
DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
|
|
PRIx64 "\n", env->immu.tsb, val);
|
|
env->immu.tsb = val;
|
|
break;
|
|
case 6: // Tag access
|
|
env->immu.tag_access = val;
|
|
break;
|
|
case 7:
|
|
case 8:
|
|
return;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (oldreg != env->immuregs[reg]) {
|
|
DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
|
|
PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
|
|
}
|
|
#ifdef DEBUG_MMU
|
|
dump_mmu(env);
|
|
#endif
|
|
return;
|
|
}
|
|
case 0x54: // I-MMU data in
|
|
replace_tlb_1bit_lru(env->itlb, env->immu.tag_access, val, "immu", env);
|
|
return;
|
|
case 0x55: // I-MMU data access
|
|
{
|
|
// TODO: auto demap
|
|
|
|
unsigned int i = (addr >> 3) & 0x3f;
|
|
|
|
replace_tlb_entry(&env->itlb[i], env->immu.tag_access, val, env);
|
|
|
|
#ifdef DEBUG_MMU
|
|
DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
|
|
dump_mmu(env);
|
|
#endif
|
|
return;
|
|
}
|
|
case 0x57: // I-MMU demap
|
|
demap_tlb(env->itlb, val, "immu", env);
|
|
return;
|
|
case 0x58: // D-MMU regs
|
|
{
|
|
int reg = (addr >> 3) & 0xf;
|
|
uint64_t oldreg;
|
|
|
|
oldreg = env->dmmuregs[reg];
|
|
switch(reg) {
|
|
case 0: // RO
|
|
case 4:
|
|
return;
|
|
case 3: // SFSR
|
|
if ((val & 1) == 0) {
|
|
val = 0; // Clear SFSR, Fault address
|
|
env->dmmu.sfar = 0;
|
|
}
|
|
env->dmmu.sfsr = val;
|
|
break;
|
|
case 1: // Primary context
|
|
env->dmmu.mmu_primary_context = val;
|
|
break;
|
|
case 2: // Secondary context
|
|
env->dmmu.mmu_secondary_context = val;
|
|
break;
|
|
case 5: // TSB access
|
|
DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
|
|
PRIx64 "\n", env->dmmu.tsb, val);
|
|
env->dmmu.tsb = val;
|
|
break;
|
|
case 6: // Tag access
|
|
env->dmmu.tag_access = val;
|
|
break;
|
|
case 7: // Virtual Watchpoint
|
|
case 8: // Physical Watchpoint
|
|
default:
|
|
env->dmmuregs[reg] = val;
|
|
break;
|
|
}
|
|
|
|
if (oldreg != env->dmmuregs[reg]) {
|
|
DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
|
|
PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
|
|
}
|
|
#ifdef DEBUG_MMU
|
|
dump_mmu(env);
|
|
#endif
|
|
return;
|
|
}
|
|
case 0x5c: // D-MMU data in
|
|
replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access, val, "dmmu", env);
|
|
return;
|
|
case 0x5d: // D-MMU data access
|
|
{
|
|
unsigned int i = (addr >> 3) & 0x3f;
|
|
|
|
replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access, val, env);
|
|
|
|
#ifdef DEBUG_MMU
|
|
DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
|
|
dump_mmu(env);
|
|
#endif
|
|
return;
|
|
}
|
|
case 0x5f: // D-MMU demap
|
|
demap_tlb(env->dtlb, val, "dmmu", env);
|
|
return;
|
|
case 0x49: // Interrupt data receive
|
|
// XXX
|
|
return;
|
|
case 0x46: // D-cache data
|
|
case 0x47: // D-cache tag access
|
|
case 0x4b: // E-cache error enable
|
|
case 0x4c: // E-cache asynchronous fault status
|
|
case 0x4d: // E-cache asynchronous fault address
|
|
case 0x4e: // E-cache tag data
|
|
case 0x66: // I-cache instruction access
|
|
case 0x67: // I-cache tag access
|
|
case 0x6e: // I-cache predecode
|
|
case 0x6f: // I-cache LRU etc.
|
|
case 0x76: // E-cache tag
|
|
case 0x7e: // E-cache tag
|
|
return;
|
|
case 0x51: // I-MMU 8k TSB pointer, RO
|
|
case 0x52: // I-MMU 64k TSB pointer, RO
|
|
case 0x56: // I-MMU tag read, RO
|
|
case 0x59: // D-MMU 8k TSB pointer, RO
|
|
case 0x5a: // D-MMU 64k TSB pointer, RO
|
|
case 0x5b: // D-MMU data pointer, RO
|
|
case 0x5e: // D-MMU tag read, RO
|
|
case 0x48: // Interrupt dispatch, RO
|
|
case 0x7f: // Incoming interrupt vector, RO
|
|
case 0x82: // Primary no-fault, RO
|
|
case 0x83: // Secondary no-fault, RO
|
|
case 0x8a: // Primary no-fault LE, RO
|
|
case 0x8b: // Secondary no-fault LE, RO
|
|
default:
|
|
do_unassigned_access(addr, 1, 0, 1, size);
|
|
return;
|
|
}
|
|
}
|
|
#endif /* CONFIG_USER_ONLY */
|
|
|
|
void helper_ldda_asi(target_ulong addr, int asi, int rd)
|
|
{
|
|
if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
|
|
|| ((env->def->features & CPU_FEATURE_HYPV)
|
|
&& asi >= 0x30 && asi < 0x80
|
|
&& !(env->hpstate & HS_PRIV)))
|
|
raise_exception(TT_PRIV_ACT);
|
|
|
|
switch (asi) {
|
|
case 0x24: // Nucleus quad LDD 128 bit atomic
|
|
case 0x2c: // Nucleus quad LDD 128 bit atomic LE
|
|
helper_check_align(addr, 0xf);
|
|
if (rd == 0) {
|
|
env->gregs[1] = ldq_kernel(addr + 8);
|
|
if (asi == 0x2c)
|
|
bswap64s(&env->gregs[1]);
|
|
} else if (rd < 8) {
|
|
env->gregs[rd] = ldq_kernel(addr);
|
|
env->gregs[rd + 1] = ldq_kernel(addr + 8);
|
|
if (asi == 0x2c) {
|
|
bswap64s(&env->gregs[rd]);
|
|
bswap64s(&env->gregs[rd + 1]);
|
|
}
|
|
} else {
|
|
env->regwptr[rd] = ldq_kernel(addr);
|
|
env->regwptr[rd + 1] = ldq_kernel(addr + 8);
|
|
if (asi == 0x2c) {
|
|
bswap64s(&env->regwptr[rd]);
|
|
bswap64s(&env->regwptr[rd + 1]);
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
helper_check_align(addr, 0x3);
|
|
if (rd == 0)
|
|
env->gregs[1] = helper_ld_asi(addr + 4, asi, 4, 0);
|
|
else if (rd < 8) {
|
|
env->gregs[rd] = helper_ld_asi(addr, asi, 4, 0);
|
|
env->gregs[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
|
|
} else {
|
|
env->regwptr[rd] = helper_ld_asi(addr, asi, 4, 0);
|
|
env->regwptr[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
void helper_ldf_asi(target_ulong addr, int asi, int size, int rd)
|
|
{
|
|
unsigned int i;
|
|
target_ulong val;
|
|
|
|
helper_check_align(addr, 3);
|
|
switch (asi) {
|
|
case 0xf0: // Block load primary
|
|
case 0xf1: // Block load secondary
|
|
case 0xf8: // Block load primary LE
|
|
case 0xf9: // Block load secondary LE
|
|
if (rd & 7) {
|
|
raise_exception(TT_ILL_INSN);
|
|
return;
|
|
}
|
|
helper_check_align(addr, 0x3f);
|
|
for (i = 0; i < 16; i++) {
|
|
*(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x8f, 4,
|
|
0);
|
|
addr += 4;
|
|
}
|
|
|
|
return;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
val = helper_ld_asi(addr, asi, size, 0);
|
|
switch(size) {
|
|
default:
|
|
case 4:
|
|
*((uint32_t *)&env->fpr[rd]) = val;
|
|
break;
|
|
case 8:
|
|
*((int64_t *)&DT0) = val;
|
|
break;
|
|
case 16:
|
|
// XXX
|
|
break;
|
|
}
|
|
}
|
|
|
|
void helper_stf_asi(target_ulong addr, int asi, int size, int rd)
|
|
{
|
|
unsigned int i;
|
|
target_ulong val = 0;
|
|
|
|
helper_check_align(addr, 3);
|
|
switch (asi) {
|
|
case 0xe0: // UA2007 Block commit store primary (cache flush)
|
|
case 0xe1: // UA2007 Block commit store secondary (cache flush)
|
|
case 0xf0: // Block store primary
|
|
case 0xf1: // Block store secondary
|
|
case 0xf8: // Block store primary LE
|
|
case 0xf9: // Block store secondary LE
|
|
if (rd & 7) {
|
|
raise_exception(TT_ILL_INSN);
|
|
return;
|
|
}
|
|
helper_check_align(addr, 0x3f);
|
|
for (i = 0; i < 16; i++) {
|
|
val = *(uint32_t *)&env->fpr[rd++];
|
|
helper_st_asi(addr, val, asi & 0x8f, 4);
|
|
addr += 4;
|
|
}
|
|
|
|
return;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
switch(size) {
|
|
default:
|
|
case 4:
|
|
val = *((uint32_t *)&env->fpr[rd]);
|
|
break;
|
|
case 8:
|
|
val = *((int64_t *)&DT0);
|
|
break;
|
|
case 16:
|
|
// XXX
|
|
break;
|
|
}
|
|
helper_st_asi(addr, val, asi, size);
|
|
}
|
|
|
|
target_ulong helper_cas_asi(target_ulong addr, target_ulong val1,
|
|
target_ulong val2, uint32_t asi)
|
|
{
|
|
target_ulong ret;
|
|
|
|
val2 &= 0xffffffffUL;
|
|
ret = helper_ld_asi(addr, asi, 4, 0);
|
|
ret &= 0xffffffffUL;
|
|
if (val2 == ret)
|
|
helper_st_asi(addr, val1 & 0xffffffffUL, asi, 4);
|
|
return ret;
|
|
}
|
|
|
|
target_ulong helper_casx_asi(target_ulong addr, target_ulong val1,
|
|
target_ulong val2, uint32_t asi)
|
|
{
|
|
target_ulong ret;
|
|
|
|
ret = helper_ld_asi(addr, asi, 8, 0);
|
|
if (val2 == ret)
|
|
helper_st_asi(addr, val1, asi, 8);
|
|
return ret;
|
|
}
|
|
#endif /* TARGET_SPARC64 */
|
|
|
|
#ifndef TARGET_SPARC64
|
|
void helper_rett(void)
|
|
{
|
|
unsigned int cwp;
|
|
|
|
if (env->psret == 1)
|
|
raise_exception(TT_ILL_INSN);
|
|
|
|
env->psret = 1;
|
|
cwp = cpu_cwp_inc(env, env->cwp + 1) ;
|
|
if (env->wim & (1 << cwp)) {
|
|
raise_exception(TT_WIN_UNF);
|
|
}
|
|
set_cwp(cwp);
|
|
env->psrs = env->psrps;
|
|
}
|
|
#endif
|
|
|
|
target_ulong helper_udiv(target_ulong a, target_ulong b)
|
|
{
|
|
uint64_t x0;
|
|
uint32_t x1;
|
|
|
|
x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
|
|
x1 = b;
|
|
|
|
if (x1 == 0) {
|
|
raise_exception(TT_DIV_ZERO);
|
|
}
|
|
|
|
x0 = x0 / x1;
|
|
if (x0 > 0xffffffff) {
|
|
env->cc_src2 = 1;
|
|
return 0xffffffff;
|
|
} else {
|
|
env->cc_src2 = 0;
|
|
return x0;
|
|
}
|
|
}
|
|
|
|
target_ulong helper_sdiv(target_ulong a, target_ulong b)
|
|
{
|
|
int64_t x0;
|
|
int32_t x1;
|
|
|
|
x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
|
|
x1 = b;
|
|
|
|
if (x1 == 0) {
|
|
raise_exception(TT_DIV_ZERO);
|
|
}
|
|
|
|
x0 = x0 / x1;
|
|
if ((int32_t) x0 != x0) {
|
|
env->cc_src2 = 1;
|
|
return x0 < 0? 0x80000000: 0x7fffffff;
|
|
} else {
|
|
env->cc_src2 = 0;
|
|
return x0;
|
|
}
|
|
}
|
|
|
|
void helper_stdf(target_ulong addr, int mem_idx)
|
|
{
|
|
helper_check_align(addr, 7);
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
switch (mem_idx) {
|
|
case 0:
|
|
stfq_user(addr, DT0);
|
|
break;
|
|
case 1:
|
|
stfq_kernel(addr, DT0);
|
|
break;
|
|
#ifdef TARGET_SPARC64
|
|
case 2:
|
|
stfq_hypv(addr, DT0);
|
|
break;
|
|
#endif
|
|
default:
|
|
break;
|
|
}
|
|
#else
|
|
address_mask(env, &addr);
|
|
stfq_raw(addr, DT0);
|
|
#endif
|
|
}
|
|
|
|
void helper_lddf(target_ulong addr, int mem_idx)
|
|
{
|
|
helper_check_align(addr, 7);
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
switch (mem_idx) {
|
|
case 0:
|
|
DT0 = ldfq_user(addr);
|
|
break;
|
|
case 1:
|
|
DT0 = ldfq_kernel(addr);
|
|
break;
|
|
#ifdef TARGET_SPARC64
|
|
case 2:
|
|
DT0 = ldfq_hypv(addr);
|
|
break;
|
|
#endif
|
|
default:
|
|
break;
|
|
}
|
|
#else
|
|
address_mask(env, &addr);
|
|
DT0 = ldfq_raw(addr);
|
|
#endif
|
|
}
|
|
|
|
void helper_ldqf(target_ulong addr, int mem_idx)
|
|
{
|
|
// XXX add 128 bit load
|
|
CPU_QuadU u;
|
|
|
|
helper_check_align(addr, 7);
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
switch (mem_idx) {
|
|
case 0:
|
|
u.ll.upper = ldq_user(addr);
|
|
u.ll.lower = ldq_user(addr + 8);
|
|
QT0 = u.q;
|
|
break;
|
|
case 1:
|
|
u.ll.upper = ldq_kernel(addr);
|
|
u.ll.lower = ldq_kernel(addr + 8);
|
|
QT0 = u.q;
|
|
break;
|
|
#ifdef TARGET_SPARC64
|
|
case 2:
|
|
u.ll.upper = ldq_hypv(addr);
|
|
u.ll.lower = ldq_hypv(addr + 8);
|
|
QT0 = u.q;
|
|
break;
|
|
#endif
|
|
default:
|
|
break;
|
|
}
|
|
#else
|
|
address_mask(env, &addr);
|
|
u.ll.upper = ldq_raw(addr);
|
|
u.ll.lower = ldq_raw((addr + 8) & 0xffffffffULL);
|
|
QT0 = u.q;
|
|
#endif
|
|
}
|
|
|
|
void helper_stqf(target_ulong addr, int mem_idx)
|
|
{
|
|
// XXX add 128 bit store
|
|
CPU_QuadU u;
|
|
|
|
helper_check_align(addr, 7);
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
switch (mem_idx) {
|
|
case 0:
|
|
u.q = QT0;
|
|
stq_user(addr, u.ll.upper);
|
|
stq_user(addr + 8, u.ll.lower);
|
|
break;
|
|
case 1:
|
|
u.q = QT0;
|
|
stq_kernel(addr, u.ll.upper);
|
|
stq_kernel(addr + 8, u.ll.lower);
|
|
break;
|
|
#ifdef TARGET_SPARC64
|
|
case 2:
|
|
u.q = QT0;
|
|
stq_hypv(addr, u.ll.upper);
|
|
stq_hypv(addr + 8, u.ll.lower);
|
|
break;
|
|
#endif
|
|
default:
|
|
break;
|
|
}
|
|
#else
|
|
u.q = QT0;
|
|
address_mask(env, &addr);
|
|
stq_raw(addr, u.ll.upper);
|
|
stq_raw((addr + 8) & 0xffffffffULL, u.ll.lower);
|
|
#endif
|
|
}
|
|
|
|
static inline void set_fsr(void)
|
|
{
|
|
int rnd_mode;
|
|
|
|
switch (env->fsr & FSR_RD_MASK) {
|
|
case FSR_RD_NEAREST:
|
|
rnd_mode = float_round_nearest_even;
|
|
break;
|
|
default:
|
|
case FSR_RD_ZERO:
|
|
rnd_mode = float_round_to_zero;
|
|
break;
|
|
case FSR_RD_POS:
|
|
rnd_mode = float_round_up;
|
|
break;
|
|
case FSR_RD_NEG:
|
|
rnd_mode = float_round_down;
|
|
break;
|
|
}
|
|
set_float_rounding_mode(rnd_mode, &env->fp_status);
|
|
}
|
|
|
|
void helper_ldfsr(uint32_t new_fsr)
|
|
{
|
|
env->fsr = (new_fsr & FSR_LDFSR_MASK) | (env->fsr & FSR_LDFSR_OLDMASK);
|
|
set_fsr();
|
|
}
|
|
|
|
#ifdef TARGET_SPARC64
|
|
void helper_ldxfsr(uint64_t new_fsr)
|
|
{
|
|
env->fsr = (new_fsr & FSR_LDXFSR_MASK) | (env->fsr & FSR_LDXFSR_OLDMASK);
|
|
set_fsr();
|
|
}
|
|
#endif
|
|
|
|
void helper_debug(void)
|
|
{
|
|
env->exception_index = EXCP_DEBUG;
|
|
cpu_loop_exit();
|
|
}
|
|
|
|
#ifndef TARGET_SPARC64
|
|
/* XXX: use another pointer for %iN registers to avoid slow wrapping
|
|
handling ? */
|
|
void helper_save(void)
|
|
{
|
|
uint32_t cwp;
|
|
|
|
cwp = cpu_cwp_dec(env, env->cwp - 1);
|
|
if (env->wim & (1 << cwp)) {
|
|
raise_exception(TT_WIN_OVF);
|
|
}
|
|
set_cwp(cwp);
|
|
}
|
|
|
|
void helper_restore(void)
|
|
{
|
|
uint32_t cwp;
|
|
|
|
cwp = cpu_cwp_inc(env, env->cwp + 1);
|
|
if (env->wim & (1 << cwp)) {
|
|
raise_exception(TT_WIN_UNF);
|
|
}
|
|
set_cwp(cwp);
|
|
}
|
|
|
|
void helper_wrpsr(target_ulong new_psr)
|
|
{
|
|
if ((new_psr & PSR_CWP) >= env->nwindows)
|
|
raise_exception(TT_ILL_INSN);
|
|
else
|
|
PUT_PSR(env, new_psr);
|
|
}
|
|
|
|
target_ulong helper_rdpsr(void)
|
|
{
|
|
return GET_PSR(env);
|
|
}
|
|
|
|
#else
|
|
/* XXX: use another pointer for %iN registers to avoid slow wrapping
|
|
handling ? */
|
|
void helper_save(void)
|
|
{
|
|
uint32_t cwp;
|
|
|
|
cwp = cpu_cwp_dec(env, env->cwp - 1);
|
|
if (env->cansave == 0) {
|
|
raise_exception(TT_SPILL | (env->otherwin != 0 ?
|
|
(TT_WOTHER | ((env->wstate & 0x38) >> 1)):
|
|
((env->wstate & 0x7) << 2)));
|
|
} else {
|
|
if (env->cleanwin - env->canrestore == 0) {
|
|
// XXX Clean windows without trap
|
|
raise_exception(TT_CLRWIN);
|
|
} else {
|
|
env->cansave--;
|
|
env->canrestore++;
|
|
set_cwp(cwp);
|
|
}
|
|
}
|
|
}
|
|
|
|
void helper_restore(void)
|
|
{
|
|
uint32_t cwp;
|
|
|
|
cwp = cpu_cwp_inc(env, env->cwp + 1);
|
|
if (env->canrestore == 0) {
|
|
raise_exception(TT_FILL | (env->otherwin != 0 ?
|
|
(TT_WOTHER | ((env->wstate & 0x38) >> 1)):
|
|
((env->wstate & 0x7) << 2)));
|
|
} else {
|
|
env->cansave++;
|
|
env->canrestore--;
|
|
set_cwp(cwp);
|
|
}
|
|
}
|
|
|
|
void helper_flushw(void)
|
|
{
|
|
if (env->cansave != env->nwindows - 2) {
|
|
raise_exception(TT_SPILL | (env->otherwin != 0 ?
|
|
(TT_WOTHER | ((env->wstate & 0x38) >> 1)):
|
|
((env->wstate & 0x7) << 2)));
|
|
}
|
|
}
|
|
|
|
void helper_saved(void)
|
|
{
|
|
env->cansave++;
|
|
if (env->otherwin == 0)
|
|
env->canrestore--;
|
|
else
|
|
env->otherwin--;
|
|
}
|
|
|
|
void helper_restored(void)
|
|
{
|
|
env->canrestore++;
|
|
if (env->cleanwin < env->nwindows - 1)
|
|
env->cleanwin++;
|
|
if (env->otherwin == 0)
|
|
env->cansave--;
|
|
else
|
|
env->otherwin--;
|
|
}
|
|
|
|
target_ulong helper_rdccr(void)
|
|
{
|
|
return GET_CCR(env);
|
|
}
|
|
|
|
void helper_wrccr(target_ulong new_ccr)
|
|
{
|
|
PUT_CCR(env, new_ccr);
|
|
}
|
|
|
|
// CWP handling is reversed in V9, but we still use the V8 register
|
|
// order.
|
|
target_ulong helper_rdcwp(void)
|
|
{
|
|
return GET_CWP64(env);
|
|
}
|
|
|
|
void helper_wrcwp(target_ulong new_cwp)
|
|
{
|
|
PUT_CWP64(env, new_cwp);
|
|
}
|
|
|
|
// This function uses non-native bit order
|
|
#define GET_FIELD(X, FROM, TO) \
|
|
((X) >> (63 - (TO)) & ((1ULL << ((TO) - (FROM) + 1)) - 1))
|
|
|
|
// This function uses the order in the manuals, i.e. bit 0 is 2^0
|
|
#define GET_FIELD_SP(X, FROM, TO) \
|
|
GET_FIELD(X, 63 - (TO), 63 - (FROM))
|
|
|
|
target_ulong helper_array8(target_ulong pixel_addr, target_ulong cubesize)
|
|
{
|
|
return (GET_FIELD_SP(pixel_addr, 60, 63) << (17 + 2 * cubesize)) |
|
|
(GET_FIELD_SP(pixel_addr, 39, 39 + cubesize - 1) << (17 + cubesize)) |
|
|
(GET_FIELD_SP(pixel_addr, 17 + cubesize - 1, 17) << 17) |
|
|
(GET_FIELD_SP(pixel_addr, 56, 59) << 13) |
|
|
(GET_FIELD_SP(pixel_addr, 35, 38) << 9) |
|
|
(GET_FIELD_SP(pixel_addr, 13, 16) << 5) |
|
|
(((pixel_addr >> 55) & 1) << 4) |
|
|
(GET_FIELD_SP(pixel_addr, 33, 34) << 2) |
|
|
GET_FIELD_SP(pixel_addr, 11, 12);
|
|
}
|
|
|
|
target_ulong helper_alignaddr(target_ulong addr, target_ulong offset)
|
|
{
|
|
uint64_t tmp;
|
|
|
|
tmp = addr + offset;
|
|
env->gsr &= ~7ULL;
|
|
env->gsr |= tmp & 7ULL;
|
|
return tmp & ~7ULL;
|
|
}
|
|
|
|
target_ulong helper_popc(target_ulong val)
|
|
{
|
|
return ctpop64(val);
|
|
}
|
|
|
|
static inline uint64_t *get_gregset(uint64_t pstate)
|
|
{
|
|
switch (pstate) {
|
|
default:
|
|
case 0:
|
|
return env->bgregs;
|
|
case PS_AG:
|
|
return env->agregs;
|
|
case PS_MG:
|
|
return env->mgregs;
|
|
case PS_IG:
|
|
return env->igregs;
|
|
}
|
|
}
|
|
|
|
static inline void change_pstate(uint64_t new_pstate)
|
|
{
|
|
uint64_t pstate_regs, new_pstate_regs;
|
|
uint64_t *src, *dst;
|
|
|
|
if (env->def->features & CPU_FEATURE_GL) {
|
|
// PS_AG is not implemented in this case
|
|
new_pstate &= ~PS_AG;
|
|
}
|
|
|
|
pstate_regs = env->pstate & 0xc01;
|
|
new_pstate_regs = new_pstate & 0xc01;
|
|
|
|
if (new_pstate_regs != pstate_regs) {
|
|
// Switch global register bank
|
|
src = get_gregset(new_pstate_regs);
|
|
dst = get_gregset(pstate_regs);
|
|
memcpy32(dst, env->gregs);
|
|
memcpy32(env->gregs, src);
|
|
}
|
|
env->pstate = new_pstate;
|
|
}
|
|
|
|
void helper_wrpstate(target_ulong new_state)
|
|
{
|
|
change_pstate(new_state & 0xf3f);
|
|
}
|
|
|
|
void helper_done(void)
|
|
{
|
|
trap_state* tsptr = cpu_tsptr(env);
|
|
|
|
env->pc = tsptr->tpc;
|
|
env->npc = tsptr->tnpc + 4;
|
|
PUT_CCR(env, tsptr->tstate >> 32);
|
|
env->asi = (tsptr->tstate >> 24) & 0xff;
|
|
change_pstate((tsptr->tstate >> 8) & 0xf3f);
|
|
PUT_CWP64(env, tsptr->tstate & 0xff);
|
|
env->tl--;
|
|
}
|
|
|
|
void helper_retry(void)
|
|
{
|
|
trap_state* tsptr = cpu_tsptr(env);
|
|
|
|
env->pc = tsptr->tpc;
|
|
env->npc = tsptr->tnpc;
|
|
PUT_CCR(env, tsptr->tstate >> 32);
|
|
env->asi = (tsptr->tstate >> 24) & 0xff;
|
|
change_pstate((tsptr->tstate >> 8) & 0xf3f);
|
|
PUT_CWP64(env, tsptr->tstate & 0xff);
|
|
env->tl--;
|
|
}
|
|
|
|
void helper_set_softint(uint64_t value)
|
|
{
|
|
env->softint |= (uint32_t)value;
|
|
}
|
|
|
|
void helper_clear_softint(uint64_t value)
|
|
{
|
|
env->softint &= (uint32_t)~value;
|
|
}
|
|
|
|
void helper_write_softint(uint64_t value)
|
|
{
|
|
env->softint = (uint32_t)value;
|
|
}
|
|
#endif
|
|
|
|
void helper_flush(target_ulong addr)
|
|
{
|
|
addr &= ~7;
|
|
tb_invalidate_page_range(addr, addr + 8);
|
|
}
|
|
|
|
#ifdef TARGET_SPARC64
|
|
#ifdef DEBUG_PCALL
|
|
static const char * const excp_names[0x80] = {
|
|
[TT_TFAULT] = "Instruction Access Fault",
|
|
[TT_TMISS] = "Instruction Access MMU Miss",
|
|
[TT_CODE_ACCESS] = "Instruction Access Error",
|
|
[TT_ILL_INSN] = "Illegal Instruction",
|
|
[TT_PRIV_INSN] = "Privileged Instruction",
|
|
[TT_NFPU_INSN] = "FPU Disabled",
|
|
[TT_FP_EXCP] = "FPU Exception",
|
|
[TT_TOVF] = "Tag Overflow",
|
|
[TT_CLRWIN] = "Clean Windows",
|
|
[TT_DIV_ZERO] = "Division By Zero",
|
|
[TT_DFAULT] = "Data Access Fault",
|
|
[TT_DMISS] = "Data Access MMU Miss",
|
|
[TT_DATA_ACCESS] = "Data Access Error",
|
|
[TT_DPROT] = "Data Protection Error",
|
|
[TT_UNALIGNED] = "Unaligned Memory Access",
|
|
[TT_PRIV_ACT] = "Privileged Action",
|
|
[TT_EXTINT | 0x1] = "External Interrupt 1",
|
|
[TT_EXTINT | 0x2] = "External Interrupt 2",
|
|
[TT_EXTINT | 0x3] = "External Interrupt 3",
|
|
[TT_EXTINT | 0x4] = "External Interrupt 4",
|
|
[TT_EXTINT | 0x5] = "External Interrupt 5",
|
|
[TT_EXTINT | 0x6] = "External Interrupt 6",
|
|
[TT_EXTINT | 0x7] = "External Interrupt 7",
|
|
[TT_EXTINT | 0x8] = "External Interrupt 8",
|
|
[TT_EXTINT | 0x9] = "External Interrupt 9",
|
|
[TT_EXTINT | 0xa] = "External Interrupt 10",
|
|
[TT_EXTINT | 0xb] = "External Interrupt 11",
|
|
[TT_EXTINT | 0xc] = "External Interrupt 12",
|
|
[TT_EXTINT | 0xd] = "External Interrupt 13",
|
|
[TT_EXTINT | 0xe] = "External Interrupt 14",
|
|
[TT_EXTINT | 0xf] = "External Interrupt 15",
|
|
};
|
|
#endif
|
|
|
|
trap_state* cpu_tsptr(CPUState* env)
|
|
{
|
|
return &env->ts[env->tl & MAXTL_MASK];
|
|
}
|
|
|
|
void do_interrupt(CPUState *env)
|
|
{
|
|
int intno = env->exception_index;
|
|
trap_state* tsptr;
|
|
|
|
#ifdef DEBUG_PCALL
|
|
if (qemu_loglevel_mask(CPU_LOG_INT)) {
|
|
static int count;
|
|
const char *name;
|
|
|
|
if (intno < 0 || intno >= 0x180)
|
|
name = "Unknown";
|
|
else if (intno >= 0x100)
|
|
name = "Trap Instruction";
|
|
else if (intno >= 0xc0)
|
|
name = "Window Fill";
|
|
else if (intno >= 0x80)
|
|
name = "Window Spill";
|
|
else {
|
|
name = excp_names[intno];
|
|
if (!name)
|
|
name = "Unknown";
|
|
}
|
|
|
|
qemu_log("%6d: %s (v=%04x) pc=%016" PRIx64 " npc=%016" PRIx64
|
|
" SP=%016" PRIx64 "\n",
|
|
count, name, intno,
|
|
env->pc,
|
|
env->npc, env->regwptr[6]);
|
|
log_cpu_state(env, 0);
|
|
#if 0
|
|
{
|
|
int i;
|
|
uint8_t *ptr;
|
|
|
|
qemu_log(" code=");
|
|
ptr = (uint8_t *)env->pc;
|
|
for(i = 0; i < 16; i++) {
|
|
qemu_log(" %02x", ldub(ptr + i));
|
|
}
|
|
qemu_log("\n");
|
|
}
|
|
#endif
|
|
count++;
|
|
}
|
|
#endif
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
if (env->tl >= env->maxtl) {
|
|
cpu_abort(env, "Trap 0x%04x while trap level (%d) >= MAXTL (%d),"
|
|
" Error state", env->exception_index, env->tl, env->maxtl);
|
|
return;
|
|
}
|
|
#endif
|
|
if (env->tl < env->maxtl - 1) {
|
|
env->tl++;
|
|
} else {
|
|
env->pstate |= PS_RED;
|
|
if (env->tl < env->maxtl)
|
|
env->tl++;
|
|
}
|
|
tsptr = cpu_tsptr(env);
|
|
|
|
tsptr->tstate = ((uint64_t)GET_CCR(env) << 32) |
|
|
((env->asi & 0xff) << 24) | ((env->pstate & 0xf3f) << 8) |
|
|
GET_CWP64(env);
|
|
tsptr->tpc = env->pc;
|
|
tsptr->tnpc = env->npc;
|
|
tsptr->tt = intno;
|
|
|
|
switch (intno) {
|
|
case TT_IVEC:
|
|
change_pstate(PS_PEF | PS_PRIV | PS_IG);
|
|
break;
|
|
case TT_TFAULT:
|
|
case TT_TMISS:
|
|
case TT_DFAULT:
|
|
case TT_DMISS:
|
|
case TT_DPROT:
|
|
change_pstate(PS_PEF | PS_PRIV | PS_MG);
|
|
break;
|
|
default:
|
|
change_pstate(PS_PEF | PS_PRIV | PS_AG);
|
|
break;
|
|
}
|
|
|
|
if (intno == TT_CLRWIN)
|
|
cpu_set_cwp(env, cpu_cwp_dec(env, env->cwp - 1));
|
|
else if ((intno & 0x1c0) == TT_SPILL)
|
|
cpu_set_cwp(env, cpu_cwp_dec(env, env->cwp - env->cansave - 2));
|
|
else if ((intno & 0x1c0) == TT_FILL)
|
|
cpu_set_cwp(env, cpu_cwp_inc(env, env->cwp + 1));
|
|
env->tbr &= ~0x7fffULL;
|
|
env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5);
|
|
env->pc = env->tbr;
|
|
env->npc = env->pc + 4;
|
|
env->exception_index = 0;
|
|
}
|
|
#else
|
|
#ifdef DEBUG_PCALL
|
|
static const char * const excp_names[0x80] = {
|
|
[TT_TFAULT] = "Instruction Access Fault",
|
|
[TT_ILL_INSN] = "Illegal Instruction",
|
|
[TT_PRIV_INSN] = "Privileged Instruction",
|
|
[TT_NFPU_INSN] = "FPU Disabled",
|
|
[TT_WIN_OVF] = "Window Overflow",
|
|
[TT_WIN_UNF] = "Window Underflow",
|
|
[TT_UNALIGNED] = "Unaligned Memory Access",
|
|
[TT_FP_EXCP] = "FPU Exception",
|
|
[TT_DFAULT] = "Data Access Fault",
|
|
[TT_TOVF] = "Tag Overflow",
|
|
[TT_EXTINT | 0x1] = "External Interrupt 1",
|
|
[TT_EXTINT | 0x2] = "External Interrupt 2",
|
|
[TT_EXTINT | 0x3] = "External Interrupt 3",
|
|
[TT_EXTINT | 0x4] = "External Interrupt 4",
|
|
[TT_EXTINT | 0x5] = "External Interrupt 5",
|
|
[TT_EXTINT | 0x6] = "External Interrupt 6",
|
|
[TT_EXTINT | 0x7] = "External Interrupt 7",
|
|
[TT_EXTINT | 0x8] = "External Interrupt 8",
|
|
[TT_EXTINT | 0x9] = "External Interrupt 9",
|
|
[TT_EXTINT | 0xa] = "External Interrupt 10",
|
|
[TT_EXTINT | 0xb] = "External Interrupt 11",
|
|
[TT_EXTINT | 0xc] = "External Interrupt 12",
|
|
[TT_EXTINT | 0xd] = "External Interrupt 13",
|
|
[TT_EXTINT | 0xe] = "External Interrupt 14",
|
|
[TT_EXTINT | 0xf] = "External Interrupt 15",
|
|
[TT_TOVF] = "Tag Overflow",
|
|
[TT_CODE_ACCESS] = "Instruction Access Error",
|
|
[TT_DATA_ACCESS] = "Data Access Error",
|
|
[TT_DIV_ZERO] = "Division By Zero",
|
|
[TT_NCP_INSN] = "Coprocessor Disabled",
|
|
};
|
|
#endif
|
|
|
|
void do_interrupt(CPUState *env)
|
|
{
|
|
int cwp, intno = env->exception_index;
|
|
|
|
#ifdef DEBUG_PCALL
|
|
if (qemu_loglevel_mask(CPU_LOG_INT)) {
|
|
static int count;
|
|
const char *name;
|
|
|
|
if (intno < 0 || intno >= 0x100)
|
|
name = "Unknown";
|
|
else if (intno >= 0x80)
|
|
name = "Trap Instruction";
|
|
else {
|
|
name = excp_names[intno];
|
|
if (!name)
|
|
name = "Unknown";
|
|
}
|
|
|
|
qemu_log("%6d: %s (v=%02x) pc=%08x npc=%08x SP=%08x\n",
|
|
count, name, intno,
|
|
env->pc,
|
|
env->npc, env->regwptr[6]);
|
|
log_cpu_state(env, 0);
|
|
#if 0
|
|
{
|
|
int i;
|
|
uint8_t *ptr;
|
|
|
|
qemu_log(" code=");
|
|
ptr = (uint8_t *)env->pc;
|
|
for(i = 0; i < 16; i++) {
|
|
qemu_log(" %02x", ldub(ptr + i));
|
|
}
|
|
qemu_log("\n");
|
|
}
|
|
#endif
|
|
count++;
|
|
}
|
|
#endif
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
if (env->psret == 0) {
|
|
cpu_abort(env, "Trap 0x%02x while interrupts disabled, Error state",
|
|
env->exception_index);
|
|
return;
|
|
}
|
|
#endif
|
|
env->psret = 0;
|
|
cwp = cpu_cwp_dec(env, env->cwp - 1);
|
|
cpu_set_cwp(env, cwp);
|
|
env->regwptr[9] = env->pc;
|
|
env->regwptr[10] = env->npc;
|
|
env->psrps = env->psrs;
|
|
env->psrs = 1;
|
|
env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4);
|
|
env->pc = env->tbr;
|
|
env->npc = env->pc + 4;
|
|
env->exception_index = 0;
|
|
}
|
|
#endif
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
|
|
static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
|
|
void *retaddr);
|
|
|
|
#define MMUSUFFIX _mmu
|
|
#define ALIGNED_ONLY
|
|
|
|
#define SHIFT 0
|
|
#include "softmmu_template.h"
|
|
|
|
#define SHIFT 1
|
|
#include "softmmu_template.h"
|
|
|
|
#define SHIFT 2
|
|
#include "softmmu_template.h"
|
|
|
|
#define SHIFT 3
|
|
#include "softmmu_template.h"
|
|
|
|
/* XXX: make it generic ? */
|
|
static void cpu_restore_state2(void *retaddr)
|
|
{
|
|
TranslationBlock *tb;
|
|
unsigned long pc;
|
|
|
|
if (retaddr) {
|
|
/* now we have a real cpu fault */
|
|
pc = (unsigned long)retaddr;
|
|
tb = tb_find_pc(pc);
|
|
if (tb) {
|
|
/* the PC is inside the translated code. It means that we have
|
|
a virtual CPU fault */
|
|
cpu_restore_state(tb, env, pc, (void *)(long)env->cond);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
|
|
void *retaddr)
|
|
{
|
|
#ifdef DEBUG_UNALIGNED
|
|
printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
|
|
"\n", addr, env->pc);
|
|
#endif
|
|
cpu_restore_state2(retaddr);
|
|
raise_exception(TT_UNALIGNED);
|
|
}
|
|
|
|
/* try to fill the TLB and return an exception if error. If retaddr is
|
|
NULL, it means that the function was called in C code (i.e. not
|
|
from generated code or from helper.c) */
|
|
/* XXX: fix it to restore all registers */
|
|
void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
|
|
{
|
|
int ret;
|
|
CPUState *saved_env;
|
|
|
|
/* XXX: hack to restore env in all cases, even if not called from
|
|
generated code */
|
|
saved_env = env;
|
|
env = cpu_single_env;
|
|
|
|
ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
|
|
if (ret) {
|
|
cpu_restore_state2(retaddr);
|
|
cpu_loop_exit();
|
|
}
|
|
env = saved_env;
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifndef TARGET_SPARC64
|
|
void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
|
|
int is_asi, int size)
|
|
{
|
|
CPUState *saved_env;
|
|
|
|
/* XXX: hack to restore env in all cases, even if not called from
|
|
generated code */
|
|
saved_env = env;
|
|
env = cpu_single_env;
|
|
#ifdef DEBUG_UNASSIGNED
|
|
if (is_asi)
|
|
printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
|
|
" asi 0x%02x from " TARGET_FMT_lx "\n",
|
|
is_exec ? "exec" : is_write ? "write" : "read", size,
|
|
size == 1 ? "" : "s", addr, is_asi, env->pc);
|
|
else
|
|
printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
|
|
" from " TARGET_FMT_lx "\n",
|
|
is_exec ? "exec" : is_write ? "write" : "read", size,
|
|
size == 1 ? "" : "s", addr, env->pc);
|
|
#endif
|
|
if (env->mmuregs[3]) /* Fault status register */
|
|
env->mmuregs[3] = 1; /* overflow (not read before another fault) */
|
|
if (is_asi)
|
|
env->mmuregs[3] |= 1 << 16;
|
|
if (env->psrs)
|
|
env->mmuregs[3] |= 1 << 5;
|
|
if (is_exec)
|
|
env->mmuregs[3] |= 1 << 6;
|
|
if (is_write)
|
|
env->mmuregs[3] |= 1 << 7;
|
|
env->mmuregs[3] |= (5 << 2) | 2;
|
|
env->mmuregs[4] = addr; /* Fault address register */
|
|
if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
|
|
if (is_exec)
|
|
raise_exception(TT_CODE_ACCESS);
|
|
else
|
|
raise_exception(TT_DATA_ACCESS);
|
|
}
|
|
env = saved_env;
|
|
}
|
|
#else
|
|
void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
|
|
int is_asi, int size)
|
|
{
|
|
#ifdef DEBUG_UNASSIGNED
|
|
CPUState *saved_env;
|
|
|
|
/* XXX: hack to restore env in all cases, even if not called from
|
|
generated code */
|
|
saved_env = env;
|
|
env = cpu_single_env;
|
|
printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
|
|
"\n", addr, env->pc);
|
|
env = saved_env;
|
|
#endif
|
|
if (is_exec)
|
|
raise_exception(TT_CODE_ACCESS);
|
|
else
|
|
raise_exception(TT_DATA_ACCESS);
|
|
}
|
|
#endif
|
|
|
|
#ifdef TARGET_SPARC64
|
|
void helper_tick_set_count(void *opaque, uint64_t count)
|
|
{
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
cpu_tick_set_count(opaque, count);
|
|
#endif
|
|
}
|
|
|
|
uint64_t helper_tick_get_count(void *opaque)
|
|
{
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
return cpu_tick_get_count(opaque);
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
void helper_tick_set_limit(void *opaque, uint64_t limit)
|
|
{
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
cpu_tick_set_limit(opaque, limit);
|
|
#endif
|
|
}
|
|
#endif
|